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Abstract

Let B3 be the Artin braid group on 3 strands and PB3 be the corresponding pure braid group. In
this paper, we construct the groupoid GTSh of GT-shadows for a (possibly more tractable) version ˆ︂GT0

of the Grothendieck-Teichmueller group ˆ︂GT introduced in paper [12] by D. Harbater and L. Schneps. We

call this group the gentle version of ˆ︂GT and denote it by ˆ︂GTgen. The objects of GTSh are finite index
normal subgroups N of B3 satisfying the condition N ≤ PB3. Morphisms of GTSh are called GT-shadows
and they may be thought of as approximations to elements of ˆ︂GTgen. We show how GT-shadows can be

obtained from elements of ˆ︂GTgen and prove that ˆ︂GTgen is isomorphic to the limit of a certain functor
defined in terms of the groupoid GTSh. Using this result, we get a criterion for identifying genuine
GT-shadows.

1 Introduction

Let ˆ︁F2 be the profinite completion of the free group F2 := ⟨x, y ⟩ on two generators and ˆ︁Z be the profinite

completion of the ring of integers. The profinite version ˆ︂GT of the Grothendieck-Teichmueller group [6,

Section 4] is one of the most mysterious objects in mathematics. It consists of pairs (m̂, f̂) ∈ ˆ︁Z × ˆ︁F2

satisfying the hexagon relations:

σ2m̂+1
1 f̂

−1
σ2m̂+1
2 f̂ = f̂

−1
σ1σ2 σ

−2m̂
1 cm̂ , (1.1)

f̂
−1
σ2m̂+1
2 f̂ σ2m̂+1

1 = σ2σ1σ
−2m̂
2 cm̂ f̂ , (1.2)

the pentagon relation:

f̂(x23, x34)f̂(x12x13, x24x34)f̂(x12, x23) = f̂(x12, x23x24)f̂(x13x23, x34) (1.3)

and the invertibility condition. In relations (1.1) and (1.2), σ1 and σ2 are the standard generators of the

Artin braid group B3, c := (σ1σ2σ1)
2 and ˆ︁F2 is considered as the subgroup of ˆ︁B3; namely, ˆ︁F2 is identified

with the profinite completion of the subgroup ⟨σ2
1 , σ

2
2 ⟩ of B3.

In relation (1.3), x12 := σ2
1 , x23 := σ2

2 , . . . are the standard generators [17, Section 1.3] of the pure

braid group PB4 on 4 strands and f̂(x23, x34), f̂(x12x13, x24x34), f̂(x12, x23), . . . are the images of f̂ with

respect to natural (continuous) group homomorphisms ˆ︁F2 → ˆ︂PB4, e.g. f̂(x12x13, x24x34) is the image of

the continuous group homomorphism ˆ︁F2 → ˆ︂PB4 which sends x (resp. y) to x12x13 ∈ PB4 ≤ ˆ︂PB4 (resp.

x24x34 ∈ PB4 ≤ ˆ︂PB4).

The multiplication on ˆ︂GT can be defined by an explicit formula (see equations (2.1), (2.4) or [28, Section

1.1]) or by identifying elements of ˆ︂GT with continuous automorphisms of ˆ︁F2 (see [12, Introduction]).

The group ˆ︂GT and its variants are a part of an active area of research1 [19], [20], [21], [24], [25], [26], [28]
and this research is often motivated by fruitful links between operads, moduli of curves and the geometric
action of the absolute Galois group GQ of the field of rational numbers [1], [3], [4], [7], [12], [13], [15], [18],
[22].

1The lists of references in this paragraph are far from complete.
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In paper [5], the authors constructed an infinite groupoid closely related to the group ˆ︂GT. The objects
of this groupoid are finite index normal subgroups N of the Artin braid group B4 satisfying the condition
N ≤ PB4. The morphisms of this groupoid are called GT-shadows. In addition to other things, the authors

of [5] proved that ˆ︂GT is isomorphic to the limit of a certain functor defined in terms of the groupoid of
GT-shadows (see [5, Section 3]). In this respect, certain GT-shadows are approximations of elements of the

group ˆ︂GT.
The purpose of this paper is to develop a version of the groupoid of GT-shadows for the gentle versionˆ︂GTgen of the Grothendieck-Teichmueller group ˆ︂GT. Just as ˆ︂GT, the group ˆ︂GTgen consists of pairs (m̂, f̂) ∈ˆ︁Z× ˆ︁F2 satisfying hexagon relations (1.1), (1.2), the invertibility condition and the following consequence of

pentagon relation (1.3):

f̂ ∈ [ˆ︁F2, ˆ︁F2]
top. cl. .

For more details, please see Subsection 2.2. It is possible that the group ˆ︂GTgen is more tractable and it is

often denoted by ˆ︂GT0 (see, for example, [12, Section 0.1]). The group ˆ︂GTgen obviously contains ˆ︂GT as a
subgroup.

The idea of approximating elements of ˆ︂GT and ˆ︂GTgen was originally suggested in paper [11] by D.
Harbater and L. Schneps. We would also like to mention papers [9] and [10] in which P. Guillot developed

and studied similar constructions for the group ˆ︂GTgen. Since P. Guillot used a very different definition ofˆ︂GTgen, it is not easy to compare the groupoid GTSh developed in this paper to the constructions presented
in [9], [10].

The groupoid GTSh in a nutshell. Our starting point is the poset NFIPB3
(B3) of finite index normal

subgroups N of B3 such that N ≤ PB3, i.e.

NFIPB3
(B3) := {N⊴ B3 | |B3 : N| <∞, N ≤ PB3}. (1.4)

Since PB3 (and B3) is residually finite, the poset NFIPB3(B3) is infinite.
For N ∈ NFIPB3

(B3), we denote by Nord the least common multiple of the orders of elements x12N, x23N
and cN in PB3/N. Moreover, we set NF2

:= F2 ∩ N, where F2 is identified with the subgroup ⟨x12, x23 ⟩ of
PB3.

For N ∈ NFIPB3(B3), we consider pairs (m, f) ∈ Z× F2 that satisfy the hexagon relations modulo N:

σ2m+1
1 f−1σ2m+1

2 f N = f−1σ1σ2x
−m
12 cm N, (1.5)

f−1σ2m+1
2 f σ2m+1

1 N = σ2σ1x
−m
23 cm f N. (1.6)

Due to Proposition 3.2, for every such pair (m, f), the formulas

Tm,f (σ1) := σ2m+1
1 N, Tm,f (σ2) := f−1σ2m+1

2 f N (1.7)

define a group homomorphism Tm,f : B3 → B3/N.
A GT-shadow with the target N is a pair

(m+NordZ, fNF2) ∈ Z/NordZ× [F2/NF2 ,F2/NF2 ]

that satisfies the following conditions:

• relations (1.5), (1.6) hold,

• 2m+ 1 represents a unit in Z/NordZ, and

• the group homomorphism Tm,f : B3 → B3/N is onto.

We denote by GT(N) the set of GT-shadows with the target N and by [m, f ] the GT-shadow represented by
a pair (m, f) ∈ Z× F2. The set GT(N) is finite since it is a subset of a finite set.
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Using equation (3.19), it is not hard to see that, for every [m, f ] ∈ GT(N), ker(Tm,f ) belongs to the poset
NFIPB3(B3). Moreover, since Tm,f is onto, it induces an isomorphism of the quotient groups:

T isom
m,f : B3/K

≃−→ B3/N,

where K := ker(Tm,f ).
The set Ob(GTSh) of objects of the groupoid GTSh is the poset NFIPB3

(B3). Moreover, for K,N ∈
NFIPB3

(B3), the set GTSh(K,N) of morphisms from K to N is the subset of GT-shadows [m, f ] ∈ GT(N) for
which K = ker(Tm,f ).

The composition of morphisms [m1, f1] ∈ GTSh(N(2),N(1)), [m2, f2] ∈ GT(N(3),N(2)) is defined by the
formula

[m1, f1] ◦ [m2, f2] := [2m1m2 +m1 +m2, f1Em1,f1(f2)],

where Em1,f1 is the endomorphism of F2 defined by the equations Em1,f1(x) := x2m1+1, Em1,f1(y) :=
f−1
1 y2m1+1f1 (for more details, see Theorem 3.10).

It is important that Ob(GTSh) is a poset. In Subsection 3.1, we show that, if N ≤ H, N,H ∈ NFIPB3
(B3),

then we have a natural reduction map:

RN,H : GT(N) → GT(H). (1.8)

In Section 5, this map plays an important role in connecting the groupoid GTSh to the group ˆ︂GTgen.
Although the groupoid GTSh is infinite, the connected component GTShconn(N) of an object N ∈

NFIPB3(B3) is always a finite groupoid. An object N of the groupoid GTSh is called isolated if its connected
component GTShconn(N) has exactly one object. In this case, GTSh(N,N) = GT(N) is a (finite) group and
the groupoid GTShconn(N) may be identified with this group. In Subsection 3.2, we show that the subposet
NFIisolatedPB3

(B3) ⊂ NFIPB3
(B3) of isolated objects of GTSh is cofinal, i.e., for every N ∈ NFIPB3

(B3), there ex-

ists Ñ ∈ NFIisolatedPB3
(B3) such that Ñ ≤ N. More precisely, due to Proposition 3.14, for every N ∈ NFIPB3

(B3),
the intersection of all objects of the connected component GTShconn(N) is an isolated object N⋄ of GTSh
such that N⋄ ≤ N.

The group ˆ︂GTgen versus the groupoid GTSh. In Section 4, we define a natural action of the group ˆ︂GTgen

on the poset NFIPB3
(B3). This allows us to introduce the transformation groupoid ˆ︂GTgen

NFI and a functor

PR : ˆ︂GTgen

NFI → GTSh.

More precisely, to every element (m̂, f̂) ∈ ˆ︂GTgen and every N ∈ NFIPB3
(B3), we assign a GT-shadow [m, f ]N

with the target N, and the formula

N(m̂,f̂) := ker(Tm,f )

defines a right action of ˆ︂GTgen on the poset NFIPB3(B3). We can think of the GT-shadow [m, f ]N as an

approximation of the element (m̂, f̂). For this reason, the functor PR is called the approximation functor.

GT-shadows obtained in this way from elements of ˆ︂GTgen are called genuine and all the remaining GT-
shadows (if any) are called fake.

In Section 5, we show how the topological group ˆ︂GTgen can be reconstructed from the groupoid GTSh.

We observe that, for every N ∈ NFIisolatedPB3
(B3), GT(N) is a finite group, and the reduction map (1.8) allows

us to upgrade the assignment
N ↦→ GT(N), N ∈ NFIisolatedPB3

(B3)

to a functor from the poset NFIisolatedPB3
(B3) to the category of finite groups. We call it the Main Line

functor and denote it by ML.
Using the approximation functor PR : ˆ︂GTgen

NFI → GTSh, it is easy to construct a natural group homo-
morphism

Ψ : ˆ︂GTgen → lim(ML). (1.9)
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The main result of this paper is Theorem 5.2 which states that Ψ is an isomorphism of groups and a

homeomorphism of topological spaces. (ˆ︂GTgen is considered with the subset topology coming from the

topological space ˆ︁Z× ˆ︁F2.)
Thanks to Theorem 5.2, we have the following criterion for identifying genuine GT-shadows: a GT-

shadow [m, f ] ∈ GT(H) is genuine if and only if [m, f ] belongs to the image of the reduction map RN,H :
GT(N) → GT(H) for every N ∈ NFIPB3

(B3) such that N ≤ H (see Corollary 5.4). Equivalently, a GT-shadow
[m, f ] ∈ GT(H) is fake if and only if there exists N ∈ NFIPB3

(B3) such that N ≤ H and [m, f ] does not belong
to the image of the reduction map RN,H : GT(N) → GT(H).

In recent paper [2], the authors considered a subposet Dih of NFIPB3(B3) related to the family of dihedral
groups and they called Dih the dihedral poset. In [2], it was proved that every element of the dihedral
poset is an isolated object of the groupoid GTSh and gave an explicit description of the (finite) group GT(K)
for every K ∈ Dih. In [2], the authors also proved that, for every pair N,H ∈ Dih with N ≤ H, the natural
map GT(N) → GT(H) is onto. This result implies that one cannot find an example of a fake2 GT-shadow
using only the dihedral poset Dih.

Organization of the paper. In Section 2, we introduce the group ˆ︂GTgen. We also recall that ˆ︂GTgen comes

with natural injective homomorphisms to the group of continuous automorphisms of ˆ︁F2 and to the group of
continuous automorphisms of ˆ︁B3.

Section 3 is the core of this paper. In this section, we introduce the groupoid GTSh of GT-shadows (forˆ︂GTgen), define the reduction map (see (1.8) or (3.60)), discuss connected components of GTSh and introduce
isolated objects of GTSh.

In Section 4, we introduce the action of the group ˆ︂GT on the poset NFIPB3
(B3) and define the approxi-

mation functor PR from the transformation groupoid ˆ︂GTgen

NFI to GTSh. The GT-shadows that belong to the
image of PR are called genuine.

In Section 5, we introduce the Main Line functor ML and prove that lim(ML) is isomorphic to the

group ˆ︂GTgen (see Theorem 5.2). In this section, we also prove a criterion for identifying genuine GT-shadows

(see Corollary 5.4) and show that the group ˆ︂GTgen is isomorphic to the group ˆ︂GT0 introduced in [12, Section
0.1] (see Proposition 5.5).

Appendix A is devoted to selected statements about profinite groups.

1.1 Notational conventions

For a set X with an equivalence relation and a ∈ X we will denote by [a] the equivalence class which contains
the element a.

The notation Bn (resp. PBn) is reserved for the Artin braid group on n strands (resp. the pure braid
group on n strands). Sn denotes the symmetric group on n letters. We denote by σ1 and σ2 the standard
generators of B3. Furthermore, we set

x12 := σ2
1 , x23 := σ2

2 , ∆ := σ1σ2σ1, c := ∆2 .

We recall [17, Section 1.3] that the element c belongs to the center Z(PB3) of PB3 (and the center Z(B3) of
B3). Moreover, Z(B3) = Z(PB3) = ⟨ c ⟩ ∼= Z.

We observe that

σ1∆ = ∆σ2, σ2∆ = ∆σ1, σ−1
1 ∆ = ∆σ−1

2 , σ−1
2 ∆ = ∆σ−1

1 . (1.10)

Using identities (1.10) and c = ∆2, it is easy to see that the adjoint action of B3 on PB3 is given on
generators by the formulas:

σ1x12σ
−1
1 = σ−1

1 x12σ1 = x12, σ1x23σ
−1
1 = x−1

23 x
−1
12 c, σ−1

1 x23σ1 = x−1
12 x

−1
23 c, (1.11)

σ2x12σ
−1
2 = x−1

12 x
−1
23 c, σ−1

2 x12σ2 = x−1
23 x

−1
12 c σ2x23σ

−1
2 = σ−1

2 x23σ2 = x23 . (1.12)

2At the time of writing, the authors of this paper do not know a single example of a fake GT-shadow.
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Moreover,
∆x12∆

−1 = x23, ∆x23∆
−1 = x12 . (1.13)

It is known [17, Section 1.3] that ⟨x12, x23 ⟩ is isomorphic to the free group F2 on two generators and we
tacitly identify F2 with the subgroup ⟨x12, x23 ⟩ of PB3. Furthermore, PB3 is isomorphic to F2 × ⟨ c ⟩ [17,
Section 1.3]. We often by x, y, z the elements x12, x23 and (x12x23)

−1, respectively, i.e.

x := x12, y := x23, z := y−1x−1 .

We denote by θ and τ the automorphisms of F2 := ⟨x, y ⟩ defined by the formulas

θ(x) := y, θ(y) := x, (1.14)

τ(x) := y, τ(y) := y−1x−1 . (1.15)

By abuse of notation, we will use the same letters θ and τ for the corresponding continuous automorphisms
of ˆ︁F2, respectively. (See Corollary A.2 in Appendix A).

For a group G, the notation [G,G] is reserved for the commutator subgroup of G. For a subgroup H ≤ G,
the notation |G : H| is reserved for the index of H in G. For a normal subgroup H ⊴ G of finite index,
we denote by NFIH(G) the poset of finite index normal subgroups N in G such that N ≤ H. Moreover,
NFI(G) := NFIG(G), i.e. NFI(G) is the poset of normal finite index subgroups of a group G. For a subgroup
H ≤ G, CoreG(H) denotes the normal core of H in G, i.e.

CoreG(H) :=
⋂︂
g∈G

gHg−1 .

For N ∈ NFI(G), PN denotes the standard (onto) homomorphism

PN : G→ G/N. (1.16)

Moreover, for K ∈ NFI(G) such that K ≤ N, the notation PK,N is reserved for the standard (onto) homomor-
phism

PK,N : G/K → G/N. (1.17)

Every finite group/set is tacitly considered with the discrete topology.

For a group G, ˆ︁G denotes the profinite completion of G. If G is residually finite, then we tacitly identify
G with its image in ˆ︁G. For N ∈ NFI(G), ˆ︁PN denotes the standard continuous group homomorphism

ˆ︁PN : ˆ︁G→ G/N. (1.18)

Let G be a residually finite group. Since every group homomorphism φ : G → ˆ︁H extends uniquely to a
continuous group homomorphism from ˆ︁G to ˆ︁H (see Corollary A.2 in Appendix A), we often use the same

symbol for this continuous group homomorphism ˆ︁G→ ˆ︁H.
For a prime p, Zp denotes the ring of p-adic integers.
For a category C, the notation Ob(C) is reserved for the set of objects of C. For a, b ∈ Ob(C), C(a, b)

denotes the set of morphisms in C from a to b. Every poset J is tacitly considered as the category with J
being the set of its objects; if j1 ≤ j2, then we have exactly one morphism j1 → j2; otherwise, there are no
morphisms from j1 to j2. A subposet J̃ ⊂ J is called cofinal if ∀ j ∈ J ∃ j̃ ∈ J̃ such that j̃ ≤ j.

Notational quirks. Paper [5] develops the groupoid of GT-shadows for the original (profinite) version ˆ︂GT
of the Grothendieck-Teichmueller group [6, Section 4]. In consideration of paper [5], we should have denoted

the groupoid of GT-shadows for ˆ︂GTgen by GTShgen. However, we decided to omit the subscript “gen” to
simplify the notation. This should not lead to a confusion because the main focus of this paper is the groupˆ︂GTgen and the corresponding groupoid of GT-shadows. We should also mention that, paper [5] considers
GT-shadows [m, f ] that may not satisfy the condition

fNF2
∈ [F2/NF2

,F2/NF2
], (1.19)
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and GT-shadows [m, f ] satisfying (1.19) are called charming. (In fact, in paper [5], the authors consider the

groupoid GTSh of GT-shadows for ˆ︂GT and the subgroupoid GTSh♡ ⊂ GTSh of charming GT-shadows (forˆ︂GT).) In this paper, we impose condition (1.19) at an earlier stage. Hence we have only one groupoid of

GT-shadows for ˆ︂GTgen.
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2 The gentle version ˆ︂GTgen of the Grothendieck-Teichmueller group

2.1 The monoid
(︁ˆ︁Z× ˆ︁F2, •

)︁
To introduce ˆ︂GTgen, we denote by Em̂,f̂ the following group homomorphism from F2 to ˆ︁F2

Em̂,f̂ (x) := x2m̂+1, Em̂,f̂ (y) := f̂
−1
y2m̂+1f̂ , (2.1)

where (m̂, f̂) ∈ ˆ︁Z× ˆ︁F2.

Due to Corollary A.2 from Appendix A, Em̂,f̂ extends uniquely to a continuous endomorphism of ˆ︁F2:

Em̂,f̂ : ˆ︁F2 → ˆ︁F2 . (2.2)

By abuse of notation, we use the same symbol Em̂,f̂ for the extension of the homomorphism defined in (2.1).

Let (m̂1, f̂1), (m̂2, f̂2) ∈ ˆ︁Z× ˆ︁F2 and

m̂ := 2m̂1m̂2 + m̂1 + m̂2, f̂ := f̂1Em̂1,f̂1
(f̂2).

A direct computation shows that

Em̂1,f̂1
◦ Em̂2,f̂2

(x) = Em̂,f̂ (x), Em̂1,f̂1
◦ Em̂2,f̂2

(y) = Em̂,f̂ (y).

Hence, applying Corollary A.2, we conclude that

Em̂1,f̂1
◦ Em̂2,f̂2

= Em̂,f̂ . (2.3)

This motivates us to define the following binary operation • on ˆ︁Z× ˆ︁F2

(m̂1, f̂1) • (m̂2, f̂2) :=
(︁
2m̂1m̂2 + m̂1 + m̂2, f̂1Em̂1,f̂1

(f̂2)
)︁
. (2.4)

Let us prove that

Proposition 2.1 The set ˆ︁Z× ˆ︁F2 is a monoid with respect to the binary operation • (see (2.4)) and the pair
(0, 1ˆ︁F2

) is the identity element of this monoid. Moreover, the assignment

(m̂, f̂) ↦→ Em̂,f̂

defines a homomorphism of monoids ˆ︁Z× ˆ︁F2 → End(ˆ︁F2), where End(ˆ︁F2) is the monoid of continuous endo-

morphisms of ˆ︁F2.
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Proof. It is easy to see that (0, 1ˆ︁F2
) is the identity element of the magma

(︁ˆ︁Z× ˆ︁F2, •
)︁
. So let us prove the

associativity of •.
For (m̂1, f̂1), (m̂2, f̂2), (m̂3, f̂3) ∈ ˆ︁Z× ˆ︁F2, we have(︁

(m̂1, f̂1) • (m̂2, f̂2)
)︁
• (m̂3, f̂3) =

(︁
2q̂m̂3 + q̂ + m̂3, ĝEq̂,ĝ(f̂3)

)︁
(2.5)

and
(m̂1, f̂1) •

(︁
(m̂2, f̂2) • (m̂3, f̂3)

)︁
= (2m̂1k̂ + m̂1 + k̂, f̂1Em̂1,f̂1

(ĥ)), (2.6)

where (q̂, ĝ) := (m̂1, f̂1) • (m̂2, f̂2) and (k̂, ĥ) := (m̂2, f̂2) • (m̂3, f̂3).

Using q̂ := 2m̂1m̂2 + m̂1 + m̂2 and k̂ := 2m̂2m̂3 + m̂2 + m̂3, it is easy to see that

2q̂m̂3 + q̂ + m̂3 = 2m̂1k̂ + m̂1 + k̂.

Using (2.3) and the fact that Em1ˆ ,f̂1
is an endomorphism of ˆ︁F2, we can rewrite ĝEq̂,ĝ(f̂3) as follows

ĝEq̂,ĝ(f̂3) = f1̂Em1ˆ ,f̂1
(f̂2)Em1ˆ ,f̂1

◦ Em2ˆ ,f̂2
(f̂3) = f1̂Em1ˆ ,f̂1

(︁
f̂2Em2ˆ ,f̂2

(f̂3)
)︁
.

Thus ĝEq̂,ĝ(f̂3) = f̂1Em̂1,f̂1
(ĥ) and the associativity of • is proved.

Since E0,1ˆ︁F2
= idˆ︁F2

, the last statement of the proposition follows from (2.3). □

Remark 2.2 It is easy to see that, if (m̂, f̂) = (m̂1, f̂1) • (m̂2, f̂2), then

2m̂+ 1 = (2m̂1 + 1)(2m̂2 + 1). (2.7)

2.2 The monoid ˆ︂GTgen,mon and the group ˆ︂GTgen
Let us denote by ˆ︂GTgen,mon the subset of ˆ︁Z× ˆ︁F2 that consists of pairs

(m̂, f̂) ∈ ˆ︁Z× [ˆ︁F2, ˆ︁F2]
top. cl. (2.8)

satisfying the hexagon relations

σ2m̂+1
1 f̂

−1
σ2m̂+1
2 f̂ = f̂

−1
σ1σ2 x

−m̂
12 cm̂ , (2.9)

f̂
−1
σ2m̂+1
2 f̂ σ2m̂+1

1 = σ2σ1x
−m̂
23 cm̂ f̂ . (2.10)

Let us prove that3,

Proposition 2.3 For every (m̂, f̂) ∈ ˆ︂GTgen,mon, the formulas

Tm̂,f̂ (σ1) := σ2m̂+1
1 , Tm̂,f̂ (σ2) := f̂

−1
σ2m̂+1
2 f̂ (2.11)

define a group homomorphism Tm̂,f̂ : B3 → ˆ︁B3 such that

Tm̂,f̂ (c) = c2m̂+1 . (2.12)

The homomorphism Tm̂,f̂ extends uniquely to a continuous endomorphism of ˆ︁B3 and

Tm̂,f̂

⃓⃓ˆ︁F2
= Em̂,f̂ . (2.13)

3See [28, Lemma 1].
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Proof. We need to verify that

Tm̂,f̂ (σ1)Tm̂,f̂ (σ2)Tm̂,f̂ (σ1)
?
= Tm̂,f̂ (σ2)Tm̂,f̂ (σ1)Tm̂,f̂ (σ2) (2.14)

or equivalently

σ2m̂+1
1 f̂

−1
σ2m̂+1
2 f̂ σ2m̂+1

1
?
= f̂

−1
σ2m̂+1
2 f̂ σ2m̂+1

1 f̂
−1
σ2m̂+1
2 f̂ . (2.15)

Applying (2.9) to the left hand side of (2.15), we get

σ2m̂+1
1 f̂

−1
σ2m̂+1
2 f̂ σ2m̂+1

1 = f̂
−1
σ1σ2 x

−m̂
12 cm̂ σ2m̂+1

1 = f̂
−1

∆cm̂ . (2.16)

To take care of the right hand side of (2.15) we notice that, for every t̂ ∈ ˆ︁Z,
∆σt̂

1 = σt̂
2∆. (2.17)

Indeed, for every N ∈ NFI(B3), there exists tN ∈ Z such that ˆ︁PN(∆σ
t̂
1) = ∆σtN

1 N and ˆ︁PN(σ
t̂
2∆) = σtN

2 ∆N.
Since ∆σk

1 = σk
2∆ for every integer k, relation (2.17) holds.

Applying (2.9) to the right hand side of (2.15) and using (2.17), we get

f̂
−1
σ2m̂+1
2 f̂ σ2m̂+1

1 f̂
−1
σ2m̂+1
2 f̂ = f̂

−1
σ2m̂+1
2 f̂ f̂

−1
σ1σ2 x

−m̂
12 cm̂ =

f̂
−1
σ2m̂
2 ∆x−m̂

12 cm̂ = f̂
−1
σ2m̂
2 x−m̂

23 ∆cm̂ = f̂
−1

∆cm̂ .

Combining this result with (2.16), we see that relation (2.15) indeed holds.
Due to (2.16), we have

Tm̂,f̂ (∆) = f̂
−1

∆cm̂ . (2.18)

Applying (2.10) to Tm̂,f̂ (∆) = σ2m̂+1
1 f̂

−1
σ2m̂+1
2 f̂ σ2m̂+1

1 and using (2.17), we see that

Tm̂,f̂ (∆) = σ2m̂+1
1 σ2σ1x

−m̂
23 cm̂ f̂ = σ2m̂

1 ∆x−m̂
23 cm̂ f̂ = ∆cm̂ f̂ . (2.19)

Combining (2.18) with (2.19), we get

Tm̂,f̂ (c) = Tm̂,f̂ (∆)Tm̂,f̂ (∆) = ∆cm̂ f̂ f̂
−1

∆cm̂ = c2m̂+1.

Thus (2.12) is proved.
The third statement of the proposition follows from Corollary A.2 and the proof of the last statement is

straightforward. □

Proposition 2.4 The subset ˆ︂GTgen,mon of ˆ︁Z× ˆ︁F2 is a submonoid of
(︁ˆ︁Z× ˆ︁F2, •

)︁
. The assignment

(m̂, f̂) ↦→ Em̂,f̂ (2.20)

defines an injective homomorphism of monoids from ˆ︂GTgen,mon to the monoid of continuous endomorphisms

of ˆ︁F2. Similarly, the assignment
(m̂, f̂) ↦→ Tm̂,f̂ (2.21)

defines an injective homomorphism of monoids from ˆ︂GTgen,mon to the monoid of continuous endomorphisms

of ˆ︁B3.
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Proof. Let (m̂1, f̂1), (m̂2, f̂2) ∈ ˆ︂GTgen,mon and (m̂, f̂) := (m̂1, f̂1) • (m̂2, f̂2).

Since Em̂1,f̂1
is a continuous group homomorphism and f̂2 ∈ [ˆ︁F2, ˆ︁F2]

top. cl., Em̂1,f̂1
(f̂2) also belongs to

[ˆ︁F2, ˆ︁F2]
top. cl.. Hence

f̂ := f̂1Em̂1,f̂1
(f̂2) ∈ [ˆ︁F2, ˆ︁F2]

top. cl. .

Let us prove that the pair (m̂, f̂) satisfies hexagon relations (2.9) and (2.10).

Applying Tm̂1,f̂1
to the first hexagon relation for (m̂2, f̂2) and using identities (2.12), (2.13) we get

σ
(2m2ˆ +1)(2m1ˆ +1)
1 Em̂1,f̂1

(f̂2)
−1f̂

−1

1 σ
(2m̂2+1)(2m1ˆ +1)
2 f̂1Em̂1,f̂1

(f̂2) =

Em̂1,f̂1
(f̂2)

−1σ2m̂1+1
1 f̂

−1

1 σ2m̂1+1
2 f̂1 x

−m̂2(2m̂1+1)
12 cm̂2(2m̂1+1) .

(2.22)

Using (2.7), the first hexagon relation for (m̂1, f̂1) and (2.22), we get

σ2m̂+1
1 f̂

−1
σ2m̂+1
2 f̂ = f̂

−1
σ1σ2x

−m̂
12 cm̂ .

Thus the pair (m̂, f̂) satisfies (2.9).

Similarly, applying Tm̂1,f̂1
to the second hexagon relation for (m̂2, f̂2), and using identities (2.12), (2.13),

the second hexagon relation for (m̂1, f̂1) and (2.7), one can show that the pair (m̂, f̂) also satisfies (2.10).

We proved that the subset ˆ︂GTgen,mon is closed with respect to the binary operation •.
It is easy to see that the pair (0, 1ˆ︁F2

) satisfies hexagon relations (2.9) and (2.10). Thus the first statement
of the proposition is proved.

Due to the second statement of Proposition 2.1, the assignment in (2.20) is a homomorphism of monoids.
To prove that this homomorphism is injective4, we will use Theorem B from paper [14] by W. Herfort and
L. Ribes.

If Em̂1,f̂1
= Em̂2,f̂2

, then

x2m̂1+1 = x2m̂2+1, f̂
−1

1 y2m̂1+1f̂1 = f̂
−1

2 y2m̂2+1f̂2 . (2.23)

The first equation in (2.23) implies that x2(m̂2−m̂1) = 1 and hence 2(m̂2−m̂1) = 0. Since Zp is an integral

domain for every prime p and ˆ︁Z ∼=
∏︂

p is prime

Zp, we conclude that m̂1 = m̂2.

We set m̂ := m̂1 = m̂2 and ŵ = f̂1f̂
−1

2 The second equation in (2.23) implies that ŵ belongs to the
centralizer of y2m̂+1.

We consider the subgroup {yn̂ : n̂ ∈ ˆ︁Z} ≤ ˆ︁F2 and notice that, for every m̂ ∈ ˆ︁Z, y2m̂+1 is a non-trivial

element of {yn̂ : n̂ ∈ ˆ︁Z}. Indeed, the component of 2m̂+ 1 in Z2 is a unit in Z2. Therefore, 2m̂+ 1 cannot

be zero in ˆ︁Z and hence y2m̂+1 ̸= 1.
Applying [14, Theorem B] to ŵ ∈ Cˆ︁F2

(y2m̂+1), we conclude that ŵ ∈ {yn̂ : n̂ ∈ ˆ︁Z}.
Since f̂1, f̂2 ∈ [ˆ︁F2, ˆ︁F2]

top. cl. and the intersection {yn̂ : n̂ ∈ ˆ︁Z}∩ [ˆ︁F2, ˆ︁F2]
top. cl. is trivial5, we conclude that

ŵ = 1 and hence f̂2 = f̂1.

We proved that the homomorphism of monoids ˆ︂GTgen,mon → End(ˆ︁F2) is injective.

To prove that the assignment in (2.21) is a homomorphism of monoids, we need to show that,

T0,1ˆ︁F2
= idˆ︁B3

(2.24)

and, for all (m̂1, f̂1), (m̂2, f̂2) ∈ ˆ︂GTgen,mon, we have

Tm̂1,f̂1
◦ Tm̂2,f̂2

= Tm̂,f̂ , (2.25)

4A similar statement was mentioned in [12, Section 0.1] without a proof.
5To prove that the subgroup {yn̂ : n̂ ∈ ˆ︁Z} ∩ [ˆ︁F2, ˆ︁F2]top. cl. is trivial, consider homomorphisms ψ from F2 to finite groups

such that ψ(x) = 1.
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where (m̂, f̂) = (m̂1, f̂1) • (m̂2, f̂2).
Applying Tm̂1,f̂1

◦ Tm̂2,f̂2
and Tm̂,f̂ to the generators σ1, σ2 of B3, we see that

Tm̂1,f̂1
◦ Tm̂2,f̂2

⃓⃓
B3

= Tm̂,f̂

⃓⃓
B3
.

Since the maps Tm̂1,f̂1
◦ Tm̂2,f̂2

and Tm̂,f̂ are continuous, they agree on a dense subset B3 of ˆ︁B3 and ˆ︁B3

is Hausdorff, equation (2.25) holds.
The same argument works for (2.24).

The injectivity of the homomorphism ˆ︂GTgen,mon → End(ˆ︁B3) follows from the injectivity of the homo-

morphism ˆ︂GTgen,mon → End(ˆ︁F2) and identity (2.13). □

Definition 2.5 ˆ︂GTgen is the group of invertible elements of the monoid ˆ︂GTgen,mon.

Remark 2.6 As far as we know, the group ˆ︂GTgen was introduced in [12] and, in [12], it is denoted by ˆ︂GT0.

More precisely, ˆ︂GT0 consists of elements (m̂, f̂) ∈ ˆ︁Z× [ˆ︁F2, ˆ︁F2]
top. cl. satisfying

f̂ θ(f̂) = 1ˆ︁F2
, (2.26)

τ2(ym̂f̂)τ(ym̂f̂)ym̂f̂ = 1ˆ︁F2
, (2.27)

and the appropriate invertibility condition. Please see Section 5.1, in which we prove that ˆ︂GTgen indeed

coincides with ˆ︂GT0 introduced in [12, Introduction].

Remark 2.7 Since ˆ︁Z× ˆ︁F2 is naturally a topological space and ˆ︂GTgen is a subset of ˆ︁Z× ˆ︁F2, the set ˆ︂GTgen is

equipped with the subset topology. It is not obvious that ˆ︂GTgen is a topological group with respect to this
topology. This statement follows easily from Theorem 5.2 proved in Section 5.

Remark 2.8 Using [8, Theorem 6.2.4] (see also [5, Appendix A.3]), one can show that ˆ︂GTgen is a subgroup

of the group ˆ︂GT≤3 of continuous automorphisms of the truncation ˆ︃PaB≤3
of the operad ˆ︃PaB.

Remark 2.9 It is easy to see that, for every (m̂, f̂) ∈ ˆ︂GTgen, the endomorphism Em̂,f̂ (resp. Tm̂,f̂ ) of ˆ︁F2

(resp. ˆ︁B3) is invertible. Moreover, due to Proposition 2.4, the assignments

(m̂, f̂) → Em̂,f̂ , (m̂, f̂) → Tm̂,f̂

are injective group homomorphisms from ˆ︂GTgen to the group of continuous automorphisms of ˆ︁F2 and ˆ︁B3,
respectively. Due to Remark 2.2, the formula

χvir(m̂, f̂) := 2m̂+ 1 (2.28)

defines a group homomorphism χvir : ˆ︂GTgen → ˆ︁Z×, where ˆ︁Z× is the group of units of the ring ˆ︁Z. We call

χvir the virtual cyclotomic character. Using the Ihara embedding Ih : GQ ↪→ ˆ︂GT (see [16, Section 1])

and the surjectivity of the cyclotomic character χ : GQ → ˆ︁Z×, one can show that the group homomorphism

χvir : ˆ︂GTgen → ˆ︁Z× is surjective.

Remark 2.10 Let G be a profinite group with a dense finitely generated subgroup (e.g. G = ˆ︁F2). Due
to [23, Theorem 1.1], every endomorphism of G is continuous. Moreover, due to [23, Theorem 1.3], [G,G]

is a closed subgroup of G. In particular, [ˆ︁F2, ˆ︁F2]
top. cl. = [ˆ︁F2, ˆ︁F2]. However, in this paper, we do not use

Theorems 1.1 and 1.3 from [23].
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3 The groupoid GTSh

For every N ∈ NFIPB3
(B3), we set

Nord := lcm(ord(x12N), ord(x23N), ord(cN)) (3.1)

and
NF2

:= N ∩ F2 . (3.2)

It is clear that NF2
∈ NFI(F2).

We say that a pair (m, f) ∈ Z× F2 satisfies the hexagon relations modulo N if

σ2m+1
1 f−1σ2m+1

2 f N = f−1σ1σ2x
−m
12 cm N, (3.3)

f−1σ2m+1
2 f σ2m+1

1 N = σ2σ1x
−m
23 cm f N. (3.4)

Since Nord is the least common multiple of the orders of the elements x12N, x23N, cN and NF2 ≤ N, we see
that, if a pair (m, f) ∈ Z× F2 satisfies (3.3) and (3.4), then so does the pair (m+ tNord, fh) for any t ∈ Z
and any h ∈ NF2

.

Definition 3.1 A GT-pair with the target N is a pair

(m+NordZ, fNF2
) ∈ Z/NordZ× F2/NF2

(3.5)

satisfying relations (3.3) and (3.4). A GT-pair (3.5) is called charming if

• 2m+ 1 represents a unit in the ring Z/NordZ and

• fNF2 ∈ [F2/NF2 ,F2/NF2 ], or equivalently the coset fNF2 can be represented by an element in the
commutator subgroup [F2,F2] of F2.

We denote by GTpr(N) (resp. GT♡
pr(N)) the set of GT-pairs (resp. the set of charming GT-pairs) with the

target N. From now on, we denote by [m, f ] the GT-pair represented by (m, f) ∈ Z× F2.

The importance of the hexagon relations is emphasized by the following proposition:

Proposition 3.2 For every [m, f ] ∈ GTpr(N), the formulas

Tm,f (σ1) := σ2m+1
1 N, Tm,f (σ2) := f−1σ2m+1

2 fN

define a group homomorphism Tm,f : B3 → B3/N.

Proof. Since B3 = ⟨σ1, σ2 |σ1σ2σ1 = σ2σ1σ2 ⟩, it suffices to verify that

Tm,f (σ1)Tm,f (σ2)Tm,f (σ1)
?
= Tm,f (σ2)Tm,f (σ1)Tm,f (σ2). (3.6)

Using (3.3), we rewrite the left hand side of (3.6) as

(σ2m+1
1 f−1σ2m+1

2 f)σ2m+1
1 N = f−1σ1σ2x

−m
12 cm σ2m+1

1 N = f−1∆cm N, (3.7)

where ∆ := σ1σ2σ1.
Using (3.3) once again, we rewrite the right hand side of (3.6) as

f−1σ2m+1
2 f(σ2m+1

1 f−1σ2m+1
2 f)N = f−1σ2m+1

2 f(f−1σ1σ2x
−m
12 cm)N =

f−1σ2m
2 σ2σ1σ2x

−m
12 cm N = f−1σ2m

2 ∆x−m
12 cm N = f−1∆cm N.

In the last step, we used the identity σ2∆ = ∆σ1.
Relation (3.6) is proved. □
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If we apply both hexagon relations to the left hand side of (3.6), then we get a useful relation on the
coset fN. Indeed, due to the calculation in (3.7), we have

σ2m+1
1 f−1σ2m+1

2 fσ2m+1
1 N = f−1∆cm N. (3.8)

On the other hand, applying (3.4) and the identity σ1∆ = ∆σ2, we get

σ2m+1
1 (f−1σ2m+1

2 fσ2m+1
1 )N = σ2m+1

1 σ2σ1c
mx−m

23 f N = σ2m
1 ∆cmx−m

23 f N = ∆fcm N.

Comparing this result with (3.8), we conclude that ∆f N = f−1∆N. Thus, using (1.13), we see that we
proved the following statement:

Proposition 3.3 Let N ∈ NFIPB3(B3). If a pair (m, f) ∈ Z× F2 satisfies hexagon relations (3.3) and (3.4)
(modulo N) then

fθ(f) ∈ N, (3.9)

where θ is the automorphism of F2 defined in (1.14). □

Relation (3.9) can also be written in the form f(x, y)f(y, x) ∈ N.
Let (m, f) ∈ Z × [F2,F2] and N ∈ NFIPB3(B3). It turns out that, hexagon relations (3.3), (3.4) for

(m, f) (modulo N) are equivalent to somewhat simpler relations. The following proposition establishes this
equivalence.

Proposition 3.4 Let N ∈ NFIPB3
(B3) and θ and τ be the automorphisms of F2 defined in (1.14) and (1.15),

respectively. A pair (m, f) ∈ Z× [F2,F2] satisfies hexagon relations (3.3), (3.4) (modulo N) if and only if

fθ(f) ∈ NF2
(3.10)

and
τ2(ymf)τ(ymf)ymf ∈ NF2 . (3.11)

Proof. For our purposes, it is convenient to rewrite (3.10) and (3.11) in the form

f(x, y)f(y, x) ∈ NF2
(3.12)

and
xmf(z, x)zmf(y, z)ymf ∈ NF2 , (3.13)

where z := y−1x−1.
Using identities (1.11), (1.12) and the property f ∈ [F2,F2], one can prove that (3.3) is equivalent to

xmf(z, x)zmf−1(z, y)ymf ∈ NF2
(3.14)

and (3.4) is equivalent6 to
xmf−1(x, z)zmf(y, z)ymf−1(y, x) ∈ NF2 , (3.15)

where x := x12, y := x23, z := x−1
23 x

−1
12 .

Moreover, conjugating (3.12) with σ1σ2 and with (σ1σ2)
2, and using the property f ∈ [F2,F2] once again,

we see that
f(z, y)NF2

= f−1(y, z)NF2
(3.16)

and
f(x, z)NF2

= f−1(z, x)NF2
. (3.17)

Let us assume that equations (3.3) and (3.4) are satisfied. Due to Proposition 3.3, relation (3.12) is
satisfied. Hence relation (3.16) also holds.

Combining (3.14) with (3.16), we conclude that (3.13) is satisfied.
Let us now assume that (3.12) and (3.13) are satisfied. Relation (3.12) implies (3.16) and (3.17).

6For this equivalence, we also need (1.13).
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Combining (3.12) with (3.13), (3.16) and (3.17), we conclude that (3.14) and (3.15) are satisfied.
Since (3.14) and (3.15) are equivalent to (3.3) and (3.4), the desired statement is proved. □
We call (3.10), (3.11) the simplified hexagon relations. (See also [29, Proposition 2.6].)

Let us denote by ρ the standard homomorphism B3 → S3: ρ(σ1) := (1, 2), ρ(σ2) := (2, 3). Since N ≤ PB3,
the formula ρN(wN) := ρ(w) defines the group homomorphism

ρN : B3/N → S3. (3.18)

It is easy to see that, for every N ∈ NFIPB3
(B3) and [m, f ] ∈ GTpr(N),

ρN ◦ Tm,f = ρ. (3.19)

Hence Tm,f (PB3) ⊂ PB3/N. We set

TPB3

m,f := Tm,f

⃓⃓
PB3

: PB3 → PB3/N

and notice that ker(Tm,f ) = ker(TPB3

m,f ) ∈ NFIPB3(B3).

Due to the following proposition, the homomorphism TPB3

m,f comes from an endomorphism of PB3 for
every [m, f ] ∈ GTpr(N).

Proposition 3.5 Let N ∈ NFIPB3
(B3) and [m, f ] ∈ GTpr(N). Then

TPB3

m,f (x12) = x2m+1
12 N, TPB3

m,f (x23) = f−1x2m+1
23 f N, TPB3

m,f (c) = c2m+1 N. (3.20)

Proof. The first two equations in (3.20) are straightforward consequences of the definitions of x12 := σ2
1

and x23 := σ2
2 .

To prove the third equation, we will use the calculation in (3.7) and relation (3.9).
Indeed, due to the calculation in (3.7),

Tm,f (∆) = f−1∆cm N

Hence
TPB3

m,f (c) = Tm,f (∆
2) = f−1∆cmf−1∆cm N = ∆fcmf−1∆cm N = ∆2c2m N = c2m+1 N.

Proposition (3.5) is proved. □

Note that, for every [m, f ] ∈ GTpr(N), the restriction of TPB3

m,f to F2 ≤ PB3 gives us a homomorphism

TF2

m,f := TPB3

m,f

⃓⃓
F2

: F2 → F2/NF2 . (3.21)

Let us prove that

Proposition 3.6 If a pair (m, f) ∈ Z×F2 satisfies hexagon relations (3.3) and (3.4) and 2m+1 represents
a unit in the ring Z/NordZ, then the following conditions are equivalent:

1) The homomorphism Tm,f : B3 → B3/N is onto.

2) The homomorphism TPB3

m,f : PB3 → PB3/N is onto.

3) The homomorphism TF2

m,f : F2 → F2/NF2 is onto.

Proof. We will start with the implication 1) ⇒ 2).
Let w ∈ PB3. Since Tm,f is onto, there exists v ∈ B3 such that Tm,f (v) = wN. Due to (3.19),

v ∈ ker(ρ) = PB3. Thus T
PB3

m,f is indeed surjective.
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Now we will take care of the implication 2) ⇒ 3). We will do so by showing that x12NF2 and x23NF2

belong to the image of TF2

m,f . First, we have

TF2

m,f (x12) = x2m+1
12 NF2

. (3.22)

Since 2m+ 1 is coprime with the order of x12NF2 , x
2m+1
12 NF2 ∈ TF2

m,f (F2) implies that

x12NF2
∈ TF2

m,f (F2). (3.23)

Similarly, since 2m+ 1 is coprime with ord
(︁
x23NF2

)︁
= ord

(︁
f−1x23fNF2

)︁
and

TF2

m,f (x23) = f−1x2m+1
23 f NF2

=
(︁
f−1x23f NF2

)︁2m+1
,

we conclude that
f−1x23fNF2

= TF2

m,f (x
k
23) (3.24)

for some integer k.
Since TPB3

m,f is onto, there exists w ∈ PB3 such that TPB3

m,f (w) = fN. Moreover PB3 = F2 × ⟨ c ⟩, so
w = w̃cj for some w̃ ∈ F2 and some integer j. Thus we get

TPB3

m,f (w̃) = c−j(2m+1)fN. (3.25)

Since c ∈ Z(PB3), equations (3.24) and (3.25) imply that

TPB3

m,f (w̃xk23w̃
−1) = c−j(2m+1)f(f−1x23f)f

−1cj(2m+1)N = x23N.

Note that TF2

m,f : F2 → F2/NF2
is the restriction of TPB3

m,f to F2 ≤ PB3. Therefore

x23NF2
∈ TF2

m,f (F2). (3.26)

Combining (3.23) and (3.26), we see that F2

T
F2
m,f−→ F2/NF2

is indeed surjective, i.e. the implication 2) ⇒ 3)
is proved.

Let us now prove the implication 3) ⇒ 1).
Using gcd(2m+ 1, ord(x12N)) = gcd(2m+ 1, ord(x23N)) = 1 and 2 ∤ (2m+ 1), it is easy to show that

gcd(2m+ 1, ord(σ1N)) = gcd(2m+ 1, ord(σ2N)) = 1. (3.27)

Combining (3.27) with

Tm,f (σ1) = σ2m+1
1 N, Tm,f (σ2) = f−1σ2m+1

2 fN = (f−1σ2fN)
2m+1 ,

we conclude that
σ1 N ∈ Tm,f (B3) (3.28)

and
f−1σ2f N ∈ Tm,f (B3). (3.29)

Surjectivity of TF2

m,f implies that fNF2
= TF2

m,f (w) for some w ∈ F2. Hence

Tm,f (w) = fN. (3.30)

Using (3.29) and (3.30), it is easy to see that

σ2 N ∈ Tm,f (B3). (3.31)

Combining (3.28) and (3.31), we conclude that B3
Tm,f−→ B3/N is indeed surjective, i.e. the implication

3) ⇒ 1) is also proved.
Proposition 3.6 is proved. □
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Definition 3.7 Let N ∈ NFIPB3(B3). A charming GT-pair [m, f ] ∈ GTpr(N) is called a GT-shadow with
the target N if the pair (m, f) satisfies one of the three equivalent conditions of Proposition 3.6. We denote
by GT(N) the set of GT-shadows with the target N.

Using (3.19), it is easy to show that, for every [m, f ] ∈ GT(N), the kernel K of the homomorphism
Tm,f : B3 → B3/N belongs to NFIPB3(B3), and

K = ker
(︁
PB3

T
PB3
m,f−→ PB3/N

)︁
. (3.32)

Moreover, the surjectivity of Tm,f implies that it factors as follows

Tm,f = T isom
m,f ◦ PK, (3.33)

where PK is the standard onto homomorphism B3 → B3/K and T isom
m,f is the isomorphism B3/K

≃−→ B3/N

defined by the formula T isom
m,f (wK) := Tm,f (w).

Using (3.32), it is easy to prove that, for every [m, f ] ∈ GT(N),

ker
(︁
F2

T
F2
m,f−→ F2/NF2

)︁
= KF2

, (3.34)

where K := ker(Tm,f ).

Using (3.32) and (3.34), we get the similar factorizations for the homomorphisms TPB3

m,f : PB3 → PB3/N

and for TF2

m,f : F2 → F2/NF2 , i.e.

TPB3

m,f = TPB3,isom
m,f ◦ PK, (3.35)

and
TF2

m,f = TF2,isom
m,f ◦ PKF2

, (3.36)

where TPB3,isom
m,f (resp. TF2,isom

m,f ) is an isomorphism PB3/K
≃−→ PB3/N (resp. F2/KF2

≃−→ F2/NF2
). For

example, the isomorphism TF2,isom
m,f : F2/KF2

≃−→ F2/NF2
is defined by the formula:

TF2,isom
m,f (wKF2

) := TF2

m,f (w). (3.37)

Thus we proved the first three statements of the following proposition:

Proposition 3.8 Let K,N ∈ NFIPB3
(B3). If there exists [m, f ] ∈ GT(N) such that K = ker(Tm,f ), then

1) the finite groups B3/K and B3/N are isomorphic,

2) the finite groups PB3/K and PB3/N are isomorphic,

3) the finite groups F2/KF2
and F2/NF2

are isomorphic and, finally,

4) Kord = Nord.

Proof. It remains to prove that Kord = Nord.
Since 2m+ 1 is coprime with the orders of x12N, x23N, and cN, we have

ord(x2m+1
12 N) = ord(x12N), ord(x2m+1

23 N) = ord(x23N), ord(c2m+1N) = ord(cN). (3.38)

Note that ord(x2m+1
23 N) = ord(f−1x2m+1

23 fN). Combining this observation with the second equation in (3.38),
we conclude that

ord(f−1x2m+1
23 fN) = ord(x23N). (3.39)

Since
TPB3,isom
m,f (x12K) = x2m+1

12 N, TPB3,isom
m,f (cK) = c2m+1N,
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TPB3,isom
m,f (x23K) = f−1x2m+1

23 fN,

and TPB3,isom
m,f is an isomorphism, equations (3.38) and (3.39) imply that

ord(x12K) = ord(x12N), ord(x23K) = ord(x23N), ord(cK) = ord(cN).

Thus, Kord = Nord. □

Our next goal is to show that GT-shadows form a groupoid GTSh with Ob(GTSh) := NFIPB3
(B3) and

GTSh(K,N) :=
{︁
[m, f ] ∈ GT(N) | ker(Tm,f ) = K

}︁
, K,N ∈ NFIPB3(B3). (3.40)

To define the composition of morphisms, we need an auxiliary construction.
For every pair (m, f) ∈ Z× F2, the formulas

Em,f (x) := x2m+1, Em,f (y) := f−1y2m+1f (3.41)

define an endomorphism Em,f of F2.
A direct computation shows that

Em1,f1 ◦ Em2,f2 = Em,f , (3.42)

where
m := 2m1m2 +m1 +m2, f := f1Em1,f1(f2).

It is not hard to see7 that the set Z× F2 is a monoid with respect to the binary operation

(m1, f1) • (m2, f2) :=
(︁
2m1m2 +m1 +m2, f1Em1,f1(f2)

)︁
(3.43)

and the identity element (0, 1F2
). Moreover, the assignment (m, f) ↦→ Em,f defines a homomorphism of

monoids (Z× F2, •) → End(F2).
Note that, if (m, f) ∈ Z× F2 represents a GT-pair with the target N ∈ NFIPB3(B3), then

TF2

m,f (w) = Em,f (w)NF2
, ∀ w ∈ F2 , (3.44)

where TF2

m,f is defined in (3.21).
Let us prove the following auxiliary statement:

Proposition 3.9 Let N(1),N(2),N(3) ∈ NFIPB3(B3), [m1, f1] ∈ GTSh(N(2),N(1)), [m2, f2] ∈ GT(N(3),N(2))

and Nord := N
(1)
ord = N

(2)
ord = N

(3)
ord. If

m := 2m1m2 +m1 +m2, f := f1Em1,f1(f2), (3.45)

then
(m+NordZ, fN(1)

F2
) ∈ GTSh(N(3),N(1)). (3.46)

The pair [m, f ] := (m + NordZ, fN(1)
F2

) depends only on the cosets f1N
(1), f2N

(2) and residue classes m1 +
NordZ, m2 +NordZ. Moreover, the diagram

B3 B3

B3/N
(3) B3/N

(2) B3/N
(1)

Tm2,f2
P

N(3)

T isom
m2,f2

Tm2,f2
Tm1,f1

P
N(2)

T isom
m1,f1

Tm,f

T isom
m,f (3.47)

7A detailed proof is given in [29, Proposition 2.11].
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commutes. In particular,
T isom
m1,f1 ◦ T

isom
m2,f2 = T isom

m,f . (3.48)

Proof. The first equation in (3.45) implies that

2m+ 1 = (2m1 + 1)(2m2 + 1). (3.49)

Our first goal is to show that the pair (m, f) satisfies hexagon relations (3.3), (3.4) (modulo N(1)).
The first hexagon relation for (m2, f2) (modulo N(2)) reads

σ2m2+1
1 f−1

2 σ2m2+1
2 f2 N

(2) = f−1
2 σ1σ2x

−m2
12 cm2 N(2) . (3.50)

Applying T isom
m1,f1

to the left hand side of (3.50) and using (3.44), (3.49), we get

σ
(2m1+1)(2m2+1)
1 Em1,f1(f2)

−1f−1
1 σ

(2m1+1)(2m2+1)
2 f1Em1,f1(f2)N

(1) =

σ
(2m1+1)(2m2+1)
1 f−1σ

(2m1+1)(2m2+1)
2 f N(1) = σ2m+1

1 f−1σ2m+1
2 f N(1). (3.51)

Applying T isom
m1,f1

to the right hand side of (3.50), using (3.20), (3.44), and hexagon relation (3.3) for
(m1, f1), we get

Em1,f1(f2)
−1 (σ2m1+1

1 f−1
1 σ2m1+1

2 f1)x
−m2(2m1+1)
12 cm2(2m1+1) N(1) =

Em1,f1(f2)
−1f−1

1 σ1σ2x
−m1
12 cm1x

−m2(2m1+1)
12 cm2(2m1+1) N(1) = f−1σ1σ2x

−m
12 cmN(1) .

Combining this result with the final expression in (3.51), we see that the pair (m, f) satisfies (3.3) modulo
N(1).

Applying T isom
m1,f1

to both sides of the second hexagon relation for (m2, f2) and performing similar calcu-

lations, we see that the pair (m, f) satisfies (3.4) modulo N(1).

Since 2m + 1 = (2m1 + 1)(2m2 + 1) and 2m1 + 1, 2m2 + 1 ∈
(︁
Z/NordZ

)︁×
, we conclude that 2m + 1

represents a unit in the ring Z/NordZ.
We may assume, without loss of generality, that f1, f2 ∈ [F2,F2]. Hence f := f1Em1,f1(f2) also belongs

to the commutator subgroup [F2,F2].
We proved that (m, f) represents a charming GT-pair with the target N(1).
Recall that, since the pair (m, f) satisfies hexagon relations (3.3) and (3.4) (modulo N(1)), the formulas

Tm,f (σ1) := σ2m+1
1 N(1), Tm,f (σ2) := f−1σ2m+1fN(1),

define a group homomorphism Tm,f : B3 → B3/N
(1).

To show that the pair (m, f) represents a GT-shadow with the target N(1), we need to prove that the
group homomorphism Tm,f : B3 → B3/N

(1) is onto.
Applying T isom

m1,f1
◦ Tm2,f2 to the generators σ1 and σ2 and using (3.49), we see that

T isom
m1,f1 ◦ Tm2,f2(σ1) = Tm,f (σ1), T isom

m1,f1 ◦ Tm2,f2(σ2) = Tm,f (σ2).

Therefore,
T isom
m1,f1 ◦ Tm2,f2 = Tm,f . (3.52)

Hence Tm,f is onto. Thus the pair (m, f) indeed represents a GT-shadow with the target N(1).
Combining identity (3.52) with N(3) = ker(Tm2,f2), we conclude that ker(Tm,f ) = N(3). Hence, Tm,f

factors as
Tm,f = T isom

m,f ◦ PN(3) ,

where T isom
m,f is the isomorphism B3/N

(3) ≃−→ B3/N
(1) defined by the formula T isom

m,f (wN(3)) := Tm,f (w).
We proved the first statement of the proposition (see (3.46)).
It is clear that m+NordZ depends only the residue classes of m1 and m2 in Z/NordZ.
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Let h1 ∈ N
(1)
F2

and h2 ∈ N
(2)
F2

. It is clear that TF2

m1+tNord,f1h1
= TF2

m1,f1
for every t ∈ Z. Due to (3.44) and

ker(TF2

m1,f1
) = N

(2)
F2

, we have Em1,f1(h2) ∈ N
(1)
F2

. Hence

f1h1Em1,f1(f2h2)N
(1)
F2

= f1Em1,f1(f2)N
(1)
F2

= fN
(1)
F2
.

We proved that the GT-shadow [m, f ] ∈ GT(N(1)) depends only on the cosets f1N
(1), f2N

(2) and residue
classes m1 +NordZ, m2 +NordZ.

It should now be clear that diagram (3.47) commutes. Indeed, the inner “straight” triangles commute
by definition of T isom

m1,f1
and T isom

m2,f2
(see equation (3.33)).

The triangle with the vertices B3, B3/N
(2), B3/N

(1) and the “curved” arrow Tm,f commutes due to
identity (3.52).

The definition of T isom
m,f gives us the commutativity of the outer “curved” triangle (i.e. the triangle with

the vertices B3, B3/N
(3) and B3/N

(1)). Combining the commutativity of the outer “curved” triangle with
identity (3.52), we conclude that the lower “curved” triangle also commutes.

Proposition 3.9 is proved. □
We are now ready to prove that GTSh is indeed a groupoid.

Theorem 3.10 Let N(1),N(2),N(3) ∈ NFIPB3(B3), [m1, f1] ∈ GTSh(N(2),N(1)), [m2, f2] ∈ GT(N(3),N(2)) and

Nord := N
(1)
ord = N

(2)
ord = N

(3)
ord. The formula

[m1, f1] ◦ [m2, f2] := [2m1m2 +m1 +m2, f1Em1,f1(f2)] (3.53)

defines a composition of morphisms in GTSh. For every N ∈ NFIPB3(B3), the pair (0, 1F2) represents the
identity morphism in GTSh(N,N). Finally, for every [m, f ] ∈ GTSh(K,N), the formulas

m̃+NordZ := −(2m+ 1)−1m, f̃KF2
:= (TF2,isom

m,f )−1
(︁
f−1NF2

)︁
(3.54)

define the inverse [m̃, f̃ ] ∈ GTSh(N,K) of the morphism [m, f ].

Proof. Due to Proposition 3.9, formula (3.53) indeed defines a map

GTSh(N(2),N(1))× GT(N(3),N(2)) → GT(N(3),N(1)).

Since the binary operation • on Z× F2 defined in (3.43) is associative, the composition of morphisms in
GTSh is also associative.

It is easy to see that the pair (0, 1F2
) represents a GT-shadow in GTSh(N,N) for every N ∈ NFIPB3

(B3).
Moreover, since (0, 1F2) is the identity element of the monoid (Z × F2, •), [0, 1F2 ] is indeed the identity
morphism in GTSh(N,N) for every N ∈ NFIPB3(B3).

To take care of the inverse, we start with [m, f ] ∈ GTSh(K,N) and assume that the pair (m̃+KordZ, f̃KF2
) ∈

Z/KordZ × F2/KF2
is given by the formulas8 (3.54). We denote by m̃ (resp. f̃) any representative of the

coset −(2m+ 1)−1m (resp. the coset (TF2,isom
m,f )−1

(︁
f−1NF2

)︁
) in Z/NordZ (resp. in F2/KF2

).
The equations in (3.54) are equivalent to

2mm̃+ m̃+m ≡ 0 mod Nord , TF2,isom
m,f (f̃KF2) := f−1NF2 . (3.55)

The first equation in (3.55) implies that

(2m+ 1)(2m̃+ 1) ≡ 1 mod 2Nord . (3.56)

Hence 2m̃+ 1 represents a unit in Z/NordZ.
Since

σ2Nord
1 , σ2Nord

2 ∈ N,

8Since GTSh(K,N) is non-empty, Kord = Nord.
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identity (3.56) implies that

σ
(2m+1)(2m̃+1)
1 N = σ1N, σ

(2m+1)(2m̃+1)
2 N = σ2N. (3.57)

Since f−1NF2 belongs to [F2/NF2 ,F2/NF2 ], so does f̃KF2 .
Let us prove that the pair (m̃, f̃) satisfies (3.3) and (3.4) (modulo K).

Applying T isom
m,f to f̃

−1
σ2m̃+1
2 f̃σ2m̃+1

1 K and using the second equation in (3.55) and identities (3.57), we
get

T isom
m,f

(︁
f̃
−1
σ2m̃+1
2 f̃σ2m̃+1

1 K
)︁
= ff−1σ

(2m+1)(2m̃+1)
2 ff−1σ

(2m+1)(2m̃+1)
1 N = σ2σ1N.

Furthermore, applying T isom
m,f to σ2σ1c

m̃x−m̃
23 f̃K and using hexagon relation (3.4) for (m, f) and the first

equation in (3.55), we get

T isom
m,f

(︁
σ2σ1c

m̃x−m̃
23 f̃K

)︁
= (f−1σ2m+1

2 fσ2m+1
1 )N (c(2m+1)m̃f−1x

−(2m+1)m̃
23 f)N =

σ2σ1c
mx−m

23 fc(2m+1)m̃f−1x
−(2m+1)m̃
23 ff−1 N = σ2σ1c

2mm̃+m̃+mx
−(2mm̃+m̃+m)
23 N = σ2σ1N.

Since
T isom
m,f

(︁
f̃
−1
σ2m̃+1
2 f̃σ2m̃+1

1 K
)︁

= T isom
m,f

(︁
σ2σ1c

m̃x−m̃
23 f̃K

)︁
and T isom

m,f is an isomorphism, we conclude that the pair (m̃, f̃) satisfies hexagon relation (3.4).

Applying T isom
m,f to both sides of

σ2m̃+1
1 f̃

−1
σ2m̃+1
2 f̃ K

?
= f̃

−1
σ1σ2x

−m̃
12 cm̃ K

and performing similar calculations, we see that the pair (m̃, f̃) also satisfies hexagon relation (3.3).
Using the equations in (3.55) we see that the composition

T isom
m,f ◦ Tm̃,f̃ : B3 → B3/N

coincides with the standard projection PN : B3 → B3/N. Hence the group homomorphism Tm̃,f̃ : B3 → B3/K
is onto and

ker(Tm̃,f̃ ) = N.

Thus we proved that
(m̃+NordZ, f̃KF2

) ∈ GTSh(N,K).

The equations in (3.55) imply that

[m, f ] ◦ [m̃, f̃ ] = [0, 1F2 ].

Since

[m̃, f̃ ] ◦ [m, f ] =
(︁
2m̃m+m+ m̃+NordZ , f̃KF2 T

F2

m̃,f̃
(f)

)︁
=

(︁
NordZ , f̃KF2 T

F2

m̃,f̃
(f)

)︁
it remains to prove that

f̃KF2
TF2

m̃,f̃
(f)

?
= 1F2/KF2

. (3.58)

Applying TF2,isom
m,f to the left hand side of (3.58) and using T isom

m,f ◦ Tm̃,f̃ = PN, we get

TF2,isom
m,f

(︁
f̃KF2 T

F2

m̃,f̃
(f)

)︁
= f−1NF2 fNF2 = 1F2/NF2

.

Thus, since TF2,isom
m,f is an isomorphism from F2/NF2

to F2/KF2
, we conclude that identity (3.58) holds.

Theorem 3.10 is proved. □

Remark 3.11 Proposition 3.8 implies that, if GTSh(K,N) is non-empty, then

|PB3 : K| = |PB3 : N|, |F2 : KF2
| = |F2 : NF2

|, Kord = Nord.
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3.1 The reduction map

Let N,H ∈ NFIPB3
(B3) and N ≤ H. In the following proposition, we consider this situation and get a natural

map RN,H : GT(N) → GT(H).

Proposition 3.12 Let N,H ∈ NFIPB3
(B3), N ≤ H and (m, f) ∈ Z× F2 represent a GT-pair with the target

N. Then Hord|Nord, NF2 ≤ HF2 and

a) the same pair (m, f) also represents an element in GTpr(H); moreover the resulting GT-pair [m, f ] ∈
GTpr(H) depends only on (m+NordZ, fNF2);

b) if the GT-pair [m, f ] ∈ GTpr(N) is charming then so is the corresponding GT-pair in GTpr(H);

c) if the pair (m, f) represents a GT-shadow with the target N, then (m, f) also represents a GT-shadow
with the target H.

Let us denote by Tm,f,H the group homomorphism B3 → B3/H corresponding to [m, f ] ∈ GTpr(H). In the
set-up of statement a), the following diagram

B3 B3/N

B3/H

Tm,f

Tm,f,H PN,H

(3.59)

commutes.

Proof. Since
PN,H(x12N) = x12H, PN,H(x23N) = x23H, PN,H(cN) = cH,

ord(x12H)|ord(x12N), ord(x23H)|ord(x23N) and ord(cH)|ord(cN). Hence Hord divides Nord. The inclusion
NF2 ≤ HF2 is obvious.

a) Applying the homomorphism PN,H : B3/N → B3/H to (3.3) and (3.4), we see that the pair (m, f) satisfies
the hexagon relations modulo H if it satisfies the hexagon relations modulo N. Thus (m, f) represents an
element in GTpr(H).

It is obvious that the resulting GT-pair [m, f ] ∈ GTpr(H) depends only on the residue class of m modulo
Nord and the coset fNF2 .

As above, we denote by Tm,f,H the group homomorphism B3 → B3/H corresponding to [m, f ] ∈ GTpr(H).
Applying Tm,f,H and PN,H◦Tm,f to the generators σ1, σ2, we see that the diagram in (3.59) indeed commutes.

b) Since 2m+1 represents a unit in Z/NordZ, 2m+1 also represents a unit in Z/HordZ. Since fNF2 belongs
to the commutator subgroup [F2/NF2 ,F2/NF2 ], we have

fHF2 ∈ [F2/HF2 ,F2/HF2 ].

Thus (m, f) represents a charming GT-pair with the target H.

c) This statement follows easily from the commutativity of the diagram in (3.59) and the surjectivity of the
homomorphism PN,H. □

Due to Proposition 3.12, the formula

RN,H([m, f ]) :=
(︁
m+HordZ, fHF2

)︁
(3.60)

defines a map RN,H : GT(N) → GT(H). We call RN,H the reduction map.
Just as in [5, Definition 3.12], we say that a GT-shadows [m, f ] ∈ GT(H) survives into N if [m, f ] belongs

to the image of RN,H.
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3.2 Connected compsonents of the groupoid GTSh and its isolated objects

The groupoid GTSh is highly disconnected. Indeed, if |PB3 : N| ≠ |PB3 : K|, then GTSh(K,N) is empty
(see Remark 3.11). For N ∈ NFIPB3

(B3), we denote by GTShconn(N) the connected component of N in the
groupoid GTSh. Since, for every N ∈ NFIPB3

(B3), GT(N) is finite, so is the groupoid GTShconn(N).

Definition 3.13 Let N ∈ NFIPB3(B3). A GT-shadow [m, f ] ∈ GT(N) is called settled if ker(Tm,f ) = N, i.e.
[m, f ] ∈ GTSh(N,N). An object N of the groupoid GTSh is called isolated if every GT-shadow in GT(N) is
settled.

It is clear that N ∈ NFIPB3
(B3) is isolated if and only if the connected component of N in the groupoid GTSh

has exactly one object. Of course, in this case, GT(N) = GTSh(N,N). In particular, GT(N) is a group.

Proposition 3.14 For every N ∈ NFIPB3(B3), the subgroup

N⋄ :=
⋂︂

K∈Ob(GTShconn(N))

K (3.61)

is an isolated object of the groupoid GTSh.

Proof. Since the groupoid GTShconn(N) has finitely many objects and NFIPB3
(B3) is closed under finite

intersections, N⋄ belongs to NFIPB3
(B3).

To prove that N⋄ is isolated, we consider [m, f ] ∈ GT(N⋄) and K ∈ Ob(GTShconn(N)).
Since N⋄ ≤ K, Proposition 3.12 implies that the pair (m, f) also represents a GT-shadow with the target

K. Just as in Proposition 3.12, we denote by Tm,f,K the group homomorphism B3 → B3/K corresponding to
the GT-shadow [m, f ] ∈ GT(K). Let us also recall that

Tm,f,K = PN⋄,K ◦ Tm,f . (3.62)

Let w ∈ N⋄. Since w ∈ H for every H ∈ Ob(GTShconn(N)), we have

w ∈ ker(Tm,f,K)

Let w⋄ ∈ B3 be a representative of the coset Tm,f (w) ∈ B3/N
⋄. Using (3.62) we conclude that w⋄ ∈ K for

every K ∈ Ob(GTShconnN ). Therefore w⋄ ∈ N⋄ and hence w ∈ ker(B3
Tm,f−→ B3/N

⋄).

We proved that N⋄ ≤ K̃, where K̃ := ker(B3
Tm,f−→ B3/N

⋄). Since |B3 : K̃| = |B3 : N⋄| (see Proposition 3.8)

and N⋄ has finite index in B3, we conclude that ker(B3
Tm,f−→ B3/N

⋄) = N⋄. □
Proposition 3.14 implies that the subposet NFIisolatedPB3

(B3) of isolated elements in NFIPB3
(B3) is cofinal,

i.e. for every N ∈ NFIPB3
(B3), there exists Ñ ∈ NFIisolatedPB3

(B3) such that Ñ ≤ N.
The proof of the following proposition is straightforward and we leave it to the reader:

Proposition 3.15 For all N,K ∈ NFIisolatedPB3
(B3), N ∩ K ∈ NFIisolatedPB3

(B3). □

Remark 3.16 Let N,H ∈ NFIisolatedPB3
(B3) and N ≤ H. Recall that, in this case, GT(N) = GTSh(N,N)

and GT(H) = GTSh(H,H), i.e. GT(N) and GT(H) are (finite) groups. It is easy to see that the reduction
map RN,H : GT(N) → GT(H) (see (3.60)) is a group homomorphism. Indeed, both [m, f ] ∈ GT(N) and
RN,H([m, f ]) ∈ GT(H) are represented by the same pair (m, f) ∈ Z×F2 and the composition of GT-shadows

is defined in terms of their representatives (see equation (3.53) in Theorem 3.10). If N,H ∈ NFIisolatedPB3
(B3)

and N ≤ H, we call RN,H : GT(N) → GT(H) the reduction homomorphism.
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4 The transformation groupoid ˆ︂GTgenNFI and genuine GT-shadows

Let N ∈ NFIPB3(B3) and (m̂, f̂) ∈ ˆ︂GTgen. Recall that ˆ︁PN denotes the standard (continuous) group homo-

morphism from ˆ︁B3 to B3/N and Tm̂,f̂ denotes the continuous automorphism of ˆ︁B3 defined in (2.11). Let us
consider the composition ˆ︁PN ◦ Tm̂,f̂

⃓⃓
B3

: B3 → B3/N. (4.1)

Using the fact that B3 is dense in ˆ︁B3, one can easily prove that the homomorphism (4.1) is surjective.

In the following proposition, we use (4.1) to define a right action of ˆ︂GTgen on NFIPB3
(B3):

Proposition 4.1 Let N ∈ NFIPB3
(B3). For every (m̂, f̂) ∈ ˆ︂GTgen, the pair(︁ ˆ︁PNord

(m̂), ˆ︁PNF2
(f̂)

)︁
is a GT-shadow with the target N. Furthermore, the assignment

N(m̂,f̂) := ker
(︁ ˆ︁PN ◦ Tm̂,f̂

⃓⃓
B3

)︁
(4.2)

defines a right action of ˆ︂GTgen on NFIPB3
(B3).

Proof. Let m ∈ Z (resp. f ∈ F2) be any representative of the residue class ˆ︁PNord
(m̂) ∈ Z/NordZ (resp. of

the coset ˆ︁PNF2
(f̂) ∈ F2/NF2).

Since the pair (m̂, f̂) satisfies (2.9) and (2.10), the pair (m, f) satisfies hexagon relations (3.3) and (3.4)
modulo N.

Since 2m̂+ 1 is a unit in ˆ︁Z, the integer 2m+ 1 represents a unit in Z/NordZ.
The property f̂ ∈ [ˆ︁F2, ˆ︁F2]

top. cl. implies that

fNF2
∈ [F2/NF2

,F2/NF2
].

Finally, it is easy to see that the homomorphism Tm,f : B3 → B3/N coincides with ˆ︁PN ◦ Tm̂,f̂ :

Tm,f = ˆ︁PN ◦ Tm̂,f̂

⃓⃓
B3
. (4.3)

In particular, Tm,f is surjective.
We proved that the pair (m+NordZ, fNF2

) is a GT-shadow with the target N and

N(m̂,f̂) = ker(Tm,f ).

Hence N(m̂,f̂) ∈ NFIPB3
(B3).

We say that the GT-shadow [m, f ] ∈ GT(N) comes from the element (m̂, f̂) ∈ ˆ︂GTgen.
Let us consider the following diagram:

ˆ︁B3
ˆ︁B3

B3 B3/K B3/N

Tm̂,f̂

ˆ︁PK
ˆ︁PN

T isom
m,fPK

Tm,f (4.4)

where K := ker(Tm,f ) and the slanted straight arrow is the standard inclusion map j : B3 → ˆ︁B3.
We claim that the diagram in (4.4) commutes. Indeed, the outer “curved” rectangle commutes due to

(4.3). The lower “curved” triangle commutes due to the identity Tm,f = T isom
m,f ◦ PK. The left triangle
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commutes by definition of ˆ︁B3. Finally, the continuous maps ˆ︁PN ◦ Tm̂,f̂ and T isom
m,f ◦ ˆ︁PK agree on the dense

subset B3 ⊂ ˆ︁B3 and B3/N is Hausdorff. Thus the inner square in (4.4) also commutes.
It is clear that ˆ︁PN ◦ T0,1ˆ︁F2

⃓⃓
B3

= PN.

Hence N(0,1ˆ︁F2
)
= N.

It remains to prove that, for all (m̂1, f̂1), (m̂2, f̂2) ∈ ˆ︂GTgen,(︁
N(m̂1,f̂1)

)︁(m̂2,f̂2) = N(m̂,f̂) , (4.5)

where (m̂, f̂) := (m̂1, f̂1) • (m̂2, f̂2).

For this purpose, we will use the inner square of the diagram in (4.4). We set K := N(m̂1,f̂1) and

H := K(m̂2,f̂2). Then, putting together the “squares” corresponding to (m̂1, f̂1) and (m̂2, f̂2), adding the

obvious “triangle with the vertex” B3, the “curved arrow” ˆ︁PN◦Tm̂,f̂

⃓⃓
B3
, and using (2.25), we get the following

commutative diagram:

ˆ︁B3
ˆ︁B3

ˆ︁B3

B3 B3/H B3/K B3/N

Tm̂2,f̂2

ˆ︁PH

Tm̂1,f̂1

ˆ︁PK
ˆ︁PN

T isom
m2,f2

T isom
m1,f1PH

ˆ︁PN ◦ Tm̂,f̂

⃓⃓
B3

(4.6)

where [m1, f1] ∈ GT(N) and [m2, f2] ∈ GT(K) are the GT-shadows coming from (m̂1, f̂1) and (m̂2, f̂2),
respectively.

The commutativity of the lower “curved rectangle” in (4.6) implies that H = N(m̂,f̂). Thus identity (4.5)
holds. □

For N ∈ NFIPB3(B3) and (m̂, f̂) ∈ ˆ︂GTgen, we denote by PRN(m̂, f̂) the GT-shadow with the target N

that comes from (m̂, f̂), i.e.

PRN(m̂, f̂) :=
(︁ ˆ︁PNord

(m̂), ˆ︁PNF2
(f̂)

)︁
.

In view of Corollary 5.4 which is proved later, PRN(m̂, f̂) is called the approximation of the element

(m̂, f̂) ∈ ˆ︂GTgen.

We denote by ˆ︂GTgen

NFI the transformation groupoid of the action of ˆ︂GTgen on NFIPB3
(B3), i.e. Ob(ˆ︂GTgen

NFI ) =
NFIPB3

(B3) and ˆ︂GTgen

NFI (K,N) := {(m̂, f̂) ∈ ˆ︂GTgen | N(m̂,f̂) = K}.

Definition 4.2 Let N ∈ NFIPB3
(B3) and [m, f ] ∈ GT(N). We say that the GT-shadow [m, f ] is genuine if

there exists (m̂, f̂) ∈ ˆ︂GTgen such that [m, f ] comes from (m̂, f̂), i.e.

m+NordZ = ˆ︁PNord
(m̂), fNF2

= ˆ︁PNF2
(f̂).

Otherwise, the GT-shadow is called fake.

Let N ∈ NFIPB3
(B3). Due to Proposition A.3, the subgroup ˆ︁P−1

N (1B3/N) ≤ ˆ︁B3 (resp. ˆ︁P−1
NF2

(1F2/NF2
) ≤ ˆ︁F2)

coincides with the profinite completion of N (resp. with the profinite completion of NF2
). By abuse of

notation, we identify ˆ︁P−1
N (1B3/N) (resp.

ˆ︁P−1
NF2

(1F2/NF2
)) with ˆ︁N (resp. with ˆ︁NF2). We will need the following

statement:
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Proposition 4.3 Let N ∈ NFIPB3
(B3) and (m̂, f̂) ∈ ˆ︂GTgen. If K is the source of the GT-shadow PRN(m̂, f̂),

then
Tm̂,f̂

(︁ˆ︁K)︁ = ˆ︁N (4.7)

and
Em̂,f̂

(︁ˆ︁KF2

)︁
= ˆ︁NF2 . (4.8)

Proof. Let (m, f) ∈ Z × F2 be a pair that represents the GT-shadow PRN(m̂, f̂) and ŵ ∈ ˆ︁K = ker(ˆ︁B3

ˆ︁PK→
B3/K). Since the diagram in (4.4) commutes,

ˆ︁PN ◦ Tm̂,f̂ (ŵ) = 1B3/N.

Hence Tm̂,f̂ (
ˆ︁K) ⊂ ˆ︁N = ker(ˆ︁B3

ˆ︁PN−→ B3/N).

Since |ˆ︁B3 : ˆ︁N| = |B3 : N| = |B3 : K| = |ˆ︁B3 : ˆ︁K| = |ˆ︁B3 : Tm̂,f̂ (
ˆ︁K)|, the inclusion Tm̂,f̂ (

ˆ︁K) ⊂ ˆ︁N implies that

Tm̂,f̂ (
ˆ︁K) = ˆ︁N.

Identity (4.8) can be proved in a similar way using the commutative diagram

ˆ︁F2
ˆ︁F2

F2 F2/KF2 F2/NF2

Tm̂,f̂

ˆ︁PKF2
ˆ︁PNF2

T
F2,isom

m,f
PKF2

j

T
F2
m,f (4.9)

where TF2,isom
m,f is the isomorphism F2/KF2

≃−→ F2/NF2
defined in (3.37). □

The following theorem gives us a link between ˆ︂GTgen and the groupoid GTSh:

Theorem 4.4 Let N ∈ NFIPB3
(B3). The assignments

PR(N) := N, PRN(m̂, f̂) =
(︁ ˆ︁PNord

(m̂), ˆ︁PNF2
(f̂)

)︁
(4.10)

define a functor from the transformation groupoid ˆ︂GTgen

NFI to GTSh.

Proof. Let (m, f) ∈ Z× [F2,F2] be a pair that represents
(︁ ˆ︁PNord

(m̂), ˆ︁PNF2
(f̂)

)︁
.

Due to the first statement of Proposition 4.1, [m, f ] is a GT-shadow with the target N. Moreover, since

ker(Tm,f ) = N(m̂,f̂),

[m, f ] is indeed a morphism from N(m̂,f̂) to N in GTSh.
It is clear that PRN(0, 1ˆ︁F2

) = [0, 1F2
] for every N ∈ NFIPB3

(B3), i.e. the functor PR sends the identity

morphisms of ˆ︂GTgen

NFI to the identity morphisms of GTSh.

It remains to prove that, for all (m̂1, f̂1), (m̂2, f̂2) ∈ ˆ︂GTgen and N ∈ NFIPB3(B3),

PRN(m̂1, f̂1) • PRK(m̂2, f̂2) = PRN(m̂, f̂), (4.11)

where (m̂, f̂) = (m̂1, f̂1) • (m̂2, f̂2), (m̂1, f̂1) is viewed as a morphism from K := N(m̂1,f̂1) to N and (m̂2, f̂2)

is viewed as a morphism from K(m̂2,f̂2) to K.
Let (m1, f1) and (m2, f2) be pairs that represent the GT-shadows PRN(m̂1, f̂1) and PRK(m̂2, f̂2),

respectively. Since the source of [m1, f1], K, coincides with the target of [m2, f2], the GT-shadows [m1, f1]
and [m2, f2] can be composed in this order [m1, f1]•[m2, f2] and [m1, f1]•[m2, f2] is an element of GTSh(H,N),

where H := K(m̂2,f̂2). Recall that Nord = Kord = Hord .
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We need to prove that
m+NordZ = ˆ︁PNord

(m̂) (4.12)

and
fNF2

= ˆ︁PNF2
(f̂), (4.13)

where
m := 2m1m2 +m1 +m2, f := f1Em1,f1(f2).

While (4.12) is obvious, identity (4.13) requires some work.
First, we observe that the diagram

ˆ︁F2
ˆ︁F2

F2 F2/NF2

w ↦→ Em1,f1
(w)NF2

j

Em̂1,f̂1

ˆ︁PNF2

(4.14)

commutes.
Second, since ˆ︁PKF2

(f̂2) = ˆ︁PKF2
(f2), we have

f̂2 = f2b̂, (4.15)

where9 b̂ ∈ ˆ︁KF2
. Combining this observation with equation (4.8) in Proposition 4.3 and commutativity of

diagram (4.14), we deduce that

ˆ︁PNF2

(︁
Em̂1,f̂1

(f̂2)
)︁
= ˆ︁PNF2

(︁
Em̂1,f̂1

(f2)
)︁
= Em1,f1(f2)NF2

. (4.16)

Therefore ˆ︁PNF2

(︁
f̂1Em̂1,f̂1

(f̂2)
)︁
= ˆ︁PNF2

(f̂1) ˆ︁PNF2

(︁
Em̂1,f̂1

(f̂2)
)︁
= f1Em1,f1(f2)NF2

.

Thus identity (4.13) holds and equation (4.11) follows. □
In view of Corollary 5.4 which is proved in the next section, we call PR the approximation functor.

5 The version of the Main Line functor for ˆ︂GTgen
Recall that, for every isolated object N of the groupoid GTSh, GT(N) = GTSh(N,N). In particular, GT(N)
is a (finite) group.

Let us show that the assignment
ML(N) := GT(N) (5.1)

can be upgraded to a functor ML from the poset NFIisolatedPB3
(B3) to the category of finite groups.

For N,H ∈ NFIisolatedPB3
(B3), N ≤ H, we set

ML(N → H) := RN,H. (5.2)

Recall that, due to Remark 3.16, the map RN,H : GT(N) → GT(H) is a group homomorphism.
It is obvious that, if N(3) ≤ N(2) ≤ N(1), then

RN(2),N(1) ◦ RN(3),N(2) = RN(3),N(1) . (5.3)

Thus formulas (5.1), (5.2) define a functor ML from the poset NFIisolatedPB3
(B3) to the category of finite

groups. We call ML the Main Line functor.

Our next goal is to show that the group ˆ︂GTgen is isomorphic to lim(ML). For this purpose, we need to
prove the following auxiliary statement:

9Just as in Proposition 4.3, we identify ˆ︁KF2
with ˆ︁P−1

KF2
(1F2/KF2

).
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Proposition 5.1 For every positive integer K, there exists N ∈ NFIisolatedPB3
(B3) such that K|Nord. Further-

more, for every H ∈ NFI(F2), there exists N ∈ NFIisolatedPB3
(B3), such that NF2

≤ H. Finally, for every pair

(K,H) ∈ Z≥1 × NFI(F2), there exists N ∈ NFIisolatedPB3
(B3) such that K|Nord and NF2

≤ H.

Proof. The proof of the first statement of the proposition is straightforward, so we leave it to the reader.
Since H is a finite index normal subgroup of F2, there exists a group homomorphism ψ from F2 to a finite

group G such that
ker(ψ) = H.

Clearly, the formulas

ψ̃(x12) := ψ(x), ψ̃(x23) := ψ(y), ψ̃(c) := 1G (5.4)

define a group homomorphism ψ̃ : PB3 → G.
In general, the subgroup ker(ψ̃) is not normal in B3. So we denote by Ñ the normal core of ker(ψ̃) in B3.

It is clear that Ñ ∈ NFIPB3
(B3) and ÑF2

≤ ker(ψ).
Let

N :=
⋂︂

K∈Ob(GTShconn(Ñ))

K.

Due to Proposition 3.14, N is an isolated object of GTSh. Moreover, since N ≤ Ñ, we have NF2 ≤ ker(ψ).
The second statement of the proposition is proved.

For (K,H) ∈ Z≥1×NFI(F2), there exist N
(1),N(2) ∈ NFIisolatedPB3

(B3) such that K|N (1)
ord and N

(2)
F2

≤ H. Due
to Proposition 3.15,

N := N(1) ∩ N(2)

is an isolated object of GTSh. Using the inclusions N ⊂ N(1) and N ⊂ N(2), it is not hard to show that
K|Nord and NF2

≤ H, respectively.
The proposition is proved. □

We are now ready to construct an isomorphism of groups ˆ︂GTgen
≃−→ lim(ML).

Theorem 5.2 Let (m̂, f̂) ∈ ˆ︂GTgen and N ∈ NFIisolatedPB3
(B3). The formula

Ψ(m̂, f̂)(N) := PRN(m̂, f̂) (5.5)

defines an isomorphism of groups Ψ : ˆ︂GTgen
≃−→ lim(ML). Moreover, Ψ is a homeomorphism (of topological

spaces).

Proof. Since N is an isolated object of the groupoid GTSh, N(m̂,f̂) = N for every (m̂, f̂) ∈ ˆ︂GTgen. Further-
more, Theorem 4.4 implies that the assignment

(m̂, f̂) ↦→ PRN(m̂, f̂)

is a group homomorphism from ˆ︂GTgen to the finite group GT(N) = GTSh(N,N).

It is clear that, for every N,H ∈ NFIisolatedPB3
(B3), N ≤ H, we have

RN,H ◦ PRN(m̂, f̂) = PRH(m̂, f̂).

Thus the formula in (5.5) indeed defines a group homomorphism Ψ : ˆ︂GTgen → lim(ML).
To prove the theorem, we will construct a map Θ : lim(ML) → ˆ︂GTgen and show that

• Θ is the inverse of Ψ and

• Θ is a homeomorphism of topological spaces.

26



Let T̂ ∈ lim(ML), K ∈ Z≥1 and H ∈ NFI(F2).

Due to Proposition 5.1, there exists N ∈ NFIisolatedPB3
(B3) such that K|Nord and NF2

≤ H. Let (m, f) ∈
Z× F2 be a pair that represents the GT-shadow T̂ (N). We set

m̂(K) := m+KZ, f̂(H) := fH. (5.6)

Since T̂ belongs to lim(ML), the residue class m̂(K) and the coset f̂(H) do not depend on the choice of

N ∈ NFIisolatedPB3
(B3), and the formulas in (5.6) define m̂ ∈ ˆ︁Z and f̂ ∈ ˆ︁F2.

The element f̂ belongs to the topological closure of the commutator subgroup [ˆ︁F2, ˆ︁F2] in ˆ︁F2 due to these
properties:

• for every N ∈ NFIisolatedPB3
(B3), f̂(NF2

) ∈ [F2/NF2
,F2/NF2

],

• the open subsets ˆ︁P−1
NF2

(1F2/NF2
) ⊂ ˆ︁F2, N ∈ NFIisolatedPB3

(B3)

form a basis of neighborhoods of 1ˆ︁F2
in ˆ︁F2.

Let us prove that the resulting pair (m̂, f̂) ∈ ˆ︁Z× ˆ︁F2 satisfies hexagon relations (2.9) and (2.10). For this
purpose, we consider L ∈ NFI(B3) and observe that L ∩ PB3 ∈ NFIPB3

(B3). In general, L ∩ PB3 is not an
isolated object of the groupoid GTSh. However, due to Proposition 3.14, the subgroup N :=

(︁
L∩PB3

)︁⋄
does

belong to NFIisolatedPB3
(B3). Moreover, since N ≤ L ∩ PB3, N is a subgroup of L.

As above, let (m, f) ∈ Z× F2 be a pair that represents the GT-shadow T̂ (N). For such a pair (m, f), we
have

m̂(Nord) = m+NordZ, f̂(NF2
) = fNF2

.

Evaluating the left hand side (resp. the right hand side) of the first hexagon relation (2.9) at N, we get
the left hand side (resp. the right hand side) of the first hexagon relation (3.3) for (m, f). Thus(︁

σ2m̂+1
1 f̂

−1
σ2m̂+1
2 f̂

)︁
(N) =

(︁
f̂
−1
σ1σ2 x

−m̂
12 cm̂

)︁
(N). (5.7)

Similarly, evaluating the left hand side (resp. the right hand side) of the second hexagon relation (2.10)
at N, we get the left hand side (resp. the right hand side) of the second hexagon relation (3.4) for (m, f).
Thus (︁

f̂
−1
σ2m̂+1
2 f̂ σ2m̂+1

1

)︁
(N) =

(︁
σ2σ1x

−m̂
23 cm̂ f̂

)︁
(N). (5.8)

Since N ≤ L, identities (5.7) and (5.8) imply that(︁
σ2m̂+1
1 f̂

−1
σ2m̂+1
2 f̂

)︁
(L) =

(︁
f̂
−1
σ1σ2 x

−m̂
12 cm̂

)︁
(L).(︁

f̂
−1
σ2m̂+1
2 f̂ σ2m̂+1

1

)︁
(L) =

(︁
σ2σ1x

−m̂
23 cm̂ f̂

)︁
(L).

We proved that the pair (m̂, f̂) belongs to ˆ︁Z × [ˆ︁F2, ˆ︁F2]
top. cl. and satisfies hexagon relations (2.9) and

(2.10).

Thus the assignment T̂ ↦→ (m̂, f̂) defines a map

Θ : lim(ML) → ˆ︂GTgen,mon , (5.9)

where ˆ︂GTgen,mon is the monoid defined in Section 2.2 (see Proposition 2.4).

Let us prove that Θ is a homomorphism of monoids. For this purpose, we consider N ∈ NFIisolatedPB3
(B3),

T̂ 1, T̂ 2 ∈ lim(ML) and set

(m̂1, f̂1) := Θ(T̂ 1), (m̂2, f̂2) := Θ(T̂ 2), (5.10)

m̂ := 2m̂1m̂2 + m̂1 + m̂2, f̂ := f̂1Em̂1,f̂1
(f̂2). (5.11)
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Let (m1, f1) ∈ Z×F2 (resp. (m2, f2) ∈ Z×F2) be a pair that represents the GT-shadow T̂ 1(N) ∈ GT(N)
(resp. the GT-shadow T̂ 2(N) ∈ GT(N)) and

m := 2m1m2 +m1 +m2, f := f1Em1,f1(f2), (5.12)

i.e. the pair (m, f) represents the GT-shadow T̂ 1 • T̂ 2(N).

To prove the compatibility of Θ with the multiplications in lim(ML) and ˆ︂GTgen,mon, we need to show
that

m̂(Nord) = m+NordZ . (5.13)

and
f̂(NF2) = fNF2 . (5.14)

Equation (5.13) is clearly satisfied.

As for (5.14), since ˆ︁PNF2
: ˆ︁F2 → F2/NF2

is a group homomorphism and ˆ︁PNF2
(f̂1) = f1NF2

, we need to
show that ˆ︁PNF2

(︁
Em̂1,f̂1

(f̂2)
)︁

= Em1,f1(f2)NF2
. (5.15)

This identity was already established in a more general case in the proof of Theorem 4.4 (see (4.16)).
It is easy to see that Θ sends the identity element of the group lim(ML) to the identity element of the

monoid ˆ︂GTgen,mon.

Since Θ : lim(ML) → ˆ︂GTgen,mon is a homomorphism of monoids and lim(ML) is a group, Θ(lim(ML))
is a subset of invertible elements of the monoid ˆ︂GTgen,mon. Thus Θ is a group homomorphism from lim(ML)
to ˆ︂GTgen.

It is clear that
Θ ◦Ψ = idˆ︂GTgen

and Ψ ◦Θ = idlim(ML),

i.e. Θ is indeed the inverse of Ψ.
To prove the continuity of Θ, we consider it as the map from lim(ML) to the topological space ˆ︁Z × ˆ︁F2

and denote by Pˆ︁Z (resp. Pˆ︁F2
) the projection ˆ︁Z × ˆ︁F2 → ˆ︁Z (resp. ˆ︁Z × ˆ︁F2 → ˆ︁F2). We need to show that the

maps Pˆ︁Z ◦Θ : lim(ML) → ˆ︁Z and Pˆ︁F2
◦Θ : lim(ML) → ˆ︁F2 are continuous.

For a positive integer K, we choose N ∈ NFIisolatedPB3
(B3) such that K|Nord. Since the map

ˆ︁PK ◦ Pˆ︁Z ◦Θ : lim(ML) → Z/KZ

factors through the continuous map lim(ML) → Z/NordZ, the composition ˆ︁PK ◦Pˆ︁Z ◦Θ is continuous. Hence

the composition Pˆ︁Z ◦Θ : lim(ML) → ˆ︁Z is continuous.

Similarly, for H ∈ NFI(F2), we choose N ∈ NFIisolatedPB3
(B3) such that NF2

≤ H. Since the map

ˆ︁PH ◦ Pˆ︁F2
◦Θ : lim(ML) → F2/H

factors through the continuous map lim(ML) → F2/NF2
, the composition ˆ︁PH ◦Pˆ︁F2

◦Θ is continuous. Hence

the composition Pˆ︁F2
◦Θ : lim(ML) → ˆ︁F2 is continuous.

Since both maps Pˆ︁Z ◦ Θ : lim(ML) → ˆ︁Z and Pˆ︁F2
◦ Θ : lim(ML) → ˆ︁F2 are continuous, so is the map

Θ : lim(ML) → ˆ︁Z× ˆ︁F2.

Now it is easy to see that Θ : lim(ML) → ˆ︂GTgen is a homeomorphism. Indeed, Θ is a continuous

bijection from the compact topological space lim(ML) to a Hausdorff space ˆ︂GTgen. Thus Θ (as well as Ψ)
is homeomorphism.

Theorem 5.2 is proved. □

Remark 5.3 As we mentioned in Remark 2.7, it is not obvious that ˆ︂GTgen is a topological group with

respect to the subset topology coming from ˆ︁Z × ˆ︁F2. However, since lim(ML) is obviously a topological

group, Theorem 5.2 implies that ˆ︂GTgen is indeed a topological group with respect to the subset topology

coming from ˆ︁Z× ˆ︁F2.
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Corollary 5.4 Let N ∈ NFIPB3(B3). A GT-shadow [m, f ] ∈ GT(N) is genuine if and only if [m, f ] belongs
to the image of the map

RK,N : GT(K) → GT(N)

for every K ∈ NFIN(B3).

Proof. If [m, f ] ∈ GT(N) is genuine, then [m, f ] obviously belongs to the image of the map RK,N : GT(K) →
GT(N) for every K ∈ NFIN(B3).

Thus it remains to prove the “if” implication.
For K ∈ NFIN(B3), we set

F(K) := R−1
K,N([m, f ]) ⊂ GT(K).

Due to the given condition on [m, f ], the set F(K) is non-empty for every K ∈ NFIN(B3).
Property (5.3) implies that the assignment K ↦→ F(K) upgrades to a functor from the poset NFIN(B3) to

the category of finite sets (since GT(K) is finite, so is R−1
K,N([m, f ])). Indeed, if H,K ∈ NFIN(B3) and H ≤ K,

then RH,K(F(H)) ⊂ F(K). So we set

F(H → K) := RH,K

⃓⃓
F(H)

: F(H) → F(K).

Since F(K) is a finite non-empty set for every K ∈ NFIN(B3), [27, Proposition 1.1.4] implies that lim(F)
is non-empty.

Taking an arbitrary element in lim(F) and evaluating it at elements of the poset NFIN(B3)∩NFIisolatedPB3
(B3),

we get an element (m̂, f̂) ∈ ˆ︂GTgen
∼= lim(ML) such that

PRN(m̂, f̂) = [m, f ].

Thus the GT-shadow [m, f ] is indeed genuine. □

5.1 Simplified hexagon relations in the profinite setting

In this section, we prove that

Proposition 5.5 The group ˆ︂GTgen (see Definition 2.5) is isomorphic to the group ˆ︂GT0 introduced in [12,
Section 0.1].

Proof. According to [12, Section 0.1], ˆ︂GT0 consists of elements (λ̂, f̂) ∈ ˆ︁Z× × [ˆ︁F2, ˆ︁F2]
top. cl. for which the

pair (m̂, f̂) :=
(︁
(λ̂ − 1)/2, f̂

)︁
∈ ˆ︁Z × [ˆ︁F2, ˆ︁F2]

top. cl. satisfies relations (2.26), (2.27) and the endomorphism

Em̂,f̂ of ˆ︁F2 is invertible. In fact, the authors of [12] identify elements (λ̂, f̂) of ˆ︂GT0 with the corresponding

automorphisms Em̂,f̂ of ˆ︁F2 and this is how they get the group structure on ˆ︂GT0.

Let us start with an element (λ̂, f̂) ∈ ˆ︂GT0 and consider the corresponding pair

(m̂, f̂) :=
(︁
(λ̂− 1)/2, f̂

)︁
∈ ˆ︁Z× [ˆ︁F2, ˆ︁F2]

top. cl. .

Relations (2.26), (2.27) imply that, for every N ∈ NFIPB3(B3), the pair

(m+NordZ, fNF2) :=
(︁ ˆ︁PNord

(m̂), ˆ︁PNF2
(f̂)

)︁
satisfies relations (3.10) and (3.11). In addition, we have fNF2

∈ [F2/NF2
,F2/NF2

].

Thus Proposition 3.4 implies that, for every N ∈ NFIPB3(B3), the pair (m+NordZ, fNF2) :=
(︁ ˆ︁PNord

(m̂), ˆ︁PNF2
(f̂)

)︁
satisfies relations (3.3), (3.4). Since NFIPB3

(B3) is a cofinal subposet of NFI(B3), we conclude that the pair

(m̂, f̂) satisfies hexagon relations (2.9) and (2.10).

Thus (m̂, f̂) belongs to the submonoid ˆ︂GTgen,mon and we need to show that the element (m̂, f̂) is invert-
ible.

For this purpose we set

k̂ := −(2m̂+ 1)−1m̂, ĝ := E−1

m̂,f̂
(f̂

−1
). (5.16)
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A direct computation shows that
(m̂, f̂) • (k̂, ĝ) = (0, 1 ˆ︁F2

).

Therefore Em̂,f̂ ◦ Ek̂,ĝ = id ˆ︁F2
and hence

Ek̂,ĝ = E−1

m̂,f̂
(5.17)

Using (5.16) and (5.17), we get

2k̂m̂+ k̂ + m̂ = 0,

ĝ Ek̂,ĝ(f̂) = ĝ E−1

m̂,f̂
(f̂) = E−1

m̂,f̂
(f̂

−1
)E−1

m̂,f̂
(f̂) = E−1

m̂,f̂
(1 ˆ︁F2

) = 1 ˆ︁F2
.

Thus the identity (k̂, ĝ) • (m̂, f̂) = (0, 1 ˆ︁F2
) is also satisfied and the element (m̂, f̂) of the monoid (ˆ︁Z× ˆ︁F2, •)

is indeed invertible.
Since f̂ ∈ [ˆ︁F2, ˆ︁F2]

top. cl., the second equation in (5.16) and the continuity of the automorphism E−1

m̂,f̂

imply that ĝ ∈ [ˆ︁F2, ˆ︁F2]
top. cl.. Thus it remains to prove that the pair (k̂, ĝ) satisfies hexagon relations (2.9),

(2.10).

Let us rewrite the right hand side of (2.10) for (k̂, ĝ) as follows:

σ2σ1x
−k̂
23 c

k̂ĝ = ∆σ
−(2k̂+1)
2 ck̂ĝ.

Applying Tm̂,f̂ to the right hand side of (2.10) for (k̂, ĝ) and using (2.12), (2.13), (2.19), we get

Tm̂,f̂ (σ2σ1x
−k̂
23 c

k̂ĝ) = Tm̂,f̂ (∆σ
−(2k̂+1)
2 ck̂ĝ) =

∆cm̂f̂ f̂
−1
σ
−(2m̂+1)(2k̂+1)
2 f̂ c(2m̂+1)k̂f̂

−1
= ∆σ−1

2 = σ2σ1.

Thus
Tm̂,f̂ (σ2σ1x

−k̂
23 c

k̂ĝ) = σ2σ1 . (5.18)

Applying Tm̂,f̂ to the left hand side of (2.10) for (k̂, ĝ), we get

Tm̂,f̂ (ĝ
−1σ2k̂+1

2 ĝ σ2k̂+1
1 ) = Em̂,f̂ (ĝ)

−1f̂
−1
σ
(2m̂+1)(2k̂+1)
2 f̂Em̂,f̂ (ĝ)σ

(2m̂+1)(2k̂+1)
1 = σ2σ1 . (5.19)

Since Tm̂,f̂ is an automorphism of ˆ︁B3, identities (5.18) and (5.19) imply that

ĝ−1σ2k̂+1
2 ĝ σ2k̂+1

1 = σ2σ1x
−k̂
23 c

k̂ĝ.

Thus the pair (k̂, ĝ) satisfies (2.10).

Using the similar argument, one can show that the pair (k̂, ĝ) also satisfies (2.9).

We proved that the pair (m̂, f̂) belongs to the group ˆ︂GTgen.

Let (m̂, f̂) ∈ ˆ︂GTgen, i.e. (m̂, f̂) is an invertible element of the monoid ˆ︂GTgen,mon. Let us prove that the
pair

(λ̂, f̂), λ̂ := 2m̂+ 1

belongs to the group ˆ︂GT0.
Relations (2.9) and (2.10) imply that, for every N ∈ NFIPB3

(B3), the pair

(m+NordZ, fNF2
) :=

(︁ ˆ︁PNord
(m̂), ˆ︁PNF2

(f̂)
)︁

(5.20)

satisfies hexagon relations (3.3) and (3.4) modulo N. In addition, fNF2
∈ [F2/NF2

,F2/NF2
].

Thus Proposition 3.4 implies that, for every N ∈ NFIPB3
(B3), the pair in (5.20) satisfies relations (3.10),

(3.11).
Due to Proposition 5.1, for every H ∈ NFI(F2), there exists N ∈ NFIPB3(B3) such that NF2 ≤ H. Thus the

above observation about (3.10) and (3.11) implies that the pair (m̂, f̂) satisfies relations (2.26) and (2.27).
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Since f̂ ∈ [ˆ︁F2, ˆ︁F2]
top. cl. and λ̂ = 2m̂ + 1 is a unit in the ring ˆ︁Z (see Remarks 2.2, 2.9), it remains to

show that the endomorphism Em̂,f̂ is invertible. This is an obvious consequence of the second statement of

Proposition 2.4. Indeed, if φ : M → M̃ is a homomorphism of monoids, the restriction of φ to the group

M× of invertible elements of M gives us a group homomorphism M× → M̃
×
.

We established a bijection between the set ˆ︂GT0 (defined in [12, Section 0.1]) and the set ˆ︂GTgen. It remains

to prove that this bijection is compatible with the group structures on ˆ︂GT0 and ˆ︂GTgen. Since the group

structure on ˆ︂GT0 is obtained by identifying elements (λ̂, f̂) of ˆ︂GT0 with the corresponding automorphisms

Em̂,f̂ of ˆ︁F2, the desired property follows from the second statement of Proposition 2.4.
Proposition 5.5 is proved. □

Remark 5.6 Relations (2.26) and (2.27) may be interpreted as cocycle conditions and this interpretation
was explored successfully in [20].

A Selected statements related to profinite groups

In this appendix, we prove several statements related to profinite groups. These statements are often used
in articles about the profinite version of the Grothendieck-Teichmueller group. However, it is hard to find
proofs of these statements in the literature.

Let J be a directed poset and F be a functor from J to the category of finite groups. For k1, k2 ∈ J ,
k1 ≤ k2 we set θk1,k2 := F(k1 → k2).

It is convenient to identify elements of the product∏︂
k∈J

F(k) (A.1)

with functions
f : J →

⨆︂
k∈J

F(k) (A.2)

such that f(k) ∈ F(k), ∀ k ∈ J .
Then lim(F) consists of functions (A.2) such that

• f(k) ∈ F(k), ∀ k ∈ J and

• θk1,k2(f(k1)) = f(k2), ∀ k1, k2 ∈ J , k1 ≤ k2.

For k ∈ J , ηk denotes the standard projection from lim(F) to F(k), i.e.

ηk(f) := f(k).

We consider the product space (A.1) with the standard product topology and we equip lim(F) with
the corresponding subset topology. Let us also recall [27, Proposition 1.1.3] that, as the topological space,
lim(F) is compact and Hausdorff. It is known [27, Section 1.1] that every profinite group is lim(F) for a
functor F from a directed poset to the category of finite groups.

For every group G, the poset NFI(G) is clearly directed and the assignments

N ↦→ G/N, θK,N := PK,N : G/K → G/N, K,N ∈ NFI(G), K ≤ N

define a functor FG from NFI(G) to the category of finite groups. The profinite completion ˆ︁G of G is the
limit lim(FG) of this functor.

As we mentioned above, it is convenient to identify elements ĝ of ˆ︁G with functions

ĝ : NFI(G) →
⨆︂

N∈NFI(G)

G/N

such that
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• ĝ(N) ∈ G/N, ∀ N ∈ NFI(G) and

• PK,N

(︁
ĝ(K)

)︁
= ĝ(N), ∀ K,N ∈ NFI(G), K ≤ N.

In this set-up, ηN := ˆ︁PN.
We denote by j the standard group homomorphism G→ ˆ︁G defined by the formula

j(g)(N) := gN, N ∈ NFI(G).

Recall [27, Lemma 1.1.7] that, for every group G, the subgroup j(G) is dense in ˆ︁G. Moreover, the homo-

morphism j : G→ ˆ︁G is injective if and only if the group G is residually finite.

Lemma A.1 Let G be a group and j be the standard homomorphism G → ˆ︁G. For every group homomor-
phism φ from G to a profinite group H, there exists a unique continuous group homomorphism

φ̂ : ˆ︁G→ H

such that φ̂ ◦ j = φ.

Proof. Since H is a profinite group, there exists a directed poset J and a functor F from J to the
category of finite groups such that H = lim(F). For k ∈ J , we denote by ηk the standard continuous group
homomorphism from H to F(k).

For every k ∈ J , ηk ◦φ is a homomorphism from G to the finite group F(k). Hence ker(ηk ◦φ) is a finite
index normal subgroup of G. We denote this subgroup by Nk,

Nk := ker
(︁
G

ηk◦φ−→ F(k)
)︁
.

It is easy to see that the formula
φk(gNk) := ηk ◦ φ(g) (A.3)

defines a group homomorphism from the finite group G/Nk to the finite group F(k).
Let us also observe that, if k1, k2 ∈ J and k1 ≤ k2 then Nk1

≤ Nk2
and the diagram

G/Nk1 F(k1)

G/Nk2 F(k2)

φk1

PNk1
,Nk2

φk2

θk1,k2

(A.4)

commutes. Here θk1,k2 := F(k1 → k2).
We claim that the formula

(φ̂(ĝ))(k) := φk

(︁
ĝ(Nk)

)︁
, k ∈ J (A.5)

defines a continuous group homomorphism φ̂ from ˆ︁G to H.
Indeed, it is obvious that, for every k ∈ J and every ĝ ∈ ˆ︁G, (φ̂(ĝ))(k) ∈ F(k). Thus φ̂(ĝ) belongs to the

product ∏︂
k∈J

F(k) .

The commutativity of the diagram in (A.4) implies that φ̂(ĝ) satisfies the condition

θk1,k2

(︁
(φ̂(ĝ))(k1)

)︁
= (φ̂(ĝ))(k2)

whenever k1 ≤ k2. Thus φ̂(ĝ) belongs to H ⊂
∏︂
k∈J

F(k).

It is easy to see that φ̂ is indeed a group homomorphism ˆ︁G→ H.
Equation (A.5) implies that

ηk ◦ φ̂ = φk ◦ ˆ︁PNk
.
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Hence the composition ηk ◦ φ̂ is continuous for every k ∈ J .
Thus we proved that equation (A.5) indeed defines a continuous group homomorphism from ˆ︁G to H.
Using (A.3), we see that, for every k ∈ J and g ∈ G, we have(︁

φ̂ ◦ j(g)
)︁
(k) = φk(gNk) = ηk(φ(g)).

Thus φ̂ ◦ j = φ.
Let ψ : ˆ︁G→ H be a continuous group homomorphism such that ψ ◦ j = φ. Since φ̂ ◦ j = φ, we have

ψ
⃓⃓
j(G)

= ˆ︁φ⃓⃓
j(G)

. (A.6)

Since j(G) is dense in ˆ︁G and H is Hausdorff, identity (A.6) implies that ψ = φ̂. Thus the uniqueness of
φ̂ is established and the lemma is proved. □

Corollary A.2 Let G, H be groups and j be the standard homomorphism G → ˆ︁G. For every group homo-
morphism φ : G→ ˆ︁H, there exists a unique continuous group homomorphism

φ̂ : ˆ︁G→ ˆ︁H
such that φ̂ ◦ j = φ. If γ is an automorphism of G then ˆ︃j ◦ γ is a continuous automorphism of ˆ︁G.
Proof. The first statement of the corollary follows Lemma A.1.

Let γ ∈ Aut(G) and κ := γ−1. By abuse of notation, we denote by γ̂ (resp. κ̂) the continuous group

homomorphism ˆ︁G→ ˆ︁G corresponding to j ◦ γ (resp. to j ◦ κ).
For γ̂ and κ̂, we have

γ̂ ◦ j = j ◦ γ, κ̂ ◦ j = j ◦ κ.

Using these identities, we get
γ̂ ◦ κ̂ ◦ j = γ̂ ◦ j ◦ κ = j ◦ γ ◦ κ = j

and
κ̂ ◦ γ̂ ◦ j = κ̂ ◦ j ◦ γ = j ◦ κ ◦ γ = j.

Since γ̂ ◦ κ̂
⃓⃓
j(G)

= id
⃓⃓
j(G)

, κ̂ ◦ γ̂
⃓⃓
j(G)

= id
⃓⃓
j(G)

, j(G) is dense in ˆ︁G and ˆ︁G is Hausdorff, we conclude that

γ̂ ◦ κ̂ = id ˆ︁G, κ̂ ◦ γ̂ = id ˆ︁G.
Thus γ̂ is invertible and κ̂ = γ̂−1. □

Let us prove that

Proposition A.3 For every N ∈ NFI(G), the kernel of the homomorphism ˆ︁PN : ˆ︁G→ G/N is isomorphic to

the profinite completion ˆ︁N of N.

Proof. For every L ∈ NFI(N), the normal core CoreG(L) of L in G is an element of NFIN(G). Therefore the
subposet NFIN(G) of NFI(N) is cofinal and hence the limit of the functor

H ↦→ N/H (A.7)

from NFIN(G) to the category of finite groups is isomorphic to ˆ︁N (see [27, Lemma 1.1.9]).
Let

K := ker
(︁ ˆ︁G ˆ︁PN−→ G/N

)︁
.

For every H ∈ NFIN(G), the restriction of the continuous homomorphism ˆ︁PH : ˆ︁G → G/H gives us a
continuous homomorphism ˆ︁PH

⃓⃓
K
: K → N/H.
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Moreover, for all H1,H2 ∈ NFIN(G) with H1 ≤ H2, the diagram

K

N/H1 N/H2

ˆ︁PH1
ˆ︁PH2

PH1,H2

commutes.
Hence we get a continuous group homomorphism γ : K → ˆ︁N, where ˆ︁N is identified with the limit of

functor (A.7). It is not hard to see that γ is a bijection. Since K is compact (K is a closed subset of the

compact space ˆ︁G) and γ is a continuous bijection from a compact space K to the Hausdorff space ˆ︁N, γ is a

homeomorphism. Since γ is also an isomorphism of groups, we proved that the topological groups K and ˆ︁N
are isomorphic. □
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