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Abstract—This paper explores an energy-efficient resistive
random access memory (RRAM) crossbar array framework
for predicting epileptic seizures using the CHB-MIT electroen-
cephalogram (EEG) dataset. RRAMs have significant potential
for in-memory computing, offering a promising solution to over-
come the limitations of the traditional Von Neumann architecture.
By integrating a domain-specific feature extraction approach and
evaluating the optimal RRAM hardware parameters using the
NeuroSim+ benchmarking platform, we assess the performance
of RRAM crossbars for predicting epileptic seizures. Our pro-
posed workflow achieves accuracy levels above 80% despite the
EEG data being quantized to 1-bit, highlighting the robustness
and efficiency of our approach for epileptic seizure prediction.

Index Terms—RRAM, epilepsy, EEG, benchmarking, in-
memory computing

I. INTRODUCTION

The growing power consumption of the state-of-the-art
CMOS systems, coupled with continuously increasing com-
putational load patterns, pose significant challenges to address
complex machine learning problems without compromising
the energy-efficiency and overall system performance. Such
limitations cause bottlenecks in data processing and commu-
nication capabilities of edge computing infrastructure, which
is critical for machine learning in healthcare applications,
e.g. health monitoring systems via physiological signal pro-
cessing. Enhancing the speed and energy efficiency of real-
time physiological data analysis holds immense potential
for advancing the integration of artificial intelligence (AI)
technologies within medical Internet-of-Things (IoT) devices.
Resistive Random Access Memory (RRAM) devices stand as
a highly promising technology in this regard to enable energy-
efficient in-memory computing for healthcare applications [1].

Advancements in computational methods and technology
are particularly critical in the prediction and management of
neurological disorders such as epilepsy. Epilepsy, character-
ized by its unpredictable seizure episodes, poses fundamental
diagnostic and treatment challenges [2]. However, the inte-
gration of electroencephalogram (EEG) signal analysis into
predictive models has demonstrated a strong potential to revo-
lutionize epilepsy care. Machine learning algorithms employed
on pre-processed EEG datasets can uncover subtle patterns and
biomarkers that correlate with increased seizure risk [3], [4].
This methodology not only enhances the accuracy of seizure
prediction but also facilitates the development of personalized

medicine strategies, optimizing treatment regimens based on
individual patient profiles.

In this paper, we explore an energy-efficient in-memory
computing framework for RRAM crossbar arrays to predict
epileptic seizures from the EEG data. In this study, we use the
CHB-MIT dataset, which includes EEG data from 23 epileptic
patients from the Children’s Hospital of Boston that were cap-
tured at a sampling rate of 256 Hz [5], [6]. Following the EEG
signal processing step, we use the NeuroSim+ benchmarking
platform [7] to assess the performance of RRAM crossbars
for predicting epileptic seizures.

This paper is organized as follows: Section II describes the
EEG signal pre-processing and data processing steps. Section
IIT details the NeuroSim+ benchmarking process as a function
of device metrics, and Section IV concludes the findings.

II. EEG SIGNALS AND PREPROCESSING

The architecture of our suggested model is depicted in
Figure 1. Our proposed workflow consists of the following:
EEG data pre-processing, feature extraction, normalization
and quantization of data processing steps, and two-layer fully
connected feed-forward neural network (FCNN) classifier. Ad-
ditional details about each step are provided in the following:

A. EEG Pre-processing

In CHB-MIT dataset, the number of channels varies be-
tween 23 and 26; however, the following 18 channels are
consistently shared across all patients: FP1-F7, F7-T7, T7-
P7, P7-0O1, FP1-F3, F3-C3, C3-P3, P3-0O1, FZ-CZ, CZ-PZ,
FP2-F4, F4-C4, C4-P4, P4-02, FP2-F§, F8-T8, T8-P8, and
P8-0O2. For our analysis, we only used four channels, FP1-
F7, FP2-F8, P8-0O2, and T7-P7, which covered a wider re-
gion, allowing for better spatial coverage of the brain. As
a result, abnormalities or epileptic activity originating from
different regions of the brain can be detected more accurately.
After identifying the selected channels, each 60-minute raw
scalp electroencephalography clip is split into 5-second non-
overlapping segments.

Next, we extracted one-hour-long preictal and interictal
samples. To extract preictal samples, we consider a five-minute
gap from seizure onset. Two-hours gap before and after seizure
onset is also considered to extract interictal samples. We label
each preictal sample as 1 and each interictal sample as O.
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Fig. 1: Overview of the EEG Signal Processing and In-Memory Computing Framework for Benchmarking Study

B. Feature Extraction

After pre-processing the EEG data, we extracted 40 features
in the time and frequency domain from each 5-second seg-
ment. Our feature extraction process is based on our prior work
[8]. The time-domain features include the energy distribution,
peak-to-peak values, and the number of zero-crossings. The
total number of extracted features in the time-domain is 3 x 4,
where 4 is the number of channels. The features in the
frequency-domain include the spectral power intensity, which
is extracted from the EEG data for 7 frequency bands from
0.1 Hz to 100 Hz using PyEEG library [9], including 0.1-4,
4-8, 8-13, 13-30, 30-50, 50-80, and 80-100 Hz.

C. Normalization and Quantization

In order to adapt the EEG data for the 1-bit input format
required by the single clock-cycle process of the NeuroSim+
[7] version 3.0 (V3.0) framework, we first normalized the
extracted features for each segment to a range between 0 and
1. Subsequently, these normalized data inputs were quantized
to either O or 1, using a threshold of 0.5. This quantization
process resulted in several zero values for the features of both
preictal and interictal samples, particularly for lower-valued
features such as mean, skewness, and kurtosis. To ensure

the relevance and utility of our feature set, we subsequently
removed all features that consistently registered as zero in both
preictal and interictal samples. This modification allowed us
to have consistent results in both the software and hardware-
based training and inference configurations.

D. Multi-layer Perceptron Simulator Framework

We used the NeuroSim+ V3.0 [7] platform to simulate the
effect of the RRAM device performance in predicting seizures
using EEG data. Neurosim+ V3.0 is a 2-layer multi-layer
perception (MLP) simulator, integrating device, circuit, and
algorithm level architectures in order to emulate the software
and hardware-based learning and classification tasks using the
MNIST handwritten dataset [10]. As mentioned in Section II,
we modified the CHB-MIT dataset to be represented in 1-bit.
This enabled us to process the EEG data in one clock cycle
using the NeuroSim V3.0 framework for our benchmarking
task. Our implementation employed an FCNN with 3 layers:
40 input neurons, 28 hidden neurons, and 2 output neurons.
This input to hidden neural network, 40x28, is encoded onto
the RRAM crossbar array as described in [7]. The resulting
vector matrix multiplication (VMM) output current is then
converted to voltage and passed through the hidden to output
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Fig. 2: Accuracy vs Epoch for SW/SW and SW/HW
Configurations with Batch Sizes of 4320 & 1080

neural network of 28x2. Sigmoid was used as an activation
function in both layers, and stochastic gradient descent (SGD)
was used as an optimizer with a learning rate of 0.01. Our
training dataset consists of 4320 EEG samples, while the test
dataset includes 1440 samples. In order to evaluate the impact
of critical device (conductance level, memory window) and
peripheral circuitry (analog-to-digital conversion precision)
metrics, we modify the default Ag-Si device configuration [12]
encoded in the simulator framework, with one-transistor one-
resistor (1TIR) configuration. We implement a linear weight
update scheme to study the device output parameter space in
isolation, without introducing additional non-idealities, except
in Figure 4 where we report the effect of cycle-to-cycle (C2C)
variation.

III. RESULTS
A. Software and Hardware-Based Learning Configurations

We have evaluated three learning configurations supported
by the NeuroSim+ framework i) Fully software based training
and inference (SW/SW): Learning and inference operations
are based on software without considering RRAM hardware
parameters. This configuration, also referred to as software-
only mode, represents the ideal setting where inherent RRAM
limitations would not impact the algorithm accuracy. ii) Soft-
ware based training and hardware-based inference (SW/HW):
In this mode, the network is pre-trained using the software,
and the simulator only emulates hardware during the clas-
sification/inference phase. Here, the hardware-based process
involves only the feed-forward (FF) operation during infer-
ence, and RRAM conductance values, analogous to synaptic
weights, are updated only once as there is no hardware-based
training process involved. iii) Hardware-based training and
inference (HW/HW): In this configuration, both training and
inference steps are implemented on hardware. The process
employs both FF and backpropagation (BP) operations. During
FF, input data traverse from the input layer to the output layer

through VMM operations and activation functions, generating
a prediction. Errors in these predictions are then adjusted
through BP, where they are used to modify the RRAM con-
ductance values using an SGD method. The simulator drives
the algorithm training by emulating the hardware parameters
of ITIR RRAM crossbar matrix and the peripheral circuitry,
using a subset of data batch randomly selected from the
training dataset at each epoch.

Figure 2 presents the accuracy of the epilepsy prediction
classification in the single patient case (Patient 9 from the
CHB-MIT dataset) for SW/SW and SW/HW configurations
as a function of the size of the EEG dataset included in each
training epoch, batch size. We used the best-performing device
parameters for the SW/HW configuration (Memory Window:
1250, Conductance Levels: 2048). For both cases, increasing
the batch size increased the training rate. However, SW/SW
runs exhibited a slower convergence to higher accuracy val-
ues compared to SW/HW runs. This interesting outcome is
attributed to the hardware limitations of the SW/HW config-
uration. More specifically, the uncertainty introduced by the
limitations of the RRAM device metrics can potentially help
the training algorithm escape local minima, thereby enhancing
overall training efficiency.

After evaluating the effect of batch size and the comparison
of SW/SW and SW/HW configurations, we investigated the
effect of the precision of Analog-to-Digital (ADC) conversion,
represented by the numBitPartial parameter in the simulator,
in the SW/HW setting. In Figure 3, accuracy values recorded
at the end of the 20th epoch are reported for two batch sizes as
a function of ADC precision bit. We found that the accuracy
plateaus at 50% for the minimum level of 2 bits for both cases
but increases with higher bit values of 4, 6, and 8. Moreover,
the results are consistent for both batch sizes, with the 1080
batch showing a steadier increase in accuracy than the 4320
batch, which has a drop in accuracy at the 20th epoch, as
can also be seen in Figure 2. These findings demonstrate that
higher ADC precision leads to faster accuracy convergence.

B. Memory Window, Conductance Level and Cycle-to-Cycle
Variation Benchmarking

We also studied the learning performance in HW/HW con-
figuration by varying the RRAM device performance metrics
and cycle-to-cycle (C2C) variation. The accuracy results of
the HW/HW mode as a function of RRAM memory window,
conductance level, and C2C variation metrics are presented
in Figure 4. These parameters are critical in encoding the
synaptic weight analogous conductance values within RRAM
hardware. The memory window specifies the range in which
synaptic weights can be encoded, while conductance level
indicates weight quantization effects during training. Fig. 4(a)
illustrates a positive correlation between increased memory
window size and higher accuracy levels. However, settings
with memory windows of 12.5 and 125 showed significant
oscillations, indicating that stable accuracy may not be achiev-
able within the 20-epoch training period under these condi-
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Fig. 3: Effect of ADC Precision in SW/HW Configuration
for the Batch Sizes: 4320 & 1080.

tions. This instability is likely due to the extreme quantization
of input and the constraints imposed by the device metrics.

Fig. 4(b) compares the results of three conductance levels,
128, 512, and 2048, representing the weight precision of 7,9,
and 11 bits. Varying the weight-bit precision gradually from 2
to 12 bits reveals that achieving a stable accuracy above 80%
in the studied classification task requires a minimum of 10-bit
precision, given the current hardware and network parameters.
Higher precision in synaptic weight encoding is facilitated
by the availability of more conductance levels, allowing for
fine, incremental updates as guided by the learning rate.
[15] This underscores the critical role of adjusting weight-
bit precision to optimize the learning algorithm. The memory
window set for this experiment was as high as 12500 to
decouple the impact of memory limitation from conductance
level exploration, aligned with DC-based high resistance/low
resistance ratio measurements reported.

Figure 4(c) demonstrates the effect of C2C variation on the
weight update process, featuring a memory window of 12500
and conductance levels set at 2048. The absence of C2C vari-
ation promotes more stable weight updates, leading to higher
accuracy achieved over fewer epochs. In fact, the training
process is highly susceptible to C2C variations; even a minimal
C2C variation of 0.5% introduces significant oscillations,
and a variation of 1% compromises the consistency of the
training process. These findings contrast with the previously
reported image classification tasks benchmarked using RRAM
hardware, where training accuracy remained above 70 % for
up to 3% C2C variations [11].

C. Multiple Patients

In the previous sections, we provided detailed explanations
of the benchmarking process for our FFNN model using data
from a single patient (Patient 9) from the CHB-MIT dataset.
To assess the consistency of our model’s performance, we
extended our analysis to include additional patients from the

dataset: Patients 1, 5, 7, 13, 22. Table I summarizes the perfor-
mance of our proposed workflow, accuracy metric obtained at
epoch 20, across three distinct modes: SW/SW, SW/HW, and
HW/HW - for the six patients. We use two different batch sizes
to accommodate the varying number of signals available from
the extracted training datasets across patients. For Patients 1,
7, 13, and 22, we use a batch size of 1440, while for Patients
9 and 5, we use a larger batch size of 4320. For hardware-
based learning configurations, we employ a memory window
of 125 and a conductance level of 1024. These parameters
were chosen to benchmark more reasonable device metrics that
align with state-of-the-art values reported in the literature [15].
It can be noted that Patients 1 & 22 exhibit the highest levels
of performance across the three modes, while the accuracy
metrics for Patients 5, 9, and 13 remain at a lower range,
with a minimum of 65.69% for HW/HW and a maximum of
85.42% for SW/SW configurations, respectively for Patient 9.
Patient 7 yields the least favorable results, ~50% range. As
expected SW/SW and SW/HW configurations outperform the
HW/HW. The limited memory window especially introduces
oscillations in the accuracy per epoch for Patients 5, 7, and
9 in HW/HW mode. In repeated runs, the accuracy for these
patients in HW/HW varied between 65% and 82%. Conversely,
the accuracy for the other patients remained stable over the 20-
epoch training period. Patients 1 & 22 consistently achieved
accuracy levels exceeding 94%, whereas Patient 13’s accuracy
was limited to ~70%.

TABLE I: Accuracy of Prediction for Multiple Patients.

Patient SW/SW SW/HW HW/HW
Patient 1 97.29% 96.18% 95.83%
Patient 5 76.11% 79.13% 69.44%
Patient 7 58.54% 53.68% 50.97%
Patient 9 85.42% 65.56% 65.69%
Patient 13 70.14% 69.58% 70.00%
Patient 22 95.21% 95.56% 94.51%

Mean 80.45% 76.61% 74.41%

IV. DISCUSSION

Significant variations in accuracy can potentially result from
the diverse seizure types present in each patient’s data. To ex-
plore the underlying data characteristics more thoroughly, we
used frequency domain visualization techniques in EEGLAB
for each patient. Our analysis revealed distinct patterns. For
Patients 1 and 22, there were clear differences in power levels
between preictal and interictal samples, allowing the model
to accurately distinguish between these states without the
need for complex feature adjustments or changes in electrode
configurations. In contrast, such differences were not easily
observed in the frequency domain for the other patients. This
suggests that the data complexity is a key factor contributing to
suboptimal model performance in these cases. Improving the
model’s accuracy for these patients may require incorporating
additional features to better differentiate between preictal and
interictal states, selecting alternative electrode channels, or
employing more sophisticated neural network models, such
as convolutional or deep neural networks.
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Fig. 4: Impact of Device Parameters on Prediction Accuracy: (a) Memory Window, (b) Conductance Level, (c) C2C Variation

Beyond the challenges posed by data complexity and vary-
ing seizure patterns across patients, our model performance is
also hindered by the inherent limitations in our benchmarking
framework. These limitations include:

Quantization: Converting normalized inputs into binary values
(0 or 1) to enable the single clock-cycle process oversimplifies
the data, potentially leading to a loss of critical information.
Limited Features: Reduced number of input features as a
result of the quantization process further limits the information
needed for accurate seizure prediction.

Model Structure: The proposed FCNN architecture’s limited
layer number and size due to the inherent limitations of the
NeuroSim+ framework may not fully capture the complexity
of the data.

To improve prediction accuracy, we can adopt several strate-
gies, such as increasing the number of input features, employ-
ing more complex neural network architectures with additional
layers or neurons, to better capture the intricate patterns within
the data, and exploring alternative data channels or different
electrode configurations to reveal new insights. Lastly, alterna-
tive pre-processing techniques could uncover hidden patterns,
especially for patients whose current performance metrics are
suboptimal. By implementing these strategies, we anticipate
significant improvements in prediction accuracy, which will
be the focus of our future research.

V. CONCLUSION

Application-Specific Neuromorphic Circuits: Design, Fabrica-
tion, and Implementation, for Tutuncuoglu; and 2221753: An
Energy-Efficient, CMOS-based, and Scalable Mixed-Signal
DNN System with Reconfigurable Crossbars, for Alhawari.
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