Check for
updatos

Breaching Security Keys without Root: FIDO2 Deception Attacks
via Overlays exploiting Limited Display Authenticators

Ahmed Tanvir Mahdad
Texas A&M University
College Station, TX, USA
mahdad@tamu.edu

Abstract

Two-factor authentication (2FA) systems aim to secure user ac-
counts, provided that either the password or the second factor
device remains uncompromised. However, in this research, we chal-
lenge this perception and analyze the security of FIDO2 hardware
security keys, which are increasingly used in 2FA and passwordless
systems. Specifically, we develop an attack framework, analyze
the underlying protocols of FIDO2, and examine the associated
OS-level security. Through practical demonstrations, we illustrate
how adversaries can exploit this framework and OS-level secu-
rity measures to execute our designed attack, known as FIDOLA
(FIDO2 Deception Attack via Overlays exploiting Limited Display
Authenticators).

Our attack framework injects hidden login sessions, either into
the same service the user intends to authenticate with or into a
different service. It deceives users into approving the attacker’s re-
quest using the limited display of authenticators. This cross-service
attack raises concerns about compromising more sensitive accounts
(e.g., financial) when users log into less sensitive ones. Our attack
poses a practical and fundamental threat not addressed in the FIDO
specification or prior research. Unlike prior research, our demon-
stration exposes FIDO2 authenticator vulnerabilities in real-world
2FA and passwordless setups, where OS-level security mitigates tra-
ditional concurrent attacks (simultaneous authentication attempts
by the attacker). To assess our attack’s effectiveness, we conducted
a user study, revealing that users approved approximately 95.55%
of cross-service attacks when presented with a screen overlay.

CCS Concepts

« Security and privacy — Multi-factor authentication.

Keywords
2FA; FIDO; WebAuthn; CTAP2; Security key; attack; overlay

ACM Reference Format:

Ahmed Tanvir Mahdad, Mohammed Jubur, and Nitesh Saxena. 2024. Breach-
ing Security Keys without Root: FIDO2 Deception Attacks via Overlays
exploiting Limited Display Authenticators. In Proceedings of the 2024 ACM
SIGSAC Conference on Computer and Communications Security (CCS °24),

“Work done as a PhD student in the SPIES Lab.

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3690286

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Mohammed Jubur*
Jazan University
Jazan, Saudi Arabia
mjabour@jazanu.edu.sa

1686

Nitesh Saxena
Texas A&M University
College Station, TX, USA
nsaxena@tamu.edu

October 14-18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3658644.3690286

1 Introduction

Password-only authentication is a prevalent method for web au-
thentication, yet it faces security and usability challenges. To ad-
dress these concerns and provide an additional layer of security
in the event of password compromise, Two-factor Authentication
(2FA) and passwordless systems have been introduced. In 2FA sys-
tems, users must demonstrate possession of a pre-registered device
alongside passwords. Similarly, in passwordless systems, posses-
sion factor devices are used along with other factors such as PINs
or biometrics to strengthen security. However, OTP (One Time
PIN), which is widely used as the most popular 2FA system, has
limitations. Therefore, service providers have adopted advanced
2FA and passwordless systems such as FIDO2 security keys.

In this work, we focus on 2FA and passwordless systems that
utilize FIDO2 security keys as possession factor devices (e.g., Yu-
bikey [46]), which we refer to as Challenge-Response 2FA (CR-2FA)
throughout this paper. These security keys implement the Fast
Identity Online (FIDO) [20], an open authentication standard. We
analyzed FIDO2 [17] and its underlying protocols (WebAuthn [13],
CTAP2 [19]). To evaluate the security of FIDO2 keys, we propose
an attack framework called FIDOZ2 Deception Attack based on Over-
lays exploiting Limited Display Authenticators (FIDOLA), designed
to perform attacks leveraging the limited display capabilities of
FIDO?2 authenticators (i.e., USB security keys). FIDOLA is capable
of performing both same-service attacks (where the attacker logs
in to the same service as the user) and cross-service attacks (where
the attacker logs in to a different service than the user intended) by
deceiving the user into accepting the attacker-generated session
thinking it is user’s own session.

In addition to the security measures imposed by WebAuthn and
CTAP, operating systems such as Windows introduce OS-level se-
curity that effectively thwarts traditional concurrent attacks that
attempt to send malicious requests simultaneously to the FIDO au-
thenticator (e.g., security key) and exploit the user’s tap to approve
their request. However, OS-level security prevents these attacks by
requiring browsers to call a specific API, which restricts multiple
requests from being sent to the authenticator. Moreover, it displays
the browser name and service name to the user for enhanced trans-
parency and security (as shown in Figure 1). These concurrent
attacks have already been reported in the literature [10, 26]. Never-
theless, with the implementation of OS-level security, traditional
concurrent attacks are mitigated, providing an additional layer of
protection to FIDO-based authentication systems.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Windews Security *
Making sure it's you
Please sign in to cloudmailer.com,

This request comes from Msedge, published by Microsoft
Corporation.

]

Touch your security key.

I S I

Figure 1: Snapshot of Windows security message.

It has been claimed in the literature [28] that only a power-
ful attacker model, such as root-level malware, can bypass
OS-level security. However, FIDOLA, which operates in
user space, demonstrates the capability to bypass OS-level
security without requiring root-level access.

Through our analysis of WebAuthn and CTAP2, we demonstrate
how FIDOLA can effectively bypass the security measures added
by these protocols. Notably, the FIDO alliance threat analysis [18]
did not address an attack model similar to FIDOLA. Furthermore,
in contrast to previous works, FIDOLA is thoughtfully designed to
block the legitimate user’s request and send only a single request
to the FIDO2 authenticator during the attack, thereby enabling it to
bypass OS-level security measures, which are intended to prevent
traditional concurrent attacks.

Most interestingly, in addition to performing same-service at-
tacks, FIDOLA is capable of performing cross-service attack, where
the adversary can send an authentication request to a different
service (e.g., Twitter) than the service the user is trying to authen-
ticate to (e.g., Google). FIDOLA exploits the limited interface (i.e.,
flashing LED button) used in FIDO2 authenticators and uses an
overlay to deceive users to approve the attacker’s request. When
the operating system displays a security message containing the
requested service and browser name (as shown in Figure 1), FI-
DOLA can overlay a message with altered information in real-time.
This overlay message appears with the same size and format as the
security message, aiming to convince users to accept the attacker’s
request. Here, the limited display of FIDO2 keys (blinking LED
button) does not provide users with meaningful information (such
as the service name) when attackers overlay an OS security mes-
sage. This approach is particularly useful in FIDOLA’s cross-service
attack, where the attacker’s intended service name differs from
that of the user. Such a cross-service attack poses a high risk of
compromising a high-value account (e.g., bank) when users are at-
tempting to authenticate in a low-value account (e.g., email). In fact,
we conducted a user study that revealed that participants could not
identify 95.55% of the overlays in the cross-service attack, thereby
establishing the effectiveness of the overlay-based cross-service
attack we designed.

Previous literature (e.g., Bellare and Rogaway [7]) suggests that
an adversary needs to impersonate the trusted users independently
without relaying the user’s input/session (e.g., session hijacking

1687

Ahmed Tanvir Mahdad, Mohammed Jubur, and Nitesh Saxena

attack) to construct a valid attack on any cryptographic protocol.
In that sense, all variants of session hijacking attacks (e.g., session
hijacking by malware, active phishing, cookie stealing) are not
valid attacks against a protocol. However, FIDOLA launches an
independent session from the background, which also involves
users in establishing user presence. FIDOLA constructs a valid “non-
relay” attack that reveals vulnerabilities in FIDO2 and its underlying
protocols.

FIDOLA is fundamentally different from and significantly
more devastating than a typical session hijacking attack.

In the session hijacking attack, the malicious entity compromises
the user’s ongoing session, which gives the attacker only a limited
capability, such as only allowing for the same-service and same
session attack. On the other hand, FIDOLA is more effective, flexible,
and stealthy, with the significant advantage of cross-service attack
capability. We provide a comparison between session hijacking and
FIDOLA in Table 1 and Figure 4.

FIDOLA incorporates non-root malware components (e.g.,
keylogger, hidden browser session, browser extension) that
do not require administrative privilege for installation or
execution, operating within the user space of the operating
system.

These components are commonly utilized by adversaries [8, 11,
24, 25] and previous works (e.g., Kucchal et al. [28]). Given the
extensive adoption of common malware components and the ca-
pability of bypassing Windows Security, FIDOLA poses practical
and real-world threats to 2FA and passwordless systems that rely
on FIDO2. We refer the reader to our detailed exposition about
the practicality aspects of FIDOLA pertaining to the underlying
assumptions and threat model in our technical sections (Section
3.2, Section 4.2.1 C1, and Section 4.2.1 C2.)

Notably, the "User-space malware in the terminal” threat model
has been included in the FIDO threat model, except in cases where
it is utilized for session hijacking attacks, as noted by Lang et al.
[29]. Furthermore, the user-space malware in the terminal threat
model is prevalent in recent literature focused on evaluating the
security of FIDO2 keys [10, 28]. As such, this threat model is an
integral part of the overall understanding and evaluation of security
vulnerabilities in CR-2FA.

Contributions: Our contributions in this research are three-fold:

(1) Designed an attack framework capable of performing at-
tacks on FIDO2 Protocol bypassing OS-level security: We
design the FIDOLA attack framework, which exploits vulner-
abilities in FIDO2 and its subprotocols (WebAuthn [13] and
CTAP2 [19]) and bypasses OS-level security to demonstrate
both same-service and cross-service attacks in real-world set-
tings. It is a fundamental attack approach that has not been
considered in threats in the FIDO specification [18] or previous
literature.

Developed a proof-of-concept attack with minimal re-
source consumption and dependencies: We develop a proof-
of-concept attack to evaluate real-world CR-2FA deployments,

@

Breaching Security Keys without Root: FIDO2 Deception Attacks via Overlays exploiting Limited Display Authenticators CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Table 1: Difference between our proposed attack and Session hijacking attack

[Feature [Session Hijacking [FIDOLA]

@ «® @ Initial Request
Q@& \
\)ﬁg @ Generate

requiring minimal resources and installation without any ad-
ministrative privileges. Our evaluation, using both anti-malware
programs and user studies, demonstrates low detectability. Ad-
ditionally, we successfully demonstrate both same-service and
cross-service attacks on popular CR-2FA deployments (e.g.,
Google, Twitter) using well-known CR-2FA authenticators (e.g.,
Google Titan, Yubikey). This demonstration provides concrete
evidence of the real-world applicability of FIDOLA.
Evaluated cross-service attack’s stealthiness through a
user study: We conducted a user study that demonstrated the
stealthiness and effectiveness of cross-service attacks. We ob-
served that, in 95.55% of cases, participants were unable to detect
carefully crafted malicious cross-service requests. This obser-
vation confirms the practicality and efficiency of our designed
cross-service attack.

Attack Demonstrations: We provide our attack demonstration
at: https://sites.google.com/view/cr-2fa-attack-demo/home.

2 Background and Systematization

Generally, authenticators (e.g., Yubikey) and devices with built-in
security keys utilize the FIDO U2F and FIDO2 protocols, providing
users with a high level of security (AAL3) through hardware-based
phishing-resistant authentication mechanisms [36].

2.1 The Evolution of FIDO Protocol

FIDO released the passwordless protocol FIDO UAF (Universal
Authentication Framework) and the second-factor protocol FIDO
U2F in December 2014. FIDO2, in conjunction with the W3C We-
bAuthn protocol and CTAP2 (Client-to-Authenticator Protocol),
was launched in January 2019. FIDO UZ2F acts as a second-factor
protocol, whereas FIDO UAF primarily emphasizes passwordless
authentication, especially for mobile devices.

1688

Existing vs. Only allows to take over an Allows to inject a new, Validate Y, Ry
. . . . Send Ra» S1,U) > C
Fresh active session that independent session when Generate @ Send @ en (RS U > G
Session user-initiated the user initiates her own Piey Stey Ct 20, G (H(Ry,), S, U)->Cq G Ry, S, U
session. The new session can <
s i att>(H(S) P, CioCt) (LIS]
be for a more sensitive service i ter e > >
(e.g., banking) than a attsg, > Aclatt, HR,,) () send Validate
user-initiated session (e.g.,
email). Save S, Ry, , ct==0
Limited vs. Can only manipulate the Allows the attacker to have S.U, G Sy, Ct Sign Verify SV, (atty,)
Full- user’s ongoing activity and full arbitrary control over Save
Control cannot do anything arbitrary. the new session.
User De- If user’s session terminates Attack can continue even 1, Cid Prey,
pendency | when transaction is underway, after the user session
attack will be disrupted terminates.
Detectability| Attackers may have to linger | Attackers can qu1.cl'<ly perfo;m Figure 2: Workflow of WebAuthn Registration
on the terminal for a long a fraudulent activity (as it is
time, as it will have to wait for independent of the user
the user to perform the activity) and leave the
desired activity (e.g., bank terminal, thereby remaining
transaction). This makes the more stealthy. W W
attack more easily detectable. 2.2 The 3C ebAuthn Protocol
Cross- fo’- The attacker Ca}? only | Yes. The EttaCker can perform The W3C (World Wide Web Consortium) WebAuthn is a specifica-
Service perform attacks on the same attacks on the same or . : s s e s
Attack service the user is trying to different service the user is tion written JOlntly by FIDO and W3C, and it is Supported by all
Possible? log in to trying to login to major browsers. The high-level workflow is discussed below.
g ying g

Registration: A high-level workflow of the WebAuthn Registration
procedure is illustrated in Figure 2. After receiving initial request,
the server generates a user ID Uy and a random string Rgy . It then
creates a challenge Cs by combining the server identity (i.e., domain
name) Sy with the generated Uy and Rgy . In the next step, it sends
the challenge Cg to the client (i.e., browser). The client extracts the
server identity Sy and compares it to the web origin from the client
SiB. If the comparison fails, the protocol halts at that moment, and
the registration procedure will fail. If it passes, then it creates a hash
of the received random string H(Rsy) and passes the challenge to
the authenticator (i.e., security key).

After getting the challenge, the authenticator generates a key pair
(SkeysPrey)- Then, it generates credential ID C;4 and sets counter
ct to zero. The authenticator then creates a hash of server identity
H(Sy), attestation signature of H(Sy), public key Py, and random
hash H(Rgy) using attestation private key Ag. The authenticator
saves S,Uy, Ciq, secret key Sgy, and counter ct for future authen-
tication. It sends a response containing attestation signature, H(Sy),
ct, Prey, Cig, and H(Rgy) to the client which will be redirected
to the service. After that, the authentication server validates S,
Rsy, and checks if the counter ct is set to zero. It also validates the
attestation signature with attestation public key Vj. If all checks
pass, then the registration process will be successful, and the server
saves Uy, Cig, Prey, and counter ct for future use.

Authentication: The workflow of the WebAuthn authentication
procedure is shown in Figure 3. After receiving initial authentica-
tion request, the server creates a challenge containing server ID
S; and a random string Rgy and sends it to the client. The client
checks the validity of S; with web origin Syg. If matched, it creates a
hash of the received random string H(Rgsy) and sends the challenge
to the authenticator; otherwise, it halts the procedure.

Upon receiving the challenge, the authenticator retrieves user id
Uy, credential id Cjg, Sgey, and counter ct. After getting the user
response, it increases the counter and creates a hash of server id
H(Sy). Finally, it creates an attestation signature using the secret

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

@ Initial Request

e
oY)
o @ Generate

©)) send validate (5 send ?riv s)>c
Get ID en sv 91 s
Si==Si
$1 DU, Cig, Siey Ct MRS (Ryr, S1)-> G5 ﬁ
<
il = il
Generate (=
= .© N
Ct >Ct+1
Send @Get 1D Uss Prey , Ct
att> (H(S), Ct)

@ Validate

U==Us, S, Ry, , Ct> Cty,

att, attgg, ,Cig, U

attgy, > Siey (att, HRy,))

@ Save
S1U;, Cid) Siey, Ct

Verify = Py, (att, attgg,)

@ Save
Uy, Cig, Prey, Clsy=Ct

Figure 3: Workflow of WebAuthn Authentication

key Skey- The authenticator saves Sy, C;y, secret key S, and up-
dated counter ct for future authentication. It then sends a response
containing a signature, Uy, and C;4, to the client, which redirects
it to the authentication server. Then, the server will retrieve infor-
mation using credential id C;g, Pyy, and saved user id Urs. After
that, server check validity of Uy, Sy, Rsy, check if ct is greater than
stored counter clsy), verifies the attestation signature by P, If all
checks are passed, then the server saves Uy, Cig, Pkey and updated
counter as ctgy, and sends authentication success decisions to the
client.

2.3 Client-to-Authenticator Protocol (CTAP)

Client-to-Authenticator Protocol (CTAP) is a protocol developed
as a complementary tool for the WebAuthn protocol. We illustrate
the high-level workflow of the CTAP2 protocol in Figure 5.

High-level Workflow: The authenticator initializes the pinToken
pt and binding state bs during setup. When the user sets and con-
firms their PIN on the client, it passes encrypted PIN E(PIN) to the
authenticator. Upon receiving, the authenticator checks the validity
of PIN and saves it if it is valid. During the binding process, the
client prompts for a PIN from the user. Upon receiving the PIN, the
client encrypts the PIN and sends it to the authenticator for verifi-
cation. A counter is set with the maximum retry number retry.. If
the provided PIN is correct, then it stores the PIN as Skp;, in the
authenticator. If it is wrong, then retry. will be reduced by one
(1) until it reaches zero. If retry. =0, the authenticator will discard
the binding process and enforce user interaction to start the reboot
process. After successful binding, it sets pinToken pt as binding
state bsgp and sends pt to the client. The client then sets its binding
state bs..

During the authorization, the client sends the hash of its binding
state bs. to the authenticator for validation. It also maintains the
retry counter retry, to prevent PIN guessing attacks. The authen-
ticator will match the hash of its binding state with the received
client’s binding state. If the validation passes, it sends a confirma-
tion to the client. The client communicates with the authenticator to
accomplish the registration or authentication process in WebAuthn.

1689

Ahmed Tanvir Mahdad, Mohammed Jubur, and Nitesh Saxena

2.4 OS Level Security

Operating systems may implement additional security measures
to safeguard FIDO2 keys against various attacks. For instance,
Windows security requires the browser to invoke a Windows OS-
specific API before sending a request (see step 5 in Figure 3) in
WebAuthn workflow. This process is illustrated in the modified
Figure 6, where step 5 of the WebAuthn workflow (H(Rsy), S1, BN')
is sent to the Windows security API. Subsequently, the API gener-
ates a message containing the service name (Sy) and the browser
name (By), which are then sent to the authenticator, leading to the
flashing of the authenticator button.

By displaying a message with the service and browser name, the
Windows security API assists users in making informed decisions,
thereby thwarting unwanted cross-service attacks. Additionally,
the Windows security API enforces a prohibition on concurrent
requests by allowing only single request at a time.

3 Threat Analysis
3.1 Risk of Limited Display in Authenticator

In 2FA, detailed information (e.g., service name) about authentica-
tion requests is crucial for making an informed decision. However,
USB FIDO2 keys use a flashing LED button as communication
medium, which is a limited display lacking essential identifying
information.

We leverage this limited display in our work and design a con-
current attack from the background. While some desktop operating
systems (e.g., Windows 10) display a security message with the
service name, it cannot be considered entirely secure if the terminal
is compromised. This vulnerability allows a malicious program to
overlay any part of the screen, effectively hiding the service in-
formation shown in the OS security message, and launching an
attack for a service other than the one the user intended to use.
This malicious overlay prompt is synchronized to be shown when
the Windows security message is shown to hide the message and it
disappears after some time.

We refer to this attack as the “Cross-service" attack and will
discuss it further later. .

3.2 Risk of Desktop-based Malware Infection

Our proof-of-concept attack program targets Windows as the oper-
ating system (with 38% market share) [41], and Google Chrome as
the browser (with 65% market share [39]), exposing vulnerabilities
in the most popular desktop OS/browser combinations. Malware
with capabilities similar to FIDOLA is prevalent. For instance, Zeus
is a widespread keylogging malware [14]. Additionally, a recent ar-
ticle reveals the identification of 500 malicious Chrome extensions
that possess similar abilities, such as redirecting victims to mali-
cious websites [43], resembling our attack. Another report indicates
that 50% of malicious traffic originates from headless browsers, in-
cluding those used in our attack (e.g., Phantom]S, Chrome Headless)
[24]. Hence, we consider our proposed threat model for CR-2FA to
be standard and practical in real-world scenarios.

Breaching Security Keys without Root: FIDO2 Deception Attacks via Overlays exploiting Limited Display Authenticators CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

2FA Device

2. Attacker change the request to rB

[J !:, _“
M
5. Attacker modified the =1 4. Response of request rB ——
response rB to response rA .
User P P Service A

1. User request rA

Attacker in the middle

(a) Session Hijacking attack workflow where a man-in-the-middle attack is

launched, which changes user requests rA to rB to service A. After getting re-

sponse rB, attacker shows users altered response rA. This workflow shows the
Session Hijacking attack can be performed only on the same service A.

2FA Device

1. User request for Service A

—_—

¥

3. Show 2FA page for Service A - — — — —
-—_— = .
Service A Service B
User 6. Show request failed Attacker

Message for Service A

2. Attacker request B for Service B

|

5. Response for Service B

(b) The workflow of FIDOLA attack where the attacker can block any request to
service A and send different request B on different service B and get it approved
by 2FA

Figure 4: Comparison between workflow of Session Hijacking Attack and FIDOLA Attack

E(PIN)

E _
r Confirmation
PIN=D(E(PIN))

Validity (PIN)?
Store Sky;,=PIN

Check if retry>0 ?
Skoin==D(E(PIN))?

If fail, retryc. retry-1
If pass, bsg=Pt

PIN
— X2

E(PIN) PIN

2

E(Pt)

Pt=D(E(Pt))
bs=Pt

Hibsc)

4—
Ty o p—

Check if retry>0 ? Confirmation
H(bsc) ==H(bs)?

If fail, retry._ retry-1

If pass, Send Confirmation

Figure 5: Workflow of CTAP2 Protocol

©O)

Initial Request
m Generate

Validate

Rsv
(Ry,, S) > C

@ Send

Ry, S >Cs

D\sp\a\u

se“°
\Ak“ >

Wlndowsx %,
Security \
Q/r,s/?

r\

@s%

Concurrent request blocked
by Windows Security

Malicious Entity

Figure 6: A workflow example of OS Level security in WebAuthn

3.3 Previous Works

Researchers have already reported many security [6, 26, 45] and
usability [16, 30, 31] issues in literature.

Bui et al. introduced the man-in-the-machine attack (MitMa)
in [10]. They utilized a browser process to capture the server’s
client data object and continuously transmitted it to the USB. In

1690

Table 2: Comparison of FIDOLA with previous works.

FIDOLA MitMa Jacomme et Kucchal et
[10] al. [26] al. [28]
Bypass Windows v X X X
Security
Real World Demo v X X v
Overlay for User v X X X
Deception
Evaluation via User v X X X
Study

contrast, our approach involves launching a hidden browser session
that sends a single client data to the USB, similar to the normal
workflow. Unlike MitMa, which sends multiple requests and is
susceptible to detection by anti-malware programs, FIDOLA sends
only one request, significantly reducing the chances of detection.
While Windows security can prevent MitMa by permitting only
one request at a time and displaying a security message (explained
in Section 2.4 and Figure 6), FIDOLA remains unaffected by this
OS-specific feature.

Jacomme et al. have proposed another concurrent attack on
FIDO [26], specifically targeting FIDO U2F. They generated two
concurrent requests at the same time and showed that both requests
could reach the authenticator simultaneously. They assumed that
the attacker’s request arrives first and is approved by the user’s
first tap. However, since the user’s request is not approved, they
may think that the tap is not registered, so they tap the button
again. The later tap will authenticate the user’s request. However,
unlike FIDOLA, this concurrent attack cannot bypass Windows
security because it only allows a single request to be sent to the
authenticators at a time. Furthermore, their analysis only covers
the FIDO U2F protocol, while we demonstrate attacks using the
latest FIDO2 keys.

Kucchal et al. [28] conducted an evaluation of real-world FIDO2
deployments, demonstrating how malware in the user’s terminal
can bypass FIDO2 authentication attempts. However, their non-root

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

malware attack variant, which relies on malware running exclu-
sively in user space, cannot bypass the OS-level security measures
outlined in Section 2.4. These security features are particularly
prevalent in Windows, the most widely adopted desktop operating
system [40]. Consequently, their approach is ineffective for the ma-
jority of real-world deployment scenarios. In contrast, our attacker
model considers malware running exclusively in user space, yet
it has the capability to bypass OS-level security. Additionally, we
conducted a user study that provides empirical support for our
attack methodology, revealing a remarkable 95.55% success rate.

A detailed comparison of these works with our research is pro-
vided in Table 2.

Barbosa et al. [6] performed a detailed security analysis of FIDO2,
WebAuthn, and CTAP2. They have pointed out some shortcomings
of CTAP2 (i.e., they proved that CTAP2 is not UF (unforgeability)-
secure) and proposed a protocol (WebAuthn+sPACA) that is UF-
secure. Their proposed protocol, sSPACA, differs from CTAP2 in bind
execution. On the other hand, in our work, we identify (WebAu-
thn+CTAP2)’s weaknesses against our designed attacks, especially
cross-service attacks, and evaluate their security against them.

Jubur et al. presented a variant of the concurrent attack [27], pri-
marily for push notification authentication. The attacker generates
multiple same-service concurrent notifications to deceive users into
accepting attacker-controlled requests. In contrast, FIDOLA, which
is designed for FIDOZ2 keys, can generate a single request capable of
bypassing OS-level security and performing cross-service attacks.

4 Attack Design and Implementation
4.1 Definition of “Non-Relay-Attack”

A powerful adversary can compromise the communication medium,
capture users’ requests, and relay them to impersonate. A session
hijacking attack steals session identifiers and impersonates the
user’s session. They are known as a “Relay Attack,” which is not
considered a valid attack against a cryptographic protocol. Accord-
ing to Bellare-Rogaway [7], "an adversary in our setting can always
mabke the parties accept by faithfully relaying messages among the
communication partners. But this behavior does not constitute a dam-
aging attack; indeed, the adversary has functioned just like a wire,
and may as well not have been there".

A valid attack on protocol should be one that the user does not
initiate; nevertheless, it has the capability to impersonate the user
and successfully authenticate as the user. According to Bellare-
Rogaway [7], "we formalize that a protocol is secure if the only way
that an adversary can get a party to accept is by faithfully relaying
messages in this manner. In other words, any adversary effectively
behaves as a trusted wire, if not a broken one". We formulate a valid
“Non-Relay-Attack” that creates an independent session different
from the users’ created session, unlike session hijacking.

4.2 Threat Model

To assess the CR-2FA system, we have designed the FIDOLA attack
framework, which encompasses specific attacker capabilities and as-
sumptions. These align with the criteria of a "non-relay attack" and
adhere to the FIDO2 attacker model. We have listed the capabilities
and assumptions below.

1691

Ahmed Tanvir Mahdad, Mohammed Jubur, and Nitesh Saxena

4.2.1 Attacker Capabilities. C1: The adversary is capable of per-
suading users to click on links distributed through different channels
(e.g., websites, emails), leading to the injection of malicious executables
of FIDOLA into the users’ computer.

r)

Justification of Practicality. This attacker capability
aligns with well-known real-world attacks against other
2FA schemes that compromise the terminal (e.g., Zeus [14]).
The "user-space malware in the terminal” model has also
been addressed in the FIDO threat model, with an excep-
tion when it is used to “ride" on the user’s ongoing session
(i.e., a session hijacking attack), as outlined by Lang et
al. [29], which is an invalid attack according to Bellare-
Rogaway [7] anyway. Furthermore, researchers have al-
ready considered a malware-in-terminal threat model (cov-
ering both user-space and system-level malware) to eval-
uate FIDO2 security [28], demonstrating the practicality
of this attacker capability in assessing the risks associated
with FIDO2 protocols.

\. J

C2: The attacker can convince users to install a seemingly harmless
but malicious browser extension in their browsers.

s a

Justification of Practicality. Installing useful browser
extensions is a very common use case that may be exploited
by attackers to inject malicious code into a seemingly be-
nign and useful browser extension (e.g., e-commerce tool).
This use case has already been reported as vulnerable and
exploited by real-world attackers as a common entry point
for attacks [8, 23, 43]. It is important to note that, as our
objective is to design a non-relay and valid attack for the
analysis and evaluation of CR-2FA systems, we do not con-
sider capturing session cookies using a browser extension.

4.2.2 Assumptions. A1: The malicious component of FIDOLA only
operates within the user space of the operating system. It does not
require any system-level permissions or alter any core OS components
or functionalities.

e Y

Justification of Practicality. This assumption distin-
guishes FIDOLA from strong attacker models that pre-
sume total compromise of the operating system in the
user terminal. It also guarantees a more straightforward
attack compared to system-level malwares. Furthermore,
this characteristic grants FIDOLA a notable advantage, en-
abling it to function in restricted user terminals, such as
organizational computers subject to various system-level
restrictions, including restrictions on the installation of
unknown programs.

\. J

A2: The attacker cannot execute a total browser compromise, which
encompasses actions such as installing malicious browsers, convincing
users to use them, altering core components of users’ browsers, or
modifying FIDO2 protocol components (e.g., WebAuthn) within the
users’ browser.

Breaching Security Keys without Root: FIDO2 Deception Attacks via Overlays exploiting Limited Display Authenticators CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Justification of Practicality. As one of our objectives is
to adhere to the FIDO?2 threat analysis [17] during our eval-
uation, our designed attack cannot involve total browser
compromise, as this would imply compromising the FIDO2
client. Compromising the FIDO2 client and its components
within the browser (e.g., WebAuthn) is beyond the scope of
the FIDO2 threat analysis [17]. Moreover, implementing a
malicious browser, integrating FIDO into it, and persuading
users to install it from an illegitimate source require signif-
icantly more technical and social engineering effort from
the attacker compared to our proposed attacker model.
Importantly, the installation of a malicious browser or the
total compromise of a user’s browser typically requires ad-
ministrative privileges on organizational computers, con-
tradicting our previously stated Assumption A1.

. J

A3: Users are assumed to utilize 2FA for all login attempts, and they
will not use "Remember Me" features.

Justification of Practicality. These assumptions are nec-
essary to evaluate the performance of 2FA systems when
both factors (password and FIDO2 keys) are needed for
authentication. The "Remember me" feature or saving pass-
words in the browser would disable one or both factors,
thereby undermining the full security of 2FA during secu-
rity evaluations.

\ J

A4: The adversary cannot compromise FIDO2 Authenticators (i.e.,
hardware security keys).

s D

Justification of Practicality. FIDO2 authenticators, such
as physical FIDO2 USB keys, contain secure hardware that
runs a specific firmware. This firmware is inaccessible from
outside, as it can only be accessed by some specific APL
Furthermore, malicious FIDO authenticators are out of
scope of FIDO2 security model.

\ J

A5: The adversary can not have any control over the user’s already
established session or can not steal any session cookies.

Justification of Practicality. As FIDOLA is designed to
be a valid attack against the FIDO2 protocol, we do not
consider "relay attacks" such as session hijacking in its
approach.

4.2.3 2FA against “User-Space Malware in Terminal". As per the
capabilities and assumptions of the attacker, we are adopting a
"User-space Malware in Terminal" threat model to assess FIDO2 key-
based authentication systems. Here, to evaluate the effectiveness
of the extra security added by possession factor (FIDO2 keys), we
believe it is necessary to evaluate its security level when one factor
(e.g., password) is already compromised [also stated in [28] threat
model]. The threat model we consider, does not compromise the

1692

401/7 » Malware

e, - y

Browser

ﬂ User Presence I

S, DU, Cig, Siey , Ct
Ct >Ct+1

att> (H(S), Ct)
altygr > Sy, (att, H(R.,)

Malware

Server
Validate

Os--s.]

Hidden Browser

Verify
U, S, Ry, , Ct> Ct

Piey (att, atty,,)

Figure 7: Workflow of Same-service Attack on WebAuthn Protocol

FIDO client (which is a part of the browser), the FIDO authenticator
(i.e., security key), service or communication channel between these
components. With this defined threat model, we aim to evaluate the
common assumption found in the literature [9] that the attacker
needs to compromise both factors to effectively undermine 2FA
systems, which include FIDO2 keys.

4.3 Attack Overview and Crux

Our demonstration shows that it is sufficient to compromise the
user terminal (e.g., desktop/laptop computer) to defeat CR-2FA.
The attack initiates a concurrent authentication attempt from the
terminal while the user tries to authenticate. It blocks the user’s au-
thentication attempt, and the service generates a challenge for the
attacker’s attempt, which will be forwarded to the CR-2FA authenti-
cator, causing its LED light to flash. As users intend to authenticate,
they unwittingly approve the attacker’s session, believing their
own authentication request triggers the LED flashing.

Attack Launching Condition. FIDOLA scans keypresses, detect-
ing when the user types the URL of the targeted authentication site
(e.g., mail.google.com) in the address bar. It captures the entered
username and password, sending a parallel request through a hid-
den browser session using the collected authentication credentials.
Concurrently, the browser extension blocks the users’ authentica-
tion requests as they submit their credentials. Furthermore, it can
redirect them to a page controlled by the attacker. As the attacker’s
session initiates and runs on a hidden browser session from the
background, users cannot access or invalidate attacker’s sessions.

Attack Vector in FIDO Specification. FIDOLA is different from
all of the attacks considered in FIDO threat analysis [18]. Here, it
loads different Relying Party App (RP App) (e.g., Google web app)
other than the RP App user is intended to authenticate (e.g., Twit-
ter web app), using a different FIDO client (i.e., hidden browser).
FIDOLA does not convince users to use another FIDO client (i.e., a
hidden browser); instead, it generates a concurrent attack using a
hidden browser while users intend to authenticate using a legitimate
FIDO client. To the best of our knowledge, the FIDO specifi-
cation has no mention of our attack in any of their threat
analysis; thus, the attack is both novel and fundamental.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Ahmed Tanvir Mahdad, Mohammed Jubur, and Nitesh Saxena

Malware

y

Browser

Ay,
h
/Psq Uesz .
Ser,
Ve

Service 1

Service 2

User Presence

e ?)

S >U, G, Siya C12
Ct2 >C2t+1

att2-> (H(S,), Ct2)
att2550 Syey (at12, HRy)

Auth Request (Server 2)

Hidden Browser
Malware

Validate

So_ Verify
Uiz, S, Raya,
Ct2> Ct2,

il

Prey (att2, att2gq,)

o

2.
25 4 -

‘7‘/@:, “ Malware
& g Sery, ¢
S ‘o e, O
& g)
< . Service 1
s 2
server
Overlay e REQ“ES‘K
E T » Browser
g
3z Service 2
“s, Validate

RN

3.) .. R, S, Q
Windows Security *&
2)
st (servel
- puth Reav® Hidden Browser

Malware

Figure 8: Workflow of Cross-service Attack on WebAuthn Protocol

4.4 FIDOLA Attack on WebAuthn Protocol

FIDOLA can perform both same-service and cross-service attacks
on WebAuthn.

Same-service Attack:We illustrate the Same-service attack work-
flow on WebAuthn in Figure 7. The malicious browser extension
can block the user’s request, initiate a hidden automated browser
session and send an authentication request to the service using
known authentication credentials. It can then redirect users to an
attacker-controlled page, prompting them to tap the authenticator.
Upon receiving the attacker’s authentication request, the service
sends the client a challenge containing the server ID Sy and a ran-
dom string Rgy . The hidden browser session will pass the validity
check of S; with web origin Syg. Subsequently, the client will send
a hash of the received random string H(Rsy) and server identity
St to the authenticator.

The authenticator would then retrieve user id Uy, credential id
Cid, Skey> and counter ct after the user pressed the button. As users
are actively authenticating and expect their authenticator LED to
blink, they will eventually press it to approve. The authenticator
would then increment the counter ct and send the attestation signa-
ture to the client containing the updated counter ct, server identity
S1. Up, Rsy, and C; 4 to the client. The client redirects the received
information to the service end where Uy, S;, Rsy will be verified
by the service and the attacker’s session will be authenticated.

Cross-service Attack: Here, we assume the targeted user registers
multiple services from the same authenticator (i.e., Security Key).
We illustrate the Cross-service Attack workflow in Figure 8. Like the
Same-service attack, the malicious browser extension would block
users’ authentication requests to the service (Service 1) and redirect
them to another similar-looking page prompting them to tap the
authenticator. At the same time, the automated browser would
request another service (Service 2) for authentication. The service
then would send a challenge to the hidden browser containing
server ID Sy, and a random string Rgy 2. The client (hidden browser)
would validate the server ID Sy, with the web origin Srgy, which
would pass as the client here requested authentication from service
2.

As the user is trying to authenticate to Service 1 and waiting for
the LED to blink on their authenticator; they are likely to approve
the request (generated for Service 2) by pressing the button. After

1693

Figure 9: Workflow of Cross-service attack in the presence of Windows secu-

rity.

that, the authenticator would retrieve user id Ujs, credential id
Cida, Skey2, and counter ct2. After updating the counter ct2, the
authenticator would create an attestation signature containing the
updated counter ct2. It would send Uy, and C;4, along with the
attestation signature to the client, which would redirect it to the
service (Service 2). As the attestation signature, Urz, Rsy2, Cj g2, and
ct2 are valid, the service (Service 2) would approve the malicious
authentication.

Attack in the presence of OS level security: For cross-service
attack, in the presence of Windows security, the hidden browser
would send Rsy 2, Spo, and browser name Bpjs to Windows Secu-
rity APIL It would then display the service name with Sy, and the
browser name By, in a message to the user. Here, FIDOLA will
draw an overlay showing S; and By, which are the user’s service
and browser names, to convince them to tap the key and inadver-
tently allow the attacker’s session. The attack workflow is shown
in Figure 9.

4.5 FIDOLA Attack on CTAP2 Protocol

FIDOLA impersonates the user from the same device (i.e., a com-
puter) and simultaneously (i.e., during the user’s authentication
attempt). As such, when the hidden browser session sends a bind-
ing request, the authenticator will ask for the PIN. As the attack
is executed during users’ authentication attempts, the user would
provide their PIN to complete the authentication process.

Passwordless authentication systems require a PIN for each at-
tempt and may use phone lock for verification. In the same-service
attack, blocking the user’s request and sending a parallel hidden
browser request is straightforward. The PIN prompt would appear
only once (for the adversary’s request), and the user would provide
their PIN, inadvertently approving the adversary’s session.

4.6 Attack Implementation
Our proof-of-concept program consists of two components:

Malware on Terminal (MoT): MoT is designed to run in the user
space of the operating system. It uses a keylogger to capture the
keystrokes and mouse actions. It’s primary function is to detect
keystrokes and capture usernames and passwords entered by the
user. Its controller determines the attack start time and initiates
hidden browser sessions. We use Python 3.7 to implement the MoT

Breaching Security Keys without Root: FIDO2 Deception Attacks via Overlays exploiting Limited Display Authenticators CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

controller and keylogger. We use selenium webdriver [37] and
chromedriver [12] to implement the hidden browser session. The
hidden browser session program executable is a JAR (Java Archive)
file that contains the code and resources needed to launch and
manage a hidden browser session. MoT also can draw an overlay
on any part of the screen to be used in cross-service attacks. The
Python executable and the jar file can be run without installation
and portable Java.

Redirection Agent (RAgent): We implement a Chrome browser
extension RAgent that can block any user request when a URL
match is found and redirect them to an attacker-controlled web
page during the authentication process. After blocking the authenti-
cation request, it immediately redirects the user to a similar-looking
attacker-controlled webpage (which instructs them to touch the
security key) to persuade them that they are still in the authentica-
tion process. RAgent waits for a specified duration (e.g., 15 seconds)
to complete the authentication process. Following this, it redirects
the user to the legitimate authentication page again, creating the
illusion that the login was unsuccessful due to a technical glitch.

4.7 Attack Workflows

Same-service Attack on CR-2FA:

(1) Step 1: When MoT detects the user’s intent to authenticate and
the completion of credential input, it captures the password
using a keylogger and prepares to launch a hidden browser
session using the captured authentication credentials.

(2) Step 2: While the user is about to submit authentication cre-
dentials, RAgent blocks the user’s request and redirects them
to a similar-looking attacker-controlled page, which prompts
the user to touch the security key to complete authentication.

(3) Step 3: In the meantime, the server receives the hidden browser
session launched by MoT and sends a challenge to the hidden
browser session, which will be passed as the web origin and
server ID will be the same.

(4) Step 4: As the user is expecting the LED light to blink for their
initiated authentication attempt, when the attacker’s request
arrives, they press the button to approve the attacker’s request,
thinking that it is generated for their request.

Cross-service Attack on CR-2FA:

(1) Step 1: Similar to Step 1 of a same-service attack, after detecting
the user’s intent to authenticate into service A, MoT captures
the password and saves it for future use. In the meantime, it
sends an authentication attempt to Service B, which is registered
using the same hardware security key.

Step 2: RAgent will block the authentication request for Ser-
vice A when the user is about to submit their authentication
credentials. The user is redirected to a similar-looking page for
Service A that prompts the user to press their security key.
Step 3: In the meantime, Service B receives the authentication
request sent by the attacker and replies with a challenge to the
hidden browser session. This challenge would be passed as the
hidden browser session’s web origin, which would be the same
as Service B’s ID.

Step 4: When the browser redirects Service B’s request to the
security key, the Windows security will show the service name

—
&S
=

1694

(Service B) and browser name in a security message. However,
at that stage, the attacker will draw an overlay with Service A
information, effectively hiding the Windows security message
showing Service B’s information. As the user expects to authen-
ticate and the original Windows security message is hidden by
the overlay, the cross-service attack will be successful.

5 User Study

We conducted a user study to assess the detectability of cross-
service attacks and whether users can detect it’s overlay approach.

5.1 System Design and Implementation

Demographic Information: We recruited 20 participants for the
user study, with a gender distribution of 60% male and 40% female.
The majority (55%) were aged 31-40, while 40% were aged 21-30,
and the remaining participants fell into the 41-50 age range. All
participants were university students, with 55% holding a master’s
degree and 35% holding a bachelor’s degree. The majority of partic-
ipants (95%) were familiar with 2-factor authentication and used it
regularly for email (80%) and banking (75%) purposes.

Authentication System: We have developed an authentication
system that incorporates webAuthn in both the registration and
authentication processes. To emulate a secure site, our system is
deployed locally on a laptop using “host mapping" and a self-signed
certificate. The web application was developed using PHP and
MySQL. Participants are required to register a security key and set
a password during the registration process.

Attack Module: We have developed an attack module that can
randomly display an overlay containing the participant’s intended
service name in some of the attempts.

Devices Used: For the user study, we employed Yubikey [46] and
Google Titan [22] USB security keys with a Windows 10 laptop.

Authentication Attempts Design: During the core study phase,
participants completed 30 authentication attempts, with 30% (9
attempts) designed as malicious. In these malicious attempts, the
actual security message (Figure 12b) was concealed by a carefully
designed overlay.

Evaluation Metrics: Participants had two response options to
the FIDO2 security request: approval or refraining from respond-
ing. We used the following notations: Aftg_gpproved for ap-
proved benign attempts, At{g_,¢frained for benign refrained at-
tempts, Attyr_approved for approved malicious attempts, and
Attp_refrained for malicious refrained attempts.

In this user study, we employed two evaluation metrics to mea-
sure both benign and malicious authentication attempts. The first
metric, BAR (Benign Approval Rate), quantifies the percentage of
approved benign attempts by all participants. It reflects participants’
familiarity with FIDO2 keys and their task accuracy. The second
metric, AASR (Adversarial Attempt Success Rate), quantifies the
percentage of approved malicious attempts. This metric assesses
the adversary’s success in using an overlay approach to deceive
participants during cross-service attacks. Equations 1 and 2 express
BAR and AASR, respectively.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

i A”B—approved

BAR= 1)

i A”B—approved + Zj A”B—refrained

i A”M—approved

AASR =)

2i AttM—approved + Zj AttM—refrained

For an ideal authentication system, BAR should be 100% and
AASR should be 0%.

5.2 Study Protocol

The user study was approved by our university’s Institutional Re-
view Board (IRB), and we adhered to standard IRB guidelines for
study and data collection. Participants were not required to use their
personal devices and instead used a laptop and a FIDO2 security key
provided by facilitator. In the registration process, participants are
instructed not to use their personal email addresses or passwords.
Instead, they are advised to use dummy or non-existent email ad-
dresses to comply with IRB guidelines. The study comprises four
phases.

(1) Introduction: In this phase, the facilitator explained FIDO2
keys functionality and their security features. Participants were
informed about the experiment’s purpose, including the pur-
pose of security keys (e.g., preventing phishing) and OS-level
security (e.g., preventing cross-service concurrent attacks), and
instructed to check security messages (service/browser name)
and not approve suspicious attempts. Before the data collection
phase following the explanation, the facilitator administered a
pre-test questionnaire to gather demographic information and
assess the participant’s familiarity with 2FA systems and FIDO2
keys. Subsequently, the facilitator registered a participant ac-
count, using a dummy email and password, and registered the
FIDO2 Key.

Practice Phase: During this phase, participants became famil-
iar with the FIDO2 authentication system and interacted with
the Windows security message. We designed our practice phase,
requiring participants to complete the authentication system
using provided credentials with FIDO2 keys 10 times. This prac-
tice phase is expected to establish sufficient familiarity among
participants with both the FIDO2 authentication process and
Windows OS-level security.

(3) Study Phase: In this phase, participants conducted 30 authen-
tication attempts. Among them, 21 were benign, while 9 dis-
played a modified message through a malicious overlay. Benign
and malicious attempts are presented to the user in a random
order. The participants were instructed to authenticate using
the provided credentials for each try with a gap of 5 seconds.
Participant responses were recorded and stored.

Post-test Questionnaire: After study completion, participants
were debriefed about the attack and received a post-test ques-
tionnaire to provide feedback on their study experience. Here,
participants provide answers regarding their observation of
any suspicious behavior and the reasons for their unsuccessful
attempts. They are also asked to offer feedback on their atten-
tiveness to crucial details (e.g., URL) during the authentication
process.

—
)
~

—
N
Nasd

Ahmed Tanvir Mahdad, Mohammed Jubur, and Nitesh Saxena

Table 3: User study outcome.

Attempts Attempt Sent Attempt Approved BAR AASR

Benign 420 311 97.85% -
Malicious 180 172 - 95.55%

Table 4: Evaluation with off-the-shelf desktop-based antivirus software

Antivirus Name Quick Full Scan Runtime
H Scan ‘ ‘ Warning ‘

Windows Defender X X X
Avast X X X

MalwareBytes X X N/A
Kaspersky Security Cloud X X X
Sophos Home X X X
Avira X X X
AVG X X /!
Mcafee Total Protection X X X

(Free Trial)

v - Detected, X- Not Detected

Table 5: Resource Consumption of the Concurrent Login Attack

Metric Consumption (idle) ~ Consumption(peak)

CPU 0.01% 20.0%
Memory 27.5 MB 108.83 MB
Power Very Low Low
Network 0.0 MB 0.2 MB

6 Further Evaluation and Insights
6.1 User Study Result Analysis

Effectiveness of Cross-service Attack: During the study, we car-
ried out 420 benign authentication attempts, of which 411 were
correctly approved. We calculated the Benign Approval Rate (BAR) as
97.85% using Equation 1, indicating users’ complete understanding
of the study requirements. We calculated the Adversarial Attempt
Success Rate (AASR) a 95.55%, indicating a very high rate of ap-
proval for authentication attempts with overlays. This indicates the
effectiveness of adversarial cross-service attempts using overlays.
Detailed results can be found in Table 3.

Detection of Suspicious Activities: Based on the post-test ques-
tionnaire, our observations reveal that 70% of participants reported
no detection of suspicious activities, and 75% did not abstain from
any authentication attempts. 15% of the participants suspected ma-
licious activity on the user terminal and 20% reported that, they
encountered messages at unexpected times. These findings high-
light a notably low detection rate, persisting even after multiple
malicious attempts. The results also suggest that the limited dis-
play cannot provide sufficient information to detect the attack,
even when participants are threat-aware. Consequently, the limited
display tends to increase trust in the attack when the Windows
security message is hidden by an overlay.

Participant’s Reasoning About the Attack. According to Q2,
among the participants who were suspicious, 37.5% believed it
was a malicious attack on the user terminal, while others were
uncertain. After debriefing, participants were surprised to learn
about the attack, as they assumed OS-level security would correctly

! After showing warning and performing initial scan, the program is allowed to run.

Breaching Security Keys without Root: FIDO2 Deception Attacks via Overlays exploiting Limited Display Authenticators CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

display service and browser names, not expecting that an overlay
could compromise this trusted security measure.

Inattentiveness to Changed URL: 55% of participants either
never or rarely (less than 40% of the time) checked the interme-
diate URL where the “Touch your security key" message appears.
Given that FIDOLA blocks user attempts and redirects them to a
similar-looking attacker-controlled page at this stage, paying atten-
tion to the intermediate URL is crucial for detecting such attacks.
Adversaries can exploit this lack of user attentiveness to design and
execute attacks similar to FIDOLA.

Detailed user responses in post-test questionnaire can be found
in Appendix Figure 10.

6.2 Detectability

Detectability From User Terminal: The MoT, RAgent are de-
signed to run from background to evade user and authentication
service detection. RAgent intercepts and redirects the user’s request
to a visually similar attacker-controlled page without triggering
browser warnings. While it is more common to check the URL in
the authentication page, the users may not pay much attention to
the intermediate URL changes. This has been reflected in our con-
ducted user study, where 55% of the participants seldom checked the
intermediate page URL (See Section 6.1), which suggests significant
risks of being victim of such attack.

After redirection, RAgent automatically redirects the user to
the legitimate login page after a brief delay, simulating a minor
technical glitch which reduces the likelihood of user detection.
Even if users grow suspicious at this stage, they would be unable
to prevent potential harm to their account.

In cross-service attacks, FIDOLA displays an overlay with the
user’s intended service name to conceal the attacker’s requested ser-
vice. Our user study revealed the low detectability of this technique,
demonstrating its effectiveness in cross-service attacks.

Anti-malware Programs: Anti-malware programs use two meth-
ods to detect malware: signature-based detection, which compares
it with known patterns, and behavior-based detection, which mon-
itors runtime activity for suspicious behavior like resource con-
sumption and access attempts to sensitive areas. We applied code
obfuscation techniques to hide the malicious payload of our de-
signed attack program, and tested its detection rate against different
anti-malware programs.

We test our proof-of-concept attack against eight desktop-based
antivirus programs, Windows Defender [35], Avast [3], Malware-
Bytes [32], Kaspersky Security Cloud [2], Sophos Home [38], Avira
[5], AVG [4] and Mcafee Total Protection (Free Trial) [33]. We show
the detailed result in Table 4.

For a thorough assessment, we performed full scans as well as
runtime scans, encompassing both signature-based and behavior-
based detection. In our experiment, most antivirus programs, except
AVG, failed to detect the attack executable during runtime. AVG
did display a warning for the suspicious file but couldn’t match it
with existing signatures during the initial scan, allowing the file to
run.

Resource Consumption: After completing the attack, the mali-

cious program is designed to stop, avoiding prolonged resource
consumption. During attack, we monitor CPU, memory, power, and

1696

network usage and present average values in Table 5. In its “idle"
state, the program has minimal resource demands. In an attack
lasting less than a minute, the program briefly enters an "active"
state, resulting in a temporary increase in resource usage before
promptly returning to an "Idle" state after the attack ends. Resource
consumption during the peak is comparable with other benign ap-
plications. Low CPU usage stems from keylogger being lightweight,
and hidden browser session (Chromedriver) using only a single
tab. Additionally, the extension (RAgent) is integrated with user’s
primary browser, which does not increase resource consumption.

Real-world CR-2FA Susceptibility: We assessed our attack
method against the 2FA systems of four prominent services: Mi-
crosoft Outlook [1], Facebook [15], Google [21], and Twitter
[44]. These services encompass email, social networking, and e-
commerce applications. Our demonstration revealed that our attack
can successfully bypass nearly all CR-2FA schemes employed by
these services.

Deployability: Our attack program is highly deployable with min-
imal installation dependencies. We created the hidden browser
session using phantom]S and Selenium Webdriver, both requiring
minimal installations. The keyloggers and other components are
packaged into an executable file for easy invocation via a malicious
batch script. RAgent, another attack component, is developed as
a standalone Chrome extension. While user consent is needed for
extension installation, malicious code can be concealed within a
benign extension, potentially evading detection.

7 Discussion & Future Work
7.1 Comparison with Other Attacks

Active Phishing Attack. In an active phishing attack, the attacker
captures a user’s credentials through an attacker-controlled web
page using social engineering techniques. Following this, the attack
script promptly initiates authentication requests and triggers user
presence verification on the possession-factor device. However, in
the case of CR-2FA, it utilizes the WebAuthn protocol, ensuring the
authenticity of the requesting service by verifying the server identi-
fication with the web origin in the browser. In the event of an active
phishing attack, where the server identification and web origin for
the attacker-controlled web page do not match, the browser will
halt the authentication process, and thus can effectively prevent
the active phishing attack.

In contrast, FIDOLA collects user credentials using a keylogger,
blocks users’ requests, and sends authentication requests in the
background using a hidden browser session to a legitimate authen-
tication service. As a result, for FIDOLA the server identification
and web origin would be the same, which helps to pass the web
origin check of WebAuthn, and thus compromise the CR-2FA sys-
tem. Additionally, FIDOLA is capable of performing cross-service
attacks (discussed in Section 4.4), which is not possible in an active
phishing attack.

Session Hijacking Attacks: The session hijacking attack aims to
steal session cookies from an established user session and reuse
them in the attacker’s session. It operates as a relay attack, relaying
captured session cookies, but it is not a valid attack on the 2FA
system. Furthermore, as discussed in Section 4, a relay attack like

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

social hijacking can manipulate user requests to impersonate them,
which is not a valid attack on a cryptographic protocol. In contrast,
FIDOLA is a “non-relay attack" that operates independently of
the user’s session and does not relay their cookies or requests.
Importantly, unlike session hijacking, FIDOLA enables cross-service
attacks, giving it a clear advantage.

7.2 Potential Mitigation

Implementing Secure Display: The USB version of CR-2FA lacks
a display, relying solely on LED buttons for communication. While
this design is portable and cost-effective, it has limitations in con-
veying important authentication details. The observation from our
research shows that malicious programs can easily spoof Win-
dows’ security pop-up displaying browser and service information.
Therefore, we recommend CR-2FA device manufacturers to con-
sider adding a small, low-cost display to enhance authentication
information visibility and reduce the risk of cross-service attacks.

This proposed display should show the service name and the
browser name which need to be verified by the user before autho-
rizing the transaction. However, this potential mitigation strategy
requires the users to pay close attention to the service name and
to be aware of the possible risks of cross-service attacks. Here, as
users need to physically insert the USB key into their device and
press a button to initiate the login process, they are prompted to
look at the USB FIDO2 keys and press the button to approve. In
this scenario, users should be vigilant in identifying any unusual
or unintended service names displayed during the process.

The proposed secure display should be integrated into secure
hardware [34, 47] to ensure a trusted path between the FIDO client
and the display. As outlined in the FIDO specification [18], our rec-
ommendation aligns more closely with [SM-10] (implemented by
FIDO authenticators) than [SM-5] (implemented by FIDO clients).
Deploying a secure display on user terminal devices (e.g., laptops,
smartphones) carries potential security risks, as adversaries can
exploit the permission levels of the device’s operating system to in-
troduce overlays displaying manipulated information. On the other
hand, authenticator devices are equipped with secure hardware,
providing a more secure avenue to thwart cross-service attacks.

Restriction of Overlays in Operating System: From our obser-
vation, it is evident that overlay messages can disrupt the visibility
and functionality of Windows security messages, intended to alert
users about critical security issues. However, overlays can also
serve as a means for other programs to convey urgent or important
information to users. Consequently, preventing the appearance of
overlay messages completely may not be a practical solution, as
it could reduce the user experience and functionality of other ap-
plications. Therefore, we recommend operating system designers
to explore viable solutions aimed at addressing both the security
and usability aspects of the problem, ensuring the visibility and
functionality of Windows security messages without completely
blocking overlays from trusted applications.

However, these mitigation techniques may only work to prevent
cross-service attacks but will not be able to detect same service
attacks. As the attack is fundamental, designing effective defense
strategies is challenging. While we suggest some possible mitigation
approaches, developing a comprehensive defense strategy is beyond

1697

Ahmed Tanvir Mahdad, Mohammed Jubur, and Nitesh Saxena

the scope of this paper. We believe this topic warrants further
exploration in future research.

Malicious site blockers, such as Google Safe Search, can be a po-
tential mitigation technique. However, while they can block known
malicious sites, they are ineffective against FIDOLA if attackers use
new, unlisted domains.

7.3 Limitations and Future Work

Limitations. The primary limitation of the proof-of-concept at-
tack design is that it only works on computers with Windows OS
and Chrome browsers. Therefore, there is an opportunity for re-
searchers to design more general attacks that can work on a wider
range of platforms, including popular OS/browser combinations
and smartphone platforms.

In the user study, participants were required to complete 30
authentication attempts during the data collection phase. Conse-
quently, there is a possibility of habituation bias among the par-
ticipants. To mitigate this, we instructed participants to carefully
examine security messages in each attempt. Participants’ atten-
tiveness is evident from the post-test survey, where 20% reported
noticing suspicious activities.

Although the sample size of our study is 20 users, all participants
encountered a total of 600 authentication attempts (30% of which
were malicious). We believe the number of participants and authen-
tication attempts provide a sufficient and necessary foundational
step to demonstrate the feasibility of our attack. Given that our
participants were tech-savvy, security-aware students who still
struggled to detect the attack, we believe the susceptibility of the
general population might not be lower.

Additionally, the authentication system and device used in the
study differ from their day-to-day systems and devices, which could
impact their decision-making process.

Future Works. The disadvantage of limited display in the CR-2FA
devices and the opportunity of the cross-service attack open an
ample opportunity for the researchers to re-evaluate the security
offered by CR-2FA devices. They can conduct research on effective,
secure, and informed communication (e.g., secure display) during
authentication with CR-2FA devices, as well as design more secure
enhancements of FIDO, WebAuthn, and CTAP2 protocols.

FIDOLA is currently designed for Windows OS. Designing a
similar attack in Linux-based OS, such as Ubuntu or Mac OS, can
be challenging due to their strong permission models. However,
researchers have an opportunity to explore potential loopholes
in the permission model to obtain the necessary administrator
privileges for implementing such attacks.

7.4 Other Discussion

Risk of FIDOLA Attack on Passkeys: Passkeys are a type of
FIDO credentials stored on the device, such as a computer or smart-
phone, instead of FIDO2 keys. Introduced as an alternative to pass-
words, passkeys aim to provide a more secure and convenient au-
thentication method for various service providers. However, our
proposed attack has the potential to compromise passkeys, includ-
ing cross-service attacks where malicious overlays can conceal the
actual service information from the user.

Breaching Security Keys without Root: FIDO2 Deception Attacks via Overlays exploiting Limited Display Authenticators CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Motivation to use Windows in proof-of-concept attack. We
focus on Windows while developing our proof-of-concept attack, as
it holds a significant share of the global desktop OS market (72.17%
as of February 2024) [42]. This makes it a substantial user base for
FIDO2. Nevertheless, FIDOLA is a fundamental vulnerability that
can also affect other operating systems, based on the same general
principles.

8 Conclusion

Effective 2FA should safeguard against web and terminal attacks,
verifying the user’s presence on a separate device during authen-
tication. Previous research confirms 2FA’s resilience, even against
malicious terminals. However, our non-root malware based analysis
of FIDO2 key deployments uncovers vulnerabilities to our concur-
rent login attacks from infected terminals, with low detectability
by desktop anti-malware. Importantly, our attack differs from ses-
sion hijacking, enabling more devastating cross-service attacks.
We suggest security enhancements for service providers and users,
mindful of usability trade-offs, to strengthen account security.

Acknowledgments

This work is funded in part by NSF grants: OAC-2139358, CNS-
2201465 and CNS-2154507.

References

2021. Outlook- Free personal email and calender from Microsoft.
https://outlook live.com/owa/.

AO Kaspersky Lab. 2021. Kaspersky Security Cloud - Free.
https://www.kaspersky.com/free-cloud-antivirus.

Avast Foundation. 2021. Avast Free Antivirus. https://www.avast.com/en-us.
Avast Software s.r.0. 2021. AVG Free Antivirus. https://www.avg.com/en-us/.
Avira Operations GmbH & Co. KG. 2021. Avira Antivirus.
https://www.avira.com/.

Manuel Barbosa, Alexandra Boldyreva, Shan Chen, and Bogdan Warinschi. 2021.
Provable security analysis of FIDO2. In Annual International Cryptology
Conference. Springer, 125-156.

Mihir Bellare and Phillip Rogaway. 1993. Entity authentication and key
distribution. In Annual international cryptology conference. Springer, 232-249.
BleepingComputer LLC. 2022. Malicious browser extensions targeted almost 7
million people. https://www.bleepingcomputer.com/news/security/malicious-
browser-extensions-targeted-almost-7-million-people/.

Joseph Bonneau, Cormac Herley, Paul C Van Oorschot, and Frank Stajano. 2012.
The quest to replace passwords: A framework for comparative evaluation of web
authentication schemes. In 2012 IEEE Symposium on Security and Privacy. IEEE,
553-567.

Thanh Bui, Siddharth Prakash Rao, Markku Antikainen, Viswanathan Manihatty
Bojan, and Tuomas Aura. 2018. Man-in-the-machine: exploiting ill-secured
communication inside the computer. In 27th {USENIX} Security Symposium
({USENIX} Security 18). 1511-1525.

Checkpoint Software Technologies Limited. 2022. May 2022’s Most Wanted
Malware: Snake Keylogger Returns to the Top Ten after a long absense.
https://www.checkpoint.com/press-releases/may-2022s-most-wanted-malware-
snake-keylogger-returns-to-the-top-ten-after-a-long-absence/.

Chromium Project. 2021. ChromeDriver- WebDriver For Chrome.
https://chromedriver.chromium.org.

Cisco. 2022. Guide to Web Authentication. https://webauthn.guide/.

[14] Comodo Group Inc. 2020. What is Zeus Trojan ? | How the Zeus Virus infects
the computers? https://enterprise.comodo.com/blog/what-is-zeus-trojan/.
Facebook. 2021. Facebook. https://www.facebook.com/.

Florian M Farke, Lennart Lorenz, Theodor Schnitzler, Philipp Markert, and
Markus Diirmuth. 2020. {“You} still use the password after {all”}-Exploring
{FIDO2} Security Keys in a Small Company. In Sixteenth Symposium on Usable
Privacy and Security (SOUPS 2020). 19-35.

FIDO Alliance . 2022. FIDO2: WebAuthn & CTAP. https://fidoalliance.org/fido2/.
FIDO Alliance. 2021. FIDO Security Reference (FIDO Alliance Review Draft 25
May 2021). https://fidoalliance.org/specs/common-specs/fido-security-ref-v2.1-
rd-20210525.html.

[10

[11]

1698

[19]

[25

[26

[27

[28

™~
20,

[30

[31

o Y e
=2 e 2 2 S

=
&

FIDO Alliance. 2022. Client-to-Authenticator protocol (CTAP2).
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-
authenticator-protocol-v2.0-ps-20190130.html.

FIDO Alliance. 2022. FIDO Alliance- Open Authentication Standards.
https://fidoalliance.org/.

Google. 2021. Google Accounts. https://accounts.google.com.

Google Cloud. 2021. Titan Security Key.
https://cloud.google.com/titan-security-key.

Imparva. 2021. Headless Chrome: DevOps Love It, So Do Hackers, Here’s Why.
https://www.imperva.com/blog/headless-chrome-devops-love-it-so-do-
hackers-heres-why/.

Imperva. 2018. Headless Chrome: DevOps Love It, So Do Hackers, Here’s Why.
https://www.imperva.com/blog/headless-chrome-devops-love-it-so-do-
hackers-heres-why/.

InfoSecurity Magazine. 2018. Attackers keen on Automated Browsers.
https://www.infosecurity-magazine.com/news/attackers-keen-on-automated/.
Charlie Jacomme and Steve Kremer. 2021. An extensive formal analysis of
multi-factor authentication protocols. ACM Transactions on Privacy and Security
(TOPS) 24, 2 (2021), 1-34.

Mohammed Jubur, Prakash Shrestha, Nitesh Saxena, and Jay Prakash. 2021.
Bypassing push-based second factor and passwordless authentication with
human-indistinguishable notifications. In Proceedings of the 2021 ACM Asia
Conference on Computer and Communications Security. 447-461.

Dhruv Kuchhal, Muhammad Saad, Adam Oest, and Frank Li. 2023. Evaluating
the Security Posture of Real-World FIDO2 Deployments. (2023).

Juan Lang, Alexei Czeskis, Dirk Balfanz, Marius Schilder, and Sampath Srinivas.
2016. Security keys: Practical cryptographic second factors for the modern web.
In International Conference on Financial Cryptography and Data Security.
Springer, 422-440.

Leona Lassak, Annika Hildebrandt, Maximilian Golla, and Blase Ur. 2021. " It’s
Stored, Hopefully, on an Encrypted Server”: Mitigating Users’ Misconceptions
About {FIDO2} Biometric {WebAuthn}. In 30th USENIX Security Symposium
(USENIX Security 21). 91-108.

Sanam Ghorbani Lyastani, Michael Schilling, Michaela Neumayr, Michael
Backes, and Sven Bugiel. 2020. Is FIDO2 the Kingslayer of User Authentication?
A Comparative Usability Study of FIDO2 Passwordless Authentication.. In IEEE
Symposium on Security and Privacy. 268-285.

MalwareBytes. 2021. MalwareBytes Cybersecurity for Home and Business.
https://www.malwarebytes.com/.

McAfee. 2021. McAfee Total Protection.
https://www.mcafee.com/en-us/antivirus/free.html.

Jonathan M McCune. 2009. Safe passage for passwords and other sensitive data.
In Proceedings of the Network and Distributed System Security Symposium, 2009.
Microsoft. 2021. Windows 10 Security, Windows Defender Antivirus, Windows
Defender Security Centre.
https://www.microsoft.com/en-us/windows/comprehensive-security.

NIST. 2022. Authenticator Assurance Level (AAL).
https://csrc.nist.gov/glossary/term/authenticator_assurance_level.

Software Freedom Conservancy- Selenium Project. 2021. Selenium WebDriver.
https://www.selenium.dev/projects/.

Sophos Ltd. 2021. Sophos Home - Cybersecurity made simple.
https://home.sophos.com/en-us.aspx.

StatCounter. 2021. Browser Market Share Worldwide.
https://gs.statcounter.com/browser-market-share.

StatCounter. 2023. Desktop Operating System Market Share Worldwide-
October 2023. https://gs.statcounter.com/os-market-share/desktop/worldwide.
StatCounter. 2023. Operating System Market Share Worldwide- September 2022.
https://gs.statcounter.com/os-market-share.

Statista. 2024. Global market share held by operating systems for desktop PCs,
from January 2013 to February 2024.
https://www.statista.com/statistics/218089/global-market-share-of-windows-
7/.

ThreatPost. 2021. 500 Malicious Chrome Extensions Impact Millions of Users.
https://threatpost.com/500-malicious-chrome-extensions-millions/152918/.
Twitter, Inc. 2021. Explore Twitter. https://twitter.com/explore.

Peng Xu, Ruijie Sun, Wei Wang, Tianyang Chen, Yubo Zheng, and Hai Jin. 2021.
SDD: A trusted display of FIDO2 transaction confirmation without trusted
execution environment. Future Generation Computer Systems 125 (2021), 32-40.
Yubico. 2021. Security Key by Yubico.
https://www.yubico.com/product/security-key-by-yubico.

Yongxian Zhang, Xinluo Wang, Ziming Zhao, and Hui Li. 2018. Secure display
for FIDO transaction confirmation. In Proceedings of the Eighth ACM Conference
on Data and Application Security and Privacy. 155-157.

CCS *24, October 14-18, 2024, Salt Lake City, UT, USA Ahmed Tanvir Mahdad, Mohammed Jubur, and Nitesh Saxena

A Appendix

A.1 User Study Follow Up Questions and Other
Snapshots

@ Yes
L
® 1 did not remember

@ Malicious activity in the user terminal
@ Sysiem generated ematic notifications
@ | do not have any idea

@ | did net notice any susplcious behavior

(a) Q1: Did you notice any suspicious behavior of web application dur- (b) Q2: What is the possible reason behind this suspicious behavior?
ing the study?

@ Yos
@ no
@ | did not remember

Message LIl was dforont

Service name was dfecent

The mossage appeated al

UNEADOCIRD UM
A 16 (80%)
0 5 10 15 20
(c) Q3: Did you refrain from approving any notification from the secu- (d) Q4: If you refrain from approving any request, please list all the
rity key? possible reasons. If you approved all the request please select “N/A"

@ Never (0%}

@ Vory few times { <40% of cases)
@ Sometimas {40% -60% of cases)
@ Often (60%- B0% of cases)

@ Always (100% of cases)

(e) Q5: How often you have checked the URL of the intermediate page
(the page where "Touch your security key" message appeared)?

Figure 10: Follow-up survey findings.

1699

Breaching Security Keys without Root: FIDO2 Deception Attacks via Overlays exploiting Limited Display Authenticators CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

<

-] W

2

(a) Google Titan CR-2FA USB and Bluetooth device (b) Yubico CR-2FA device, USB variant

Figure 11: Snapshots of CR-2FA devices that we have used in our study

o Windows Security >

Making sure it's you

Please sign in to google.com.

Use your security key with google.com
This request comes from Chrome. published by Google LLC.

8
e Insert your security key into the USB

[— port.

| Cancel

Insert your security key and touch it

Caneel

Verifying

(a) MacOS Terminal UI (b) Windows 10 Terminal UI (Windows Security pop-up has been shown which
shows some useful information and adds extra level of security)

Figure 12: The interface of different OS terminal during USB CR-2FA log in

Google

Google

2—Step Verification Are you trying to sign in?

This extra step shows it's really you trying to sign
in

schin |9 THYING Lo BN I 18 YOUE BEEEURT Trem & nearky

Check your OnePlus 7T

Google sent a notification to your OnePlus 7T Tap Yes on
the notification to continue.

Don't ask again on this computer

Try another way

M Ne, it's not me ~ You

(a) Built-In CR-2FA Terminal UI (b) Built-In CR-2FA device Ul

Figure 13: Built-In CR-2FA Ul offered by Android devices and Google service (some parts redacted for paper anonymity)

1700

