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Abstract

Let B3 be the Artin braid group on 3 strands and PBj be the corresponding pure braid group. In
this paper, we construct the groupoid GTSh of GT-shadows for a (possibly more tractable) version GTg
of the Grothendieck-Teichmueller group GT introduced in paper [12] by D. Harbater and L. Schneps. We
call this group the gentle version of GT and denote it by GTgen The objects of GTSh are finite index
normal subgroups N of B3 satisfying the condition N < PB3. Morphisms of GTSh are called GT-shadows
and they may be thought of as approximations to elements of GTgen. We show how GT-shadows can be
obtained from elements of GT gen and prove that GT gen 18 isomorphic to the limit of a certain functor
defined in terms of the groupoid GTSh. Using this result, we get a criterion for identifying genuine
GT-shadows.

1 Introduction

Let ﬁg be the profinite completion of the free group Fg := <x y) on two generators and 7 be the profinite
completion of the ring of integers. The profinite version GT of the Grothendieck-Teichmueller group [6
Section 4] is one of the most mysterious objects in mathematics. It consists of pairs (rh, f) € 7 x Fg
satisfying the hexagon relations:

N P R N “e1 .
O_%erlf U§m+lf _ f 010 a;2mcm , (11)
Nl e R A
f agmﬂf 02’”“ = Ugolagzmcm 7, (1.2)
the pentagon relation:
Flxaz, w34) f(T12713, Toaw3a) f (12, Ta3) = f(T12, To3Toa) f(T13T03, T34) (1.3)

and the invertibility condition. In relations and (| ., o1 and o9 are the standard generators of the
Artin braid group Bs, ¢ := (010901)% and F2 is con51dered as the subgroup of B3, namely, F2 is identified
with the proﬁnlte completlon of the subgroup (0%,03) of Bs.

In relation , T12 = 0%, a3 := 03, ... are the standard generators [I7, Section 1.3] of the pure
braid group PB4 on 4 strands and f”(xgg,m34) }(x12x13,x24x34) f(xu,xgg) .. are the images of } with
respect to natural (continuous) group homomorphlsms F2 — PB4, e.g. f(xlgxlg,x24x34) is the 1mage of
the continuous group homomorphism F2 — PB4 which sends z (resp. y) to z1a2x13 € PBy < PB4 (resp.
Togxzs € PBy < PB4)

The multiplication on GT can be defined by an explicit formula (see equatlons . or [28] Section
1.1]) or by identifying elements of GT with continuous automorphisms of Fy (see [12 Introductlon])

The group GT and its variants are a part of an active area of researc U [19], [20], [21], [24], [25], [26], [28]
and this research is often motivated by fruitful links between operads, moduli of curves and the geometric
action of the absolute Galois group Gg of the field of rational numbers [I], [3], [, [7], [12], [13], [15], [18],
[22].

1The lists of references in this paragraph are far from complete.



In paper [5], the authors constructed an infinite groupoid closely related to the group GT. The objects
of this groupoid are finite index normal subgroups N of the Artin braid group By satisfying the condition
N < PB4. The morphisms of this groupoid are called GT-shadows. In addition to other things, the authors
of [5] proved that GT is isomorphic to the limit of a certain functor defined in terms of the groupoid of
GT-shadows (see [5l, Section 3]). In this respect, certain GT-shadows are approximations of elements of the
group GT.

The purpose of this paper is to develop a version of the group01d of GT shadows for the gentle version
GT gen of the Grothendieck- Telchmueller group GT. Just as GT the group GTgm consists of pairs (n, f)

7 x F2 satisfying hexagon relations , . the invertibility condition and the following consequence of

pentagon relation
f c [FQ, Fg]tol)' cl. .

For more details, please see Subsection It is possible that the group GT gen is more tractable and it is
often denoted by GT o (see, for example, [12], Section 0.1]). The group GT gen Obviously contains GT as a
subgroup.

The idea of approximating elements of GT and GT gen Was originally suggested in paper [1I] by D.
Harbater and L. Schneps. We would also like to mention papers [9] and [I0] in which P. Guillot developed

and studied similar constructions for the group GTgey,. Since P. Guillot used a very different definition of

GT gen, it s not easy to compare the groupoid GTSh developed in this paper to the constructions presented
n [9], [1I0].

The groupoid GTSh in a nutshell. Our starting point is the poset NFlpp,(Bs3) of finite index normal
subgroups N of B3 such that N < PBg, i.e.

NFlpBS(Bg, = {N < B3 I |B3 N‘ < oo, N PBg} (14)

Since PB3 (and Bg) is residually finite, the poset NFlpp,(Bs) is infinite.

For N € NFlpp,(Bs3), we denote by Ny.q the least common multiple of the orders of elements 12N, 23N
and ¢cN in PB3/N. Moreover, we set Np, := Fo NN, where Fy is identified with the subgroup (12, z23) of
PBs.

For N € NFlpp, (B3), we consider pairs (m, f) € Z x Fa that satisfy the hexagon relations modulo N:

oIt f=l2mHtl N = f 1o gpa "™ N, (1.5)
Flo2mHl g o2 IN = goiayme™ N, (1.6)

Due to Proposition for every such pair (m, f), the formulas
T f(01) = 2m+1 N, T, f(02) = f_10§m+1f N (1.7)

define a group homomorphism T, ¢ : B3 — Bs/N.
A GT-shadow with the target N is a pair

(m + ZVOrdZ7 fNFz) S Z/NordZ X [FQ/NF,‘” FQ/NF,‘,]
that satisfies the following conditions:

e relations (|1.5), (1.6) hold,

e 2m + 1 represents a unit in Z/NyqZ, and

e the group homomorphism T, ; : B3 — Bs/N is onto.

We denote by GT(N) the set of GT-shadows with the target N and by [m, f] the GT-shadow represented by
a pair (m, f) € Z x Fa. The set GT(N) is finite since it is a subset of a finite set.



Using equation (3.19)), it is not hard to see that, for every [m, f] € GT(N), ker(T,,, ) belongs to the poset
NFlpg, (Bs). Moreover, since Ty, ¢ is onto, it induces an isomorphism of the quotient groups:

TioP : Bs/K — By/N,

where K := ker(Ty, #).

The set Ob(GTSh) of objects of the groupoid GTSh is the poset NFlpp,(B3). Moreover, for K,N €
NFlpp, (Bs), the set GTSh(K,N) of morphisms from K to N is the subset of GT-shadows [m, f] € GT(N) for
which K = ker(T,, 7).

The composition of morphisms [my, fi] € GTSh(N®) NW)| [my, fo] € GT(N®) N®) is defined by the
formula

[m1, fi] o [me, f2] :== 2mimg + m1 + ma, fiEm, 1 (f2)],

where E,,, s, is the endomorphism of Fa defined by the equations E,, f (x) = z*™* E. ¢ (y) =
frty?mFL ) (for more details, see Theorem (3.10)).

It is important that Ob(GTSh) is a poset. In Subsection we show that, if N < H, N,H € NFlpp, (B3),
then we have a natural reduction map:

R : GT(N) = GT(H). (1.8)

In Section |5| this map plays an important role in connecting the groupoid GTSh to the group GT gen-

Although the groupoid GTSh is infinite, the connected component GTShconn(N) of an object N €
NFlpp, (Bs) is always a finite groupoid. An object N of the groupoid GTSh is called isolated if its connected
component GTShcon, (N) has exactly one object. In this case, GTSh(N,N) = GT(N) is a (finite) group and
the groupoid GTShconn(N) may be identified with this group. In Subsection we show that the subposet
NFI%SglsatEd(Bg) C NFlpp, (B3) of isolated objects of GTSh is cofinal, i.e., for every N € NFlpp, (B3), there ex-
ists N € NFIiPs]gi“ted(Bg) such that N < N. More precisely, due to Proposition for every N € NFlpgp, (B3),
the intersection of all objects of the connected component GTShconn(N) is an isolated object N® of GTSh
such that N® < N.

The group GT gen Versus the groupoid GTSh. In Section we define a natural action of the group GT gen

on the poset NFlpp, (Bs). This allows us to introduce the transformation groupoid GT i,eFT and a functor
PR : GTyg — GTSh.

More precisely, to every element (rh, f) € (/fl'gen and every N € NFlpgp, (B3), we assign a GT-shadow [m, f]n
with the target N, and the formula

N ker (T, z)

defines a right action of é?l'gen on the poset NFlpp,(Bs3). We can think of the GT-shadow [m, f]n as an
approximation of the element (1, f). For this reason, the functor 2% is called the approximation functor.
GT-shadows obtained in this way from elements of GT, are called genuine and all the remaining GT-
shadows (if any) are called fake.

In Section , we show how the topological group GT g, can be reconstructed from the groupoid GTSh.
We observe that, for every N € NFI}fBoiated(Bg), GT(N) is a finite group, and the reduction map (1.8)) allows
us to upgrade the assignment

isolated
N — GT(N), N € NFIpE."““(B3)

isolated

to a functor from the poset NFIFE.**““(B3) to the category of finite groups. We call it the Main Line

functor and denote it by ML.
—=gen
Using the approximation functor % : GTZH — GTSh, it is easy to construct a natural group homo-
morphism

—~

U : GTyen — lim(ML). (1.9)



The main result of this paper is Theorerg\ which states that ¥ is an isomorphism of groups and a
homeomorphism of topological spaces. (GTge, is considered with the subset topology coming from the
topological space 7 x ﬁg)

Thanks to Theorem we have the following criterion for identifying genuine GT-shadows: a GT-
shadow [m, f] € GT(H) is genuine if and only if [m, f] belongs to the image of the reduction map Ry :
GT(N) — GT(H) for every N € NFlpp,(B3) such that N < H (see Corollary [5.4). Equivalently, a GT-shadow
[m, f] € GT(H) is fake if and only if there exists N € NFlpp, (B3) such that N < H and [m, f] does not belong
to the image of the reduction map Ry n : GT(N) — GT(H).

In recent paper [2], the authors considered a subposet Dih of NFlpgp, (B3) related to the family of dihedral
groups and they called Dih the dihedral poset. In [2], it was proved that every element of the dihedral
poset is an isolated object of the groupoid GTSh and gave an explicit description of the (finite) group GT(K)
for every K € Dih. In [2], the authors also proved that, for every pair N,H € Dih with N < H, the natural
map GT(N) — GT(H) is onto. This result implies that one cannot find an example of a fakeﬂ GT-shadow
using only the dihedral poset Dih.

Organization of the paper. In Sectlonl we introduce the group GTgm We also recall that GTgen comes

with natural injective homomorphisms to the group of continuous automorphisms of F2 and to the group of
continuous automorphisms of Bg
Section [3| I is the core of this paper In this section, we introduce the groupoid GTSh of GT-shadows (for

GTgen) define the reduction map (see . or - discuss connected components of GTSh and introduce
isolated objects of GTSh.

In Section (4| we introduce the action of the group GT on the poset NFlpp,(Bs) and define the approxi-

mation functor ZZ from the transformation groupoid GT EEFT to GTSh. The GT-shadows that belong to the
image of X are called genuine.
In Sectlon [l we introduce the Main Line functor ML and prove that lim(ML) is isomorphic to the

group GTgen (see Theorem . In this section, we also prove a criterion for 1dent1fy1ng genuine GT-shadows

see Corollary |5.4]) and show that the group GT en 18 isomorphic to the group GTO introduced in [12] Section
g

0.1] (see Proposition
Appendix [A] is devoted to selected statements about profinite groups.

1.1 Notational conventions

For a set X with an equivalence relation and a € X we will denote by [a] the equivalence class which contains
the element a.

The notation B,, (resp. PB,,) is reserved for the Artin braid group on n strands (resp. the pure braid
group on n strands). S,, denotes the symmetric group on n letters. We denote by o1 and o9 the standard
generators of Bs. Furthermore, we set

T1p =02, To3 := 03, A = 0109071, c:=A%.
We recall [I7, Section 1.3] that the element ¢ belongs to the center Z(PBj3) of PB3 (and the center Z(B3) of
Bs). Moreover, Z(B3) = Z(PB3) = (c¢) X Z.
We observe that
1A = Ao, o2 A = Aoy, aflA :Aa;l7 a;lA: Aafl. (1.10)

Using identities (1.10)) and ¢ = A2, it is easy to see that the adjoint action of By on PB3 is given on
generators by the formulas:

-1 _ -1 _ -1 _ -1, -1 —1 _ -1, -1
0121201 = 01 T1201 = T12, 01%2301 = Tg3 L9 C, 01 2301 = T19 To3 C, (111)

—1 —1,.—1 —1 1, -1 —1 —1
02T1205 = = T1g Lo C, 05 L1209 = To3 T1g C 09T930, = = 0, T30 = T3 . (1.12)

2At the time of writing, the authors of this paper do not know a single example of a fake GT-shadow.



Moreover,
A$12A71 = T23, A.’E23A71 = T12. (113)

It is known [I7), Section 1.3] that (12,223 ) is isomorphic to the free group Fa on two generators and we
tacitly identify Fy with the subgroup (12, x23) of PB3. Furthermore, PBj is isomorphic to Fa x (¢) [I7,
Section 1.3]. We often by x, v, z the elements 212, 293 and (z12793) "1, respectively, i.e.

— — 1,1
T = T12, Y = T23, zZ=Yy T .

We denote by 6 and 7 the automorphisms of Fy := (z,y) defined by the formulas
bx) =y, O(y) =, (1.14)

T(x) =y, 7Ty =yl (1.15)
By abuse of notation, we will use the same letters ¢ and 7 for the corresponding continuous automorphisms
of Fg, respectively. (See Corollary [A.2|in Appendix
For a group G, the notation |G, G} is reserved for the commutator subgroup of G. For a subgroup H < G,
the notation |G : H| is reserved for the index of H in G. For a normal subgroup H < G of finite index,
we denote by NFlg(G) the poset of finite index normal subgroups N in G such that N < H. Moreover,
NFI(G) := NFlg(G), i.e. NFI(G) is the poset of normal finite index subgroups of a group G. For a subgroup
H < G, Coreg(H) denotes the normal core of H in G, i.e.

Coreg(H) := m gHg L.
geG

For N € NFI(G), Py denotes the standard (onto) homomorphism
Pn: G — G/N. (1.16)

Moreover, for K € NFI(G) such that K < N, the notation Pk is reserved for the standard (onto) homomor-
phism
Pen: G/K = G/N. (1.17)

Every finite group/set is tacitly considered with the discrete topology.

For a group G, G denotes the profinite completion of G. If G is residually finite, then we tacitly identify
G with its image in G. For N € NFI(G), Py denotes the standard continuous group homomorphism

Pn: G — G/N. (1.18)

Let G be a residually finite group. Since every group homomorphism ¢ : G — H extends uniquely to a
continuous group homomorphism from Gto H (see Corollary in Appendix , we often use the same
symbol for this continuous group homomorphism G — H.

For a prime p, Z, denotes the ring of p-adic integers.

For a category C, the notation Ob(C) is reserved for the set of objects of C. For a,b € Ob(C), C(a,b)
denotes the set of morphisms in C from a to b. Every poset J is tacitly considered as the category with J
being the set of its objects; if j; < j2, then we have exactly one morphism j; — ja; otherwise, there are no
morphisms from j; to jo. A subposet J C J is called cofinal if V j € J 3 j € J such that j < j.

Notational quirks. Paper [5] develops the groupoid of GT-shadows for the original (profinite) version GT
of the Grothendieck-Teichmueller group [0, Section 4]. In consideration of paper [5], we should have denoted
the groupoid of GT-shadows for GT gen Dy GTShge,. However, we decided to omit the subscript “gen” to
s/i£r1plify the notation. This should not lead to a confusion because the main focus of this paper is the group

GTgen and the corresponding groupoid of GT-shadows. We should also mention that, paper [5] considers
GT-shadows [m, f] that may not satisfy the condition

fNF2 € [FQ/NF2,F2/NF2], (119)



and GT-shadows [m, f] satisfying are called charming. (In fact, in paper [5], the authors consider the
groupoid GTSh of GT-shadows for GT and the subgroupoid GTShY c GTSh of charming GT-shadows (for
GT ).) In this paper, we impose condition at an earlier stage. Hence we have only one groupoid of
GT-shadows for GT gen-
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2 The gentle version GT gen Of the Grothendieck-Teichmueller group

2.1 The monoid (2 X ﬁg,.)

To introduce GT gen, We denote by E 3 the following group homomorphism from Fs to ﬁg

(2) = 2™ B, ()= (2.1)

By m,f

m,f
where (i, f) € Z x Fy.

Due to Corollary from Appendix Eﬁz, 3 extends uniquely to a continuous endomorphism of ﬁg:

E,;: Fo = . (2.2)

By abuse of notation, we use the same symbol Em 3 for the extension of the homomorphism defined in .

Let (11, f1), (e, f3) € Z x Fy and

W= 2y i + e, fi= [1E, 5 (fa).
A direct computation shows that
Bty © Bty () = B, 3(@), Bty © Binslj, (y) = E;, ().

Hence, applying Corollary we conclude that

E =E, ;. (2.3)

.2 oF.
mi,f, Mo, fo

This motivates us to define the following binary operation e on Z x F,
(i1, f1) @ (g, f2) := (2nuring + iy + 1hg, }1E7h1,?1(}2) )- (2.4)
Let us prove that

Proposition 2.1 The set 7. x Py is a monoid with respect to the binary operation e (see (2.4) ) and the pair
(0, 1132) is the identity element of this monoid. Moreover, the assignment

(m7 }) = Emy}

defines a homomorphism of monoids Z x Fy — End(ﬁ‘g), where End(ﬁg) is the monoid of continuous endo-
morphisms of Fa.



Proof. Tt is easy to see that (0, 1132) is the identity element of the magma (2 X 132, o). So let us prove the

associativity of e. . A L
For (11, f1), (2, f2), (s, f3) € Z x Fa2, we have

(1, f1) @ (1o, £5)) @ (13, f3) = (2413 + G + 1123, §Eq,5(f3))

and
(1, F1) @ (Mg, ) @ (s, f3)) = (2 + iy + ];>}1Eml,}l(ﬁ))v

where (6179) = (mhﬁ) i (m%}z) and (l%ﬁ) = (m%}z) b (m37}3)~
q

Using ¢ := 2mmeo + M1 + Mo and k= 2moms + Mo + Mg, it is easy to see that

251 + § + s = 2k + My + k.

(2.5)

(2.6)

Using (2.3) and the fact that £, ; 7 is an endomorphism of f27 we can rewrite gEq@(}?)) as follows

9B44(f3) = FiEy; 3 (F2) Ey 3 0By 3 (F3) = hE, 5 (F2Ep, 5. (F3):

Thus QE;Z@,(]A”:;) = flEml 7, (h) and the associativity of e is proved.
Since E(),l§2 = idﬁ27 the last statement of the proposition follows from (2.3)).
Remark 2.2 It is easy to see that, if (1, f) = (1, }’1) o (Mo, fQ), then

2+ 1= (21 4+ 1)(2m2 + 1).

2.2 The monoid GT gen,mon. and the group GT gen

Let us denote by GT gen,mon the subset of 7 x I?‘g that consists of pairs
(’I’h, }) € z X [f‘Za f‘Q]top‘ t

satisfying the hexagon relations

. 1 N N ~—1 L
O_%m+1f 0§7n+1f —_ f 0109 xl_QmCm ,

A1 N N N A
f ngHf Ufmﬂ = 0901205 ¢ f.

Let us prove thatﬂ

Proposition 2.3 For every (m, }) € é'\l'gen,mon, the formulas

. 1 . ~
T, flo) =™ T, (o) = R

define a group homomorphism Tm} :Bs — ]§3 such that

T, 3(c) = Al

m

The homomorphism Tm} extends uniquely to a continuous endomorphism of Eg and

Ty le, = By

3See [28, Lemma 1].

(2.7)

(2.11)

(2.12)

(2.13)



Proof. We need to verify that

,
T, 3(01)T;, 3(02)T, 3(01) = Ty, 3(02)T;, 3(01)T;, 3(02) (2.14)
or equivalently
2m+1 f U§m+lfo_2m+l 2 f O_2m+1f0_2m+lf 0_2m+1f (2.15)

Applying to the left hand side of , we get
gml ]A‘flogm‘”'lf gl — 0102 e g2l = fﬁlAcm . (2.16)
To take care of the right hand side of we notice that, for every ¢ € Z,
AO‘% = ogA. (2.17)
Indeed, for every N € NFI(Bs), there exists ty € Z such that Py(Act) = Ac'™N and PulolA) = o AN.

Since Ao} = o5 A for every integer k, relation (2.17) holds.
Applying (2.9) to the right hand side of (2.15)) and using (2.17)), we get

f -1 2m+1 2m+1f 2m+1f f 2m+1

“n—1 P
03 ff owogxy e =

T
I ogm Aze™ = f U%mxz_gmAcm:f A"

Combining this result with (2.16]), we see that relation (2.15]) indeed holds.
Due to (2.16)), we have

T, (A) =] A (2.18)

Applying (2.10) to T, }(A) = m+1 I - 2m“f 02m+1 and using (2.17]), we see that

T, 3(A) = o7 gyoiagy ™ f = oF M Awg ™ f = Ac™ f (2.19)
Combining ([2.18) with (| -, we get
T, 3(c) = T;, 3(A)T;, 4(A) = mEFT ACT = 2t

Thus (2.12)) is proved.
The third statement of the proposition follows from Corollary and the proof of the last statement is
straightforward. O

Proposition 2.4 The subset a'gen,mon on X ﬁg s a submonoid of (i X 132, 0). The assignment
(M, f) = B, 5 (2.20)

defines an injective homomorphism of monoids from a'gemmon to the monoid of continuous endomorphisms
of Fo. Similarly, the assignment .
(i ) = Ty (221)

defines an injective homomorphism of monoids from GT gen mon to the monoid of continuous endomorphisms
Of B3 .



Proof. Let (mh }1)7 (m27 }2) € é-\rgen,mon and (Th, }) (mh fl) (m2a f2) )
Since E;,  is a continuous group homomorphism and fo € [Fa, Fy]tor-cl, E, %1(f2) also belongs to
[Fy, Fa]toP- <. Hence
fi=T1Eq, 3,(J2) € [Fa,Fo]toret

Let us prove that the pair (m, f) satisfies hexagon relations and -
Applying T);, 5 to the first hexagon relation for (ha, f5) and using identities (2.12)), (2.13)) we get

2 +1)(2iy +1 wy—15 1 (2ma+1)(2my+1) ] 5
oM (Fy) Ty oSN B () =
(2.22)
M1 1 om e —ma(2m1+1) m ™
m17f1(f2) Lop ™Mt f o™t 2y 2R i (2 1),

Using (2.7), the first hexagon relation for (7, f,) and (2.22)), we get
-1
2m“f o3 = F ovopayge™

Thus the pair (1, }’) satisfies .

Similarly, applying T}, 7, to the second hexagon relation for (g, f,), and using identities [212), @13),
the second hexagon relation for (M, }1) and , one can show that the pair (mh, j‘) also satisfies .

We proved that the subset GT gen,mon 15 closed with respect to the binary operation e.

It is easy to see that the pair (0, 1132) satisfies hexagon relations and . Thus the first statement
of the proposition is proved.

Due to the second statement of Proposition the assignment in is a homomorphism of monoids.
To prove that this homomorphism is injectiv will use Theorem B from paper [14] by W. Herfort and
L. Ribes.

IfE,

. E N then

N
R R ~el o N P N
gPmtl = gt fr P = fy P (2.23)

The first equation in implies that £2(2="1) = 1 and hence 2(ry —11) = 0. Since Z,, is an integral

domain for every prime p and 7 = H Z,, we conclude that 1 = 1hs.
p is prime

We set m := my1 = mo and w = }1};1 The second equation in implies that @ belongs to the
centralizer of y?"+1,

We consider the subgroup {y" : 7 € Z} < F, and notice that, for every m € Z, y?™ 1 is a non-trivial
element of {y tn e 2} Indeed, the component of 21 + 1 in Zs is a unit in Zy. Therefore, 2/ 4 1 cannot
be zero in Z and hence y?mtl £, R

Applying [14, Theorem B] to w € Cg, (y?>™*1), we conclude that w € {y" : 7 € Z}.

Since f,, fo € [Fa, F2]'P-< and the intersection {y™ : A € Z} N [Fa, Fy]tor- < is trivia we conclude that
w =1 and hence fg = }1.

We proved that the homomorphism of monoids GT gen,mon —> End(ﬁg) is injective.

To prove that the assignment in (2.21)) is a homomorphism of monoids, we need to show that,

Tong, =idg, (2.24)

and, for all (mq, }1), (1ha, fz) € é'\l'gm,m,m, we have

T.

ity © Do 7y = Do

(2.25)

4A similar statement was mentioned in [T2, Section 0.1] without a proof.
5To prove that the subgroup {y™ : # € Z} N [Fa, Fa]t°P- ¢l is trivial, consider homomorphisms v from Fa to finite groups
such that ¥ (z) =1



where (1, f) = (i, 1) ® (12, [).
Applying T, 3, ° T. 3 and T, j to the generators 01,09 of B3, we see that

a2, fo

T7?L17}1 OTTﬁz;fz Bs - Tm,}’Bs'

Since the maps T 1.t © Tm2 7s and T, j are continuous, they agree on a dense subset Bs of ]§3 and I§3
is Hausdorff, equation (2.25) holds.
The same argument works for ([2.24)).

The injectivity of the homomorphism GT gen,mon — End(ﬁg) follows from the injectivity of the homo-
morphism GT gen, mon — End(F2) and identity (2.13)). O

Definition 2.5 agen is the group of invertible elements of the monoid G/'\I'gemmon.

Remark 2.6 As far as we know, the group G/'\rgm was introduced in [12] and, in [12], it is denoted by GTo.
More precisely, GTg consists of elements (17, }) € Z x [Fay, Fy]tor-<l- satisfying

1) =13, (2.26)
2" " Py =1z, (2.27)

and the appropriate invertibility condition. Please see Section in which we prove that GT gen indeed
coincides with GT introduced in [I2, Introduction].

Remark 2.7 Since Z x F\g is naturally a topological space and é'\l'gen is a subset of Z x ﬁg, the set a'gen is

equipped with the subset topology. It is not obvious that GTgey, is a topological group with respect to this
topology. This statement follows easily from Theorem [5.2] proved in Section

Remark 2.8 Using [8, Theorem 6.2.4] (see also |5l Appendix A.3]), one can show that a'gen is a subgroup

of the group GT<3 of continuous automorphisms of the truncation PaB™ of the operad PaB.

Remark 2.9 It is easy to see that, for every (i, f) € é?rgm, the endomorphism E; 3 (resp. T, }) of Ty
(resp. ]§3) is invertible. Moreover, due to Proposition the assignments

(T’h, f) — Emjv (’ﬁl, }) - Tm,}

are injective group homomorphisms from GT gen to the group of continuous automorphisms of ﬁz and ]§3,
respectively. Due to Remark the formula

Xvir (112, f) 1= 20 + 1 (2.28)

defines a group homomorphism ;. : GT gen — ix, where Z* is the group of units of the ring 7. We call
Xvir the virtual cyclotomic character. Using the Thara embedding Ih : Gg — GT (see [I6], Section 1])
and the surjectivity of the cyclotomic character x : Gg — ix, one can show that the group homomorphism
Xoir a'gen 7% s surjective.

Remark 2.10 Let G be a profinite group with a dense finitely generated subgroup (e.g. G = fg) Due
to [23, Theorem 1.1], every endomorphism of G is continuous. Moreover, due to [23, Theorem 1.3], [G, G|

is a closed subgroup of G. In particular, [1/5‘\2, F\Q]tOp' e = [ﬁg,ﬁg]. However, in this paper, we do not use
Theorems 1.1 and 1.3 from [23].
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3 The groupoid GTSh
For every N € NFlpp,(B3), we set
Norg := lem(ord(z12N), ord(x23N), ord(¢N)) (3.1)

and
NF2 =NnN F2 . (32)

It is clear that Np, € NFI(F3).
We say that a pair (m, f) € Z x Fy satisfies the hexagon relations modulo N if

O_%?n-f—l f71057n+1f N _ f71010_2x1—27ncm N, (33)

floam T f o2 IN = opoya5yc™ fN. (3.4)

Since Norq is the least common multiple of the orders of the elements z12N, 293N, ¢N and Ny, < N, we see
that, if a pair (m, f) € Z x Fy satisfies (3.3)) and (3.4)), then so does the pair (m + tNyrq, fh) for any t € Z
and any h € Np,.

Definition 3.1 A GT-pair with the target N is a pair
(m + NoraZ, fNg,) € Z/NoraZ X Fo /Np, (3.5)
satisfying relations and . A GT-pair is called charming if
e 2m + 1 represents a unit in the ring Z/NoaZ and

o fNg, € [Fa/Ng,,Fa/Ng,], or equivalently the coset fNg, can be represented by an element in the
commutator subgroup [Fa,Fa] of Fa.

We denote by GT,,.(N) (resp. GT;?T(N)) the set of GT-pairs (resp. the set of charming GT-pairs) with the
target N. From now on, we denote by [m, f] the GT-pair represented by (m, f) € Z x Fs.

The importance of the hexagon relations is emphasized by the following proposition:

Proposition 3.2 For every [m, f] € GT,.(N), the formulas
T 5(01) i= oZmTIN, T, 5(02) = fle2m N
define a group homomorphism T, 5 : Bs — Bs/N.

Proof. Since Bs = (01,09 | 010201 = 020109 ), it suffices to verify that

T £(04) Ty (02)Ton 1 (01) £ T (02)To 1 (01) T (02): (3.6)
Using (3.3]), we rewrite the left hand side of (3.6) as
(o1 Loy o TN = T ronay ™ o TN = ST ACTN, (3.7)

where A := 010907.
Using (3.3]) once again, we rewrite the right hand side of (3.6) as

f7105m+1f(U%m+1f710'§m+1f) N — f710§m+1f(f710_102x172mcm)N _
flodmoyo1002, " ¢™ N = fros™ Az, ¢™ N = f~1Ac™N.

In the last step, we used the identity o2 A = Aoy.
Relation ([3.6) is proved. O

11



If we apply both hexagon relations to the left hand side of (3.6, then we get a useful relation on the
coset fN. Indeed, due to the calculation in (3.7]), we have

o™ o3 fo TN = fTTACTN. (3.8)
On the other hand, applying (3.4) and the identity o1 A = Ao, we get
oM (f e T folm TN = o2 M ogo cMagy" FN = o A ay" fN = Afc™N.

Comparing this result with (3.8), we conclude that Af N = f~'AN. Thus, using (1.13)), we see that we
proved the following statement:

Proposition 3.3 Let N € NFlpp,(Bs). If a pair (m, f) € Z x Fy satisfies hezagon relations (3.3) and (3.4)
(modulo N) then

fo(f) €N, (3.9)
where 0 is the automorphism of Fo defined in (1.14]). a

Relation can also be written in the form f(x,y)f(y,z) € N.

Let (m,f) € Z x [F,Fs] and N € NFlpg,(B3). It turns out that, hexagon relations (3.3), for
(m, f) (modulo N) are equivalent to somewhat simpler relations. The following proposition establishes this
equivalence.

Proposition 3.4 Let N € NFlpp,(B3) and 6 and T be the automorphisms of Fy defined in (1.14) and (L.15)),
respectively. A pair (m, f) € Z x [Fa, Fa] satisfies hexagon relations (3.3), (3.4) (modulo N) if and only if

fO(f) € Nr, (3.10)
and
" )Ty f)y™ f € Ng, . (3.11)
Proof. For our purposes, it is convenient to rewrite (3.10) and (3.11) in the form
and
™ f(z,2)2" f(y,2)y" f € Np, , (3.13)

1 1

where z :=y "z
Using identities (1.11]), (1.12) and the property f € [Fa,Fs], one can prove that (3.3) is equivalent to

e f(z,2)2" 2,9y f € Np, (3.14)

and (3.4)) is equivalentﬂ to
a™ [ (@, 2)2" [y, 2)y™ (g, 2) € Ny, (3.15)

where z 1= x12, Y 1= Ta3, 2 := x531xf1.

Moreover, conjugating with o102 and with (o102)?, and using the property f € [Fa, Fa] once again,
we see that
f(zy)Ng, = f1(y, 2)Nr, (3.16)
and
f(z,2)Np, = f 71 (2,2)Np,. (3.17)

Let us assume that equations (3.3) and (3.4)) are satisfied. Due to Proposition relation (3.12)) is
satisfied. Hence relation (3.16)) also holds.

Combining (3.14) with (3.16)), we conclude that (3.13) is satisfied.
Let us now assume that (3.12)) and (3.13)) are satisfied. Relation (3.12)) implies (3.16)) and (3.17).

6For this equivalence, we also need (I.13).
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Combining (3.12)) with (3.13]), (3.16) and I3.17’, we conclude that (3.14) and (3.15) are satisfied.

Since (3.14]) and (3.15]) are equivalent to (3.3]) and (3.4]), the desired statement is proved. O
We call (3.10), (3.11) the simplified hexagon relations. (See also [29, Proposition 2.6].)

Let us denote by p the standard homomorphism Bz — S3: p(o1) := (1,2), p(o2) := (2,3). Since N < PB3,
the formula pn(wN) := p(w) defines the group homomorphism

on : B3/N — Ss. (3.18)
It is easy to see that, for every N € NFlpp,(Bs) and [m, f] € GT,,(N),
pn O Tt = p. (3.19)
Hence T, ;(PB3) C PB3/N. We set

Tiiﬁ = Tm7f|PB3 : PB3 — PB3/N

and notice that ker(T), 5) = ker(TnF;];?’) € NFlpg, (B3).

Due to the following proposition, the homomorphism Tf:?f comes from an endomorphism of PBj3 for
every [m, f] € GT,(N).

Proposition 3.5 Let N € NFlpg, (Bs) and [m, f] € GTp.(N). Then

T (wi2) = aig P IN, T (aas) = 1037 TN, T () = N (3.20)
Proof. The first two equations in (3.20) are straightforward consequences of the definitions of x15 := 0%
and xq3 1= 03.

To prove the third equation, we will use the calculation in (3.7)) and relation (3.9).

Indeed, due to the calculation in (3.7)),

Tyt (A) = f71AC™N

Hence
T, B8 () = Ton (A%) = fTTACT fTIAC N = Afc™ fTHACT N = AP N = "IN,
Proposition (3.5) is proved. O

Note that, for every [m, f] € GTp.(N), the restriction of TTIZI,33 to Fy < PBj gives us a homomorphism

TF2 . PBs

m,f T Tm,f |F2 :F2 = Fa/Np,. (3.21)

Let us prove that

Proposition 3.6 If a pair (m, f) € Z x Fy satisfies hexagon relations (3.3)) and (3.4) and 2m+1 represents
a unit in the ring Z/NoraZ, then the following conditions are equivalent:

1) The homomorphism T, 5 : Bg — B3 /N is onto.
2) The homomorphism T:;]?]? : PB3 — PB3/N is onto.
3) The homomorphism Tflff : Fo — F3 /Ny, is onto.

Proof. We will start with the implication 1) = 2).
Let w € PBs. Since T), s is onto, there exists v € Bz such that T, s(v) = wN. Due to (3.19),
v € ker(p) = PB3. Thus TTIZB;}‘ is indeed surjective.
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Now we will take care of the implication 2) = 3). We will do so by showing that x13Ng, and xo3Ng,
belong to the image of T:ff. First, we have

T (w12) = 235" N, (3.22)

m

Since 2m + 1 is coprime with the order of 15Ng,, 225" "' Np, € T}:L'j’f(Fg) implies that
215Np, € T)?,(Fa). (3.23)

Similarly, since 2m + 1 is coprime with ord (:1723NF2) = ord(fflxgngFQ) and

— m — 2m+1
T,,Fff(xw) = 123 T f Ng, = (f '223f Np, ) A

we conclude that
[ a3 fNE, = Ti?f(xg?,) (3:24)
for some integer k.
Since Tfﬁ? is onto, there exists w € PBj3 such that THI?; (w) = fN. Moreover PB3 = Fy x (¢), so
w = W for some w € Fy and some integer j. Thus we get

T8 (@) = ¢ IBmHU N, (3.25)
Since ¢ € Z(PBj3), equations and imply that
TEE}’ (wxbyw™t) = ¢ ICmHD f(F s f) fLICMHIN = 293N,
Note that T}:ff : Fo — Fo/NF, is the restriction of Tri]?f:‘ to Fo < PBj3. Therefore

1‘23NF2 S Tfﬁf(Fg) (326)

Fa
Combining and (3.26), we see that Fy Tng Fa/NF, is indeed surjective, i.e. the implication 2) = 3)
is proved.
Let us now prove the implication 3) = 1).
Using ged(2m + 1, ord(z12N)) = ged(2m + 1,ord(ze3N)) = 1 and 2t (2m + 1), it is easy to show that

ged(2m + 1,0rd(o1N)) = ged(2m + 1,0rd(g2N)) = 1. (3.27)
Combining ([3.27)) with
T p(01) = 07" N, T p(09) = o™ TN = (f 7 oa fN)* T

we conclude that
o N € Tm,f(B3> (328)

and
[loaf N € T p(Bs). (3.29)

Surjectivity of Tnk:ff implies that fNp, = T%f(w) for some w € Fao. Hence

T, f(w) = fN. (3.30)
Using (3.29) and (3.30)), it is easy to see that
oo N € Tm7f(B3). (331)

Combining (3.28)) and (3.31]), we conclude that Bj Imy Bs/N is indeed surjective, i.e. the implication
3) = 1) is also proved.
Proposition [3.6] is proved. (]
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Definition 3.7 Let N € NFlpg,(B3). A charming GT-pair [m, f] € GT,-(N) is called a GT-shadow with
the target N if the pair (m, f) satisfies one of the three equivalent conditions of Proposition . We denote
by GT(N) the set of GT-shadows with the target N.

Using (3.19), it is easy to show that, for every [m, f] € GT(N), the kernel K of the homomorphism
T, : B3 = B3s/N belongs to NFlpg, (B3), and

TPB3

K = ker (PB; g PB;/N). (3.32)
Moreover, the surjectivity of T, r implies that it factors as follows

Tpnp = Tiof © P, (3.33)

where Pk is the standard onto homomorphism By — B3 /K and T ;20;“ is the isomorphism Bj/K =5 Bj /N
defined by the formula T‘”m(wK) = Top p(w).
Using (3.32), it is easy to prove that, for every [m, f] € GT(N),

TF2
ker (F2 =4 F3/Nr,) = K, , (3.34)

where K := ker( m,f)-
Using (3 and ( m, we get the similar factorizations for the homomorphisms Tnlz]?fs : PB3 — PB3/N

and for TnF;f : F2 — F2/Np,, i.e.

TPBs = PBaisom o py (3.35)
and
T.,I:ff _ TFg,lsom ° PKp27 (336)

where TPB3 SOM - (yesp. TFZ’ISOH’) is an isomorphism PB3/K — PB3/N (resp. Fy/Kg, — F3/Np,). For
example, the isomorphism T:f}isom : Fao/Kp, =5 F, /Nr, is defined by the formula:

T2 (wKp,) o= T2 (w). (3.37)

Thus we proved the first three statements of the following proposition:
Proposition 3.8 Let K,N € NFlpg, (B3). If there exists [m, f] € GT(N) such that K = ker(T,,. ¢), then
1) the finite groups B3 /K and Bs/N are isomorphic,
2) the finite groups PB3/K and PB3/N are isomorphic,
3) the finite groups Fo/Kg, and Fo/Ng, are isomorphic and, finally,
4) Kord = Noxd-

Proof. It remains to prove that Ko.q = Norq.-
Since 2m + 1 is coprime with the orders of 13N, 223N, and ¢N, we have

ord(x35IN) = ord(w12N), ord(z35""*N) = ord(x23N), ord(¢*"™N) = ord(cN). (3.38)

Note that ord(z25" ™' N) = ord(f =25 fN). Combining this observation with the second equation in (3.38),
we conclude that

ord(f~ a3y fN) = ord(za3N). (3.39)
Since .
TP (@yoK) = 2y TN, T B (eK) = P TIN,
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T7z]3]037isom($23K) f 1 2m+1fN

and TZB; ASom o an isomorphism, equations (3.38) and (3.39) imply that
ord(z12K) = ord(z12N), ord(zasK) = ord(x23N), ord(cK) = ord(cN).
Thus, Kord = Nord~ O

Our next goal is to show that GT-shadows form a groupoid GTSh with Ob(GTSh) := NFlpp,(B3) and
GTSh(K,N) := {[m, f] € GT(N) | ker(T; =K}, K,N € NFlpp, (Bs). (3.40)

To define the composition of morphisms, we need an auxiliary construction.
For every pair (m, f) € Z x Fa, the formulas

Ep p(z) = 2®™F, Epg(y) =yt f (3.41)

define an endomorphism E,, ; of Fs.
A direct computation shows that

By g1 0 By o = Em g s (3.42)
where
m = 2mymg + mq + ma, fi= fiEm, 5 (f2).
It is not hard to seeﬂ that the set Z x F5 is a monoid with respect to the binary operation

(ml, fl) [ ] (mg, fg) = (2m1m2 + miq =+ ma, flEm17fl (fg)) (343)

and the identity element (0,1r,). Moreover, the assignment (m, f) — E,, s defines a homomorphism of
monoids (Z x Fa, ) — End(F2).
Note that, if (m, f) € Z x Fy represents a GT-pair with the target N € NFlpp,(Bj3), then

T717:;2f( ) = Emyf(w)NFz ) Vwe F27 (344)

where TF 2f is defined in

Let us prove the followmg aux1hary statement:

Proposition 3.9 Let NV N2 NG € NFlpp,(B3), [m1, f1] € GTSh(N® NW), [my, fo] € GT(NG) N®2)
nd Nowa = NJ = N2} = NS, If

m = 2m1m2 + my + ma, f = flEml,fl (fg), (345)
then
(m + NowaZ, fNY)) € GTSh(N®),NW). (3.46)

The pair [m, f] := (m + NoraZ, fN,(FZ)) depends only on the cosets fIND | foN@) and residue classes my +
NoraZ, ms + NoraZ. Moreover, the diagram

(3.47)

7A detailed proof is given in [29, Proposition 2.11].
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commutes. In particular,

o, o ey, = Toop. (348)

Proof. The first equation in (3.45)) implies that
2m+1= (2mq +1)(2mg + 1). (3.49)

Our first goal is to show that the pair (m, f) satisfies hexagon relations (3.3)), (3.4) (modulo N(V)).
The first hexagon relation for (mg, f2) (modulo N®)) reads

gimatl flgZmatlf N@) = folg g 2™ N (3.50)
Applying Tgﬁff‘}l to the left hand side of (3.50) and using (3.44), (3.49), we get
2mi1+1)(2mao+1 —1 p— 2mi1+1)(2ma+1
0'% D Emet )Eml,f1(f2) 1f1 10’5 D Emat )flEm1,f1(f2) N(l) =

a£2m1+1)(2mz+1) f—1aé2m1+1)(2m2+1)f N = g2m+1 p=152m+1 ¢ (1), (3.51)
Applying T;i‘l’f?l to the right hand side of (3.50), using (3.20)), (3.44), and hexagon relation (3.3|) for
(ma, f1), we get
By (f2) 7 (03 g3t ) 2@ o) gmatemso) NO)

1 _ —ma(2 1 _ _
By g (f2) 1f1 101021712"“lel’wm( ) gma (2ma ) N = / 1(71023'512mcmN(l)~

Combining this result with the final expression in , we see that the pair (m, f) satisfies modulo
N,

Applying T;;‘lm}l to both sides of the second hexagon relation for (ms, f2) and performing similar calcu-
lations, we see that the pair (m, f) satisfies modulo N,

Since 2m + 1 = (2my + 1)(2mo + 1) and 2m; + 1,2ms + 1 € (Z/NordZ)X, we conclude that 2m + 1
represents a unit in the ring Z/NoyqZ.

We may assume, without loss of generality, that fi, fo € [F2,F2]. Hence f := f1E,,, 1 (f2) also belongs
to the commutator subgroup [Fa, Fa].

We proved that (m, f) represents a charming GT-pair with the target N,

Recall that, since the pair (m, f) satisfies hexagon relations and (modulo N(V), the formulas

T, g(01) = o7 "IN T p(02) i= f 1o ND,

define a group homomorphism T}, ; : Bz — Bg/N(l).

To show that the pair (m, f) represents a GT-shadow with the target N, we need to prove that the
group homomorphism 75, r : B3 — Bg/N(l) is onto.

Applying T o T,,,, ¢, to the generators o1 and o3 and using , we see that

mi, f1

isom isom

ma,f1 © Tm27f2 (Ul) = Tm,f(o-l)’ ma,f1 © Tmfzafz (02) = Tmaf(UQ)'

Therefore,

ot © Tina.fe = Tonyg - (3.52)
Hence T, s is onto. Thus the pair (m, f) indeed represents a GT-shadow with the target N(1).
Combining identity (3.52) with N = ker(T,,, f,), we conclude that ker(T,, ;) = N®. Hence, T, ;
factors as

isom

Tm,f: m,f OPN<3)7

where T)s° is the isomorphism B3/N®) =5 B3 /N defined by the formula Tﬁ?f(wN(?’)) =T p(w).

We proved the first statement of the proposition (see (3.46])).
It is clear that m + Ny,qZ depends only the residue classes of my and my in Z/NyqZ.
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Let hy € N%lz) and hg € N( ). 1t is clear that Tm M tNora il = TF2 ., for every t € Z. Due to (3.44) and
ker(T};;?hfl) = N(Fzz)7 we have Emhfl(hg) € N%;. Hence

Fil1 By gy (foha)NG = LB, g (f)NE) = NG,

We proved that the GT-shadow [m, f] € GT(N®™)) depends only on the cosets fiNM), foN®3) and residue
classes my + NoraZ, mo + NoraZ.

It should now be clear that diagram commutes. Indeed, the inner “straight” triangles commute
by definition of T‘SOI? and T;igff}z (see equation (3.33)).

The triangle with the vertices Bg, B3/N(2), B3/N(1) and the “curved” arrow 7}, ; commutes due to
identity (3.52).

The definition of T;io}“ gives us the commutativity of the outer “curved” triangle (i.e. the triangle with
the vertices Bz, B3/N®) and B3/N()). Combining the commutativity of the outer “curved” triangle with
identity , we conclude that the lower “curved” triangle also commutes.

Proposition [3.9]is proved. O

We are now ready to prove that GTSh is indeed a groupoid.

Theorem 3.10 Let N N2 NG € NFlpg, (Bs), [m1, f1] € GTSh(N® NM) [my, fo] € GT(NG) NP and
Norg :i= NY = N® — N®) e formula

ord — ord — ord "
[ma, fi] o [ma, fo] := [2mimg +m1 + ma, fiEm, 1, (f2)] (3.53)

defines a composition of morphisms in GTSh. For every N € NFlpp,(Bs), the pair (0,1p,) represents the
identity morphism in GTSh(N,N). Finally, for every [m, f] € GTSh(K,N), the formulas

M+ NowaZ := —(2m + 1)7'm,  fKp, o= (1)) (f"'Np,) (3.54)

define the inverse [m, f] € GTSh(N,K) of the morphism [m, f].
Proof. Due to Proposition formula (3.53)) indeed defines a map
GTSh(N® NW) x GT(N® N®) — GT(N® ND),

Since the binary operation e on Z x Fy defined in is associative, the composition of morphisms in
GTSh is also associative.

It is easy to see that the pair (0, 1p,) represents a GT-shadow in GTSh(N, N) for every N € NFlpp, (Bs).
Moreover, since (0,1y,) is the identity element of the monoid (Z x Fa,e), [0,1r,] is indeed the identity
morphism in GTSh(N, N) for every N € NFlpgp, (B3).

To take care of the inverse, we start with [m, f] € GTSh(K, N) and assume that the pair (m+KoraZ, fKr,) €
Z/KoraZ X Fof KF2 is given by the formula - We denote by m (resp. f) any representative of the
coset — (27 + 1)~ 177 (resp. the coset (T27°°™)~L(f~'Ng,)) in Z/NowaZ (resp. in Fa/Kr,).

m, f

The equations in are equivalent to
2miin + 1 +m=0mod Neya, Ty (fKr,) := f'Np, . (3.55)

The first equation in implies that
(2m+1)(2m+1) =1 mod 2Ny . (3.56)

Hence 2m + 1 represents a unit in Z/NyqZ.

Since
2Nord 2Nora
o] , 05 eN,

8Since GTSh(K, N) is non-empty, Korq = Nord-
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identity (3.56) implies that
J§2m+1)(2ﬁ1+1)N — N, U£2m+1)(2m+1)N — 0N (3.57)

Since f~'Np, belongs to [F2/Np,,Fa/Np,], so does fKp,.

Let us prove that the pair (m, f) satisfies (3.3)) and (3.4)) (modulo K).

Applying Tr‘go}“ to f_lagmﬂfameK and using the second equation in (3.55) and identities (3.57)), we
get

isom(}_lagm+1}0?ﬁ1+lK) _ ff710§2m+1)(2m+1)fff1a§2m+1)(2m+1)N — gy0iN.

m, f
Furthermore, applying T)5%" to o901 25" fK and using hexagon relation (8.4) for (m, f) and the first

equation in ([3.55)), we get
T;;?}n (Uzalcmxggm}'K) _ (f_la'ngrlfU%erl)N (C(2m+1)ﬁlf_1$2_3(2m+1)mf)N _

_ = —(2 1) _ . (2t
0201cmx23mfc(2m+1)mf 1x23( m+ )mff IN = 020_162mm+m+mx23( mm+m—+m) N = oyoN.

Since ‘ R . i .
mop (F 03" o™ TK) = TR (eaonc™ a3y FK)

and T;go}“ is an isomorphism, we conclude that the pair (m, ]7) satisfies hexagon relation (3.4)).
Applying T7°F" to both sides of

~ —1 ~ ~, ? ~—1 P
2m—+1 2m—+1 S —m . m
oy f oy"TfK = f ooy ¢ K

and performing similar calculations, we see that the pair (m, }) also satisfies hexagon relation ([3.3)).
Using the equations in (3.55) we see that the composition

;S?}Il OTﬁL,j_" : B3 — Bg/N

coincides with the standard projection Py : B3 — B3/N. Hence the group homomorphism 7. 7:Bs— Bs/K
is onto and

ker(T. ) = N.

Thus we proved that ~
(M 4+ NoraZ, fKr,) € GTSh(N, K).

The equations in ([3.55)) imply that
[’I’I’L, f] ° [’ﬁl, }l] = [07 1F2]'
Since

[, flo [m. f] = (2mm + m + 17+ NowZ, fKp, T.%5()) = (NowaZ, fKe, T7%5(f))

it remains to prove that

- ,
FRe, T2 (f) = ra /e, (3.58)
Applying T:i}isom to the left hand side of (8.58) and using T)5%" o T, ;7 = Pn, we get

T:f}isom(}K& T::J‘(f)) = f7'Ng, fNp, = 1p, /Ny,

Thus, since Tfj}isom is an isomorphism from Fa/Np, to Fa/Kp,, we conclude that identity (3.58]) holds.
Theorem [3.10]is proved. O

Remark 3.11 Proposition implies that, if GTSh(K, N) is non-empty, then

|PB3 : K‘ = |PB3 : N|7 |F2 : sz‘ = |F2 : NF2|, Kord = Nord-
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3.1 The reduction map
Let N,H € NFlpp,(B3) and N < H. In the following proposition, we consider this situation and get a natural
map Rn,n : GT(N) — GT(H).

Proposition 3.12 Let N,H € NFlpp,(Bs), N < H and (m, f) € Z x Fy represent a GT-pair with the target
N. Then Hord|Nord; NF2 < HF2 and

a) the same pair (m, f) also represents an element in GTp,.(H); moreover the resulting GT-pair [m, f] €
GT,r(H) depends only on (m + NevaZ, fNg,);

b) if the GT-pair [m, f] € GT,,(N) is charming then so is the corresponding GT-pair in GTp,.(H);

c) if the pair (m, f) represents a GT-shadow with the target N, then (m, f) also represents a GT-shadow
with the target H.

Let us denote by Ty, ru the group homomorphism Bs — Bs/H corresponding to [m, f] € GTp.(H). In the
set-up of statement a), the following diagram

m, f

B; B;/N

T'n),,f,\ /PN,H

Bs/H

(3.59)

commutes.

Proof. Since
PN,H($12N) = $12H, ’PN7H($23N) = .1‘23H, ,PN,H(CN) = CHa

ord(z12H)Jord(xz12N), ord(zasH)|ord(zasN) and ord(cH)|ord(cN). Hence H,yq divides Noyq. The inclusion
Nr, < Hp, is obvious.

a) Applying the homomorphism Py n : Bs/N — Bs/H to and , we see that the pair (m, f) satisfies
the hexagon relations modulo H if it satisfies the hexagon relations modulo N. Thus (m, f) represents an
element in GT,,(H).

It is obvious that the resulting GT-pair [m, f] € GT,,(H) depends only on the residue class of m modulo
Norgq and the coset fNp,.

As above, we denote by T}, s the group homomorphism Bs — B3 /H corresponding to [m, f] € GT,,.(H).
Applying T;,, s and Py,poTh, ¢ to the generators o1, o, we see that the diagram in indeed commutes.

b) Since 2m + 1 represents a unit in Z/NypaZ, 2m + 1 also represents a unit in Z/HyqZ. Since fNg, belongs
to the commutator subgroup [Fa/NF,, Fa/Ng,], we have

fHF2 € [FQ/HF27F2/HF2]'
Thus (m, f) represents a charming GT-pair with the target H.

c¢) This statement follows easily from the commutativity of the diagram in (3.59)) and the surjectivity of the
homomorphism Py . O
Due to Proposition the formula

Run(m, f]) := (m + HowZ, fHr,) (3.60)

defines a map Ry n : GT(N) — GT(H). We call Ry n the reduction map.
Just as in [5 Definition 3.12], we say that a GT-shadows [m, f] € GT(H) survives into N if [m, f] belongs
to the image of Ry n.
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3.2 Connected compsonents of the groupoid GTSh and its isolated objects

The groupoid GTSh is highly disconnected. Indeed, if [PB3 : N| # [PB3 : K|, then GTSh(K,N) is empty
(see Remark . For N € NFlpp,(B3), we denote by GTShconn(N) the connected component of N in the
groupoid GTSh. Since, for every N € NFlpg, (B3), GT(N) is finite, so is the groupoid GTSheonn(N).

Definition 3.13 Let N € NFlpg,(B3). A GT-shadow [m, f] € GT(N) is called settled if ker(T,, f) = N, i.e.
[m, f] € GTSh(N,N). An object N of the groupoid GTSh is called isolated if every GT-shadow in GT(N) is
settled.

It is clear that N € NFlpp, (B3) is isolated if and only if the connected component of N in the groupoid GTSh
has exactly one object. Of course, in this case, GT(N) = GTSh(N, N). In particular, GT(N) is a group.

Proposition 3.14 For every N € NFlpp, (Bs), the subgroup

N° .= N K (3.61)

KeODb(GTSheonn (N))
is an isolated object of the groupoid GTSh.

Proof. Since the groupoid GTSheonn(N) has finitely many objects and NFlpp,(B3) is closed under finite
intersections, N® belongs to NFlpp, (B3).

To prove that N is isolated, we consider [m, f] € GT(N®) and K € Ob(GTShconn (N)).

Since N°® < K, Proposition implies that the pair (m, f) also represents a GT-shadow with the target
K. Just as in Proposition we denote by Ty, 7k the group homomorphism Bs — B3 /K corresponding to
the GT-shadow [m, f] € GT(K). Let us also recall that

Tin gk = Prok © Tin, g - (3.62)
Let w € N°. Since w € H for every H € Ob(GTShconn(N)), we have
w e ker(TmJ,K)

Let w® € B3 be a representative of the coset T, r(w) € B3/N°. Using we conclude that w® € K for
every K € Ob(GTShy™). Therefore w® € N® and hence w € ker(Bs Imy Bs/N°).
We proved that N® < K, where K := ker (B Tmy Bs/N°). Since |Bs : K| = |Bs : N°| (see Proposition
and N° has finite index in Bs, we conclude that ker(Bs TL{ B3/N°) = N°. |
Proposition implies that the subposet NFI?ﬁlg‘ltEd(Bg) of isolated elements in NFlpg,(Bs3) is cofinal,

i.e. for every N € NFlpp,(Bs), there exists N € NFI53**?(B3) such that N < N.
The proof of the following proposition is straightforward and we leave it to the reader:

Proposition 3.15 For all N,K € NFIF3“**?(B;), NN K € NFIFZ.*“*(Bs). O

Remark 3.16 Let N,H € NFI33*“*(B;) and N < H. Recall that, in this case, GT(N) = GTSh(N,N)
and GT(H) = GTSh(H,H), i.e. GT(N) and GT(H) are (finite) groups. It is easy to see that the reduction
map Ryn : GT(N) — GT(H) (see (3.60)) is a group homomorphism. Indeed, both [m, f] € GT(N) and
Rn,u([m, f]) € GT(H) are represented by the same pair (m, f) € Z x Fo and the composition of GT-shadows
is defined in terms of their representatives (see equation in Theorem . If N,H € NFI?}th@d(Bg)
and N < H, we call Ryn : GT(N) — GT(H) the reduction homomorphism.
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4 The transformation groupoid GT gNe,:: and genuine GT-shadows

Let N € NFlpg, (Bs) and (i, f) € é?l'gen. Recall that Py denotes the standard (continuous) group homo-
morphism from Bz to Bs/N and T, 7 denotes the continuous automorphism of B3 defined in (2.11f). Let us

consider the composition R
PrnoTy, 3lg, : Bs = By/N. (4.1)

Using the fact that Bs is dense in ]§3, one can easily prove that the homomorphism (4.1)) is surjective.
In the following proposition, we use (4.1]) to define a right action of GT g, on NFlpg, (B3):

Proposition 4.1 Let N € NFlpp,(B3). For every (i, f) € a'gen, the pair

(Poa (1), P, (1))

is a GT-shadow with the target N. Furthermore, the assignment
NP = ker (P o T, 3 5.) (4.2)

defines a right action of G/_\I'gen on NFlpp, (Bs).

Proof. Let m € Z (resp. f € F3) be any representative of the residue class ﬁNord (m) € Z/NoraZ (resp. of
the coset Py, (f) € F2/Nr,).
Since the pair (77, f) satisfies (2.9) and (2.10]), the pair (m, f) satisfies hexagon relations (3.3)) and (3.4))

modulo N. R
Since 21 + 1 is a unit in Z, the integer 2m + 1 represents a unit in Z/NyqZ.

The property f € [ﬁ% ﬁg]tOP' <l implies that
fNr, € [F2/Np,,F2/Np,].

Finally, it is easy to see that the homomorphism T}, ; : B3 — B3/N coincides with 73N oT. 3

T, =Pno TM,}’BS . (4.3)
In particular, T), s is surjective.
We proved that the pair (m + NopaZ, fNF,) is a GT-shadow with the target N and
N = ker (T, f).
Hence N(™5) ¢ NFlpg, (Bs).
We say that the GT-shadow [m, f] € GT(N) comes from the element (171, f) € GT gen.
Let us consider the following diagram:
~ T'r?b,f ~
B; 3
/ Jﬁ JﬁN
P LN
B; — > B3/K —> B3/N
T (4.4)

where K := ker(T},, s) and the slanted straight arrow is the standard inclusion map j : By — ]§3.
We claim that the diagram in (4.4) commutes. Indeed, the outer “curved” rectangle commutes due to
(4.3). The lower “curved” triangle commutes due to the identity T, s = T50f o Px. The left triangle
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commutes by definition of ﬁg. Finally, the continuous maps 73N oT., 3 and T;f;o}“ ) 731{ agree on the dense
subset Bg C ]§3 and B3 /N is Hausdorff. Thus the inner square in (4.4) also commutes.
It is clear that

PnoToa, |5, = Pn.
2

Bs

Hence N*'%2) = N. R X -
It remains to prove that, for all (11, f,), (M2, fa) € GT gen,

(N<m1,fl>)<m2’f2> — NI (4.5)

where (1, f) := (1, f1) ® (12, fo).

For this purpose, we will use the inner square of the diagram in . We set K := NO":51) and
H = KO2:f2), Then, putting together the “squares” corresponding to (ml,}l) and (mg,fg), adding the
obvious “triangle with the vertex” Bs, the “curved arrow” 73N OTfn, 7 |B37 and using , we get the following
commutative diagram:

T. T. .
~ mo,fa  ~ m1,f1 ~
B3 Bs B3
Py Tigt Y TR
B; —— B3/H —— B3/K —— B3/N
Pn o Tm,}‘B3

(4.6)

where [my, fi] € GT(N) and [ma, f2] € GT(K) are the GT-shadows coming from (1, f1) and (g, f5),
respectively.

The commutativity of the lower “curved rectangle” in (4.6 implies that H = NS Thus identity (4.5)
holds. O

For N € NFlpp,(B3) and (1h, f) € é'\l'gen, we denote by PZy (i, f) the GT-shadow with the target N
that comes from (1, f), i.e.

PIN(, [) = (Pn,a (1), Pr, ().
In view of Corollary which is proved later, @%’N(fn,}’) is called the approximation of the element
(1, f) € GT gen.
—~gen

We denote by a'i,eFT the transformation groupoid of the action of é'\l'gen on NFlpp, (B3), i.e. Ob(GTyg ) =
NF|1:>B3 (B3) and

—~ gen oA ~ .
GTnp (KN) == {(, f) € GT e | NS = K}.

Definition 4.2 Let N € NFlpp,(B3) and [m, f] € GT(N). We say that the GT-shadow [m, f] is genuine if
there exists (1, f) € GT gen such that [m, f] comes from (n, f), i.e.

m + NoraZ = ﬁNord (m)v fNp, = 7SNFQ (})
Otherwise, the GT-shadow is called fake.

Let N € NFlpp,(B3). Due to Proposition the subgroup 7/5,\71(133/,\,) < Bj (resp. ﬁ,qpl (Iry/Np,) < Fy)
2
coincides with the profinite completion of N (resp. with the profinite completion of Ng,). By abuse of
notation, we identify ’P,\Tl(lBg/N) (resp. 73,];2 (1F,/Ng, ) With N (resp. with Ng,). We will need the following
statement:
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Proposition 4.3 Let N € NFlpg, (Bs) and (m, f) € é'\l'gen. IfK is the source of the GT-shadow PR (i, ),
then

m, f

T, +(K) =N (4.7)
and N R
E, +(Kr,) = Ng,. (4.8)

Proof. Let (m, f) € Z x Fa be a pair that represents the GT-shadow LPZy(mn, }) and @ € K = ker(ﬁg it
B3 /K). Since the diagram in (4.4])) commutes,

ﬁN [} Tﬁh?(ﬁ)) = 1B3/N~

Hence Tm,}(k) CN= ker(]§3 N Bs/N).
Since [Bs : N| = [Bs : N| = |B3 : K| = |B3 : K| = |B3 : Tm,}(R)L the inclusion Tmf(R) C N implies that
T, +(K)=N.
Identity can be proved in a similar way using the commutative diagram

T

mh, f ~

F > Iy
/ | i
PKF2 Fa.isom

m, f
Fy —— Fo/Kp, —— F3/Np,

Fa
Tons (4.9)
where T, if}isom is the isomorphism Fy/Kp, — F3 /N, defined in (3.37). O

The following theorem gives us a link between GT gen and the groupoid GTSh:
Theorem 4.4 Let N € NFlpp,(B3). The assignments
PAN) =N, PAN(.f) = (Py,., (7). Pre, (1)) (4.10)

define a functor from the transformation groupoid G/'\I'i,eFT to GTSh.

Proof. Let (m, f) € Z x [F3,F3] be a pair that represents (’I/D\Nord (m)7'ﬁNF2 (}))
Due to the first statement of Proposition [m, f] is a GT-shadow with the target N. Moreover, since

ker(T,,r) = N(m’f),

[m, f] is indeed a morphism from NG5 to N in GTSh.
It is clear that ZZ%n(0,15,) = [0, 1r,] for every N € NFlpp, (B3), i.e. the functor #% sends the identity

morphisms of GT EEFT to the identity morphisms of GTSh.
It remains to prove that, for all (1, }1), (g, fz) € GTgen and N € NFlpg, (B3),

PR, [1) @ PRK(1na, [o) = P AN, ], (4.11)

where (7, f) = (1h1, 1) ® (tha, f5), (1h1, f) is viewed as a morphism from K := N(™1:/1) to N and (1hg, f5)
is viewed as a morphism from K(72:f2) to K.

Let (m1, f1) and (ma, f2) be pairs that represent the GT-shadows L@%N(ml,fl) and ,@%’K(mg,ﬂ),
respectively. Since the source of [mq, f1], K, coincides with the target of [maq, f2], the GT-shadows [mq, fi]
and [ma, fa] can be composed in this order [my, fi]|®[ma, fo] and [mq, f1]e[ma, f2] is an element of GTSh(H, N),

where H := K(M2:2)  Recall that Noyq = Korg = Hord -
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We need to prove that
m + NewaZ = P, (11) (4.12)
and R .
fNE, = Py, (), (4.13)
where
m = 2mimg +mi+ma,  fi= fiEm, (f2).

While (4.12) is obvious, identity (4.13]) requires some work.
First, we observe that the diagram

~ Eﬁbln?l ~
Fa > Fy
J lﬁN%
w = Epy 5 (W)NE
9 e f‘z/NF2
(4.14)
commutes. R A R
Second, since Pky, (f2) = Pk, (f2), We have
}2 = f2l;7 (415)

whereﬂi) € sz. Combining this observation with equation (4.8)) in Proposition and commutativity of
diagram (4.14]), we deduce that

ﬁNFQ (Eml,}l (}2)) = ﬁNFQ (Emh}l (f2)) = Emhfl (f2) NFQ . (416)

Therefore
7/5NF2 (]glEml,}l (.}‘2)) = 7/D\NFQ (.}‘1) 7/5NF2 (Eyhh}l (}12)) = fl Em17f1 (fQ) NF2 .

Thus identity (4.13]) holds and equation (4.11)) follows. O
In view of Corollary which is proved in the next section, we call % the approximation functor.

5 The version of the Main Line functor for GT gen

Recall that, for every isolated object N of the groupoid GTSh, GT(N) = GTSh(N,N). In particular, GT(N)
is a (finite) group.
Let us show that the assignment
ML(N) := GT(N) (5.1)

isolated

can be upgraded to a functor ML from the poset NFIFE*"““(B3) to the category of finite groups.
For N,H € NFI5*“*(Bs), N < H, we set

Mﬂ(N — H) = RN,H- (52)

Recall that, due to Remark [3.16} the map Rnn : GT(N) — GT(H) is a group homomorphism.
It is obvious that, if NG < N® < N(l)7 then

RN(’A’),N(D o 'RN(g)’N(a) = RN<3),N(1>~ (5.3)

Thus formulas (5.1)), (5.2) define a functor ML from the poset NFI’ffglsated(Bg) to the category of finite
groups. We call ML the Main Line functor.

Our next goal is to show that the group GT gen 18 isomorphic to lim(ML). For this purpose, we need to
prove the following auxiliary statement:

9Just as in Proposition we identify RFQ with ﬁlez (1F2/KF2 ).
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isolated

Proposition 5.1 For every positive integer K, there exists N € NFIgE.*“*(B3) such that K|Noga. Further-
more, for every H € NFI(Fs), there exists N € NFI?giated(Bg), such that Ng, < H. Finally, for every pair
(K,H) € Zx1 x NFI(F2), there exists N € NFIFg*“*(Bs) such that K|Nogq and N, < H.

Proof. The proof of the first statement of the proposition is straightforward, so we leave it to the reader.
Since H is a finite index normal subgroup of Fs, there exists a group homomorphism v from Fs to a finite
group G such that
ker(¢) = H.

Clearly, the formulas

P(r12) = (x),  dlras) =¥(y),  Y(e)=1¢ (5-4)

define a group homomorphism 17): PB; — G. ) ~
In general, the subgroup ker(¢) is not normal in B3. So we denote by N the normal core of ker(¢) in Bs.
It is clear that N € NFlpp,(B3) and Np, < ker(¢)).

Let
N = ﬂ K.
KeOb(GTShconn (N))

Due to Proposition N is an isolated object of GTSh. Moreover, since N < N, we have Np, < ker(1)).
The second statement of the proposition is proved.
For (K, H) € Z>1 x NFI(Fy), there exist N, N®) & NFIEg*!(B,) such that K|N'}) and N < H. Due

to Proposition [3.15]
N:=N® AN

is an isolated object of GTSh. Using the inclusions N ¢ N and N ¢ N®_ it is not hard to show that
K|Nora and Ny, < H, respectively.
The proposition is proved. O

We are now ready to construct an isomorphism of groups GT gen = lim(ML).

Theorem 5.2 Let (i, f) € (f'\l'gen and N € NFI?}g?tEd(Bg). The formula

(i, f)(N) := PRy (i, f) (5.5)

defines an isomorphism of groups ¥ : a'gen = lim(ML). Moreover, ¥ is a homeomorphism (of topological
spaces).

Proof. Since N is an isolated object of the groupoid GTSh, NS = N for every (m, f) € a'gen. Further-
more, Theorem [4.4] implies that the assignment

(in, f) = P AN (i, f)

is a group homomorphism from (/ﬁ'gm to the finite group GT(N) = GTSh(N, N).
It is clear that, for every N,H € NFI?giated(Bg), N < H, we have

Ran 0 PAN(in, ) = PRu(m, f).

Thus the formula in (5.5)) indeed defines a group homomorphism W : GT gen — HIM(ML).
To prove the theorem, we will construct a map © : lim(ML) — GT ., and show that

e O is the inverse of ¥ and

e O is a homeomorphism of topological spaces.
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Let T € lim(ML), K € Z>, and H € NFI(Fy).
Due to Proposition there exists N € NFI};S]giatEd(Bg) such that K|Noq and Ng, < H. Let (m, f) €
Z % Fy be a pair that represents the GT-shadow T'(N). We set

m(K):=m+KZ,  f(H):= fH. (5.6)

Since T belongs to lim(ML), the residue class 7 (K) and the coset f(H) do not depend on the choice of
N e NFI}?ﬁi“ted(B?), and the formulas in (5.6) define 7 € Z and f € Fs. o

The element f belongs to the topological closure of the commutator subgroup [F2, Fa] in Fo due to these
properties:

o for every N € NFIEE“)(B3), f(Np,) € [F2/Nr,, F2/Np,],

e the open subsets R =R )
P’\TFZ (1F2/NF2) C FQ, N (S NFIZF;SB?l?,ated(Bz;)

form a basis of neighborhoods of 1z, in ﬁg.

Let us prove that the resulting pair (1, f) € Z x F satisfies hexagon relations and (2.10)). For this
purpose, we consider L € NFI(B3z) and observe that L N PB3 € NFlpp,(B3s). In general, L N PBj3 is not an
isolated object of the groupoid GTSh. However, due to Proposition the subgroup N := (L N PBg)<> does
belong to NFI?]giated(Bg). Moreover, since N < L N PBj3, N is a subgroup of L.

As above, let (m, f) € Z x F3 be a pair that represents the GT-shadow T°(N). For such a pair (m, f), we
have

m(Nord) =m—+ Nordzv f(NFz) = fNFQ'
Evaluating the left hand side (resp. the right hand side) of the first hexagon relation (2.9) at N, we get
the left hand side (resp. the right hand side) of the first hexagon relation (3.3) for (m, f). Thus
1371 2mt1 g 71 —r
(oi™ o™ (N) = (] o1 235" ™)(N). (5.7)

Similarly, evaluating the left hand side (resp. the right hand side) of the second hexagon relation (2.10])
at N, we get the left hand side (resp. the right hand side) of the second hexagon relation (3.4) for (m, f).
Thus

(f o™ f o™ (N) = (021255 ™ F)(N). (5.8)
Since N < L, identities (5.7]) and (5.8 imply that
137 2w g 71 —m i
(U%mﬂf U§m+1f)(L) = (f 0102%15 € )(L)

(f 1a§m+1}afm+1)(L) = (0201m53mcm f)(L)

We proved that the pair (i, f) belongs to Z x [Fa, Fo]t°P-<l and satisfies hexagon relations (2.9) and
(@-10).
Thus the assignment T +— (72, f) defines a map

O: hm(./\/lﬁ) — é—\rgen,mona (59)

where GT gen,mon 1S the monoid defined in Section (see Proposition .
Let us prove that © is a homomorphism of monoids. For this purpose, we consider N € NFI;fgéated(Bg),

T1, T3 € lim(ML) and set

(M, f1) :=0O(T1), (i, fo) 1= O(T2), (5.10)
m = 2myMmg + My + Mo, } = }.1Em17}1 (}'2) (511)
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Let (m1, f1) € Zx Fa (vesp. (ma, f2) € Z x F2) be a pair that represents the GT-shadow T1(N) € GT(N)
(resp. the GT-shadow T'2(N) € GT(N)) and

m = 2mims + mq + ma, f= fiEm,,n(f2), (5.12)

i.e. the pair (m, f) represents the GT-shadow Tie Tg(N).

To prove the compatibility of © with the multiplications in lim(ML) and GT gen,mon, We need to show
that
m(Nord) =m+ NypaZ. (513)

and

f(Np,) = fNp,. (5.14)
Equation is clearly satisfied.
As for (5.14)), since ’ﬁNF2 : Fy — Fy/Np, is a group homomorphism and 73NF2 (f1) = fiNg,, we need to
show that R .
Pre, (B, 7,(f2) = Enmy g (f2) Ne, - (5.15)

This identity was already established in a more general case in the proof of Theorem (see (4.16)).
It is easy to see that © sends the identity element of the group lim(MJL) to the identity element of the

monoid GT gen, mon-

Since © : lim(ML) — G/"\I'genymon is a homomorphism of monoids and lim(MJL) is a group, ©(lim(MJL))
is a subset of invertible elements of the monoid GT gen,mon- Thus © is a group homomorphism from lim(ML)
to é:I' gen-

It is clear that

OoV = ida-gen and VoO = idlim(M[:)7

i.e. © is indeed the inverse of V. R

To prove the continuity of ©, we consider it as the map from lim(ML) to the topological space Z x Fqy
and denote by P; (resp. Pﬁz) the projection 7 x 132 =7 (resp. 7 x 132 — 132) We need to show that the
maps P; 0O : lim(ML) — Z and Pg, 00 : lim(ML) — F, are continuous.

isolated

For a positive integer K, we choose N € NFIgg *"““(B3) such that K|Nyq. Since the map
Pr o P; 00 : lim(ML) — Z/KZ

factors through the continuous map im(ML) — Z/Ny4Z, the composition ’ﬁK o P;00 is continuous. Hence

the composition P; 0 © : lim(ML) — Z is continuous.
Similarly, for H € NFI(F3), we choose N € NFI%fgl;ted(Bg) such that Np, < H. Since the map

Py o Ps 0O :lim(ML) — Fy/H
factors through the continuous map lim(ML) — Fy/Np, , the composition Py o P 00O is continuous. Hence
the composition P50 © : lim(ML) — F» is continuous.
Since both maps P 0 © : lim(ML) — Z and P5, 0 © : im(ML) — F» are continuous, so is the map
O :lim(ML) - Z x Fs. -
Now it is easy to see that © : im(ML) — GTgep is a homeomorphism. Indeed, © is a continuous

bijection from the compact topological space lim(ML) to a Hausdorff space é'\l'gen. Thus © (as well as V)
is homeomorphism.

Theorem is proved. O

Remark 5.3 As we mentioned in Remark it is not obvious that GT gen 18 a topological group with
respect to the subset topology coming from Z x Fo. However, since lim(MJL) is obviously a topological
group, Theorem ﬂ implies that GT gen is indeed a topological group with respect to the subset topology
coming from 7 x Fs.
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Corollary 5.4 Let N € NFlpp,(B3). A GT-shadow [m, f] € GT(N) is genuine if and only if [m, f] belongs
to the image of the map
RK,N : GT(K) — GT(N)
for every K € NFIy(Bs).
Proof. If [m, f] € GT(N) is genuine, then [m, f] obviously belongs to the image of the map Ry n : GT(K) —
GT(N) for every K € NFIy(Bs3).
Thus it remains to prove the “if” implication.

For K € NFIy(B3), we set
F(K) := Ry n([m. f]) € GT(K).

Due to the given condition on [m, f], the set F(K) is non-empty for every K € NFly(B3).

Property implies that the assignment K — F(K) upgrades to a functor from the poset NFly(B3) to
the category of finite sets (since GT(K) is finite, so is Ry \([m, f])). Indeed, if H, K € NFly(B3) and H < K,
then Ry k(F(H)) € F(K). So we set ’

]:(H — K) = RH,K‘]:(H) : J—"(H) — .F(K)

Since F(K) is a finite non-empty set for every K € NFly(Bs3), [27, Proposition 1.1.4] implies that lim(F)
is non-empty. .

Taking an arbitrary element in lim(F) and evaluating it at elements of the poset NFIy(B3)NN Flggi“ted(Bg),
we get an element (1, f) € a'gen = lim(ML) such that

@%N(mv.}') = [m’f]

Thus the GT-shadow [m, f] is indeed genuine. a

5.1 Simplified hexagon relations in the profinite setting

In this section, we prove that

Proposition 5.5 The group é'\l'gen (see Deﬁmtion is isomorphic to the group a’o introduced in [12,
Section 0.1].

Proof. According to [12] Section 0.1], GTo consists of elements (A, J) € Z* x [Fy,Fy]tor-< for which the
pair (i, f) = ((;\ — 1)/2,}) €7Zx [ﬁg,ﬁg]mp' “l- satisfies relations (2.26)), and the endomorphism
E 3 of F, is invertible. In fact, the authors of [I2] identify elements (X, f) of GTo with the corresponding
automorphisms Em, 7 of ﬁg and this is how they get the group structure on GT 0-

Let us start with an element (5\, f) €eGT o and consider the corresponding pair
(1, f) := (A= 1)/2, f) € Z x [Fy, Fptor-t-.
Relations , imply that, for every N € NFlpg, (B3), the pair
(m + NoraZ, fNr,) := (P, (1), Pa, ()

satisfies relations (3.10) and (3.11)). In addition, we have fNg, € [F2/Np,,F2/Np,].

Thus Proposition implies that, for every N € NFlpg, (B3), the pair (m+NodZ, fNp,) := (73]\10rd (), ﬁNFz (f))
satisfies relations (3.3]), . Since NFlpp, (B3) is a cofinal subposet of NFI(B3), we conclude that the pair
(rn, }) satisfies hexagon relations and .

Thus (7, f) belongs to the submonoid GT gep, mon and we need to show that the element (77, f) is invert-
ible.
For this purpose we set

ki=—@n+1)"Ym, g=E'(f ). (5.16)
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A direct computation shows that

Therefore I 30 Ek , =idg and hence
E, . =E_%. (5.17)

Using (5.16)) and ( -7 we get
2km+k+m =0,
1

BN =0 B L () =B ) EL (D =B L(1g) = 15,

Thus the identity (k, §) e (7, f) = (0, 1132) is also satisfied and the element (i, f) of the monoid (Z x Fj, )
is indeed invertible.

Since f € [ﬁg,f‘g]t"p' cl- the second equation in (5.16) and the continuity of the automorphism E;ll}

imply that g € [ﬁg, ﬁz]t"p' cl-, Thus it remains to prove that the pair (lAc7 §) satisfies hexagon relations ([2.9)),
[2.10).
Let us rewrite the right hand side of (2.10) for (k,§) as follows:

— in —(2k+1) [~
090175 g = Ao, (2k+ )ckg.

Applying T, 7 to the right hand side of - for k §) and using (2.12)), (2.13)), (2.19)), we get

Tm)}-(UQO'll'Q_gkag) _ Tm’}(AU;(Qk-&-l)Ckg) —

Acm}}* —(2mm+1)(2k+1) f (2m+1)kf A02—1 — 0301,
Thus -
Tﬁl }(0’201(132_3kck§) = 092071 . (518)
Applying T 3 to the left hand side of - for k , ), we get
N N N 21 (2m41)(2k+1) A\ (2m41)(2k+1
Ty 3G 03 g0ttt = B, ()7 o VM FE (@) oV < 0y (5.19)

Since T 1s an automorphism of Bg, identities and (5.19) imply that

A1 2k+1, 2k+1 _ —k ko
g oy T go; = 0201T53 C'g.

Thus the pair (k, ) satisfies
Using the similar argument one can show that the palr (k g) also satisfies
We proved that the pair (1, f) belongs to the group GTgen
Let (7h, f) € GTgen, ie. (rn, f) is an invertible element of the monoid a'gemmon. Let us prove that the
pair
A ),  A=2m+1

belongs to the group GT 0-
Relations (2.9) and (2.10) imply that, for every N € NFlpp, (Bs), the pair

(m + NovaZ, fNp,) := (Pn,., (1), Pag, (F)) (5.20)

satisfies hexagon relations (3.3) and (3.4) modulo N. In addition, fNg, € [F2/Np,,F2/Ng,].

Thus Proposition [3.4] implies that, for every N € NFIpg,(B3), the pair in (5.20) satisfies relations (3.10)),
B17).

Due to Proposition [5.1} for every H € NFI(F2), there exists N € NFlpg, (B3) such that Ny, < H. Thus the

above observation about (3.10) and (3.11)) implies that the pair (i, f) satisfies relations (2.26) and (2.27).
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Since f € [ﬁg,ﬁg]“’p‘d‘ and A\ = 2/ + 1 is a unit in the ring Z (see Remarks , it remains to
show that the endomorphism Em, 3 is invertible. This is an obvious consequence of the second statement of
Proposition Indeed, if ¢ : M — M is a homomorphism of monoids, the restriction of ¢ to the group
M* of invertible elements of M gives us a group homomorphism M* — M *

We established a bijection between the set GT (defined in [I2], Section 0.1]) and the set GT gen- 1t remains
to prove that this bijection is compatible with the group structures on GT o and GT gen- Since the group
structure on GT o is obtained by identifying elements (5\, }”) of GT o with the corresponding automorphisms

Em, 3 of ﬁg, the desired property follows from the second statement of Proposition
Proposition [5.5| is proved.

Remark 5.6 Relations (2.26]) and (2.27) may be interpreted as cocycle conditions and this interpretation
was explored successfully in [20].

A Selected statements related to profinite groups

In this appendix, we prove several statements related to profinite groups. These statements are often used
in articles about the profinite version of the Grothendieck-Teichmueller group. However, it is hard to find
proofs of these statements in the literature.

Let J be a directed poset and F be a functor from J to the category of finite groups. For ki, ke € J,
k1 < ko we set 9;617;@2 = ]:(k’l — k‘g)

It is convenient to identify elements of the product

I17® (A1)
keJ

with functions
fid = || Fk) (A.2)

keJ

such that f(k) € F(k),V ke J.
Then lim(F) consists of functions (A.2) such that

o f(k)e F(k),VEkeJand
o O, ko (f(k1)) = f(k2), ¥V ki,ka € J, ki < ko.
For k € J, ny, denotes the standard projection from lim(F) to F(k), i.e.

m(f) = f (k).

We consider the product space with the standard product topology and we equip lim(F) with
the corresponding subset topology. Let us also recall [27, Proposition 1.1.3] that, as the topological space,
lim(F) is compact and Hausdorff. It is known [27] Section 1.1] that every profinite group is lim(F) for a
functor F from a directed poset to the category of finite groups.

For every group G, the poset NFI(G) is clearly directed and the assignments

N— G/N,  Okn:=Pn:G/K—=G/N, KNeNFI(G), K<N

define a functor F¢g from NFI(G) to the category of finite groups. The profinite completion G of G is the
limit lim(F¢) of this functor.

As we mentioned above, it is convenient to identify elements § of G with functions

g:NFI(G) » || G/N
NENFI(G)

such that
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e §(N) € G/N, ¥ N e NFI(G) and
e Pun(3(K)) = a(N), ¥ K,N € NFI(G), K < N.

In this set-up, nn = ’ﬁN. N
We denote by j the standard group homomorphism G — G defined by the formula

j(g)(N) := gN, N e NFI(G).

Recall [27, Lemma 1.1.7] that, for every group G, the subgroup j(G) is dense in G. Moreover, the homo-
morphism j : G — G is injective if and only if the group G is residually finite.

Lemma A.1 Let G be a group and j be the standard homomorphism G — G. For every group homomor-
phism ¢ from G to a profinite group H, there exists a unique continuous group homomorphism

$:G—H
such that ¢ o j = .

Proof. Since H is a profinite group, there exists a directed poset J and a functor F from J to the
category of finite groups such that H = lim(F). For k € J, we denote by 7 the standard continuous group
homomorphism from H to F(k).

For every k € J, ny o ¢ is a homomorphism from G to the finite group F (k). Hence ker(n o ¢) is a finite
index normal subgroup of G. We denote this subgroup by Ny,

Ny == ker (G ™% F(k)).

It is easy to see that the formula
Pr(gNk) == i © (g) (A.3)

defines a group homomorphism from the finite group G/Nj to the finite group F(k).
Let us also observe that, if k1, ke € J and k1 < k2 then Ni, < Ng, and the diagram

G /Ny, RN F(k1)

PNklkaQ l Jekl’]%
Phko
G/N, — F(k
/ (a) (A.4)
commutes. Here 0y, 1, = F(k1 — k2).
We claim that the formula
@@)(E) == o (GNy),  ked (A5)

defines a continuous group homomorphism ¢ from G to H. R
Indeed, it is obvious that, for every k € J and every g € G, (¢(§))(k) € F(k). Thus ¢(g) belongs to the

product
I17®.
keJ

The commutativity of the diagram in (A.4]) implies that ¢(§) satisfies the condition
Ok 12 ((2(9)) (K1) = (9(9)) (K2)

whenever ky < ko. Thus ¢(g) belongs to H C H F (k).
keJ N
It is easy to see that ¢ is indeed a group homomorphism G — H.
Equation (A.5) implies that
Nk @ =@k o P, .
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Hence the composition ny o ¢ is contlnuous for every k € J.
Thus we proved that equation (A.5]) indeed defines a continuous group homomorphism from G to H.
Using (A.3)), we see that, for every k € J and g € G, we have

(©034(9)) (k) = @r(gNi) = mi(0(g))-

Thus o j = .
Let v : G — H be a continuous group homomorphism such that ¥ o j = ¢. Since p o j = p, we have

Y06y = @l (A.6)

Since (@) is dense in G and H is Hausdorff, identity (A.6) implies that ¥ = @. Thus the uniqueness of
@ is established and the lemma is proved. |

Corollary A.2 Let G, H be groups and j be the standard homomorphism G — G. For every group homo-
morphism ¢ : G — H, there exists a unique continuous group homomorphism

o G—H
such that ¢ o j = @. If v is an automorphism of G then j%\’}/ is a continuous automorphism of G.

Proof. The first statement of the corollary follows Lemma
Let v € Aut(G) and k := y~1. By abuse of notation, we denote by 4 (resp. &) the continuous group

homomorphism G — G corresponding to j oy (resp. to j o k).
For 4 and &, we have
Joj=jony, koj=jor.
Using these identities, we get

Jokoj=4ojor=joyor=
and
kojoj=FkKojoy=jokoy=j.
Since 4 o & (@) =id i)y ol 1d‘ @y J J(@) is dense in G and G is Hausdorff, we conclude that
yok=1idg, Roq =idg.
Thus 4 is invertible and & = 4. (]

Let us prove that
Proposition A.3 For every N € NFI(G), the kernel of the homomorphism Py:G— G/N is isomorphic to
the profinite completion N of N.

Proof. For every L € NFI(N), the normal core Coreg(L) of L in G is an element of NFIy(G). Therefore the
subposet NFIy(G) of NFI(N) is cofinal and hence the limit of the functor
H — N/H (A7)

from NFIN(G) to the category of finite groups is isomorphic to N (see [27), Lemma 1.1.9]).
Let

K := ker (@ ﬂ G/N).

For every H € NFIy(G), the restriction of the continuous homomorphism Py : G — G/H gives us a
continuous homomorphism

Phl, - K — N/H.
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Moreover, for all Hy, Hs € NFIN(G) with Hy < Hs, the diagram

-~ K

PHy 1

N/H; ———=— N/H,

commutes.

Hence we get a continuous group homomorphism v : K — N where N is identified with the limit of

functor It is not hard to see that v is a bijection. Since K is compact (K is a closed subset of the

compact space G) and ~y is a continuous bijection from a compact space K to the Hausdorff space N v is a

homeomorphism. Since 7 is also an isomorphism of groups, we proved that the topological groups K and N

are isomorphic. O
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