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Measurement of exclusive J and
2S production at s 13 TeV

LHCb collaboration

Abstract

Measurements are presented of the cross-section for the central exclusive production of
J and 2S processes in proton-proton collisions at s 13 TeV
with 2016–2018 data. They are performed by requiring both muons to be in the LHCb
acceptance (with pseudorapidity 2 4.5) and mesons in the rapidity range
2.0 y 4.5. The integrated cross-section results are

J 2.0 yJ 4.5, 2.0 4.5 400 2 5 12 pb ,

2S 2.0 y 2S 4.5, 2.0 4.5 9.40 0.15 0.13 0.27 pb ,

where the uncertainties are statistical, systematic and due to the luminosity determina-
tion. In addition, a measurement of the ratio of 2S and J cross-sections, at an
average photon-proton centre-of-mass energy of 1 TeV, is performed, giving

2S

J
0.1763 0.0029 0.0008 0.0039 ,

where the first uncertainty is statistical, the second systematic and the third due to the
knowledge of the involved branching fractions. For the first time, the dependence of the
J and 2S cross-sections on the total transverse momentum transfer is determined
in pp collisions and is found consistent with the behaviour observed in electron-proton
collisions.
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1 Introduction

Deep inelastic scattering of leptons off protons provided the first proof that hadrons are not
elementary but rather composed of quarks 1, 2 . It is an essential tool to determine parton
distribution functions (PDFs) inside protons, which are required to make cross-section pre-
dictions at hadron colliders. However, charged leptons interact electromagnetically and only
probe the density of the quarks, which are charged. The densities of the neutral gluons must
be inferred, which can be done by studying how the quark PDFs evolve with the scale set by
the mass of the exchanged virtual photon. These PDFs are determined in fits 3–5 to multi-
ple measurements, including notably e p scattering 6, 7 , and forward production of vector
bosons 8–11 and heavy-quarks 12–15 in pp collisions. Due to a lack of data at low x , the
fraction of hadron momentum carried by the parton, the uncertainties attributed to the gluon
PDFs are large at low x and are even compatible with an unphysical decrease of the gluon
density with x 16 . Other methods are thus required to access the gluonic PDF.

Central exclusive vector-meson production (CEP) in pp collisions is the quasi-elastic pro-
duction of a single meson, leaving the protons intact. Exclusive charmonium production results
from the conversion of a virtual photon close to its mass shell into a cc pair, which hadronises
into a J or 2S meson. These processes probe the gluonic PDF at the scale of the charm
quark mass. The exclusivity of the process requires that, at leading order, two gluons are ex-
changed with the target hadron. Thus the cross-section approximately scales as gluon density
squared 17–20 . The process and the main backgrounds are depicted in Fig. 1.
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Figure 1: Feynman diagrams for signal and background processes. From left to right:
signal CEP J photoproduction, where IP stands for a colourless superposition of
gluons, sometimes referred to as a pomeron; continuum dimuon production; exclu-
sive c (J 0, 1, 2) production via double pomeron exchange; inelastic pp collision
where a proton dissociates.
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Exclusive scattering processes also give access to the total transverse momentum transfer
∆t, the square of the difference between the momenta of the incoming and outgoing proton,
which is a Fourier conjugate to the impact parameter between two colliding hadrons. As
such, the ∆t spectra are sensitive to the spatial distribution of colour charge 21 . Several
predictions (see e.g. Ref. 18 ) calculate the exclusive production cross-section at∆t 0. The
cross-section falls exponentially versus ∆t with a slope determined experimentally, which can
be used to infer the total exclusive cross-section. In the present paper, this slope is determined
in ten intervals of rapidity for the J and 2S mesons. As the outgoing protons are not
detected at LHCb, ∆t is not directly accessible and the transverse momentum squared, p2

T, of
the charmonium state is used as a proxy.

The photoproduction cross-section of a charmonium state is sensitive to the radial wave
function of the charmonium state in a region where the 2S wave function has a radial
node but the J wave function does not. As a result, the 2S photoproduction cross-
section is expected to be suppressed with respect to that of J mesons 22–31 . With many
theoretical uncertainties cancelling, predictions for the ratio of 2S and J cross-sections
can be determined more precisely than the individual cross-sections.

Exclusive J and 2S production in pp collisions at the LHC have previously been
measured at centre-of-mass energies of s 7 TeV 32,33 and 13 TeV 34 . Exclusive double-
charmonium 35 and 36 production have been measured at 7 and 8 TeV, and that of J
at 13 TeV 37 . Charmonia production has also been studied in ultra-peripheral pPb 38 and
PbPb 39–42 collisions.

The previous LHCb measurements have been used to update PDF fits 19, 43 , and thus
improve predictions of J and CEP cross-sections 18, 44, 45 ; make predictions 46–52
for ultra-peripheral photoproduction processes at RHIC 53,54 and the LHC 41,42,55,56 ;
determine the meson-proton scattering length 57 and extract the proton mass radius from
the J and 2S cross-sections 58 . Based on these cross-sections, Ref. 59 claims that
LHCb data show evidence of gluon saturation, i.e. the slowing down of the growth of gluon
densities as x decreases due to gluon emission and recombination balancing each other, while
the authors of Ref. 45 disagree. Such effects would usually be expected in heavy-ion colli-
sions.

This paper presents a measurement of exclusive J and 2S production in proton-
proton collisions at s 13 TeV in the forward direction, in ten intervals of rapidity between
2.0 and 4.5. The data used were collected with the LHCb detector at the LHC between 2016
and 2018, corresponding to an integrated luminosity of 4.4 fb 1, which is twenty times larger
than that used in Ref. 34 . This larger sample permits a better control of background shapes,
implemented in a two-dimensional fit in dimuon mass and transverse-momentum squared.
For the first time, a measurement of the 2S cross-section in the same rapidity intervals as
for the J cross-section, and thus the determination of their ratio as a function of rapidity is
presented.

2 Detector, simulation and data sample

The LHCb detector 60,61 is a single-arm forward spectrometer covering the pseudorapidity
range 2 5, designed for the study of particles containing b or c quarks. The detector
includes a high-precision tracking system consisting of a silicon-strip vertex detector (VELO)
surrounding the pp interaction region 62 , a large-area silicon-strip detector located upstream
of a dipole magnet with a bending power of about 4 T m, and three stations of silicon-strip de-
tectors and straw drift tubes 63 placed downstream of the magnet. The tracking system
provides a measurement of the momentum, p, of charged particles with a relative uncertainty
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that varies from 0.5% at low momentum to 1.0% at 200 GeV c. Photons are identified by a
calorimeter system consisting of scintillating-pad and preshower detectors (SPD), and electro-
magnetic and hadronic calorimeters. Muons are identified by a system composed of alternating
layers of iron and multiwire proportional chambers 64 .

The pseudorapidity coverage of the LHCb detector is extended by the HERSCHEL sys-
tem, composed of forward shower counters consisting of five planes of scintillators with three
planes at 114, 19.7 and 7.5 m upstream of the interaction point, and two downstream at 20
and 114 m. At each location, there are four quadrants of scintillators, whose information is
recorded in every beam crossing by photomultiplier tubes, giving a total of 20 channels in
HERSCHEL 65 . These are calibrated using data taken without beams circulating at the end
of each LHC fill 66 . The pseudorapidity ranges covered by the VELO and HERSCHEL are
different. For the VELO the region is 3.5 1.5 and 2 5, and for HERSCHEL the
region is 10 5 and 5 10.

The online event selection is performed by a trigger 67, 68 that consists of a hardware
stage, based on information from the calorimeter and muon systems, followed by a software
stage, which applies a full event reconstruction. The distinct signature of CEP events is their
low multiplicity. Consequently, at the hardware stage, the trigger selects events containing
at least one muon with pT 192 MeV c and fewer than 20 hits in the SPD detector. At the
software stage events are selected if they contain two muons with pT 400 MeV c, fewer than
10 tracks in the VELO, of which at most four are reconstructed in the backward direction 62 .
A sample used for the determination of trigger, reconstruction and particle identification (PID)
efficiencies is collected requiring a single muon with pT 500 MeV c and the same multiplicity
requirements as for the default selection.

The data used were collected between July 2016 and October 2018. The early 2016 data
are not used as relevant trigger selections were not yet included. Data from the last month of
data taking in 2018 is also discarded as it was affected by a noisy SPD readout board, which
biases the number of SPD hits in low-multiplicity events.

Offline, events are required to contain only the two muon candidates, which should be of
good quality 69 , and identified as such 70 , which implies that their momentum exceeds
3 GeV c, the threshold to cross the calorimeter and reach the muon system. The event should
contain no additional tracks in the VELO, and no photons other than those that are consistent
with being radiated from the passage of muons through the detector material.

The muons from CEP signal J decays are well outside of the HERSCHEL acceptance;
these counters are used to veto charged particles from the proton dissociating. The CEP cross-
section measurements are performed with events that contain no such additional particles, i.e.
HERSCHEL signals consistent with noise. The remaining events are retained for background
studies. The HERSCHEL response is described using a discriminating 2-like variable that
quantifies the activity above noise taking into account correlations between the counters 65 .
The selection requirement is optimised using low-mass low-p2

T dimuon pairs, which are dom-
inated by two-photon fusion.

Simulation is required to model the effects of the detector acceptance and the imposed
selection requirements, and to study specific backgrounds. In the simulation, the charmo-
nium candidate is generated and decayed using SuperChic2 71 , with the exception of

2S J X processes (where X is any combination of particles, mostly ), for which
the decay is handled by EVTGEN 72 . Final-state radiation is generated using PHOTOS 73 .
The interaction of the generated particles with the detector, and its response, are implemented
using the GEANT4 toolkit 74,75 as described in Ref. 76 . The ROOT 77 and LHCb 78–80
software frameworks are used for the initial data preparation, while the analysis is written in
the PYTHON language with standard scientific packages 81–86 .
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Fi g ur e 2: T w o- di m e n si o n al m a s s- p 2
T di stri b uti o n s f or t h e (l eft ) si g n al a n d (ri g ht )

c o ntr ol s a m pl e s.

T h e t ot al i nt e gr at e d l u mi n o sit y of t h e u s e d d at a s a m pl e i s d et er mi n e d u si n g e m pt y- e v e nt

c o u nt er s c ali br at e d b y v a n d er M e er s c a n s a n d b e a m pr o fil e m e a s ur e m e nt s [ 8 7 ] a n d i s f o u n d t o

b e L i nt = 4. 4 1 ± 0. 1 3 f b − 1 . D u e t o t h e m ulti pli cit y r e q uir e m e nt s i m p o s e d i n t h e tri g g er a n d t h e

of fli n e s el e cti o n, o nl y e v e nt s wit h a si n gl e p p i nt er a cti o n ar e s el e ct e d. T h e u s ef ul i nt e gr at e d

l u mi n o sit y i s t h u s r e d u c e d b y t h e fr a cti o n of e v e nt s wit h a si n gl e i nt er a cti o n c o nt ai ni n g at

l e a st t w o V E L O tr a c k s. T h e n u m b er of s u c h vi si bl e p p i nt er a cti o n s p er b e a m cr o s si n g, n , i s

a s s u m e d t o f oll o w a P oi s s o n di stri b uti o n, P ( n ) = µ n e − µ / n !, wit h m e a n µ . T h e fr a cti o n of

u s ef ul i nt e gr at e d l u mi n o sit y, L eff
i nt

, c orr e s p o n di n g t o e v e nt s wit h n = 1, i s gi v e n b y

fL =
L eff

i nt

L i nt

=
P ( n = 1 )
∞

n = 0

n P ( n )

=
µ e − µ

∞

n = 0

n
µ n e − µ

n !

= e − µ . ( 1 )

T h e v al u e of µ d e p e n d s o n r u n ni n g c o n diti o n s a n d it i s d et er mi n e d i n p eri o d s of u p t o o n e h o ur

of st a bl e r u n ni n g c o n diti o n s [ 8 7 ] . I n m o st r u n ni n g p eri o d s µ i s cl o s e t o 1. 1, wit h v ari ati o n s of

l e s s t h a n 1 0 %, c orr e s p o n di n g t o a n a v er a g e fL ≃ 0. 3 3. T h e c orr e s p o n di n g u s ef ul i nt e gr at e d

l u mi n o sit y i s L eff
i nt

= 1 5 2 2 ± 4 4 p b − 1 , w h er e t h e u n c ert ai nt y i s d o mi n at e d b y t h at o n L i nt.

3 T w o- di m e n si o n al si g n al fit s

T h e pri m ar y c h all e n g e i n t hi s a n al y si s i s s e p ar ati o n of t h e el a sti c C E P a n d i n el a sti c pr ot o n-

di s s o ci ati o n ( P D ) c o m p o n e nt s, s h o w n i n Fi g. 1 . T h e l att er c o n si st s of e v e nt s w h er e t h e pr ot o n

di s s o ci at e s, pr o d u ci n g c h ar g e d p arti cl e s i n t h e v er y f or w ar d a c c e pt a n c e. T h e s e ar e v et o e d

b y t h e H E R S C H E L r e q uir e m e nt, w hi c h h o w e v er i s n ot p erf e ct a n d t h u s l e a v e s s o m e P D b a c k-

gr o u n d s i n t h e s el e ct e d si g n al s a m pl e. T h e diff er e nt p 2
T di stri b uti o n s of P D a n d C E P c h ar m o ni a

ar e t h er ef or e al s o e x pl oit e d. T h e pr o p erti e s of t h e P D c o m p o n e nt ar e d et er mi n e d fr o m a c o n-

tr ol s a m pl e t h at i s fr e e fr o m a n y C E P si g n al c o ntri b uti o n. T hi s s a m pl e i s o bt ai n e d b y i n v erti n g

t h e HE R S C H E L v et o, a n d r e q uiri n g 0. 9 < p 2
T < 5. 0 G e V 2 / c 2 , w h er e t h e C E P c o ntri b uti o n, w hi c h

p o p ul at e s t h e l o w- p 2
T r e gi o n, i s n e gli gi bl e.

T w o ot h er b a c k gr o u n d s ar e a c c o u nt e d f or: Q E D c o nti n u u m di m u o n pr o d u cti o n a n d J / ψ

f e e d- d o w n fr o m hi g h er- m a s s c h ar m o ni a, n a m el y ψ ( 2 S ) , a n d χ c J ( 1 P ) ( J = 0, 1, 2 ) , r ef err e d t o

a s χ c b el o w u nl e s s ot h er wi s e s p e ci fi e d. Ot h er f e e d- d o w n c o ntri b uti o n s, s u c h a s t h o s e fr o m Υ

r e s o n a n c e s or b h a dr o n s, ar e n e gli gi bl e b e c a u s e of t h e V E L O-tr a c k s v et o.
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D at a Fit m o d el

−µ+µ → ψ/J   b a c k gr o u n d−µ+µ
−µ+µ →( 2 S) ψ

Fi g ur e 3: Di stri b uti o n s of (l eft ) m a s s a n d (ri g ht ) p 2
T of d at a i n t h e c o ntr ol s a m pl e f or

r a pi dit y i nt er v al 3. 0 < y < 3. 2 5. T h e fit d e s cri b e d i n t h e t e xt i s s u p eri m p o s e d.

A s t h er e i s a c orr el ati o n b et w e e n t h e di m u o n m a s s a n d p 2
T di stri b uti o n s f or n o n- p e a ki n g

b a c k gr o u n d s, t h e d at a ar e fit b y a t w o- di m e n si o n al m o d el i n m a s s a n d p 2
T i n e a c h of t e n r a pi dit y

i nt er v al s. T h e c o n si d er e d r e gi o n s ar e 2 0 0 0 < m µ + µ − < 4 2 0 0 M e V / c 2 a n d p 2
T < 5 G e V 2 / c 2 . T h e

r el e v a nt di stri b uti o n s ar e s h o w n i n Fi g. 2 . O v er all, t h er e ar e 5 6 6 0 9 5 e v e nt s i n t h e si g n al

s a m pl e a n d 5 6 6 5 4 i n t h e c o ntr ol s a m pl e.

T h e si g n al yi el d s ar e d et er mi n e d i n e a c h r a pi dit y i nt er v al b y a t w o- di m e n si o n al u n bi n n e d

e xt e n d e d m a xi m u m-li k eli h o o d fit [ 8 3 , 8 4 ] i n m a s s a n d p 2
T . T h e fit m o d el c o m pri s e s t h e si g n al

J / ψ a n d ψ ( 2 S ) c o m p o n e nt s; t h e c o nti n u u m Q E D b a c k gr o u n d; t h e ψ ( 2 S ) a n d χ c f e e d- d o w n s;

a n d t h e i n el a sti c P D b a c k gr o u n d. Pri or t o c arr yi n g o ut t h e fit i n e a c h r a pi dit y i nt er v al, fit s t o

t h e w h ol e si g n al a n d c o ntr ol d at a s a m pl e s (r ef err e d t o a s t h e f ull s a m pl e ) ar e p erf or m e d a n d

t h eir r e s ult s ar e u s e d t o c o n str ai n n ui s a n c e p ar a m et er s t h at c a n n ot b e d et er mi n e d a c c ur at el y

i n l o w- yi el d r a pi dit y r e gi o n s, a s d e s cri b e d b el o w.

T h e C E P a n d P D J / ψ a n d ψ ( 2 S ) m a s s p e a k s ar e e a c h m o d ell e d wit h a G a u s si a n f u n c-

ti o n, m o di fi e d t o h a v e p o w er-l a w t ail s o n b ot h si d e s [ 8 8 ] . T h e diff er e n c e i n t h e m e a n s of

t h e t w o G a u s si a n c o m p o n e nt s i s fi x e d a c c or di n g t o t h e k n o w n m a s s diff er e n c e of t h e t w o r e s-

o n a n c e s [ 8 9 ] . T h eir wi dt h s ar e c o n str ai n e d t o s c al e li n e arl y wit h t h e e n er g y r el e a s e i n t h e

r e s p e cti v e d e c a y s [ 9 0 ] . T h e t ail p ar a m et er s ar e s h ar e d b et w e e n t h e t w o p e a k s a n d G a u s si a n-

c o n str ai n e d t o t h e v al u e s d et er mi n e d i n t h e fit s t o t h e f ull s a m pl e.

T h e C E P p 2
T s h a p e i s i n d e p e n d e nt of t h e m a s s a n d i s d e s cri b e d b y a n e x p o n e nti al f u n c-

ti o n, a s e x p e ct e d b y R e g g e t h e or y [ 9 1 ] a n d m e a s ur e d i n pr e vi o u s e x p eri m e nt s, n ot a bl y at

H E R A [ 9 2 ] . T h e sl o p e s of t h e J / ψ a n d ψ ( 2 S ) e x p o n e nti al s ar e l eft fr e e t o fl o at i n e a c h r a pi d-

it y i nt er v al.

T h e p 2
T di stri b uti o n of t h e P D J / ψ a n d ψ ( 2 S ) m e s o n s i s m o d ell e d wit h a p o w er-l a w f u n cti o n

pr o p orti o n al t o ( 1 + ( b p d / n p d ) p 2
T ) − n p d , a s m e a s ur e d b y t h e H 1 e x p eri m e nt [ 9 3 ] . T hi s f u n cti o n

f oll o w s a p pr o xi m at el y a n e x p o n e nti al of sl o p e − b p d , m o di fi e d b y t h e e m piri c al p ar a m et er

n p d . Alt er n ati v e m o d el s ar e di s c u s s e d i n S e c. 5 . I n a d diti o n, t h e P D c o ntri b uti o n c o nt ai n s a

n o nr e s o n a nt c o m p o n e nt w hi c h i s m o d ell e d b y a n e x p o n e nti al s h a p e i n m a s s a n d t h e a b o v e-

m e nti o n e d p o w er-l a w m o d el f or p 2
T . T h e p ar a m et er s of t h e t hr e e p o w er-l a w s ar e diff er e nt f or

t h e J / ψ , ψ ( 2 S ) , a n d n o nr e s o n a nt di m u o n c o m p o n e nt s.

T h e p ar a m et er s of t h e P D c o m p o n e nt s ar e fir st d et er mi n e d b y a fit t o t h e c o ntr ol s a m pl e

i n e a c h r a pi dit y i nt er v al; a n e x a m pl e fit i s s h o w n i n Fi g. 3 . All p ar a m et er s ar e fr e e t o v ar y i n

t h e s e fit s e x c e pt f or t h e si g n al t ail p ar a m et er s, a s e x pl ai n e d a b o v e.

T h e P D m o d el s ar e t h e n u s e d a s i n p ut i n t h e fit s t o t h e si g n al s a m pl e. T h e p 2
T s h a p e s of t h e

P D c o m p o n e nt s ar e fi x e d t o t h e v al u e s o bt ai n e d o n t h e c orr e s p o n di n g c o ntr ol s a m pl e, w hil e

t h e P D J / ψ a n d ψ ( 2 S ) m a s s s h a p e s ar e f or c e d t o b e i d e nti c al t o t h o s e of t h e C E P si g n al s. T h e
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r el ati v e fr a cti o n s of t h e t w o c h ar m o ni a a n d t h e di m u o n b a c k gr o u n d ar e c o n str ai n e d fr o m t h e

fit t o t h e c o ntr ol s a m pl e.

E x cl u si v e c o nti n u u m, or n o nr e s o n a nt di m u o n pr o d u cti o n, i s a Q E D pr o c e s s t h at t a k e s pl a c e

vi a t h e f u si o n of t w o p h ot o n s. T h e di m u o n p air pr o d u c e d i n t hi s f or m h a s l o w di m u o n m a s s

a n d a p 2
T s h a p e s h ar pl y p e a k e d t o w ar d s z er o. T h e m a s s a n d p 2

T di stri b uti o n s ar e c orr el at e d

a n d t h er ef or e a t w o- di m e n si o n al hi st o gr a m, w hi c h i s o bt ai n e d fr o m si m ul ati o n a n d v ali d at e d

wit h l o w- p 2
T d at a, i s u s e d i n t h e fit.

T h e J / ψ yi el d i s aff e ct e d b y f e e d- d o w n fr o m hi g h er- m a s s c h ar m o ni u m st at e s, w hi c h i s

a c c o u nt e d f or i n t h e fit. T h e f e e d- d o w n fr o m ψ ( 2 S ) → J / ψ X d e c a y s i s p arti all y s u p pr e s s e d

b y t h e V E L O a n d S P D m ulti pli cit y r e q uir e m e nt s. T h e yi el d of t h e r e m ai ni n g f e e d- d o w n i s

d et er mi n e d fr o m si m ul ati o n of i n cl u si v e ψ ( 2 S ) → J / ψ X pr o c e s s e s, n or m ali s e d b y t h e ψ ( 2 S )

yi el d m e a s ur e d i n e a c h r a pi dit y i nt er v al. Bi n mi gr ati o n i s t a k e n i nt o a c c o u nt vi a a mi gr ati o n

m atri x d et er mi n e d fr o m si m ul ati o n. A n it er ati v e pr o c e d ur e i s a p pli e d t o fir st d et er mi n e t h e

r a pi dit y- d e p e n d e nt ψ ( 2 S ) yi el d a n d t h e n it s c o ntri b uti o n t o t h e J / ψ yi el d. I n pr a cti c e, t w o

st e p s ar e s uf fi ci e nt f or t h e c o n v er g e n c e of t h e pr o c e d ur e.

T h e n or m ali s ati o n of t h e f e e d- d o w n fr o m χ c → J / ψ γ d e c a y s i s d et er mi n e d b y r e c o n str u ct-

i n g J / ψ γ c a n di d at e s i n d at a. T h e s a m e J / ψ s el e cti o n a s f or C E P a n d P D c a n di d at e s i s u s e d,

e x c e pt t h at t h e v et o o n a d diti o n al p h ot o n s i s r e m o v e d. I n st e a d, p h ot o n s wit h tr a n s v er s e e n-

er g y i n e x c e s s of 7 5 M e V ar e c o m bi n e d wit h J / ψ c a n di d at e s t o f or m χ c c a n di d at e s. I n e a c h y

i nt er v al, w h er e y i s t h e r a pi dit y of t h e J / ψ m e s o n, a n d s e p ar at el y f or t h e si g n al a n d c o ntr ol

s a m pl e s, t h e χ c J ( J = 0, 1, 2 ) yi el d s ar e d et er mi n e d fr o m a fit t o t h e r e s ulti n g m a s s di stri b u-

ti o n. Fit s t o t h e χ c s a m pl e s ar e s h o w n i n Fi g. 4 . T h e t hr e e χ c J ( J = 0, 1, 2 ) m a s s p e a k s ar e e a c h

m o d ell e d wit h a Cr y st al B all f u n cti o n [ 8 8 ] wit h t h e t ail p ar a m et er s fi x e d fr o m si m ul ati o n. T h e

p e a k of t h e G a u s si a n i s fr e e i n t h e fit t o a c c o u nt f or i m p erf e ct p h ot o n e n er g y c ali br ati o n, b ut

t h e s hift wit h r e s p e ct t o t h e k n o w n m a s s e s of t h e χ c m e s o n s [ 8 9 ] i s c o n str ai n e d t o b e t h e s a m e

f or all t hr e e st at e s. T h e s hift v ari e s b et w e e n 6 a n d 1 0 M e V/ c 2 ( wit h t y pi c al st ati sti c al u n c er-

t ai nti e s b et w e e n 0. 5 a n d 1 M e V/ c 2 ) d e p e n di n g o n t h e r a pi dit y i nt er v al. T h e b a c k gr o u n d i s a

mi xt ur e of p arti all y r e c o n str u ct e d ψ ( 2 S ) d e c a y s, s u c h a s ψ ( 2 S ) → J / ψ π 0 π 0 , a n d r a n d o m c o m-

bi n ati o n s of J / ψ m e s o n s a n d c al ori m et er cl u st er s. T h e s a m e e m piri c al f u n cti o n a s i n R ef. [ 9 4 ]

i s u s e d a s a m o d el f or t h e s u m of t h e s e c o ntri b uti o n s.

T h e c o ntri b uti o n fr o m χ c 0 m e s o n s i s s m all, w hil e t h o s e of χ c 1 a n d χ c 2 m e s o n s d o mi n at e.

T h e e m piri c al b a c k gr o u n d m o d el d o e s n ot d e s cri b e p erf e ctl y t h e m a s s di stri b uti o n i n t h e r e gi o n

b el o w 3 4 0 0 M e V/ c 2 , w hi c h h a s a n e gli gi bl e eff e ct o n t h e t ot al χ c yi el d. D u e t o t h e li mit e d

p h ot o n e n er g y r e s ol uti o n, t h e m a s s fit h a s littl e s e n siti vit y t o t h e r el ati v e si z e of t h e χ c 1 a n d χ c 2

c o ntri b uti o n s. T hi s a m bi g uit y h o w e v er d o e s n ot aff e ct t h e d et er mi n ati o n of t h e t ot al J / ψ -fr o m-
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Fi g ur e 4: Fit t o t h e J / ψ γ m a s s di stri b uti o n wit h t h e J / ψ m e s o n i n 3. 0 < y < 3. 2 5 f or

(l eft ) si g n al a n d (ri g ht ) c o ntr ol s a m pl e s.
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Fi g ur e 5: Di stri b uti o n s of (l eft ) m a s s a n d (ri g ht ) p 2
T of d at a i n t h e si g n al s a m pl e f or

t h e r a pi dit y i nt er v al 3. 0 < y < 3. 2 5. T h e fit d e s cri b e d i n t h e t e xt i s s u p eri m p o s e d.

χ c ( 1, 2 ) yi el d si n c e (i ) t h e br a n c hi n g fr a cti o n s of t h e χ c ( 1, 2 ) → J / ψ γ d e c a y s dr o p o ut i n t h e r ati o

of J / ψ t o χ c ( 1, 2 ) yi el d s; (ii ) t h e r el ati v e ef fi ci e n ci e s f or r e c o n str u cti n g J / ψ γ a n d J / ψ → µ + µ −

ar e e q u al f or χ c 1 a n d χ c 2 , a s d et er mi n e d fr o m si m ul ati o n; a n d (iii ) t h e p 2
T di stri b uti o n s of

J / ψ fr o m χ c 1 a n d χ c 2 ar e f o u n d t o b e e q u al i n si m ul ati o n a n d i n d at a, w hi c h i s c h e c k e d

b y i n v e sti g ati n g t h e p 2
T s h a p e of c a n di d at e s i n t h e l eft a n d ri g ht h al v e s of t h e χ c ( 1, 2 ) m a s s

p e a k. T h e J / ψ -fr o m-χ c ( 1, 2 ) yi el d i s t h er ef or e pr o p orti o n al t o t h e χ c ( 1, 2 ) yi el d i n e a c h r a pi dit y

i nt er v al. T hi s f e e d- d o w n c o ntri b uti o n i s d et er mi n e d i n t h e si g n al a n d c o ntr ol s a m pl e s, a n d

t h e P D c o ntri b uti o n i s s u btr a ct e d fr o m t h at i n C E P e v e nt s t o d et er mi n e t h e o v er all C E P χ c

f e e d- d o w n n or m ali s ati o n.

T h e J / ψ -fr o m-ψ ( 2 S ) a n d J / ψ -fr o m-χ c c o m p o n e nt s ar e m o d ell e d i n t h e C E P fit u si n g t h e

s a m e m a s s m o d el a s f or t h e J / ψ si g n al. T h e p 2
T s h a p e s ar e m o d ell e d wit h a si n gl e ( d o u bl e )

e x p o n e nti al di stri b uti o n f or t h e ψ ( 2 S ) ( χ c ) f e e d- d o w n, w hi c h i s d et er mi n e d fr o m si m ul ati o n

t h at i s v ali d at e d b y d at a.

T h e m a s s a n d p 2
T pr oj e cti o n s of t h e fit i n t h e i nt er v al 3. 0 < y < 3. 2 5 ar e s h o w n i n Fi g. 5 . All

i nt er v al s ar e s h o w n i n Fi g. 1 1 i n A p p e n di x C . T h e p ar a m et er s of i nt er e st ar e t h e C E P J / ψ a n d

ψ ( 2 S ) yi el d s, a n d t h e sl o p e s of t h eir p 2
T s h a p e s. I n t ot al, 2 9 9 1 0 0 ± 2 1 0 0 J / ψ a n d 7 4 2 0 ± 1 3 0

ψ ( 2 S ) el a sti c all y pr o d u c e d m e s o n s ar e f o u n d i n t h e fit t o t h e f ull r a pi dit y r a n g e.

4 Ef fi ci e n ci e s

T h e si g n al yi el d s ar e c orr e ct e d f or d et e cti o n ef fi ci e n ci e s u si n g si m ul ati o n s a m pl e s c ali br at e d

wit h d at a [ 6 2 , 6 9 , 7 0 ] , e x c e pt f or t h e H e R S C h e L-r el at e d ef fi ci e n ci e s, w hi c h ar e e sti m at e d i n

d at a.

A t a g- a n d- pr o b e m et h o d, ai m e d at m e a s uri n g si n gl e- m u o n ef fi ci e n ci e s, i s a p pli e d t o a c-

c o u nt f or t h e diff er e n c e s b et w e e n si m ul ati o n a n d d at a. T h e si m ul ati o n s a m pl e i s t h e n w ei g ht e d

wit h t h e a p pr o pri at e c orr e cti o n f a ct or s [ 6 6 ] . I n t hi s m et h o d, a t a g m u o n fr o m t h e J / ψ c a n-

di d at e i s r e q uir e d t o p a s s all s el e cti o n crit eri a, w hil e t h e ot h er m u o n i s u s e d t o m e a s ur e t h e

ef fi ci e n c y u n d er i n v e sti g ati o n. T h e s a m e pr o c e d ur e i s a p pli e d t o c ali br ati o n s a m pl e s a n d si m-

ul ati o n, a n d t h e l att er i s w ei g ht e d b y t h e r ati o of t h o s e ef fi ci e n ci e s. T h e tr a c ki n g, PI D a n d

h ar d w ar e m u o n tri g g er ef fi ci e n ci e s ar e c ali br at e d i n t hi s m a n n er. A s m o st ef fi ci e n ci e s d e p e n d

o n m u o n ki n e m ati c s, t h e y ar e d et er mi n e d i n r e gi o n s of m u o n p s e u d or a pi dit y a n d tr a n s v er s e

m o m e nt u m, a n d s e p ar at el y f or e a c h y e ar of d at a t a ki n g. D e p e n di n g o n t h e c o n si d er e d p T , η

r e gi o n, c orr e cti o n f a ct or s r a n g e b et w e e n 0. 9 a n d 1. 1 f or tr a c ki n g, 0. 8 a n d 1. 2 f or PI D, a n d 0. 7

a n d 1. 1 f or m u o n tri g g er ef fi ci e n ci e s, wit h u n c ert ai nti e s b et w e e n 1 % a n d 3 %.
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Fi g ur e 6: ( L eft ) S P D m ulti pli cit y di stri b uti o n s i n 2 0 1 7 J / ψ → µ + µ − d at a a n d m o d-

elli n g wit h si m ul ati o n c orr e ct e d u si n g n o- bi a s d at a fr o m e v e nt s wit h n o b e a m cr o s s-

i n g. T h e l a st bi n c o nt ai n s t h e o v er fl o w e v e nt s wit h 3 0 S P D hit s or m or e. ( Ri g ht )

p 2
T di stri b uti o n s i n 2 0 1 7 d at a wit h o ut a n d wit h t h e H E R S C H E L r e q uir e m e nt a p pli e d.

T h e fit i s o nl y s h o w n f or t h e l att er di stri b uti o n.

T h e hit s i n t h e S P D d et e ct or ar e d u e t o c h ar g e d p arti cl e s r e a c hi n g t h e d et e ct or, i n cl u di n g

t h o s e pr o d u c e d b y t h e pr e s h o w er d et e ct or, a n d t o s pill- o v er fr o m t h e pr e vi o u s p p i nt er a cti o n.

I n t h e c a s e of C E P e v e nt s, w hi c h h a v e o nl y t w o m u o n tr a c k s, t h e l att er c o m p o n e nt d o mi n at e s;

h o w e v er, it i s n ot w ell m o d ell e d i n si m ul ati o n. T h e S P D hit di stri b uti o n d u e t o s pill- o v er i s

o bt ai n e d fr o m d at a e v e nt s t h at w er e c oll e ct e d b y r a n d o m tri g g er s i n u n fill e d b u n c h cr o s si n g s

t h at f oll o w e d b u n c h cr o s si n g s wit h a c olli si o n. T hi s s a m pl e i s r ef err e d t o a s n o- bi a s d at a i n t h e

f oll o wi n g. T h e o bt ai n e d di stri b uti o n i s c o n v ol v e d wit h t h e S P D m ulti pli cit y i n J / ψ → µ + µ −

si m ul ati o n a n d m at c h e s s uf fi ci e ntl y w ell t h e di stri b uti o n o b s er v e d i n C E P d at a, e s p e ci all y t h e

t ail u p t o t h e c ut v al u e of 2 0 S P D hit s, a s s h o w n i n Fi g. 6 . T h e eff e ct of t h e r e m ai ni n g mi s m o d-

elli n g i s a d dr e s s e d i n S e c 5 . T h e fr a cti o n of e v e nt s a b o v e t hi s v al u e d e fi n e s t h e S P D tri g g er

i n ef fi ci e n c y, w hi c h i s f o u n d t o b e i n d e p e n d e nt of t h e di m u o n ki n e m ati c s.

T h e H E R S C H E L d et e ct or i s n ot i n cl u d e d i n t h e si m ul ati o n. It s ef fi ci e n c y i s d et er mi n e d u si n g

di m u o n Q E D e v e nt s, wit h a n d wit h o ut t h e H E R S C H E L v et o e s a p pli e d. T h e p 2
T di stri b uti o n s

ar e s h o w n i n Fi g. 6 , e m p h a si si n g t h e f a ct t h at t h e HE R S C H E L r e q uir e m e nt h a s littl e eff e ct

at v a ni s hi n g p 2
T , w h er e Q E D b a c k gr o u n d s d o mi n at e. T h e ef fi ci e n c y i s d et er mi n e d fr o m t h e

r ati o of t h e Q E D c o m p o n e nt s d et er mi n e d b y t h e fit s t o t h e di stri b uti o n s wit h a n d wit h o ut t h e

H E R S C H E L v et o a p pli e d. It i s f o u n d t o b e b et w e e n 8 5 % a n d 9 0 % d e p e n di n g o n d at a-t a ki n g

p eri o d.

Ef fi ci e n ci e s f or t h e r e q uir e m e nt o n t h e a b s e n c e of a d diti o n al V E L O tr a c k s or p h ot o n s ar e

t a k e n fr o m si m ul ati o n a n d cr o s s- c h e c k e d i n d at a i n t h e s a m e w a y a s f or t h e H E R S C H E L v et o

ef fi ci e n c y. T h e y ar e cl o s e t o u nit y. T h e s oft w ar e tri g g er i s f ull y ef fi ci e nt wit h r e s p e ct t o t h e

of fli n e s el e cti o n. T h e t ot al ef fi ci e n c y v ari e s b et w e e n 4 0 % a n d 5 5 %, wit h t h e l o w e st v al u e s

b ei n g at t h e e d g e s of t h e r a pi dit y a c c e pt a n c e.

5 S y st e m ati c u n c e rt ai nti e s

S y st e m ati c u n c ert ai nti e s ari s e d u e t o t h e si z e of t h e si m ul ati o n a n d c ali br ati o n s a m pl e s, a n d

fr o m t h e l u mi n o sit y d et er mi n ati o n; t h e y ar e m e nti o n e d i n t h e s e cti o n s a b o v e. S y st e m ati c

u n c ert ai nti e s r el at e d t o m o d elli n g c h oi c e s ar e d e s cri b e d b el o w. All v al u e s ar e li st e d i n T a bl e s 1

a n d 2 .
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In the modelling of the number of SPD hits, NSPD, the convolution of the no-bias data
and the J simulation is normalised to the distribution seen in data for NSPD 20.
Alternatively, one could normalise it to get the best possible description of the tail, i.e. in the
region 8 NSPD 20. The resulting change in SPD veto efficiency is reported as a systematic
uncertainty.

The efficiencies of the HERSCHEL, track, and photon vetoes, collectively called global event
cuts (GEC) in Table 1, are taken from the yield of QED events passing the veto. The fit models
the non-QED background with the power-law from Ref. 93 , but in this reduced p2

T region the
sum of two exponential functions also provides a good description. The difference in measured
efficiencies is taken as the associated systematic uncertainty.

The signal J and 2S mass peaks are described by a modified Gaussian function.
Other models, such as the sum of a Gaussian and a Crystal Ball function 88 , are tried but
yield poor-quality fits, without however significantly affecting the signal yields. No uncertainty
is assigned. The peak value of the 2S mass shape is constrained to be offset from the J
peak by the known mass difference of the two mesons. A systematic uncertainty is estimated
by scaling the offset proportionally to the energy release in each decay.

The p2
T shapes are modelled by a single exponential, as expected from theory, and there

is no evidence of the need for another model. The p2
T shapes of the J from feed-down

are modelled with exponential functions taken from simulation. Alternatively, nonparametric
distributions obtained from simulation are used, which yields a small change in the feed-
down contributions and thus the signal yields. For the c feed-down, a determination of the
contribution from each c state would be needed if their p2

T distributions were different. The
present data do not require this. A dedicated CEP c study using converted photons would be
needed to resolve the c1 and c2 states.

The mass distribution of the inelastic pp background is described by the same shape as for
the signal J and 2S plus an exponential to describe the nonresonant dimuon contribu-
tion. A systematic uncertainty is estimated by changing the single exponential to the sum of
two exponential functions.

Similarly, the p2
T shape for each component of the inelastic pp background is modelled

with a power law, as measured by the H1 experiment. However, the fit to the H1 dataset is
not perfect at very low p2

T 93 . Therefore other models are investigated. The sum of two
exponentials is found to also provide a reasonable fit, though of slightly lower quality. The
systematic uncertainty due to this modelling is determined with pseudoexperiments. In each
rapidity interval the data are fit with the alternate mass-p2

T model and then 500 pseudodata
samples are generated using the fit result as model. These pseudosamples are then fit with the
default model. The resulting biases of the J and 2S yields are assigned as a systematic
uncertainty.

Fit biases are tested in the same way. This time the default shape is used to generate 500
pseudodata samples which are fit with the same model. The variation of yields is compatible
with the uncertainty returned from the fit, and the biases are negligible in comparison. No
uncertainty is assigned.

Table 1 shows the values of all the systematic uncertainties previously discussed per rapid-
ity interval for the J and 2S cross-section measurements. All uncer-
tainties are assumed to be uncorrelated between rapidity intervals, except those for the SPD
and HeRSCheL multiplicities, and for the luminosity, which are fully correlated.

The slope of the signal p2
T shape is only affected by changes in the fit model, leading to the

systematic uncertainties listed in Table 2.
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Table 1: Systematic and statistical uncertainties per rapidity interval for the J and
2S cross-section in percent. The luminosity uncertainty is listed separately. Values

below 0.005% are not shown.

y bin 2.0–2.25 2.25–2.5 2.5–2.75 2.75–3.0 3.0–3.25
Source state J 2S J 2S J 2S J 2S J 2S

Uncorrelated uncertainties

Simulation sample size 0.35 0.6 0.16 0.28 0.12 0.21 0.10 0.18 0.10 0.18
Bin migration 0.03 0.08 0.01 0.02 0.05 0.04 0.05
Muon efficiency 2.0 1.9 1.7 1.6 1.6 1.5 1.6 1.5 1.5 1.5
Mass: PD shape 0.06 0.22 0.01 0.17 0.10 0.22 0.10 0.18 0.19 0.33
Mass: 2S offset 0.03 0.17 0.02 0.15 0.02 0.02 0.01
p2

T : c feed-down 0.01 0.01 0.01 0.06 0.03 0.01 0.04 0.01 0.02 0.03
p2

T : 2S feed-down 0.12 0.04 0.01 0.09 0.01 0.02 0.02 0.02 0.03 0.04
p2

T : PD shape 3.5 1.8 0.20 0.4 0.30 0.11 0.01 0.7 0.32 1.2

Total uncorrelated 4.0 2.7 1.8 1.7 1.7 1.5 1.6 1.7 1.5 2.0

Correlated uncertainties

GEC efficiency 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
GEC background 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
SPD hits efficiency 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
SPD multiplicity shape 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

Total correlated 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

Total uncertainties

Systematic (excl. luminosity) 4.2 2.9 2.1 2.0 2.0 1.9 1.9 2.0 1.9 2.3
Luminosity 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9
Statistical 2.3 12.6 1.5 6.1 1.1 4.6 1.0 4.1 0.9 4.0

y bin 3.25–3.5 3.5–3.75 3.75–4.0 4.0–4.25 4.25–4.5
Source state J 2S J 2S J 2S J 2S J 2S

Uncorrelated uncertainties

Simulation sample size 0.09 0.18 0.10 0.20 0.12 0.25 0.16 0.35 0.32 0.7
Bin migration 0.01 0.02 0.02 0.02 0.03 0.03 0.10 0.09 0.14
Muon efficiency 1.4 1.5 1.5 1.5 1.6 1.5 1.6 1.7 1.8 2.1
Mass: PD shape 0.17 0.28 0.13 0.15 0.13 0.32 0.06 0.20 0.03 0.10
Mass: 2S offset 0.03 0.03 0.02 0.02 0.02 0.06 0.02 0.04 0.09
p2

T : c feed-down 0.01 0.02 0.03 0.03 0.03 0.03 0.02
p2

T : 2S feed-down 0.04 0.01 0.01 0.02 0.01 0.04 0.05 0.01 0.04
p2

T : PD shape 0.6 0.6 0.8 1.6 1.0 2.1 1.5 2.2 1.5 0.9

Total uncorrelated 1.6 1.6 1.7 2.2 1.8 2.6 2.2 2.8 2.4 2.4

Correlated uncertainties

GEC efficiency 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
GEC background 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
SPD hits efficiency 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
SPD multiplicity shape 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

Total correlated 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

Total uncertainties

Systematic (excl. luminosity) 1.9 2.0 2.0 2.5 2.2 2.8 2.5 3.0 2.6 2.6
Luminosity 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9
Statistical 0.9 3.6 1.0 4.3 1.2 5.2 1.6 7.7 2.5 16.2
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Table 2: Systematic and statistical uncertainties per rapidity interval on the exponen-
tial slopes bJ and b 2S , in percent. Values below 0.005% are not reported.

y bin 2.0–2.25 2.25–2.5 2.5–2.75 2.75–3.0 3.0–3.25
Source state J 2S J 2S J 2S J 2S J 2S

Mass: PD 0.08 0.20 0.04 0.02 0.04 0.03 0.05 0.02 0.09 0.07
Mass: 2S offset 0.03 0.09 0.01 0.04 0.01 0.03 0.01 0.01 0.01 0.03
p2

T : cJ feed-down 0.05 0.05 0.03 0.07 0.08 0.01 0.05 0.03
p2

T : 2S feed-down 0.29 0.08 0.06 0.01 0.02 0.01 0.03
p2

T : PD shape 4.0 0.9 0.7 0.30 0.17 2.3 0.03 1.0 0.26 0.5

Total systematic 4.0 0.9 0.7 0.30 0.19 2.3 0.10 1.0 0.28 0.5

Statistical 2.6 14.4 1.5 8.0 1.2 5.6 1.0 5.2 0.9 5.0

y bin 3.25–3.5 3.5–3.75 3.75–4.0 4.0–4.25 4.25–4.5
Source state J 2S J 2S J 2S J 2S J 2S

Mass: PD 0.07 0.02 0.06 0.01 0.06 0.07 0.03 0.04 0.25
Mass: 2S offset 0.01 0.01 0.03 0.02 0.03 0.05 0.01 0.03
p2

T : cJ feed-down 0.04 0.01 0.07 0.02 0.04 0.03 0.01 0.01 0.03
p2

T : 2S feed-down 0.08 0.01 0.01 0.04 0.10 0.03 0.04 0.05
p2

T : PD shape 0.17 0.26 0.13 0.6 0.08 1.8 0.4 1.7 2.2 4.1

Total systematic 0.20 0.26 0.16 0.6 0.12 1.8 0.4 1.7 2.2 4.2

Statistical 0.9 4.6 1.0 5.4 1.2 6.3 1.7 9.9 2.9 20.4

6 Results

The signal yields determined by the two-dimensional fit, the efficiencies and the resulting
differential pp pJ p and pp p 2S p cross-sections are reported in Tables 4 and 5 in
Appendix B. Summing over all rapidity intervals, the total integrated cross-sections for char-
monia with 2.0 y 4.5 and muons with 2.0 4.5 are

J 2.0 yJ 4.5, 2.0 4.5 400 2 5 12 pb ,

2S 2.0 y 2S 4.5, 2.0 4.5 9.40 0.15 0.13 0.27 pb ,

where the first uncertainties are statistical, the second systematic and the third are due to the
luminosity determination. These values are more precise than those reported in the previous
analysis of exclusive J and 2S production at s 13 TeV 34 and are compatible with
the previous results at the level of 1.5 .

The measured cross-sections are corrected for the J and 2S e e branch-
ing fractions 89 and the detector acceptance of the two muons, using simulation. The branch-
ing fraction for 2S e e is used under the assumption of lepton universality as it is more
precise than that of 2S . The resulting differential cross-sections are shown in
Fig. 7. Theoretical predictions are shown for comparison. The J cross-section agrees with
the NLO prediction 45 , which is posterior to the previous 13 TeV measurement 34 . On the
other hand, the 2S cross-section is significantly lower than both the LO and NLO predic-
tions 95 , which predate the LHCb measurement. The present result calls for an updated
calculation of the differential 2S prediction.

The J cross-sections are used to determine the photoproduction cross-section as a func-
tion of the photon-proton energy, which is reported in Appendix A.
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Fi g ur e 7: Diff er e nti al cr o s s- s e cti o n f or (l eft ) J / ψ a n d (ri g ht ) ψ ( 2 S ) m e s o n s. T h e o-

r eti c al pr e di cti o n s fr o m J o n e s et al. [ 9 5 , 9 6 ] a n d Fl ett et al. [ 4 5 ] ar e s h o w n f or c o m-

p ari s o n.
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Fi g ur e 8: M e a s ur e d r ati o of ψ ( 2 S ) a n d J / ψ cr o s s- s e cti o n s p er r a pi dit y i nt er v al.

T h e r e s ult s fr o m P b P b c olli si o n s at s N N = 5. 0 2 T e V [ 4 1 ] a n d p p c olli si o n s at

s = 7 T e V [ 3 3 ] ar e s h o w n f or c o m p ari s o n. T h e l att er d at a p oi nt s ar e sli g htl y off s et

h ori z o nt all y t o i n cr e a s e vi si bilit y.

T h e r ati o of ψ ( 2 S ) a n d J / ψ cr o s s- s e cti o n s i nt e gr at e d o v er r a pi dit y i s f o u n d t o b e

σ ψ ( 2 S )

σ J / ψ

= 0. 1 7 6 3 ± 0. 0 0 2 9 ± 0. 0 0 0 8 ± 0. 0 0 3 9 ,

w h er e t h e l a st u n c ert ai nt y i s d u e t o t h e k n o wl e d g e of t h e br a n c hi n g fr a cti o n s. T h e l u mi n o sit y

u n c ert ai nt y c a n c el s i n t h e r ati o. T h e r ati o i s s h o w n i n r a pi dit y i nt er v al s i n Fi g. 8 a n d a gr e e s

wit h m e a s ur e m e nt s b y t h e L H C b c oll a b or ati o n i n p p c olli si o n s at s = 7 T e V [ 3 3 ] a n d P b P b

c olli si o n s at s N N = 5. 0 2 T e V [ 4 1 ] . It s a v er a g e i s c o n si st e nt wit h t h o s e m e a s ur e d b y t h e H 1

a n d Z E U S c oll a b or ati o n s [ 9 7 , 9 8 ] .

T h e p h ot o pr o d u cti o n cr o s s- s e cti o n h a s a n e x p o n e nti al b e h a vi o ur v er s u s

p 2
T : dσ / d p 2

T ∼ e − b p 2
T . T h e e x p o n e nti al sl o p e b c a n b e p ar a m et eri s e d a s

b = b 0 + 4 α ′ l o g
W γ p

W 0

, ( 2 )

w h er e, i n R e g g e t h e or y, α ′ i s t h e sl o p e of t h e p o m er o n tr aj e ct or y, W γ p i s t h e p h ot o n- pr ot o n

c e ntr e- of- m a s s e n er g y d e fi n e d i n A p p e n di x A , W 0 i s t y pi c all y t a k e n t o b e W 0 = 9 0 G e V, a n d b 0

i s d et er mi n e d e x p eri m e nt all y.
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Fi g ur e 9: ( L eft ) li n e ar fit t o t h e l o g arit h mi c d e p e n d e n c e of b J / ψ a n d b ψ ( 2 S ) wit h r e-

s p e ct t o t h e p h ot o n- pr ot o n e n er g y W γ p f or J / ψ a n d ψ ( 2 S ) pr o d u cti o n. T h e s h a d e d

ar e a s r e pr e s e nt t h e 6 8 % C. L. fit u n c ert ai nti e s. ( Ri g ht ) m e a s ur e d b sl o p e s f or J / ψ

pr o d u cti o n b y t h e L H C b (t hi s p a p er ), H 1 [ 9 3 , 9 9 ] a n d Z E U S [ 1 0 0 ] e x p eri m e nt s. S u-

p eri m p o s e d i s a li n e wit h t h e sl o p e r e s ulti n g fr o m t h e fit t o t h e L H C b d at a.

A li n e ar fit t o t h e b sl o p e s i n i nt er v al s of r a pi dit y i s s h o w n i n Fi g. 9 . T h e i nt er c e pt s a n d

sl o p e s ar e d et er mi n e d t o b e

α ′,J / ψ = 0. 1 3 3 ± 0. 0 2 4 ± 0. 0 0 6 ( G e V / c ) − 2 ,

α ′,ψ ( 2 S ) = 0. 1 7 8 ± 0. 1 2 4 ± 0. 0 0 4 ( G e V / c ) − 2 ,

b
J / ψ
0 = 4. 8 0 ± 0. 2 4 ± 0. 0 6 ( G e V / c ) − 2 ,

b
ψ ( 2 S )
0 = 4. 0 2 ± 1. 2 3 ± 0. 0 3 ( G e V / c ) − 2 ,

w h er e t h e fir st u n c ert ai nt y i s st ati sti c al a n d t h e s e c o n d s y st e m ati c. T h e s y st e m ati c u n c ert ai n-

ti e s ar e o bt ai n e d b y t a ki n g t h e diff er e n c e of t h e c e ntr al v al u e w h e n t h e fit i s p erf or m e d wit h a n d

wit h o ut t h e s y st e m ati c u n c ert ai nti e s a c c o u nt e d f or i n t h e fit. T h e fit t o J / ψ d at a a gr e e s wit h

pr e vi o u s d et er mi n ati o n s i n e p c olli si o n s [ 9 3 ,9 9 – 1 0 1 ] b ut i s b el o w t h e pr e di cti o n of R ef. [ 1 0 2 ] .

7 C o n cl u si o n

T hi s p a p er pr e s e nt s t h e fir st m e a s ur e m e nt of t h e e x cl u si v e ψ ( 2 S ) cr o s s- s e cti o n i n p p c olli-

si o n s at s = 1 3 T e V i n t e n i nt er v al s of r a pi dit y b et w e e n 2. 0 a n d 4. 5. T h e c orr e s p o n di n g J / ψ

cr o s s- s e cti o n i s u p d at e d a n d t h e r a pi dit y- d e p e n d e nt r ati o of ψ ( 2 S ) a n d J / ψ pr o d u cti o n i s d e-

t er mi n e d f or t h e fir st ti m e. T h e r e s ult s ar e c o n si st e nt b ut m or e pr e ci s e t h a n t h o s e of R ef. [ 3 4 ] .

W h e n e x pr e s s e d a s a f u n cti o n of t h e p h ot o n- pr ot o n e n er g y, t h e cr o s s- s e cti o n s ar e f o u n d t o b e

c o n si st e nt wit h pr e vi o u s m e a s ur e m e nt s, b ut t h e ψ ( 2 S ) cr o s s- s e cti o n i s b el o w t h e or y pr e di c-

ti o n s.

F or t h e fir st ti m e, t h e d e p e n d e n c e of t h e J / ψ a n d ψ ( 2 S ) cr o s s- s e cti o n s o n p 2
T ∼ ∆ t , w h er e

∆ t i s t h e t ot al tr a n s v er s e m o m e nt u m tr a n sf er, i s d et er mi n e d i n p p c olli si o n s a n d i s f o u n d

c o n si st e nt wit h a n d m or e pr e ci s e t h a n t h e b e h a vi o ur o b s er v e d at H E R A [ 9 3 , 9 9 – 1 0 1 ] .

A c k n o wl e d g m e nt s

W e e x pr e s s o ur gr atit u d e t o o ur c oll e a g u e s i n t h e C E R N a c c el er at or d e p art m e nt s f or t h e e x-

c ell e nt p erf or m a n c e of t h e L H C. W e t h a n k t h e t e c h ni c al a n d a d mi ni str ati v e st aff at t h e L H C b

i n stit ut e s.
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F u n di n g i nf o r m ati o n W e a c k n o wl e d g e s u p p ort fr o m C E R N a n d fr o m t h e n ati o n al a g e n-

ci e s: C A P E S, C N P q, F A P E R J a n d FI N E P ( Br a zil ); M O S T a n d N S F C ( C hi n a ); C N R S / I N 2 P 3

( Fr a n c e ); B M B F, D F G a n d M P G ( G er m a n y ); I N F N (It al y ); N W O ( N et h erl a n d s ); M Ni S W a n d

N C N ( P ol a n d ); M CI D / I F A ( R o m a ni a ); MI CI U a n d A EI ( S p ai n ); S N S F a n d S E R ( S wit z erl a n d );

N A S U ( U kr ai n e ); S T F C ( U nit e d Ki n g d o m ); D O E N P a n d N S F ( U S A ). W e a c k n o wl e d g e t h e

c o m p uti n g r e s o ur c e s t h at ar e pr o vi d e d b y C E R N, I N 2 P 3 ( Fr a n c e ), KI T a n d D E S Y ( G er m a n y ),

I N F N (It al y ), S U R F ( N et h erl a n d s ), PI C ( S p ai n ), Gri d P P ( U nit e d Ki n g d o m ), C S C S ( S wit z er-

l a n d ), I FI N- H H ( R o m a ni a ), C B P F ( Br a zil ), a n d P oli s h W L C G ( P ol a n d ). W e ar e i n d e bt e d t o

t h e c o m m u niti e s b e hi n d t h e m ulti pl e o p e n- s o ur c e s oft w ar e p a c k a g e s o n w hi c h w e d e p e n d.

I n di vi d u al gr o u p s or m e m b er s h a v e r e c ei v e d s u p p ort fr o m A R C a n d A R D C ( A u str ali a ); K e y

R e s e ar c h Pr o gr a m of Fr o nti er S ci e n c e s of C A S, C A S PI FI, C A S C C E P P, F u n d a m e nt al R e s e ar c h

F u n d s f or t h e C e ntr al U ni v er siti e s, a n d S ci. & T e c h. Pr o gr a m of G u a n g z h o u ( C hi n a ); Mi n-

ci e n ci a s ( C ol o m bi a ); E P L A N E T, M ari e S kł o d o w s k a- C uri e A cti o n s, E R C a n d N e xt G e n er ati o n E U

( E ur o p e a n U ni o n ); A * MI D E X, A N R, I P h U a n d L a b e x P 2I O, a n d R é gi o n A u v er g n e- R h ô n e- Al p e s

( Fr a n c e ); A v H F o u n d ati o n ( G er m a n y ); I C S C (It al y ); S e v er o O c h o a a n d M arí a d e M a e zt u U nit s

of E x c ell e n c e, G V A, X u nt a G al, G E N C A T, I n T al e nt-I n dit e x a n d Pr o g.  Atr a c ci ó n T al e nt o C M

( S p ai n ); S R C ( S w e d e n ); t h e L e v er h ul m e Tr u st, t h e R o y al S o ci et y a n d U K RI ( U nit e d Ki n g d o m ).

A P h ot o p r o d u cti o n c r o s s- s e cti o n

T h e diff er e nti al cr o s s- s e cti o n s ar e u s e d t o d et er mi n e t h e p h ot o pr o d u cti o n cr o s s- s e cti o n f or J / ψ

a n d ψ ( 2 S ) m e s o n s. T h e diff er e nti al cr o s s- s e cti o n i s f a ct ori s e d i nt o t w o t er m s d e p e n di n g o n

w h et h er t h e pr ot o n tr a v elli n g fr o m t h e v ert e x d et e ct or t o w ar d s t h e m u o n c h a m b er s i nt er a ct s

el e ctr o m a g n eti c all y (l a b ell e d W γ p ,+ ) or t h e o p p o sit e- dir e cti o n pr ot o n d o e s (l a b ell e d W γ p ,− ):

d σ

d y
( p p → p ψ p ) = S 2 ( W γ p ,+ ) k +

d n

d k +

σ
W γ p ,+

γ p → ψ p
+ S 2 ( W γ p ,− ) k −

d n

d k −

σ
W γ p ,−

γ p → ψ p
, ( A. 1 )
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Fi g ur e 1 0: R e s ult s f or t h e J / ψ p h ot o pr o d u cti o n cr o s s- s e cti o n a s a f u n cti o n of t h e

p h ot o n- pr ot o n e n er g y W γ p fr o m diff er e nt e x p eri m e nt s li st e d i n T a bl e 3 . T h e L H C b

r e s ult s at s = 1 3 T e V ar e e sti m at e d wit h t h e N L O [ 4 5 ] c al c ul ati o n. Al s o s h o w n ar e

t h e N L O t h e or eti c al d e s cri pti o n s gi v e n b y Fl ett et al. [ 4 5 ] , a s w ell a s a p o w er-l a w

d e s cri pti o n of t h e H 1 d at a. T h e t o p a xi s s h o w s t h e v al u e s of x r e a c h e d f or a gi v e n

p h ot o n- pr ot o n e n er g y.
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Table 3: Previous results used in Fig. 10.

Marker Experiment collision Energy Refs.

LHCb pp s 7 TeV 33
ALICE pPb sNN 5.02 TeV 106,107
ALICE pPb sNN 8.16 TeV 38
H1 ep 40 W p 305 GeV 99
H1 ep 25 W p 110 GeV 93
ZEUS ep 20 W p 290 GeV 100
E87 Be 0 E 250 GeV 108
E401 H and 2H 60 E 300 GeV 109
E516 H 60 E 160 GeV 110

with W p, M c2 se y . The S2 W p, terms, the so-called survival factors, are taken

from Ref. 103 . The photon flux dn dk for photons with energy equal to k M c2 2 e y

is calculated following Refs. 104, 105 . The photoproduction cross-sections are given by
W p,

p p. The antiparallel p cross-section,
W p,

p p, corresponds to large values of x , as

x M c2 s e y 45 . The contribution of this term to Eq. A.1 is therefore expected to be
small and can be constrained from theoretical predictions. The antiparallel solution is taken
from the J and 2S NLO cross-section predictions from Refs. 45, 95 and subtracted.
Figure 10 shows the measured photoproduction cross-section for J mesons and compares it
with previous measurements listed in Table 3. The numerical values are listed in Table 8.

The LHCb J data at s 13 TeV are in agreement with the NLO description 45 . They
also follow a power-law fit to H1 data 93 .

B Numerical results

Tables 4 and 5 present the differential cross-sections in rapidity bins, shown in Fig. 7, and
the breakdown of uncertainties for J and 2S , respectively. Their ratio
is given in Table 6. Table 7 lists the exponential slopes for J and 2S in each rapidity
bin, corresponding to Fig. 9. Table 8 lists the values entering the computation of the parallel
cross-sections

W p,

p J p displayed in Fig. 10.

C Fits in all rapidity bins

The distributions of dimuon mass and p2
T in each rapidity interval are shown in Fig. 11. The

results of the two-dimensional fits described in the main text are overlaid.
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Table 4: Differential CEP J yields and cross-sections corrected for effi-
ciency ( tot), acceptance ( Geom.Acc.) and branching fraction. The systematic uncer-
tainties are split between those uncorrelated across y ranges, those that are 100%
correlated and the luminosity uncertainty.

yJ bin 2.0–2.25 2.25–2.5 2.5–2.75 2.75–3.0 3.0–3.25

Nsig 4998 113 18095 265 31591 361 41640 402 47690 432
tot 0.313 0.028 0.403 0.030 0.443 0.030 0.456 0.029 0.467 0.027
Geom.Acc. 0.095 0.002 0.287 0.003 0.466 0.003 0.623 0.003 0.732 0.003

d dy nb 7.41 6.90 6.75 6.46 6.15
Stat. unc. nb 0.17 0.10 0.08 0.06 0.06
Uncorr. syst. unc. nb 0.30 0.12 0.11 0.10 0.09
Corr. syst. unc. nb 0.23 0.21 0.21 0.20 0.19
Lumi. unc. nb 0.21 0.20 0.20 0.19 0.18

yJ bin 3.25–3.5 3.5–3.75 3.75–4.0 4.0–4.25 4.25–4.5

Nsig 47303 436 39878 394 26727 329 14428 236 4349 108
tot 0.479 0.027 0.484 0.028 0.462 0.029 0.435 0.029 0.399 0.029
Geom.Acc. 0.733 0.003 0.625 0.003 0.467 0.003 0.300 0.003 0.095 0.002

d dy nb 5.93 5.82 5.47 4.89 5.05
Stat. unc. nb 0.05 0.06 0.07 0.08 0.13
Uncorr. syst. unc. nb 0.09 0.10 0.10 0.11 0.12
Corr. syst. unc. nb 0.18 0.18 0.17 0.15 0.16
Lumi. unc. nb 0.17 0.17 0.16 0.14 0.15

Table 5: Differential CEP 2S yields and cross-sections corrected for effi-
ciency ( tot), acceptance ( Geom.Acc.) and branching fraction. The systematic uncer-
tainties are split between those uncorrelated across y ranges, those that are 100%
correlated and the luminosity uncertainty.

y 2S bin 2.0–2.25 2.25–2.5 2.5–2.75 2.75–3.0 3.0–3.25

Nsig 127 16 491 30 845 39 1088 44 1163 47
tot 0.400 0.032 0.494 0.032 0.527 0.032 0.518 0.032 0.502 0.031
Geom.Acc. 0.091 0.002 0.284 0.003 0.465 0.003 0.626 0.003 0.735 0.003

d dy nb 1.16 1.16 1.14 1.11 1.05
Stat. unc. nb 0.15 0.07 0.05 0.05 0.04
Uncorr. syst. unc. nb 0.03 0.02 0.02 0.02 0.02
Corr. syst. unc. nb 0.04 0.04 0.04 0.03 0.03
Lumi. unc. nb 0.03 0.03 0.03 0.03 0.03

y 2S bin 3.25–3.5 3.5–3.75 3.75–4.0 4.0–4.25 4.25–4.5

Nsig 1319 48 980 42 648 34 323 25 81 13
tot 0.505 0.030 0.492 0.030 0.457 0.030 0.427 0.030 0.394 0.035
Geom.Acc. 0.740 0.003 0.622 0.003 0.469 0.003 0.290 0.003 0.099 0.002

d dy nb 1.17 1.06 1.00 0.86 0.69
Stat. unc. nb 0.04 0.05 0.05 0.07 0.11
Uncorr. syst. unc. nb 0.02 0.02 0.03 0.02 0.02
Corr. syst. unc. nb 0.04 0.03 0.03 0.03 0.02
Lumi. unc. nb 0.03 0.03 0.03 0.02 0.02
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Table 6: Ratio of the CEP J and 2S cross-sections per rapidity
bin.

y bin 2.0–2.25 2.25–2.5 2.5–2.75 2.75–3.0 3.0–3.25

d 2S dy
d J dy 0.156 0.168 0.169 0.172 0.170

Stat. unc. 0.020 0.010 0.008 0.007 0.007
Syst. unc. 0.006 0.001 0.001 0.001 0.002
BF unc. 0.003 0.004 0.004 0.004 0.004

y bin 3.25–3.5 3.5–3.75 3.75–4.0 4.0–4.25 4.25–4.5

d 2S dy
d J dy 0.197 0.182 0.183 0.177 0.137

Stat. unc. 0.007 0.008 0.010 0.014 0.022
Syst. unc. 0.002 0.003 0.004 0.005 0.003
BF unc. 0.004 0.004 0.004 0.004 0.003

Table 7: Values of the b slopes measured in the fit.

y log
W J

p

W0
bJ log

W 2S
p

W0
b 2S

2.0–2.25 1.86 6.07 0.16 0.25 1.95 6.1 0.9 0.1
2.25–2.5 1.99 5.83 0.09 0.04 2.08 5.4 0.4 0.0
2.5–2.75 2.11 5.90 0.07 0.01 2.20 5.7 0.3 0.1
2.75–3.0 2.24 5.99 0.06 0.01 2.33 5.7 0.3 0.1
3.0–3.25 2.36 6.02 0.05 0.02 2.45 5.9 0.3 0.0
3.25–3.5 2.49 6.25 0.06 0.01 2.58 5.5 0.2 0.0
3.5–3.75 2.61 6.13 0.06 0.01 2.70 5.7 0.3 0.0
3.75–4.0 2.74 6.20 0.08 0.01 2.83 6.8 0.4 0.1
4.0–4.25 2.86 6.33 0.11 0.02 2.95 6.3 0.6 0.1
4.25–4.5 2.99 6.51 0.19 0.14 3.08 7.9 1.6 0.3
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Table 8: Values of the differential cross-section, survival factor, photon flux and an-
tiparallel photoproduction cross-section used for the calculation of the parallel cross-
section. The antiparallel p value is taken from the FMRT NLO description 45 .

yJ bin 2.0–2.25 2.25–2.5 2.5–2.75 2.75–3.0 3.0–3.25

d dy nb 7.41 0.43 6.90 0.27 6.75 0.25 6.46 0.24 6.15 0.22

S2 W p, 0.786 0.774 0.762 0.748 0.732

k
dn
dk 10 3 22.7 21.6 20.4 19.2 18.0

S2 W p, 0.885 0.888 0.891 0.893 0.896

k
dn
dk 10 3 42.5 43.7 44.9 46.0 47.2

W p,

p J p
nb 57.7 2.7 51.1 2.3 45.0 2.0 39.2 1.7 33.9 1.4

W p,

p J p
nb 294 25 294 17 319 17 337 17 358 17

yJ bin 3.25–3.5 3.5–3.75 3.75–4.0 4.0–4.25 4.25–4.5

d dy nb 5.93 0.21 5.82 0.21 5.47 0.21 4.89 0.21 5.05 0.26

S2 W p, 0.715 0.695 0.672 0.647 0.618

k
dn
dk 10 3 16.8 21.6 14.5 13.3 12.1

S2 W p, 0.899 0.901 0.903 0.905 0.907

k
dn
dk 10 3 48.3 49.5 50.7 51.8 53.0

W p,

p J p
nb 29.0 1.2 24.4 0.9 20.1 0.7 16.2 0.6 12.6 0.4

W p,

p J p
nb 389 18 433 20 467 22 480 25 594 34
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