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Abstract

Two-factor authentication (2FA) systems aim to secure user ac-

counts, provided that either the password or the second factor

device remains uncompromised. However, in this research, we chal-

lenge this perception and analyze the security of FIDO2 hardware

security keys, which are increasingly used in 2FA and passwordless

systems. Speciocally, we develop an attack framework, analyze

the underlying protocols of FIDO2, and examine the associated

OS-level security. Through practical demonstrations, we illustrate

how adversaries can exploit this framework and OS-level secu-

rity measures to execute our designed attack, known as FIDOLA

(FIDO2 Deception Attack via Overlays exploiting Limited Display

Authenticators).

Our attack framework injects hidden login sessions, either into

the same service the user intends to authenticate with or into a

diferent service. It deceives users into approving the attacker’s re-

quest using the limited display of authenticators. This cross-service

attack raises concerns about compromising more sensitive accounts

(e.g., onancial) when users log into less sensitive ones. Our attack

poses a practical and fundamental threat not addressed in the FIDO

speciocation or prior research. Unlike prior research, our demon-

stration exposes FIDO2 authenticator vulnerabilities in real-world

2FA and passwordless setups, where OS-level security mitigates tra-

ditional concurrent attacks (simultaneous authentication attempts

by the attacker). To assess our attack’s efectiveness, we conducted

a user study, revealing that users approved approximately 95.55%

of cross-service attacks when presented with a screen overlay.

CCS Concepts

• Security and privacy → Multi-factor authentication.

Keywords

2FA; FIDO; WebAuthn; CTAP2; Security key; attack; overlay

ACM Reference Format:

Ahmed Tanvir Mahdad, Mohammed Jubur, and Nitesh Saxena. 2024. Breach-

ing Security Keys without Root: FIDO2 Deception Attacks via Overlays

exploiting Limited Display Authenticators. In Proceedings of the 2024 ACM

SIGSAC Conference on Computer and Communications Security (CCS ’24),

∗Work done as a PhD student in the SPIES Lab.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3690286

October 14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA,

15 pages. https://doi.org/10.1145/3658644.3690286

1 Introduction

Password-only authentication is a prevalent method for web au-

thentication, yet it faces security and usability challenges. To ad-

dress these concerns and provide an additional layer of security

in the event of password compromise, Two-factor Authentication

(2FA) and passwordless systems have been introduced. In 2FA sys-

tems, users must demonstrate possession of a pre-registered device

alongside passwords. Similarly, in passwordless systems, posses-

sion factor devices are used along with other factors such as PINs

or biometrics to strengthen security. However, OTP (One Time

PIN), which is widely used as the most popular 2FA system, has

limitations. Therefore, service providers have adopted advanced

2FA and passwordless systems such as FIDO2 security keys.

In this work, we focus on 2FA and passwordless systems that

utilize FIDO2 security keys as possession factor devices (e.g., Yu-

bikey [46]), which we refer to as Challenge-Response 2FA (CR-2FA)

throughout this paper. These security keys implement the Fast

Identity Online (FIDO) [20], an open authentication standard. We

analyzed FIDO2 [17] and its underlying protocols (WebAuthn [13],

CTAP2 [19]). To evaluate the security of FIDO2 keys, we propose

an attack framework called FIDO2 Deception Attack based on Over-

lays exploiting Limited Display Authenticators (FIDOLA), designed

to perform attacks leveraging the limited display capabilities of

FIDO2 authenticators (i.e., USB security keys). FIDOLA is capable

of performing both same-service attacks (where the attacker logs

in to the same service as the user) and cross-service attacks (where

the attacker logs in to a diferent service than the user intended) by

deceiving the user into accepting the attacker-generated session

thinking it is user’s own session.

In addition to the security measures imposed by WebAuthn and

CTAP, operating systems such as Windows introduce OS-level se-

curity that efectively thwarts traditional concurrent attacks that

attempt to send malicious requests simultaneously to the FIDO au-

thenticator (e.g., security key) and exploit the user’s tap to approve

their request. However, OS-level security prevents these attacks by

requiring browsers to call a specioc API, which restricts multiple

requests from being sent to the authenticator. Moreover, it displays

the browser name and service name to the user for enhanced trans-

parency and security (as shown in Figure 1). These concurrent

attacks have already been reported in the literature [10, 26]. Never-

theless, with the implementation of OS-level security, traditional

concurrent attacks are mitigated, providing an additional layer of

protection to FIDO-based authentication systems.
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Figure 1: Snapshot of Windows security message.

It has been claimed in the literature [28] that only a power-

ful attacker model, such as root-level malware, can bypass

OS-level security. However, FIDOLA, which operates in

user space, demonstrates the capability to bypass OS-level

security without requiring root-level access.

Through our analysis of WebAuthn and CTAP2, we demonstrate

how FIDOLA can efectively bypass the security measures added

by these protocols. Notably, the FIDO alliance threat analysis [18]

did not address an attack model similar to FIDOLA. Furthermore,

in contrast to previous works, FIDOLA is thoughtfully designed to

block the legitimate user’s request and send only a single request

to the FIDO2 authenticator during the attack, thereby enabling it to

bypass OS-level security measures, which are intended to prevent

traditional concurrent attacks.

Most interestingly, in addition to performing same-service at-

tacks, FIDOLA is capable of performing cross-service attack, where

the adversary can send an authentication request to a diferent

service (e.g., Twitter) than the service the user is trying to authen-

ticate to (e.g., Google). FIDOLA exploits the limited interface (i.e.,

nashing LED button) used in FIDO2 authenticators and uses an

overlay to deceive users to approve the attacker’s request. When

the operating system displays a security message containing the

requested service and browser name (as shown in Figure 1), FI-

DOLA can overlay a message with altered information in real-time.

This overlay message appears with the same size and format as the

security message, aiming to convince users to accept the attacker’s

request. Here, the limited display of FIDO2 keys (blinking LED

button) does not provide users with meaningful information (such

as the service name) when attackers overlay an OS security mes-

sage. This approach is particularly useful in FIDOLA’s cross-service

attack, where the attacker’s intended service name difers from

that of the user. Such a cross-service attack poses a high risk of

compromising a high-value account (e.g., bank) when users are at-

tempting to authenticate in a low-value account (e.g., email). In fact,

we conducted a user study that revealed that participants could not

identify 95.55% of the overlays in the cross-service attack, thereby

establishing the efectiveness of the overlay-based cross-service

attack we designed.

Previous literature (e.g., Bellare and Rogaway [7]) suggests that

an adversary needs to impersonate the trusted users independently

without relaying the user’s input/session (e.g., session hijacking

attack) to construct a valid attack on any cryptographic protocol.

In that sense, all variants of session hijacking attacks (e.g., session

hijacking by malware, active phishing, cookie stealing) are not

valid attacks against a protocol. However, FIDOLA launches an

independent session from the background, which also involves

users in establishing user presence. FIDOLA constructs a valid <non-

relay" attack that reveals vulnerabilities in FIDO2 and its underlying

protocols.

FIDOLA is fundamentally diferent from and signiocantly

more devastating than a typical session hijacking attack.

In the session hijacking attack, the malicious entity compromises

the user’s ongoing session, which gives the attacker only a limited

capability, such as only allowing for the same-service and same

session attack. On the other hand, FIDOLA is more efective, nexible,

and stealthy, with the signiocant advantage of cross-service attack

capability. We provide a comparison between session hijacking and

FIDOLA in Table 1 and Figure 4.

FIDOLA incorporates non-root malware components (e.g.,

keylogger, hidden browser session, browser extension) that

do not require administrative privilege for installation or

execution, operating within the user space of the operating

system.

These components are commonly utilized by adversaries [8, 11,

24, 25] and previous works (e.g., Kucchal et al. [28]). Given the

extensive adoption of common malware components and the ca-

pability of bypassing Windows Security, FIDOLA poses practical

and real-world threats to 2FA and passwordless systems that rely

on FIDO2. We refer the reader to our detailed exposition about

the practicality aspects of FIDOLA pertaining to the underlying

assumptions and threat model in our technical sections (Section

3.2, Section 4.2.1 C1, and Section 4.2.1 C2.)

Notably, the "User-space malware in the terminal" threat model

has been included in the FIDO threat model, except in cases where

it is utilized for session hijacking attacks, as noted by Lang et al.

[29]. Furthermore, the user-space malware in the terminal threat

model is prevalent in recent literature focused on evaluating the

security of FIDO2 keys [10, 28]. As such, this threat model is an

integral part of the overall understanding and evaluation of security

vulnerabilities in CR-2FA.

Contributions: Our contributions in this research are three-fold:

(1) Designed an atack framework capable of performing at-

tacks on FIDO2 Protocol bypassing OS-level security: We

design the FIDOLA attack framework, which exploits vulner-

abilities in FIDO2 and its subprotocols (WebAuthn [13] and

CTAP2 [19]) and bypasses OS-level security to demonstrate

both same-service and cross-service attacks in real-world set-

tings. It is a fundamental attack approach that has not been

considered in threats in the FIDO speciocation [18] or previous

literature.

(2) Developed a proof-of-concept atack with minimal re-

source consumption and dependencies: We develop a proof-

of-concept attack to evaluate real-world CR-2FA deployments,
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Table 1: Diference between our proposed attack and Session hijacking attack

Feature Session Hijacking FIDOLA

Existing vs.
Fresh
Session

Only allows to take over an
active session that
user-initiated

Allows to inject a new,
independent session when
the user initiates her own

session. The new session can
be for a more sensitive service

(e.g., banking) than a
user-initiated session (e.g.,

email).
Limited vs.

Full-
Control

Can only manipulate the
user’s ongoing activity and
cannot do anything arbitrary.

Allows the attacker to have
full arbitrary control over

the new session.
User De-
pendency

If user’s session terminates
when transaction is underway,

attack will be disrupted

Attack can continue even
after the user session

terminates.
Detectability Attackers may have to linger

on the terminal for a long
time, as it will have to wait for

the user to perform the
desired activity (e.g., bank
transaction). This makes the
attack more easily detectable.

Attackers can quickly perform
a fraudulent activity (as it is
independent of the user
activity) and leave the

terminal, thereby remaining
more stealthy.

Cross-
Service
Attack

Possible?

No. The attacker can only
perform attacks on the same
service the user is trying to

log in to

Yes. The attacker can perform
attacks on the same or

diferent service the user is
trying to login to

requiring minimal resources and installation without any ad-

ministrative privileges. Our evaluation, using both anti-malware

programs and user studies, demonstrates low detectability. Ad-

ditionally, we successfully demonstrate both same-service and

cross-service attacks on popular CR-2FA deployments (e.g.,

Google, Twitter) using well-known CR-2FA authenticators (e.g.,

Google Titan, Yubikey). This demonstration provides concrete

evidence of the real-world applicability of FIDOLA.

(3) Evaluated cross-service atack’s stealthiness through a

user study: We conducted a user study that demonstrated the

stealthiness and efectiveness of cross-service attacks. We ob-

served that, in 95.55% of cases, participants were unable to detect

carefully crafted malicious cross-service requests. This obser-

vation conorms the practicality and eociency of our designed

cross-service attack.

Attack Demonstrations: We provide our attack demonstration

at: https://sites.google.com/view/cr-2fa-attack-demo/home.

2 Background and Systematization

Generally, authenticators (e.g., Yubikey) and devices with built-in

security keys utilize the FIDO U2F and FIDO2 protocols, providing

users with a high level of security (AAL3) through hardware-based

phishing-resistant authentication mechanisms [36].

2.1 The Evolution of FIDO Protocol

FIDO released the passwordless protocol FIDO UAF (Universal

Authentication Framework) and the second-factor protocol FIDO

U2F in December 2014. FIDO2, in conjunction with the W3C We-

bAuthn protocol and CTAP2 (Client-to-Authenticator Protocol),

was launched in January 2019. FIDO U2F acts as a second-factor

protocol, whereas FIDO UAF primarily emphasizes passwordless

authentication, especially for mobile devices.

Figure 2: Worknow of WebAuthn Registration

2.2 The W3C WebAuthn Protocol

The W3C (World Wide Web Consortium) WebAuthn is a specioca-

tion written jointly by FIDO and W3C, and it is supported by all

major browsers. The high-level worknow is discussed below.

Registration: A high-level worknow of theWebAuthn Registration

procedure is illustrated in Figure 2. After receiving initial request,

the server generates a user ID UI and a random string RSV . It then

creates a challengeCS by combining the server identity (i.e., domain

name) SI with the generatedUI and RSV . In the next step, it sends

the challenge CS to the client (i.e., browser). The client extracts the

server identity SI and compares it to the web origin from the client

SI B . If the comparison fails, the protocol halts at that moment, and

the registration procedure will fail. If it passes, then it creates a hash

of the received random string H (RSV ) and passes the challenge to

the authenticator (i.e., security key).

After getting the challenge, the authenticator generates a key pair

(Skey ,Pkey ). Then, it generates credential ID Cid and sets counter

ct to zero. The authenticator then creates a hash of server identity

H (SI ), attestation signature of H (SI ), public key Pkey , and random

hash H (RSV ) using attestation private key Ak . The authenticator

saves SI ,UI , Cid , secret key Skey , and counter ct for future authen-

tication. It sends a response containing attestation signature, H (SI ),

ct , Pkey , Cid , and H (RSV ) to the client which will be redirected

to the service. After that, the authentication server validates SI ,

RSV , and checks if the counter ct is set to zero. It also validates the

attestation signature with attestation public key Vk . If all checks

pass, then the registration process will be successful, and the server

savesUI , Cid , Pkey , and counter ct for future use.

Authentication: The worknow of the WebAuthn authentication

procedure is shown in Figure 3. After receiving initial authentica-

tion request, the server creates a challenge containing server ID

SI and a random string RSV and sends it to the client. The client

checks the validity of SI with web origin SI B . If matched, it creates a

hash of the received random stringH (RSV ) and sends the challenge

to the authenticator; otherwise, it halts the procedure.

Upon receiving the challenge, the authenticator retrieves user id

UI , credential id Cid , Skey , and counter ct . After getting the user

response, it increases the counter and creates a hash of server id

H (SI ). Finally, it creates an attestation signature using the secret
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Figure 3: Worknow of WebAuthn Authentication

key Skey . The authenticator saves SI , Cid , secret key Skey , and up-

dated counter ct for future authentication. It then sends a response

containing a signature, UI , and Cid , to the client, which redirects

it to the authentication server. Then, the server will retrieve infor-

mation using credential id Cid , Pkey , and saved user id UI S . After

that, server check validity ofUI , SI , RSV , check if ct is greater than

stored counter ctsv , verioes the attestation signature by Pkey . If all

checks are passed, then the server savesUI , Cid , Pkey and updated

counter as ctsv and sends authentication success decisions to the

client.

2.3 Client-to-Authenticator Protocol (CTAP)

Client-to-Authenticator Protocol (CTAP) is a protocol developed

as a complementary tool for the WebAuthn protocol. We illustrate

the high-level worknow of the CTAP2 protocol in Figure 5.

High-level Worknow: The authenticator initializes the pinToken

pt and binding state bs during setup. When the user sets and con-

orms their PIN on the client, it passes encrypted PIN E(PIN ) to the

authenticator. Upon receiving, the authenticator checks the validity

of PIN and saves it if it is valid. During the binding process, the

client prompts for a PIN from the user. Upon receiving the PIN, the

client encrypts the PIN and sends it to the authenticator for verio-

cation. A counter is set with the maximum retry number retryc . If

the provided PIN is correct, then it stores the PIN as Skpin in the

authenticator. If it is wrong, then retryc will be reduced by one

(1) until it reaches zero. If retryc =0, the authenticator will discard

the binding process and enforce user interaction to start the reboot

process. After successful binding, it sets pinToken pt as binding

state bssk and sends pt to the client. The client then sets its binding

state bsc .

During the authorization, the client sends the hash of its binding

state bsc to the authenticator for validation. It also maintains the

retry counter retryc to prevent PIN guessing attacks. The authen-

ticator will match the hash of its binding state with the received

client’s binding state. If the validation passes, it sends a conorma-

tion to the client. The client communicates with the authenticator to

accomplish the registration or authentication process in WebAuthn.

2.4 OS Level Security

Operating systems may implement additional security measures

to safeguard FIDO2 keys against various attacks. For instance,

Windows security requires the browser to invoke a Windows OS-

specioc API before sending a request (see step 5 in Figure 3) in

WebAuthn worknow. This process is illustrated in the modioed

Figure 6, where step 5 of the WebAuthn worknow (H (RSV ), SI , BN )

is sent to the Windows security API. Subsequently, the API gener-

ates a message containing the service name (SI ) and the browser

name (BN ), which are then sent to the authenticator, leading to the

nashing of the authenticator button.

By displaying a message with the service and browser name, the

Windows security API assists users in making informed decisions,

thereby thwarting unwanted cross-service attacks. Additionally,

the Windows security API enforces a prohibition on concurrent

requests by allowing only single request at a time.

3 Threat Analysis

3.1 Risk of Limited Display in Authenticator

In 2FA, detailed information (e.g., service name) about authentica-

tion requests is crucial for making an informed decision. However,

USB FIDO2 keys use a nashing LED button as communication

medium, which is a limited display lacking essential identifying

information.

We leverage this limited display in our work and design a con-

current attack from the background. While some desktop operating

systems (e.g., Windows 10) display a security message with the

service name, it cannot be considered entirely secure if the terminal

is compromised. This vulnerability allows a malicious program to

overlay any part of the screen, efectively hiding the service in-

formation shown in the OS security message, and launching an

attack for a service other than the one the user intended to use.

This malicious overlay prompt is synchronized to be shown when

the Windows security message is shown to hide the message and it

disappears after some time.

We refer to this attack as the <Cross-service" attack and will

discuss it further later. .

3.2 Risk of Desktop-based Malware Infection

Our proof-of-concept attack program targets Windows as the oper-

ating system (with 38% market share) [41], and Google Chrome as

the browser (with 65% market share [39]), exposing vulnerabilities

in the most popular desktop OS/browser combinations. Malware

with capabilities similar to FIDOLA is prevalent. For instance, Zeus

is a widespread keylogging malware [14]. Additionally, a recent ar-

ticle reveals the identiocation of 500 malicious Chrome extensions

that possess similar abilities, such as redirecting victims to mali-

cious websites [43], resembling our attack. Another report indicates

that 50% of malicious traoc originates from headless browsers, in-

cluding those used in our attack (e.g., PhantomJS, Chrome Headless)

[24]. Hence, we consider our proposed threat model for CR-2FA to

be standard and practical in real-world scenarios.
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(a) Session Hijacking attack worknow where a man-in-the-middle attack is
launched, which changes user requests rA to rB to service A. After getting re-
sponse rB, attacker shows users altered response rA. This worknow shows the
Session Hijacking attack can be performed only on the same service A.

(b) Theworknowof FIDOLA attackwhere the attacker can block any request to
serviceA and send diferent request B on diferent service B and get it approved
by 2FA

Figure 4: Comparison between worknow of Session Hijacking Attack and FIDOLA Attack

Figure 5: Worknow of CTAP2 Protocol

Figure 6: A worknow example of OS Level security in WebAuthn

3.3 Previous Works

Researchers have already reported many security [6, 26, 45] and

usability [16, 30, 31] issues in literature.

Bui et al. introduced the man-in-the-machine attack (MitMa)

in [10]. They utilized a browser process to capture the server’s

client data object and continuously transmitted it to the USB. In

Table 2: Comparison of FIDOLA with previous works.

FIDOLA MitMa
[10]

Jacomme et
al. [26]

Kucchal et
al. [28]

Bypass Windows
Security

� � � �

Real World Demo � � � �

Overlay for User
Deception

� � � �

Evaluation via User
Study

� � � �

contrast, our approach involves launching a hidden browser session

that sends a single client data to the USB, similar to the normal

worknow. Unlike MitMa, which sends multiple requests and is

susceptible to detection by anti-malware programs, FIDOLA sends

only one request, signiocantly reducing the chances of detection.

While Windows security can prevent MitMa by permitting only

one request at a time and displaying a security message (explained

in Section 2.4 and Figure 6), FIDOLA remains unafected by this

OS-specioc feature.

Jacomme et al. have proposed another concurrent attack on

FIDO [26], speciocally targeting FIDO U2F. They generated two

concurrent requests at the same time and showed that both requests

could reach the authenticator simultaneously. They assumed that

the attacker’s request arrives orst and is approved by the user’s

orst tap. However, since the user’s request is not approved, they

may think that the tap is not registered, so they tap the button

again. The later tap will authenticate the user’s request. However,

unlike FIDOLA, this concurrent attack cannot bypass Windows

security because it only allows a single request to be sent to the

authenticators at a time. Furthermore, their analysis only covers

the FIDO U2F protocol, while we demonstrate attacks using the

latest FIDO2 keys.

Kucchal et al. [28] conducted an evaluation of real-world FIDO2

deployments, demonstrating how malware in the user’s terminal

can bypass FIDO2 authentication attempts. However, their non-root
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malware attack variant, which relies on malware running exclu-

sively in user space, cannot bypass the OS-level security measures

outlined in Section 2.4. These security features are particularly

prevalent in Windows, the most widely adopted desktop operating

system [40]. Consequently, their approach is inefective for the ma-

jority of real-world deployment scenarios. In contrast, our attacker

model considers malware running exclusively in user space, yet

it has the capability to bypass OS-level security. Additionally, we

conducted a user study that provides empirical support for our

attack methodology, revealing a remarkable 95.55% success rate.

A detailed comparison of these works with our research is pro-

vided in Table 2.

Barbosa et al. [6] performed a detailed security analysis of FIDO2,

WebAuthn, and CTAP2. They have pointed out some shortcomings

of CTAP2 (i.e., they proved that CTAP2 is not UF (unforgeability)-

secure) and proposed a protocol (WebAuthn+sPACA) that is UF-

secure. Their proposed protocol, sPACA, difers from CTAP2 in bind

execution. On the other hand, in our work, we identify (WebAu-

thn+CTAP2)’s weaknesses against our designed attacks, especially

cross-service attacks, and evaluate their security against them.

Jubur et al. presented a variant of the concurrent attack [27], pri-

marily for push notiocation authentication. The attacker generates

multiple same-service concurrent notiocations to deceive users into

accepting attacker-controlled requests. In contrast, FIDOLA, which

is designed for FIDO2 keys, can generate a single request capable of

bypassing OS-level security and performing cross-service attacks.

4 Attack Design and Implementation

4.1 Deonition of <Non-Relay-Attack=

A powerful adversary can compromise the communication medium,

capture users’ requests, and relay them to impersonate. A session

hijacking attack steals session identioers and impersonates the

user’s session. They are known as a <Relay Attack," which is not

considered a valid attack against a cryptographic protocol. Accord-

ing to Bellare-Rogaway [7], "an adversary in our setting can always

make the parties accept by faithfully relaying messages among the

communication partners. But this behavior does not constitute a dam-

aging attack; indeed, the adversary has functioned just like a wire,

and may as well not have been there".

A valid attack on protocol should be one that the user does not

initiate; nevertheless, it has the capability to impersonate the user

and successfully authenticate as the user. According to Bellare-

Rogaway [7], "we formalize that a protocol is secure if the only way

that an adversary can get a party to accept is by faithfully relaying

messages in this manner. In other words, any adversary efectively

behaves as a trusted wire, if not a broken one". We formulate a valid

<Non-Relay-Attack" that creates an independent session diferent

from the users’ created session, unlike session hijacking.

4.2 Threat Model

To assess the CR-2FA system, we have designed the FIDOLA attack

framework, which encompasses specioc attacker capabilities and as-

sumptions. These align with the criteria of a "non-relay attack" and

adhere to the FIDO2 attacker model. We have listed the capabilities

and assumptions below.

4.2.1 Atacker Capabilities. C1: The adversary is capable of per-

suading users to click on links distributed through diferent channels

(e.g., websites, emails), leading to the injection of malicious executables

of FIDOLA into the users’ computer.

Justiocation of Practicality. This attacker capability

aligns with well-known real-world attacks against other

2FA schemes that compromise the terminal (e.g., Zeus [14]).

The "user-space malware in the terminal" model has also

been addressed in the FIDO threat model, with an excep-

tion when it is used to <ride" on the user’s ongoing session

(i.e., a session hijacking attack), as outlined by Lang et

al. [29], which is an invalid attack according to Bellare-

Rogaway [7] anyway. Furthermore, researchers have al-

ready considered a malware-in-terminal threat model (cov-

ering both user-space and system-level malware) to eval-

uate FIDO2 security [28], demonstrating the practicality

of this attacker capability in assessing the risks associated

with FIDO2 protocols.

C2: The attacker can convince users to install a seemingly harmless

but malicious browser extension in their browsers.

Justiocation of Practicality. Installing useful browser

extensions is a very common use case thatmay be exploited

by attackers to inject malicious code into a seemingly be-

nign and useful browser extension (e.g., e-commerce tool).

This use case has already been reported as vulnerable and

exploited by real-world attackers as a common entry point

for attacks [8, 23, 43]. It is important to note that, as our

objective is to design a non-relay and valid attack for the

analysis and evaluation of CR-2FA systems, we do not con-

sider capturing session cookies using a browser extension.

4.2.2 Assumptions. A1: The malicious component of FIDOLA only

operates within the user space of the operating system. It does not

require any system-level permissions or alter any core OS components

or functionalities.

Justiocation of Practicality. This assumption distin-

guishes FIDOLA from strong attacker models that pre-

sume total compromise of the operating system in the

user terminal. It also guarantees a more straightforward

attack compared to system-level malwares. Furthermore,

this characteristic grants FIDOLA a notable advantage, en-

abling it to function in restricted user terminals, such as

organizational computers subject to various system-level

restrictions, including restrictions on the installation of

unknown programs.

A2: The attacker cannot execute a total browser compromise, which

encompasses actions such as installing malicious browsers, convincing

users to use them, altering core components of users’ browsers, or

modifying FIDO2 protocol components (e.g., WebAuthn) within the

users’ browser.
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Justiocation of Practicality. As one of our objectives is

to adhere to the FIDO2 threat analysis [17] during our eval-

uation, our designed attack cannot involve total browser

compromise, as this would imply compromising the FIDO2

client. Compromising the FIDO2 client and its components

within the browser (e.g., WebAuthn) is beyond the scope of

the FIDO2 threat analysis [17]. Moreover, implementing a

malicious browser, integrating FIDO into it, and persuading

users to install it from an illegitimate source require signif-

icantly more technical and social engineering efort from

the attacker compared to our proposed attacker model.

Importantly, the installation of a malicious browser or the

total compromise of a user’s browser typically requires ad-

ministrative privileges on organizational computers, con-

tradicting our previously stated Assumption A1.

A3: Users are assumed to utilize 2FA for all login attempts, and they

will not use "Remember Me" features.

Justiocation of Practicality. These assumptions are nec-

essary to evaluate the performance of 2FA systems when

both factors (password and FIDO2 keys) are needed for

authentication. The "Remember me" feature or saving pass-

words in the browser would disable one or both factors,

thereby undermining the full security of 2FA during secu-

rity evaluations.

A4: The adversary cannot compromise FIDO2 Authenticators (i.e.,

hardware security keys).

Justiocation of Practicality. FIDO2 authenticators, such

as physical FIDO2 USB keys, contain secure hardware that

runs a specioc ormware. This ormware is inaccessible from

outside, as it can only be accessed by some specioc API.

Furthermore, malicious FIDO authenticators are out of

scope of FIDO2 security model.

A5: The adversary can not have any control over the user’s already

established session or can not steal any session cookies.

Justiocation of Practicality. As FIDOLA is designed to

be a valid attack against the FIDO2 protocol, we do not

consider "relay attacks" such as session hijacking in its

approach.

4.2.3 2FA against “User-Space Malware in Terminal". As per the

capabilities and assumptions of the attacker, we are adopting a

"User-spaceMalware in Terminal" threat model to assess FIDO2 key-

based authentication systems. Here, to evaluate the efectiveness

of the extra security added by possession factor (FIDO2 keys), we

believe it is necessary to evaluate its security level when one factor

(e.g., password) is already compromised [also stated in [28] threat

model]. The threat model we consider, does not compromise the

Figure 7: Worknow of Same-service Attack on WebAuthn Protocol

FIDO client (which is a part of the browser), the FIDO authenticator

(i.e., security key), service or communication channel between these

components. With this deoned threat model, we aim to evaluate the

common assumption found in the literature [9] that the attacker

needs to compromise both factors to efectively undermine 2FA

systems, which include FIDO2 keys.

4.3 Attack Overview and Crux

Our demonstration shows that it is suocient to compromise the

user terminal (e.g., desktop/laptop computer) to defeat CR-2FA.

The attack initiates a concurrent authentication attempt from the

terminal while the user tries to authenticate. It blocks the user’s au-

thentication attempt, and the service generates a challenge for the

attacker’s attempt, which will be forwarded to the CR-2FA authenti-

cator, causing its LED light to nash. As users intend to authenticate,

they unwittingly approve the attacker’s session, believing their

own authentication request triggers the LED nashing.

Attack Launching Condition. FIDOLA scans keypresses, detect-

ing when the user types the URL of the targeted authentication site

(e.g., mail.google.com) in the address bar. It captures the entered

username and password, sending a parallel request through a hid-

den browser session using the collected authentication credentials.

Concurrently, the browser extension blocks the users’ authentica-

tion requests as they submit their credentials. Furthermore, it can

redirect them to a page controlled by the attacker. As the attacker’s

session initiates and runs on a hidden browser session from the

background, users cannot access or invalidate attacker’s sessions.

Attack Vector in FIDO Speciocation. FIDOLA is diferent from

all of the attacks considered in FIDO threat analysis [18]. Here, it

loads diferent Relying Party App (RP App) (e.g., Google web app)

other than the RP App user is intended to authenticate (e.g., Twit-

ter web app), using a diferent FIDO client (i.e., hidden browser).

FIDOLA does not convince users to use another FIDO client (i.e., a

hidden browser); instead, it generates a concurrent attack using a

hidden browserwhile users intend to authenticate using a legitimate

FIDO client. To the best of our knowledge, the FIDO specio-

cation has no mention of our attack in any of their threat

analysis; thus, the attack is both novel and fundamental.
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Figure 8: Worknow of Cross-service Attack on WebAuthn Protocol

4.4 FIDOLA Attack on WebAuthn Protocol

FIDOLA can perform both same-service and cross-service attacks

on WebAuthn.

Same-service Attack:We illustrate the Same-service attack work-

now on WebAuthn in Figure 7. The malicious browser extension

can block the user’s request, initiate a hidden automated browser

session and send an authentication request to the service using

known authentication credentials. It can then redirect users to an

attacker-controlled page, prompting them to tap the authenticator.

Upon receiving the attacker’s authentication request, the service

sends the client a challenge containing the server ID SI and a ran-

dom string RSV . The hidden browser session will pass the validity

check of SI with web origin SI B . Subsequently, the client will send

a hash of the received random string H (RSV ) and server identity

SI to the authenticator.

The authenticator would then retrieve user id UI , credential id

Cid , Skey , and counter ct after the user pressed the button. As users

are actively authenticating and expect their authenticator LED to

blink, they will eventually press it to approve. The authenticator

would then increment the counter ct and send the attestation signa-

ture to the client containing the updated counter ct , server identity

SI ,UI , RSV , and Cid to the client. The client redirects the received

information to the service end where UI , SI , RSV will be verioed

by the service and the attacker’s session will be authenticated.

Cross-service Attack: Here, we assume the targeted user registers

multiple services from the same authenticator (i.e., Security Key).

We illustrate the Cross-service Attack worknow in Figure 8. Like the

Same-service attack, the malicious browser extension would block

users’ authentication requests to the service (Service 1) and redirect

them to another similar-looking page prompting them to tap the

authenticator. At the same time, the automated browser would

request another service (Service 2) for authentication. The service

then would send a challenge to the hidden browser containing

server ID SI2 and a random string RSV 2. The client (hidden browser)

would validate the server ID SI2 with the web origin SI B2, which

would pass as the client here requested authentication from service

2.

As the user is trying to authenticate to Service 1 and waiting for

the LED to blink on their authenticator; they are likely to approve

the request (generated for Service 2) by pressing the button. After

Figure 9: Worknow of Cross-service attack in the presence of Windows secu-
rity.

that, the authenticator would retrieve user id UI2, credential id

Cid2, Skey2, and counter ct2. After updating the counter ct2, the

authenticator would create an attestation signature containing the

updated counter ct2. It would send UI2, and Cid2 along with the

attestation signature to the client, which would redirect it to the

service (Service 2). As the attestation signature,UI2,RSV 2,Cid2, and

ct2 are valid, the service (Service 2) would approve the malicious

authentication.

Attack in the presence of OS level security: For cross-service

attack, in the presence of Windows security, the hidden browser

would send RSV 2, SI2, and browser name BN 2 to Windows Secu-

rity API. It would then display the service name with SI2 and the

browser name BN 2 in a message to the user. Here, FIDOLA will

draw an overlay showing SI and BN , which are the user’s service

and browser names, to convince them to tap the key and inadver-

tently allow the attacker’s session. The attack worknow is shown

in Figure 9.

4.5 FIDOLA Attack on CTAP2 Protocol

FIDOLA impersonates the user from the same device (i.e., a com-

puter) and simultaneously (i.e., during the user’s authentication

attempt). As such, when the hidden browser session sends a bind-

ing request, the authenticator will ask for the PIN. As the attack

is executed during users’ authentication attempts, the user would

provide their PIN to complete the authentication process.

Passwordless authentication systems require a PIN for each at-

tempt and may use phone lock for veriocation. In the same-service

attack, blocking the user’s request and sending a parallel hidden

browser request is straightforward. The PIN prompt would appear

only once (for the adversary’s request), and the user would provide

their PIN, inadvertently approving the adversary’s session.

4.6 Attack Implementation

Our proof-of-concept program consists of two components:

Malware on Terminal (MoT): MoT is designed to run in the user

space of the operating system. It uses a keylogger to capture the

keystrokes and mouse actions. It’s primary function is to detect

keystrokes and capture usernames and passwords entered by the

user. Its controller determines the attack start time and initiates

hidden browser sessions. We use Python 3.7 to implement the MoT
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controller and keylogger. We use selenium webdriver [37] and

chromedriver [12] to implement the hidden browser session. The

hidden browser session program executable is a JAR (Java Archive)

ole that contains the code and resources needed to launch and

manage a hidden browser session. MoT also can draw an overlay

on any part of the screen to be used in cross-service attacks. The

Python executable and the jar ole can be run without installation

and portable Java.

Redirection Agent (RAgent): We implement a Chrome browser

extension RAgent that can block any user request when a URL

match is found and redirect them to an attacker-controlled web

page during the authentication process. After blocking the authenti-

cation request, it immediately redirects the user to a similar-looking

attacker-controlled webpage (which instructs them to touch the

security key) to persuade them that they are still in the authentica-

tion process. RAgent waits for a specioed duration (e.g., 15 seconds)

to complete the authentication process. Following this, it redirects

the user to the legitimate authentication page again, creating the

illusion that the login was unsuccessful due to a technical glitch.

4.7 Attack Worknows

Same-service Attack on CR-2FA:

(1) Step 1:When MoT detects the user’s intent to authenticate and

the completion of credential input, it captures the password

using a keylogger and prepares to launch a hidden browser

session using the captured authentication credentials.

(2) Step 2: While the user is about to submit authentication cre-

dentials, RAgent blocks the user’s request and redirects them

to a similar-looking attacker-controlled page, which prompts

the user to touch the security key to complete authentication.

(3) Step 3: In the meantime, the server receives the hidden browser

session launched by MoT and sends a challenge to the hidden

browser session, which will be passed as the web origin and

server ID will be the same.

(4) Step 4: As the user is expecting the LED light to blink for their

initiated authentication attempt, when the attacker’s request

arrives, they press the button to approve the attacker’s request,

thinking that it is generated for their request.

Cross-service Attack on CR-2FA:

(1) Step 1: Similar to Step 1 of a same-service attack, after detecting

the user’s intent to authenticate into service A, MoT captures

the password and saves it for future use. In the meantime, it

sends an authentication attempt to Service B, which is registered

using the same hardware security key.

(2) Step 2: RAgent will block the authentication request for Ser-

vice A when the user is about to submit their authentication

credentials. The user is redirected to a similar-looking page for

Service A that prompts the user to press their security key.

(3) Step 3: In the meantime, Service B receives the authentication

request sent by the attacker and replies with a challenge to the

hidden browser session. This challenge would be passed as the

hidden browser session’s web origin, which would be the same

as Service B’s ID.

(4) Step 4: When the browser redirects Service B’s request to the

security key, the Windows security will show the service name

(Service B) and browser name in a security message. However,

at that stage, the attacker will draw an overlay with Service A

information, efectively hiding the Windows security message

showing Service B’s information. As the user expects to authen-

ticate and the original Windows security message is hidden by

the overlay, the cross-service attack will be successful.

5 User Study

We conducted a user study to assess the detectability of cross-

service attacks and whether users can detect it’s overlay approach.

5.1 System Design and Implementation

Demographic Information: We recruited 20 participants for the

user study, with a gender distribution of 60% male and 40% female.

The majority (55%) were aged 31-40, while 40% were aged 21-30,

and the remaining participants fell into the 41-50 age range. All

participants were university students, with 55% holding a master’s

degree and 35% holding a bachelor’s degree. The majority of partic-

ipants (95%) were familiar with 2-factor authentication and used it

regularly for email (80%) and banking (75%) purposes.

Authentication System: We have developed an authentication

system that incorporates webAuthn in both the registration and

authentication processes. To emulate a secure site, our system is

deployed locally on a laptop using <host mapping" and a self-signed

certiocate. The web application was developed using PHP and

MySQL. Participants are required to register a security key and set

a password during the registration process.

Attack Module: We have developed an attack module that can

randomly display an overlay containing the participant’s intended

service name in some of the attempts.

Devices Used: For the user study, we employed Yubikey [46] and

Google Titan [22] USB security keys with a Windows 10 laptop.

Authentication Attempts Design: During the core study phase,

participants completed 30 authentication attempts, with 30% (9

attempts) designed as malicious. In these malicious attempts, the

actual security message (Figure 12b) was concealed by a carefully

designed overlay.

Evaluation Metrics: Participants had two response options to

the FIDO2 security request: approval or refraining from respond-

ing. We used the following notations: AttB−approved for ap-

proved benign attempts, AttB−r ef rained for benign refrained at-

tempts, AttM−approved for approved malicious attempts, and

AttM−r ef rained for malicious refrained attempts.

In this user study, we employed two evaluation metrics to mea-

sure both benign and malicious authentication attempts. The orst

metric, BAR (Benign Approval Rate), quantioes the percentage of

approved benign attempts by all participants. It renects participants’

familiarity with FIDO2 keys and their task accuracy. The second

metric, AASR (Adversarial Attempt Success Rate), quantioes the

percentage of approved malicious attempts. This metric assesses

the adversary’s success in using an overlay approach to deceive

participants during cross-service attacks. Equations 1 and 2 express

BAR and AASR, respectively.
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BAR =

∑
i AttB−approved

∑
i AttB−approved +

∑
j AttB−r ef rained

(1)

AASR =

∑
i AttM−approved

∑
i AttM−approved +

∑
j AttM−r ef rained

(2)

For an ideal authentication system, BAR should be 100% and

AASR should be 0%.

5.2 Study Protocol

The user study was approved by our university’s Institutional Re-

view Board (IRB), and we adhered to standard IRB guidelines for

study and data collection. Participants were not required to use their

personal devices and instead used a laptop and a FIDO2 security key

provided by facilitator. In the registration process, participants are

instructed not to use their personal email addresses or passwords.

Instead, they are advised to use dummy or non-existent email ad-

dresses to comply with IRB guidelines. The study comprises four

phases.

(1) Introduction: In this phase, the facilitator explained FIDO2

keys functionality and their security features. Participants were

informed about the experiment’s purpose, including the pur-

pose of security keys (e.g., preventing phishing) and OS-level

security (e.g., preventing cross-service concurrent attacks), and

instructed to check security messages (service/browser name)

and not approve suspicious attempts. Before the data collection

phase following the explanation, the facilitator administered a

pre-test questionnaire to gather demographic information and

assess the participant’s familiarity with 2FA systems and FIDO2

keys. Subsequently, the facilitator registered a participant ac-

count, using a dummy email and password, and registered the

FIDO2 Key.

(2) Practice Phase: During this phase, participants became famil-

iar with the FIDO2 authentication system and interacted with

theWindows security message. We designed our practice phase,

requiring participants to complete the authentication system

using provided credentials with FIDO2 keys 10 times. This prac-

tice phase is expected to establish suocient familiarity among

participants with both the FIDO2 authentication process and

Windows OS-level security.

(3) Study Phase: In this phase, participants conducted 30 authen-

tication attempts. Among them, 21 were benign, while 9 dis-

played a modioed message through a malicious overlay. Benign

and malicious attempts are presented to the user in a random

order. The participants were instructed to authenticate using

the provided credentials for each try with a gap of 5 seconds.

Participant responses were recorded and stored.

(4) Post-test Questionnaire: After study completion, participants

were debriefed about the attack and received a post-test ques-

tionnaire to provide feedback on their study experience. Here,

participants provide answers regarding their observation of

any suspicious behavior and the reasons for their unsuccessful

attempts. They are also asked to ofer feedback on their atten-

tiveness to crucial details (e.g., URL) during the authentication

process.

Table 3: User study outcome.

Attempts Attempt Sent Attempt Approved BAR AASR

Benign 420 311 97.85% -
Malicious 180 172 - 95.55%

Table 4: Evaluation with of-the-shelf desktop-based antivirus software

Antivirus Name Quick
Scan

Full Scan Runtime
Warning

Windows Defender � � �

Avast � � �

MalwareBytes � � N/A
Kaspersky Security Cloud � � �

Sophos Home � � �

Avira � � �

AVG � � �1

Mcafee Total Protection
(Free Trial)

� � �

�- Detected, �- Not Detected

Table 5: Resource Consumption of the Concurrent Login Attack

Metric Consumption (idle) Consumption(peak)

CPU 0.01% 20.0%
Memory 27.5 MB 108.83 MB
Power Very Low Low
Network 0.0 MB 0.2 MB

6 Further Evaluation and Insights

6.1 User Study Result Analysis

Efectiveness of Cross-service Attack:During the study, we car-

ried out 420 benign authentication attempts, of which 411 were

correctly approved.We calculated the Benign Approval Rate (BAR) as

97.85% using Equation 1, indicating users’ complete understanding

of the study requirements. We calculated the Adversarial Attempt

Success Rate (AASR) a 95.55%, indicating a very high rate of ap-

proval for authentication attempts with overlays. This indicates the

efectiveness of adversarial cross-service attempts using overlays.

Detailed results can be found in Table 3.

Detection of Suspicious Activities: Based on the post-test ques-

tionnaire, our observations reveal that 70% of participants reported

no detection of suspicious activities, and 75% did not abstain from

any authentication attempts. 15% of the participants suspected ma-

licious activity on the user terminal and 20% reported that, they

encountered messages at unexpected times. These ondings high-

light a notably low detection rate, persisting even after multiple

malicious attempts. The results also suggest that the limited dis-

play cannot provide suocient information to detect the attack,

even when participants are threat-aware. Consequently, the limited

display tends to increase trust in the attack when the Windows

security message is hidden by an overlay.

Participant’s Reasoning About the Attack. According to Q2,

among the participants who were suspicious, 37.5% believed it

was a malicious attack on the user terminal, while others were

uncertain. After debrieong, participants were surprised to learn

about the attack, as they assumed OS-level security would correctly

1After showing warning and performing initial scan, the program is allowed to run.
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display service and browser names, not expecting that an overlay

could compromise this trusted security measure.

Inattentiveness to Changed URL: 55% of participants either

never or rarely (less than 40% of the time) checked the interme-

diate URL where the <Touch your security key" message appears.

Given that FIDOLA blocks user attempts and redirects them to a

similar-looking attacker-controlled page at this stage, paying atten-

tion to the intermediate URL is crucial for detecting such attacks.

Adversaries can exploit this lack of user attentiveness to design and

execute attacks similar to FIDOLA.

Detailed user responses in post-test questionnaire can be found

in Appendix Figure 10.

6.2 Detectability

Detectability From User Terminal: The MoT, RAgent are de-

signed to run from background to evade user and authentication

service detection. RAgent intercepts and redirects the user’s request

to a visually similar attacker-controlled page without triggering

browser warnings. While it is more common to check the URL in

the authentication page, the users may not pay much attention to

the intermediate URL changes. This has been renected in our con-

ducted user study, where 55% of the participants seldom checked the

intermediate page URL (See Section 6.1), which suggests signiocant

risks of being victim of such attack.

After redirection, RAgent automatically redirects the user to

the legitimate login page after a brief delay, simulating a minor

technical glitch which reduces the likelihood of user detection.

Even if users grow suspicious at this stage, they would be unable

to prevent potential harm to their account.

In cross-service attacks, FIDOLA displays an overlay with the

user’s intended service name to conceal the attacker’s requested ser-

vice. Our user study revealed the low detectability of this technique,

demonstrating its efectiveness in cross-service attacks.

Anti-malware Programs: Anti-malware programs use two meth-

ods to detect malware: signature-based detection, which compares

it with known patterns, and behavior-based detection, which mon-

itors runtime activity for suspicious behavior like resource con-

sumption and access attempts to sensitive areas. We applied code

obfuscation techniques to hide the malicious payload of our de-

signed attack program, and tested its detection rate against diferent

anti-malware programs.

We test our proof-of-concept attack against eight desktop-based

antivirus programs, Windows Defender [35], Avast [3], Malware-

Bytes [32], Kaspersky Security Cloud [2], Sophos Home [38], Avira

[5], AVG [4] and Mcafee Total Protection (Free Trial) [33]. We show

the detailed result in Table 4.

For a thorough assessment, we performed full scans as well as

runtime scans, encompassing both signature-based and behavior-

based detection. In our experiment, most antivirus programs, except

AVG, failed to detect the attack executable during runtime. AVG

did display a warning for the suspicious ole but couldn’t match it

with existing signatures during the initial scan, allowing the ole to

run.

Resource Consumption: After completing the attack, the mali-

cious program is designed to stop, avoiding prolonged resource

consumption. During attack, we monitor CPU, memory, power, and

network usage and present average values in Table 5. In its <idle"

state, the program has minimal resource demands. In an attack

lasting less than a minute, the program brieny enters an "active"

state, resulting in a temporary increase in resource usage before

promptly returning to an "Idle" state after the attack ends. Resource

consumption during the peak is comparable with other benign ap-

plications. Low CPU usage stems from keylogger being lightweight,

and hidden browser session (Chromedriver) using only a single

tab. Additionally, the extension (RAgent) is integrated with user’s

primary browser, which does not increase resource consumption.

Real-world CR-2FA Susceptibility: We assessed our attack

method against the 2FA systems of four prominent services: Mi-

crosoft Outlook [1], Facebook [15], Google [21], and Twitter

[44]. These services encompass email, social networking, and e-

commerce applications. Our demonstration revealed that our attack

can successfully bypass nearly all CR-2FA schemes employed by

these services.

Deployability: Our attack program is highly deployable with min-

imal installation dependencies. We created the hidden browser

session using phantomJS and Selenium Webdriver, both requiring

minimal installations. The keyloggers and other components are

packaged into an executable ole for easy invocation via a malicious

batch script. RAgent, another attack component, is developed as

a standalone Chrome extension. While user consent is needed for

extension installation, malicious code can be concealed within a

benign extension, potentially evading detection.

7 Discussion & Future Work

7.1 Comparison with Other Attacks

Active Phishing Attack. In an active phishing attack, the attacker

captures a user’s credentials through an attacker-controlled web

page using social engineering techniques. Following this, the attack

script promptly initiates authentication requests and triggers user

presence veriocation on the possession-factor device. However, in

the case of CR-2FA, it utilizes the WebAuthn protocol, ensuring the

authenticity of the requesting service by verifying the server identi-

ocation with the web origin in the browser. In the event of an active

phishing attack, where the server identiocation and web origin for

the attacker-controlled web page do not match, the browser will

halt the authentication process, and thus can efectively prevent

the active phishing attack.

In contrast, FIDOLA collects user credentials using a keylogger,

blocks users’ requests, and sends authentication requests in the

background using a hidden browser session to a legitimate authen-

tication service. As a result, for FIDOLA the server identiocation

and web origin would be the same, which helps to pass the web

origin check of WebAuthn, and thus compromise the CR-2FA sys-

tem. Additionally, FIDOLA is capable of performing cross-service

attacks (discussed in Section 4.4), which is not possible in an active

phishing attack.

Session Hijacking Attacks: The session hijacking attack aims to

steal session cookies from an established user session and reuse

them in the attacker’s session. It operates as a relay attack, relaying

captured session cookies, but it is not a valid attack on the 2FA

system. Furthermore, as discussed in Section 4, a relay attack like
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social hijacking can manipulate user requests to impersonate them,

which is not a valid attack on a cryptographic protocol. In contrast,

FIDOLA is a <non-relay attack" that operates independently of

the user’s session and does not relay their cookies or requests.

Importantly, unlike session hijacking, FIDOLA enables cross-service

attacks, giving it a clear advantage.

7.2 Potential Mitigation

Implementing Secure Display: The USB version of CR-2FA lacks

a display, relying solely on LED buttons for communication. While

this design is portable and cost-efective, it has limitations in con-

veying important authentication details. The observation from our

research shows that malicious programs can easily spoof Win-

dows’ security pop-up displaying browser and service information.

Therefore, we recommend CR-2FA device manufacturers to con-

sider adding a small, low-cost display to enhance authentication

information visibility and reduce the risk of cross-service attacks.

This proposed display should show the service name and the

browser name which need to be verioed by the user before autho-

rizing the transaction. However, this potential mitigation strategy

requires the users to pay close attention to the service name and

to be aware of the possible risks of cross-service attacks. Here, as

users need to physically insert the USB key into their device and

press a button to initiate the login process, they are prompted to

look at the USB FIDO2 keys and press the button to approve. In

this scenario, users should be vigilant in identifying any unusual

or unintended service names displayed during the process.

The proposed secure display should be integrated into secure

hardware [34, 47] to ensure a trusted path between the FIDO client

and the display. As outlined in the FIDO speciocation [18], our rec-

ommendation aligns more closely with [SM-10] (implemented by

FIDO authenticators) than [SM-5] (implemented by FIDO clients).

Deploying a secure display on user terminal devices (e.g., laptops,

smartphones) carries potential security risks, as adversaries can

exploit the permission levels of the device’s operating system to in-

troduce overlays displaying manipulated information. On the other

hand, authenticator devices are equipped with secure hardware,

providing a more secure avenue to thwart cross-service attacks.

Restriction of Overlays in Operating System: From our obser-

vation, it is evident that overlay messages can disrupt the visibility

and functionality of Windows security messages, intended to alert

users about critical security issues. However, overlays can also

serve as a means for other programs to convey urgent or important

information to users. Consequently, preventing the appearance of

overlay messages completely may not be a practical solution, as

it could reduce the user experience and functionality of other ap-

plications. Therefore, we recommend operating system designers

to explore viable solutions aimed at addressing both the security

and usability aspects of the problem, ensuring the visibility and

functionality of Windows security messages without completely

blocking overlays from trusted applications.

However, these mitigation techniques may only work to prevent

cross-service attacks but will not be able to detect same service

attacks. As the attack is fundamental, designing efective defense

strategies is challenging.While we suggest some possiblemitigation

approaches, developing a comprehensive defense strategy is beyond

the scope of this paper. We believe this topic warrants further

exploration in future research.

Malicious site blockers, such as Google Safe Search, can be a po-

tential mitigation technique. However, while they can block known

malicious sites, they are inefective against FIDOLA if attackers use

new, unlisted domains.

7.3 Limitations and Future Work

Limitations. The primary limitation of the proof-of-concept at-

tack design is that it only works on computers with Windows OS

and Chrome browsers. Therefore, there is an opportunity for re-

searchers to design more general attacks that can work on a wider

range of platforms, including popular OS/browser combinations

and smartphone platforms.

In the user study, participants were required to complete 30

authentication attempts during the data collection phase. Conse-

quently, there is a possibility of habituation bias among the par-

ticipants. To mitigate this, we instructed participants to carefully

examine security messages in each attempt. Participants’ atten-

tiveness is evident from the post-test survey, where 20% reported

noticing suspicious activities.

Although the sample size of our study is 20 users, all participants

encountered a total of 600 authentication attempts (30% of which

were malicious). We believe the number of participants and authen-

tication attempts provide a suocient and necessary foundational

step to demonstrate the feasibility of our attack. Given that our

participants were tech-savvy, security-aware students who still

struggled to detect the attack, we believe the susceptibility of the

general population might not be lower.

Additionally, the authentication system and device used in the

study difer from their day-to-day systems and devices, which could

impact their decision-making process.

Future Works. The disadvantage of limited display in the CR-2FA

devices and the opportunity of the cross-service attack open an

ample opportunity for the researchers to re-evaluate the security

ofered by CR-2FA devices. They can conduct research on efective,

secure, and informed communication (e.g., secure display) during

authentication with CR-2FA devices, as well as design more secure

enhancements of FIDO, WebAuthn, and CTAP2 protocols.

FIDOLA is currently designed for Windows OS. Designing a

similar attack in Linux-based OS, such as Ubuntu or Mac OS, can

be challenging due to their strong permission models. However,

researchers have an opportunity to explore potential loopholes

in the permission model to obtain the necessary administrator

privileges for implementing such attacks.

7.4 Other Discussion

Risk of FIDOLA Attack on Passkeys: Passkeys are a type of

FIDO credentials stored on the device, such as a computer or smart-

phone, instead of FIDO2 keys. Introduced as an alternative to pass-

words, passkeys aim to provide a more secure and convenient au-

thentication method for various service providers. However, our

proposed attack has the potential to compromise passkeys, includ-

ing cross-service attacks where malicious overlays can conceal the

actual service information from the user.
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Motivation to use Windows in proof-of-concept attack. We

focus onWindows while developing our proof-of-concept attack, as

it holds a signiocant share of the global desktop OS market (72.17%

as of February 2024) [42]. This makes it a substantial user base for

FIDO2. Nevertheless, FIDOLA is a fundamental vulnerability that

can also afect other operating systems, based on the same general

principles.

8 Conclusion

Efective 2FA should safeguard against web and terminal attacks,

verifying the user’s presence on a separate device during authen-

tication. Previous research conorms 2FA’s resilience, even against

malicious terminals. However, our non-root malware based analysis

of FIDO2 key deployments uncovers vulnerabilities to our concur-

rent login attacks from infected terminals, with low detectability

by desktop anti-malware. Importantly, our attack difers from ses-

sion hijacking, enabling more devastating cross-service attacks.

We suggest security enhancements for service providers and users,

mindful of usability trade-ofs, to strengthen account security.
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A Appendix

A.1 User Study Follow Up Questions and Other
Snapshots

(a) Q1: Did you notice any suspicious behavior of web application dur-
ing the study?

(b) Q2: What is the possible reason behind this suspicious behavior?

(c) Q3: Did you refrain from approving any notiocation from the secu-
rity key?

(d) Q4: If you refrain from approving any request, please list all the
possible reasons. If you approved all the request please select <N/A"

(e) Q5: How often you have checked the URL of the intermediate page
(the page where "Touch your security key" message appeared)?

Figure 10: Follow-up survey ondings.
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(a) Google Titan CR-2FA USB and Bluetooth device (b) Yubico CR-2FA device, USB variant

Figure 11: Snapshots of CR-2FA devices that we have used in our study

(a) MacOS Terminal UI (b)Windows 10 Terminal UI (Windows Security pop-up has been shownwhich
shows some useful information and adds extra level of security)

Figure 12: The interface of diferent OS terminal during USB CR-2FA log in

(a) Built-In CR-2FA Terminal UI (b) Built-In CR-2FA device UI

Figure 13: Built-In CR-2FA UI ofered by Android devices and Google service (some parts redacted for paper anonymity)


