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ABSTRACT: Enzyme biocatalysis for plastic treatment and recycling
is an emerging field of growing interest. However, it is challenging and
time-consuming to identify plastic-degrading enzymes with desirable
functionality, given the large number of putative enzyme sequences.
There is a critical need to develop an effective approach to accurately
predict the enzyme activity in degrading different types of plastics. In
this study, we developed a machine-learning-based plastic enzymatic
degradation (PED) framework to predict the ability of an enzyme to

degrade plastics of interest by exploring and recognizing hidden Machine
patterns in protein sequences. A data set integrating information from - Learning
a wide range of experimentally verified enzymes and various common [N{cl&iBJ=te[¢=lor=1e] (S Classifier

plastic substrates was created. A new context-aware enzyme sequence
representation (CESR) mechanism was developed to learn the
abundant contextual information in enzyme sequences, and feature extraction was performed for enzymes at both the amino acid
level and global sequence level. Thirteen machine learning classification algorithms were compared, and XGBoost was identified as
the best-performing algorithm. PED achieved an overall accuracy of 90.2% and outperformed sequence-based protein classification
models from the existing literature. Furthermore, important enzyme features in plastic degradation were identified and
comprehensively interpreted. This study demonstrated a new tool for the prediction and discovery of plastic-degrading enzymes.

KEYWORDS: Machine learning, plastic waste, enzymatic degradation, enzyme function, sequence representation

B INTRODUCTION
Plastics are extensively used globally," but improper handlin%
2

degraded poly(ethylene furanoate) (PEF) but not PBS."®
Meanwhile, enzymes degrading the same type of plastic may
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of plastic waste has caused severe environmental problems.””
Treating and recycling postconsumer plastics is critically
important for environmental protection and waste valor-
ization.” Conventional mechanical and chemical recycling
either lead to loss of plastic properties or require high energy
input and expensive reagents.”” In contrast, biological
enzymes, with high efficiency under mild reaction conditions,
degrade plastics into monomers which can then be recovered
to synthesize new plastic products for achieving a circular
economy.®™"°

Significant research progress has been made recently in
discovering plastic-degrading enzymes,'' and there is a
growing interest in identifying new plastic-degrading enzymes
with desirable functionalities by exploring the ever-increasing
number of putative enzyme sequences. > However, searching
for plastic-degrading enzymes is a challenging task as
evidenced by prior research efforts.” First, the enzyme plastic
degradation capabilities do not correlate well with the enzyme
commissioning (EC) families. For example, a lipase (EC
3.1.1.3) PbsA was active in degrading poly(butylene succinate)
(PBS) plastic in one study,”* while another lipase PETase
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belong to different EC families (Table S1), making it hard to
simply infer degradability based on taxonomy. Second, prior
efforts in exploring plastic-degrading enzymes mostly used
homology searching based on sequence similarity,'® but
sequence similarity does not always correlate with enzyme
plastic-degrading functionality, and thus, homology searching
could overlook new plastic-degrading enzymes or lead to
incorrect predictions.'”'” For example, the newly discovered
PET degrading enzyme PETase from Ideonella sakaiensis 201-
F6 shared only 51% sequence similarity with a previously
known hydrolase TfH from Thermobifida fusca during
homology searching.18 Therefore, there is a critical need to
develop an effective method that is less dependent on sequence
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Figure 1. Overview of the plastic enzymatic degradation (PED) framework. (A) Inputs, outputs, and key components of PED. Amino acid
sequence of enzyme noted as a string of alphabet letters was converted into computer interpretable input by sequence representation learning, in
particular, the context-aware enzyme sequence representation (CESR) method. Enzyme features at amino acid- and global sequence-levels were
extracted from raw sequence and used as additional inputs to a machine learning (ML) classifier. The classifier, namely, XGBoost, performed the
binary classification by predicting whether the enzyme can degrade the plastic of interest. (B) Construction of the feature vector used as the
computer interpretable input in the PED framework. A transformer-based attention mechanism*® was adopted in CESR learning and outputted a
30-length vector to represent a given sequence. By concatenating CESR, enzyme features at amino acid- and global sequence-levels with the one-
hot encoded plastic types, a feature vector was obtained and further used as the input vector of the ML classifier in the PED framework for
degradation classification. r;: feature used as input of the ML classifier (i = 1, 2, ...82).
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similarity and taxonomy to accurately predict enzyme activities
in plastic degradation.

Computational methods, particularly machine learning
(ML), start to receive increasing attention in recent research
efforts.” ML is a systematic computational analysis that is
capable of capturing hidden patterns from a massive amount of
data to make predictions or decisions.”””>' ML has been
applied to protein function prediction using amino acid
sequence data, which stores all the information for protein
folding and functioning.”” ** Recent studies have reported
prediction of plastic enzymatic degradation using protein
sequence information,”> ™" but critical limitations exist. First,
the data lack the reliability for model validation. Most studies
collected enzyme sequences from UniProt,””*° but over 95%
of the enzyme sequences in UniProt are from sources without
experimental reports of enzymatic activities.”® Another
limitation in previous studies is that the range of plastic
substrates considered was relatively narrow. For example,
Hemalatha et al’s study only predicted whether a protein
could degraded alkane’® and Buchholz et al’s study only
identified homologues of PET hydrolases.”” Gan and Zhang’s
study included polyhydroxyalkanoate, polyhydroxybutyrate
(PHB), polyurethane (PU), poly(vinyl alcohol) and phthalate,
but the model did not consider enzymes that were active on
multiple plastic substrates.””> Therefore, a model for reliably
predicting enzymatic degradation of different plastic substrates
is needed to address the knowledge gap in the current
literature.

In this study, we aimed to develop an innovative and
effective computational approach to predict the ability of an
enzyme with a known sequence to degrade a target plastic of
interest with consideration of a variety of common plastics. A
ML-based plastic enzymatic degradation (PED) framework
was designed, integrating information from a wide range of
experimentally verified enzymes and different types of plastic
substrates collected from peer-reviewed publications (Figure
1). A new context-aware enzyme sequence representation
(CESR) learning mechanism was developed to learn the
abundant contextual information in enzyme sequences, feature
extraction was performed for enzymes at both amino acid and
global sequence-levels and were compared, and XGBoost was
selected from 13 ML classification algorithms. Model
evaluation results demonstrated that PED significantly out-
performed state-of-the-art sequence-based protein classification
models. Furthermore, we comprehensively analyzed PED
prediction results to understand important features for
enzymatic plastic degradation.

2. METHODS

2.1. Data Set Preparation. Information about the
enzymatic degradation of plastics was manually collected
from relevant peer-reviewed publications between 1995 and
2022. Specific information included enzyme sequences, plastic
types, and ground-truth labels corresponding to an enzyme-
plastic pair (i, degradable or nondegradable) based on
experimental studies reported. In all, a data set including 213
records of enzyme-plastic pairs was created. Details of data set
preparation were provided in Section S1.

2.2. Context-Aware Enzyme Sequence Representa-
tion (CESR) and Feature Extraction. Enzyme sequences are
alphabetical letters representing amino acids. In order to
convert text of letters into numerical matrices, one-hot
encoding” was used and each enzyme sequence was
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represented by a matrix consisting of zeros and ones (detailed
in Section S2). Each of the 11 plastic types was one-hot
encoded into an 11-bit vector consisting of ten zeros and a one.
A CESR learning mechanism was designed to capture latent
contextual information on amino acid sequences (Section S3).

By using feature correlation analysis (Figure S1) and domain
knowledge (detailed in Section S4), 13 amino acid-level
features (Table S2) and 28 global sequence-level features
(Table S3) were extracted from sequential information, which
characterized the physicochemical properties of amino acid
residues and the whole enzyme sequence, respectively.

Feature importance was evaluated using Shapley Additive
exPlanations (SHAP).>” Mean SHAP values were obtained to
describe the average impact of the feature on model output,
and a scatter plot of SHAP values was obtained to show the
influence of a feature value on model output. Details are
provided in Section SS.

2.3. Classification Model Development and Optimi-
zation. A base model was first developed using one-hot
encoded enzyme sequences and plastic types as inputs. Then,
the model incorporated enzyme sequence information learned
by the CESR mechanism and the extracted features at amino
acid- and global sequence-levels features. CESR was con-
catenated with extracted features and the encoded plastic type
as the final feature vector, which was used as the input to a
supervised ML classification algorithm to perform the binary
classification (Figure 1B).

In the process of model optimization, the performance of 13
classification algorithms from seven algorithm categories were
evaluated (Section S6) and the best algorithm was chosen in
the PED framework.

The data set was randomly split into training and testing sets
with a ratio of 8:2. The random split was repeated ten times,
and model performance results were averaged. Model
performance was evaluated by a set of widely adopted metrics,
includin% accuracy, precision, recall, and F1 score (Section
S6).31_3‘ The receiver operating characteristic (ROC) curve
and the Area Under the ROC Curve (AUCgqc) were used to
evaluate the model performance against different classification
thresholds.”* 5-fold cross-validation was performed on the
training set to tune the hyperparameters. In the analysis of
model performance on dissimilar train-test sets, the data set
was split by using k-medoids clustering method,” a popular
clustering method that groups similar enzyme sequences
together. Details are provided in Section S6.

3. RESULTS AND DISCUSSION

3.1. Data Set of Enzymatic Plastic Degradation. Based
on a thorough review of literature reports with experimental
studies, we organized information regarding enzymatic
degradation of plastics including PET, PU, PHB, PBS, PEF,
polyethylene (PE), polycaprolactone (PCL), poly(ethylene
succinate) (PES), polyhydroxyvalerate (PHV), poly(lactic
acid) (PLA), and poly(butylene succinate-co-adipate)
(PBSA). The data set included 230 enzyme-plastic pairs in
total, consisting of 129 unique enzyme sequences and 11 types
of plastics. 141 enzyme-plastic pairs were degradable, and 89
pairs were nondegradable. Among all enzymes, PET-degrading
enzymes and PHB-degrading enzymes have been frequently
reported, with 63 and 40 enzymes tested (Figure S2). As for
the other plastics, the specific enzymes contributing to plastic
degradation remain underexplored®*® and thus constituted a
small proportion of the data set. Additionally, pairwise
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sequence similarity (with calculation described in Section S1)
showed 78% pairs of all data points had sequence similarities
less than 30% and that 7% pairs had similarities larger than
90%, indicating enzyme sequences in the data set were
dissimilar (Figure S3). The data set is publicly available in
Supporting Information.

3.2. Role of the Key Model Components. The
contribution of each key model component, including CESR
and feature extraction at amino acid and global sequence-
levels, was analyzed in the process of rational design of the
overall PED framework (Section S7). We first built a base
model where one-hot encoding of amino acids was used to
represent enzyme sequences and random forest (RF)***” was
used as the default classification algorithm. The base model
performed reasonably well (with an overall accuracy of 75.5%)
but could be further improved (Table S4 and Section S7).
Therefore, we developed and introduced the CESR learning
strategy in lieu of one-hot encoding and generated the CESR
model. While one-hot encoding has been frequently used to
represent protein sequences, this method is inherently sparse,
memory-inefficient, and high-dimensional, as it only differ-
entiates the 20 amino acids but ignores the interactions of
adjacent amino acids in the surrounding microenviron-
ments.”””® In contrast to the uniform amino acid representa-
tion by one-hot encoding, the CESR mechanism not only
learned the latent vector representation of each amino acid but
also used the state-of-the-art bidirectional transformer-based
attention mechanism®® to jointly capture the amino acid
information from the forward and backward directions of an
enzyme sequence and explore the interactive information from
the adjacent amino acids of each specific amino acid. The
CESR model outperformed the base model in accuracy by
2.72% and recall by 3.31%, suggesting the benefits of CESR by
learning contextual information in enzyme sequences (Table
S4 and Section S7).

Next, we extracted enzyme features at amino acid and global
sequence-levels as additional informative inputs. The amino
acid-level features capture the physicochemical properties of
individual amino acid residues within a protein and are of
importance in the development of predictive models for
protein classification.””*°~** The global sequence-levels
features capture the characteristics of a whole sequence and
have been shown to help solve protein classification
problems.”” When amino acid- and global sequence-level
features were incorporated into the CESR model, the new C/
AA/GS model outperformed the CESR model in all evaluation
metrics (Table S4 and Section S7). In summary, we
successfully developed and implemented CESR and feature
extraction at amino acid- and global sequence-levels for model
optimization and each optimization step was effective.

3.3. Evaluation of ML Algorithms and General-
izability of PED Framework. To select a proper ML
algorithm,”* we investigated the performance of different ML
classification algorithms on the basis of the C/AA/GS model
and identified XGBoost as the best-performing algorithm for
the final PED framework (Table S5). Detailed analysis of the
strengths of XGBoost over other classifiers is provided in
Section S8. As the performance of ML algorithms is often
sensitive to the amount of training data,*® we also evaluated
the impact of the size of training data set on PED performance
(Figure S4). PED worked well with data sets of small sizes, and
the number of enzyme-plastic pairs in our data set was
sufficient to learn the classification problem in this study,
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though further improvement could be achieved with the
expanded data sets as the research area advances (detailed in
Section S8). To assess the generalizability of PED, we
performed a train-test split by using the k-medoids clustering
method (Section S6) and found that PED was generalizable to
enzyme sequences that were dissimilar to those in the training
data set (Table S6, Section S8). Additionally, to facilitate the
utilization of PED by potential users on a plastic of interest, we
presented the accuracy breakdown of PED by plastic type
(Table S7). The PED achieved accuracies higher than 86.6%
for all plastic types, except for PHV which had an accuracy of
65.0% due to the small number of training data. More
discussion can be found in Section S8.

3.4. Performance of PED Compared to Existing
Sequence-Based ML Models. The performance of PED
was compared to sequence-based protein classification models
from existing literature (referred to as “baseline models”, with a
description of these models summarized in Table S8). The
same data set was used as the input to all the models for
evaluation. PED outperformed all of the baseline models
(Figure 2A, Table S9). Particularly, PED outperformed the
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Figure 2. Comparison of the performance of PED with sequence-
based protein classification models from existing literature in terms of
(A) evaluation metrics (accuracy, precision, recall, and Fl-score), and
(B) Receiver Operating Characteristic (ROC) curve. AUC: area
under the ROC curve.

best-performing baseline model Seq2Vec™” by 21% in terms of
F1 score, which collectively represents precision and recall and
is commonly used to compare the performance of different
classifiers.>* In the ROC curve, which is a two-dimensional
depiction of classification performance in terms of the true
positive rate on the y-axis and the false positive rate on the x-
axis,”* PED had the curve closest to the top-left region,
meaning the best performance (Figure 2B). The highest
AUCpoc of 0.89 showed a reliable resolution of PED to
distinguish degradable versus nondegradable enzyme-plastic
pairs.
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Figure 3. Ranking of top features based on SHapley Additive exPlanations (SHAP). (A) Top ten most important features in enzymatic degradation
of plastics. The x-axis is the mean absolute SHAP value, which indicates the relative importance of features on enzymatic plastic degradation. (B)
The density scatter plot of SHAP values indicating the impact of feature values on degradation. A positive SHAP value means that the feature can
increase the predicted possibility of degradation (i.e,, more likely to be degradable), whereas a negative SHAP value means that the feature can
decrease the predicted possibility of degradation (ie., less likely to be degradable). AA: amino acid-level features; GS: global sequence-level

features.

The superior performance of PED compared to the baseline
models could be attributed to three aspects of the model
design. First, PED had the unique CESR learning mechanism
encoding not only the individual amino acids but also the
contextual relationships between neighborhood amino acids,
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which was distinct from the protein representation strategies
(e.g, long short-term memory,46 Doc2Vec mechanism®’) in
baseline models. Second, PED extracted enzyme features at
both amino acid- and global sequence-levels, which brought
out key protein information to distinguish the degradable and
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nondegradable enzyme-plastic pairs. In comparison, the
baseline models either lacked such comprehensive feature
extraction or extracted nonrepresentative features. Third, PED
employed the XGBoost classifier, of which the advantage was
discussed in Section S8. In comparison, the deep learning-
based baseline models underperformed because deep learning
classifiers could not achieve desirable performance where the
size of the training data set for enzymatic degradation of
plastics was relatively small. Other baseline models employed
RF classifier, which was outcompeted by XGBoost used in
PED since XGBoost classifier was optimized by paying more
attention to misclassified data samples to boost the overall
classification performance.””** A detailed comparison of PED
with the baseline models regarding the three aspects was
provided in Section S9.

3.5. Feature Interpretation. The effect of amino acid-
and global sequence-level features on degradation prediction
was analyzed by calculating SHAP values (Section SS), and the
top ten ranked features were identified (Figure 3). First, high
amino acid hydrophobicity levels (i.e., low feature value of
AA_Hydrophobic parameter, defined as required energy (kcal/
mol) of transferring an amino acid from water to ethanol at 25
°C*) could in general negatively affect enzyme activity in
plastic degradation (Figure 3B). The influence of enzyme
hydrophobicity could be complex, as shown in previous
studies. On one hand, high hydrophobicity on enzyme surface
can facilitate the attachment of enzyme onto plastic substrate
and thus promote degradation, with an example in Section
$10.>° On the other hand, high hydrophobicity can negatively
affect enzymatic plastic degradation due to enzyme aggregation
and impairment of catalytic activity caused by intermolecular
hydrophobic interactions.”’ Our SHAP analysis showed that
the negative effects of hydrophobicity were more profound in
the enzymes analyzed. Second, a positive effect of high
AA_Heat capacity (referring to the amount of heat to be
supplied to one molar amino acid to produce a unit change in
their temperature (cal/mol-°C)) was observed (Figure 3B). A
protein with relatively high heat capacity indicates the protein
would be resistant to temperature change and denatura-
tion,”” ™" but it remains an open question how heat capacity
correlates with the protein functioning of plastic-degrading
enzymes and further study is needed. Third, there was a clear
distribution of SHAP values for the feature GS_molecular
weight, where enzymes with a low molecular weight were
favorable for plastic degradation compared to larger enzymes
(Figure 3B). The observation was consistent with the literature
reports that small enzyme molecules could diffuse into
amorphous regions or pores in crystalline regions in polymers
relatively easily and thus catalyzed degradation process more
efficiently than large enzymes.”* Last but not least, it was
observed that a lower frequency of alanine (A) in protein
sequences was favorable for the enzymatic degradation of
plastics (Figure 3B). Such effects may be attributed to the
aromatic interactions between amino acids and plastic
substrates’” and was observed in a study detailed in Section
$10."> Additional discussion for some other features (e.g,
number of hydrogen bond donors and turn structures) is
detailed in Section S10.

3.6. Implications. In summary, this study demonstrated
the successful application of ML for sequence-based prediction
of enzyme activity in degrading various plastics for the first
time. PED can simply use an enzyme sequence and plastic type
as the input query to generate the output of degradable/
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nondegradable, providing a new data-driven model for
enzymatic plastic degradation prediction. Furthermore, critical
enzyme features at amino acid and global sequence-levels were
identified, which provided insight into critical factors affecting
enzyme activities in plastic degradation at the molecular level
and suggested directions for future experimental investigation.
It is noted that the size of the data set for model training is
relatively small, and we envision the data available from
experimental studies will expand rapidly as research in this
emerging area advances. Our future work will jointly explore
the data from both reported experimental studies and
databases via weak supervision® to enable the use of unreliable
and noisy data for creating a strong predictive model.
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