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Measurement of exclusive J and
2S productionat s 13 TeV

LHCD collaboration

Abstract

Measurements are presented of the cross-section for the central exclusive production of
J and 2§ processes in proton-proton collisions at s 13 TeV
with 2016-2018 data. They are performed by requiring both muons to be in the LHCb
acceptance (with pseudorapidity 2 4.5) and mesons in the rapidity range
2.0 y 4.5. The integrated cross-section results are

; 20 y; 45,20 45 400 2 5 12pb,
05 20 y o5 4.5,2.0 45 9.40 0.15 0.13 0.27pb,

where the uncertainties are statistical, systematic and due to the luminosity determina-
tion. In addition, a measurement of the ratio of 2S and J cross-sections, at an
average photon-proton centre-of-mass energy of 1TeV, is performed, giving

0.1763 0.0029 0.0008 0.0039,
J

where the first uncertainty is statistical, the second systematic and the third due to the
knowledge of the involved branching fractions. For the first time, the dependence of the
J and 2S cross-sections on the total transverse momentum transfer is determined
in pp collisions and is found consistent with the behaviour observed in electron-proton
collisions.
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1 Introduction

Deep inelastic scattering of leptons off protons provided the first proof that hadrons are not
elementary but rather composed of quarks 1,2 . It is an essential tool to determine parton
distribution functions (PDFs) inside protons, which are required to make cross-section pre-
dictions at hadron colliders. However, charged leptons interact electromagnetically and only
probe the density of the quarks, which are charged. The densities of the neutral gluons must
be inferred, which can be done by studying how the quark PDFs evolve with the scale set by
the mass of the exchanged virtual photon. These PDFs are determined in fits 3-5 to multi-
ple measurements, including notably e p scattering 6,7 , and forward production of vector
bosons 8-11 and heavy-quarks 12-15 in pp collisions. Due to a lack of data at low x, the
fraction of hadron momentum carried by the parton, the uncertainties attributed to the gluon
PDFs are large at low x and are even compatible with an unphysical decrease of the gluon
density with x 16 . Other methods are thus required to access the gluonic PDE

Central exclusive vector-meson production (CEP) in pp collisions is the quasi-elastic pro-
duction of a single meson, leaving the protons intact. Exclusive charmonium production results
from the conversion of a virtual photon close to its mass shell into a cc pair, which hadronises
intoaJ or 2S meson. These processes probe the gluonic PDF at the scale of the charm
quark mass. The exclusivity of the process requires that, at leading order, two gluons are ex-
changed with the target hadron. Thus the cross-section approximately scales as gluon density
squared 17-20 . The process and the main backgrounds are depicted in Fig. 1.
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Figure 1: Feynman diagrams for signal and background processes. From left to right:
signal CEP J  photoproduction, where IP stands for a colourless superposition of
gluons, sometimes referred to as a pomeron; continuum dimuon production; exclu-
sive . (J 0,1,2) production via double pomeron exchange; inelastic pp collision
where a proton dissociates.
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Exclusive scattering processes also give access to the total transverse momentum transfer
At, the square of the difference between the momenta of the incoming and outgoing proton,
which is a Fourier conjugate to the impact parameter between two colliding hadrons. As
such, the At spectra are sensitive to the spatial distribution of colour charge 21 . Several
predictions (see e.g. Ref. 18 ) calculate the exclusive production cross-section at At 0. The
cross-section falls exponentially versus At with a slope determined experimentally, which can
be used to infer the total exclusive cross-section. In the present paper, this slope is determined
in ten intervals of rapidity for the / and 2S mesons. As the outgoing protons are not
detected at LHCb, At is not directly accessible and the transverse momentum squared, p%, of
the charmonium state is used as a proxy.

The photoproduction cross-section of a charmonium state is sensitive to the radial wave
function of the charmonium state in a region where the = 2S wave function has a radial
node but the J  wave function does not. As a result, the 2SS photoproduction cross-
section is expected to be suppressed with respect to that of J mesons 22-31 . With many
theoretical uncertainties cancelling, predictions for the ratio of 2S andJ cross-sections
can be determined more precisely than the individual cross-sections.

Exclusive J  and 2S production in pp collisions at the LHC have previously been
measured at centre-of-mass energiesof s 7TeV 32,33 and 13TeV 34 . Exclusive double-
charmonium 35 and 36 production have been measured at 7 and 8 TeV, and that of J
at 13TeV 37 . Charmonia production has also been studied in ultra-peripheral pPb 38 and
PbPb 39-42 collisions.

The previous LHCb measurements have been used to update PDF fits 19,43 , and thus
improve predictions of J and CEP cross-sections 18,44,45 ; make predictions 46-52
for ultra-peripheral photoproduction processes at RHIC 53,54 and the LHC 41,42,55,56 ;
determine the meson-proton scattering length 57 and extract the proton mass radius from
theJ and 2S cross-sections 58 . Based on these cross-sections, Ref. 59 claims that
LHCb data show evidence of gluon saturation, i.e. the slowing down of the growth of gluon
densities as x decreases due to gluon emission and recombination balancing each other, while
the authors of Ref. 45 disagree. Such effects would usually be expected in heavy-ion colli-
sions.

This paper presents a measurement of exclusive / and 2S production in proton-
proton collisions at s 13 TeV in the forward direction, in ten intervals of rapidity between
2.0 and 4.5. The data used were collected with the LHCb detector at the LHC between 2016
and 2018, corresponding to an integrated luminosity of 4.4 fb !, which is twenty times larger
than that used in Ref. 34 . This larger sample permits a better control of background shapes,
implemented in a two-dimensional fit in dimuon mass and transverse-momentum squared.
For the first time, a measurement of the  2S cross-section in the same rapidity intervals as
for the J  cross-section, and thus the determination of their ratio as a function of rapidity is
presented.

2 Detector, simulation and data sample

The LHCb detector 60,61 is a single-arm forward spectrometer covering the pseudorapidity
range 2 5, designed for the study of particles containing b or ¢ quarks. The detector
includes a high-precision tracking system consisting of a silicon-strip vertex detector (VELO)
surrounding the pp interaction region 62 , alarge-area silicon-strip detector located upstream
of a dipole magnet with a bending power of about 4T m, and three stations of silicon-strip de-
tectors and straw drift tubes 63 placed downstream of the magnet. The tracking system
provides a measurement of the momentum, p, of charged particles with a relative uncertainty
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that varies from 0.5% at low momentum to 1.0% at 200 GeV c. Photons are identified by a
calorimeter system consisting of scintillating-pad and preshower detectors (SPD), and electro-
magnetic and hadronic calorimeters. Muons are identified by a system composed of alternating
layers of iron and multiwire proportional chambers 64 .

The pseudorapidity coverage of the LHCb detector is extended by the HERSCHEL sys-
tem, composed of forward shower counters consisting of five planes of scintillators with three
planes at 114, 19.7 and 7.5 m upstream of the interaction point, and two downstream at 20
and 114 m. At each location, there are four quadrants of scintillators, whose information is
recorded in every beam crossing by photomultiplier tubes, giving a total of 20 channels in
HERSCHEL 65 . These are calibrated using data taken without beams circulating at the end
of each LHC fill 66 . The pseudorapidity ranges covered by the VELO and HERSCHEL are
different. For the VELO the region is 3.5 1.5 and 2 5, and for HERSCHEL the
regionis 10 5and 5 10.

The online event selection is performed by a trigger 67,68 that consists of a hardware
stage, based on information from the calorimeter and muon systems, followed by a software
stage, which applies a full event reconstruction. The distinct signature of CEP events is their
low multiplicity. Consequently, at the hardware stage, the trigger selects events containing
at least one muon with pp  192MeV ¢ and fewer than 20 hits in the SPD detector. At the
software stage events are selected if they contain two muons with py 400 MeV c, fewer than
10 tracks in the VELO, of which at most four are reconstructed in the backward direction 62 .
A sample used for the determination of trigger, reconstruction and particle identification (PID)
efficiencies is collected requiring a single muon with py 500 MéeV ¢ and the same multiplicity
requirements as for the default selection.

The data used were collected between July 2016 and October 2018. The early 2016 data
are not used as relevant trigger selections were not yet included. Data from the last month of
data taking in 2018 is also discarded as it was affected by a noisy SPD readout board, which
biases the number of SPD hits in low-multiplicity events.

Offline, events are required to contain only the two muon candidates, which should be of
good quality 69 , and identified as such 70 , which implies that their momentum exceeds
3 GeV c, the threshold to cross the calorimeter and reach the muon system. The event should
contain no additional tracks in the VELO, and no photons other than those that are consistent
with being radiated from the passage of muons through the detector material.

The muons from CEP signal J  decays are well outside of the HERSCHEL acceptance;
these counters are used to veto charged particles from the proton dissociating. The CEP cross-
section measurements are performed with events that contain no such additional particles, i.e.
HERSCHEL signals consistent with noise. The remaining events are retained for background
studies. The HERSCHEL response is described using a discriminating 2-like variable that
quantifies the activity above noise taking into account correlations between the counters 65 .
The selection requirement is optimised using low-mass low-p% dimuon pairs, which are dom-
inated by two-photon fusion.

Simulation is required to model the effects of the detector acceptance and the imposed
selection requirements, and to study specific backgrounds. In the simulation, the charmo-
nium candidate is generated and decayed using SuperChic2 71 , with the exception of

2S J X processes (where X is any combination of particles, mostly ), for which
the decay is handled by EvTGEN 72 . Final-state radiation is generated using PHOTOS 73 .
The interaction of the generated particles with the detector, and its response, are implemented
using the GEANT4 toolkit 74,75 as described in Ref. 76 . The ROOT 77 and LHCb 78-80
software frameworks are used for the initial data preparation, while the analysis is written in
the PYTHON language with standard scientific packages 81-86 .
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Figure 2: Two-dimensional rnass-p% distributions for the (left) signal and (right)
control samples.

The total integrated luminosity of the used data sample is determined using empty-event
counters calibrated by van der Meer scans and beam profile measurements [87] and is found to
be L£;, = 4.41£0.13fb~!. Due to the multiplicity requirements imposed in the trigger and the
offline selection, only events with a single pp interaction are selected. The useful integrated
luminosity is thus reduced by the fraction of events with a single interaction containing at
least two VELO tracks. The number of such visible pp interactions per beam crossing, n, is
assumed to follow a Poisson distribution, P(n) = u"e #/n!, with mean u. The fraction of

. . . off . . _ ..
useful integrated luminosity, £; , corresponding to events with n = 1, is given by

£ pn=1) ue M _
ff‘:—cfnt: = = P o =& “. (1)
int zznp(n) zznﬂir
n=0 n=0 )

The value of u depends on running conditions and it is determined in periods of up to one hour
of stable running conditions [87]. In most running periods u is close to 1.1, with variations of
less than 10%, corresponding to an average f, ~ 0.33. The corresponding useful integrated
luminosity is Efrfi = 1522+ 44 pb™!, where the uncertainty is dominated by that on £;,.

3 Two-dimensional signal fits

The primary challenge in this analysis is separation of the elastic CEP and inelastic proton-
dissociation (PD) components, shown in Fig. 1. The latter consists of events where the proton
dissociates, producing charged particles in the very forward acceptance. These are vetoed
by the HERSCHEL requirement, which however is not perfect and thus leaves some PD back-
grounds in the selected signal sample. The different p% distributions of PD and CEP charmonia
are therefore also exploited. The properties of the PD component are determined from a con-
trol sample that is free from any CEP signal contribution. This sample is obtained by inverting
the HERSCHEL veto, and requiring 0.9 < p2 < 5.0 GéV?/c?, where the CEP contribution, which
populates the low-p% region, is negligible.

Two other backgrounds are accounted for: QED continuum dimuon production and J/
feed-down from higher-mass charmonia, namely vy(2S), and y.;(1P) (J =0, 1, 2), referred to
as y. below unless otherwise specified. Other feed-down contributions, such as those from T
resonances or b hadrons, are negligible because of the VELO-tracks veto.
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Figure 3: Distributions of (left) mass and (right) p% of data in the control sample for
rapidity interval 3.0 < y < 3.25. The fit described in the text is superimposed.

As there is a correlation between the dimuon mass and p% distributions for non-peaking
backgrounds, the data are fit by a two-dimensional model in mass and p% in each of ten rapidity
intervals. The considered regions are 2000 < m,+,,~ < 4200 MeV/ c? and p% < 5GeV?/c2. The
relevant distributions are shown in Fig. 2. Overall, there are 566095 events in the signal
sample and 56 654 in the control sample.

The signal yields are determined in each rapidity interval by a two-dimensional unbinned
extended maximum-likelihood fit [83,84] in mass and p%. The fit model comprises the signal
J/ and vy (2S) components; the continuum QED background; the v(2S) and y. feed-downs;
and the inelastic PD background. Prior to carrying out the fit in each rapidity interval, fits to
the whole signal and control data samples (referred to as the full sample) are performed and
their results are used to constrain nuisance parameters that cannot be determined accurately
in low-yield rapidity regions, as described below.

The CEP and PD J/4 and ¢(2S) mass peaks are each modelled with a Gaussian func-
tion, modified to have power-law tails on both sides [88]. The difference in the means of
the two Gaussian components is fixed according to the known mass difference of the two res-
onances [89]. Their widths are constrained to scale linearly with the energy release in the
respective decays [90]. The tail parameters are shared between the two peaks and Gaussian-
constrained to the values determined in the fits to the full sample.

The CEP p% shape is independent of the mass and is described by an exponential func-
tion, as expected by Regge theory [91] and measured in previous experiments, notably at
HERA [92]. The slopes of the J/3 and 1(2S) exponentials are left free to float in each rapid-
ity interval.

The p% distribution of the PD J/4) and v(2S) mesons is modelled with a power-law function
proportional to (1 + (bpq/npg) p% )", as measured by the H1 experiment [93]. This function
follows approximately an exponential of slope —b,4, modified by the empirical parameter
Nyq. Alternative models are discussed in Sec. 5. In addition, the PD contribution contains a
nonresonant component which is modelled by an exponential shape in mass and the above-
mentioned power-law model for p%. The parameters of the three power-laws are different for
the J/y, ¢(2S), and nonresonant dimuon components.

The parameters of the PD components are first determined by a fit to the control sample
in each rapidity interval; an example fit is shown in Fig. 3. All parameters are free to vary in
these fits except for the signal tail parameters, as explained above.

The PD models are then used as input in the fits to the signal sample. The p% shapes of the
PD components are fixed to the values obtained on the corresponding control sample, while
the PD J/v and 1(2S) mass shapes are forced to be identical to those of the CEP signals. The
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relative fractions of the two charmonia and the dimuon background are constrained from the
fit to the control sample.

Exclusive continuum, or nonresonant dimuon production, is a QED process that takes place
via the fusion of two photons. The dimuon pair produced in this form has low dimuon mass
and a p% shape sharply peaked towards zero. The mass and p% distributions are correlated
and therefore a two-dimensional histogram, which is obtained from simulation and validated
with low- p% data, is used in the fit.

The J/y yield is affected by feed-down from higher-mass charmonium states, which is
accounted for in the fit. The feed-down from (2S)— J/3X decays is partially suppressed
by the VELO and SPD multiplicity requirements. The yield of the remaining feed-down is
determined from simulation of inclusive v(2S)— J/yX processes, normalised by the v(2S)
yield measured in each rapidity interval. Bin migration is taken into account via a migration
matrix determined from simulation. An iterative procedure is applied to first determine the
rapidity-dependent 1(2S) yield and then its contribution to the J/1 yield. In practice, two
steps are sufficient for the convergence of the procedure.

The normalisation of the feed-down from y.— J/1y decays is determined by reconstruct-
ing J/yy candidates in data. The same J/1 selection as for CEP and PD candidates is used,
except that the veto on additional photons is removed. Instead, photons with transverse en-
ergy in excess of 75MeV are combined with J/v candidates to form y. candidates. In each y
interval, where y is the rapidity of the J/vy) meson, and separately for the signal and control
samples, the y.; (J = 0,1,2) yields are determined from a fit to the resulting mass distribu-
tion. Fits to the y. samples are shown in Fig. 4. The three y.; (J = 0, 1,2) mass peaks are each
modelled with a Crystal Ball function [88] with the tail parameters fixed from simulation. The
peak of the Gaussian is free in the fit to account for imperfect photon energy calibration, but
the shift with respect to the known masses of the y. mesons [89] is constrained to be the same
for all three states. The shift varies between 6 and 10 MeV/ c? (with typical statistical uncer-
tainties between 0.5 and 1 MeV/c?) depending on the rapidity interval. The background is a
mixture of partially reconstructed v(2S) decays, such as 1(2S)— J/n°n°, and random com-
binations of J/1y) mesons and calorimeter clusters. The same empirical function as in Ref. [94]
is used as a model for the sum of these contributions.

The contribution from y., mesons is small, while those of y.; and y., mesons dominate.
The empirical background model does not describe perfectly the mass distribution in the region
below 3400 MeV/c?, which has a negligible effect on the total y. yield. Due to the limited
photon energy resolution, the mass fit has little sensitivity to the relative size of the y.; and .,
contributions. This ambiguity however does not affect the determination of the total J/-from-
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Figure 4: Fit to the J/1yy mass distribution with the J/v meson in 3.0 < y < 3.25 for
(left) signal and (right) control samples.
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Figure 5: Distributions of (left) mass and (right) p% of data in the signal sample for
the rapidity interval 3.0 < y < 3.25. The fit described in the text is superimposed.

Xc(1,2) Yield since (i) the branching fractions of the y . 2y— J/4y decays drop out in the ratio
of J/4 to y(1.2) vields; (ii) the relative efficiencies for reconstructing J/vy and J/p— u*u~
are equal for y.; and y.,, as determined from simulation; and (iii) the p% distributions of
J/y from y., and y., are found to be equal in simulation and in data, which is checked
by investigating the p% shape of candidates in the left and right halves of the y. ) mass
peak. The J/p-from-y ., 5) yield is therefore proportional to the y( ) yield in each rapidity
interval. This feed-down contribution is determined in the signal and control samples, and
the PD contribution is subtracted from that in CEP events to determine the overall CEP y,
feed-down normalisation.

The J/y-from-y(2S) and J/v-from-y. components are modelled in the CEP fit using the
same mass model as for the J/1 signal. The p% shapes are modelled with a single (double)
exponential distribution for the 1(2S) (y,.) feed-down, which is determined from simulation
that is validated by data.

The mass and p% projections of the fit in the interval 3.0 < y < 3.25 are shown in Fig. 5. All
intervals are shown in Fig. 11 in Appendix C. The parameters of interest are the CEP J/vy and
Y(2S) yields, and the slopes of their pZ shapes. In total, 299 100 + 2100 J/ and 7420 + 130
1(28S) elastically produced mesons are found in the fit to the full rapidity range.

4 Efficiencies

The signal yields are corrected for detection efficiencies using simulation samples calibrated
with data [62, 69, 70], except for the HeRSChelL-related efficiencies, which are estimated in
data.

A tag-and-probe method, aimed at measuring single-muon efficiencies, is applied to ac-
count for the differences between simulation and data. The simulation sample is then weighted
with the appropriate correction factors [66]. In this method, a tag muon from the J/4 can-
didate is required to pass all selection criteria, while the other muon is used to measure the
efficiency under investigation. The same procedure is applied to calibration samples and sim-
ulation, and the latter is weighted by the ratio of those efficiencies. The tracking, PID and
hardware muon trigger efficiencies are calibrated in this manner. As most efficiencies depend
on muon kinematics, they are determined in regions of muon pseudorapidity and transverse
momentum, and separately for each year of data taking. Depending on the considered pt,n
region, correction factors range between 0.9 and 1.1 for tracking, 0.8 and 1.2 for PID, and 0.7
and 1.1 for muon trigger efficiencies, with uncertainties between 1% and 3%.
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Figure 6: (Left) SPD multiplicity distributions in 2017 J/y — u*u~ data and mod-
elling with simulation corrected using no-bias data from events with no beam cross-
ing. The last bin contains the overflow events with 30 SPD hits or more. (Right)
p% distributions in 2017 data without and with the HERSCHEL requirement applied.
The fit is only shown for the latter distribution.

The hits in the SPD detector are due to charged particles reaching the detector, including
those produced by the preshower detector, and to spill-over from the previous pp interaction.
In the case of CEP events, which have only two muon tracks, the latter component dominates;
however, it is not well modelled in simulation. The SPD hit distribution due to spill-over is
obtained from data events that were collected by random triggers in unfilled bunch crossings
that followed bunch crossings with a collision. This sample is referred to as no-bias data in the
following. The obtained distribution is convolved with the SPD multiplicity in J/3p— p*u~
simulation and matches sufficiently well the distribution observed in CEP data, especially the
tail up to the cut value of 20 SPD hits, as shown in Fig. 6. The effect of the remaining mismod-
elling is addressed in Sec 5. The fraction of events above this value defines the SPD trigger
inefficiency, which is found to be independent of the dimuon kinematics.

The HERSCHEL detector is not included in the simulation. Its efficiency is determined using
dimuon QED events, with and without the HERSCHEL vetoes applied. The p% distributions
are shown in Fig. 6, emphasising the fact that the HERSCHEL requirement has little effect
at vanishing p%, where QED backgrounds dominate. The efficiency is determined from the
ratio of the QED components determined by the fits to the distributions with and without the
HERSCHEL veto applied. It is found to be between 85% and 90% depending on data-taking
period.

Efficiencies for the requirement on the absence of additional VELO tracks or photons are
taken from simulation and cross-checked in data in the same way as for the HERSCHEL veto
efficiency. They are close to unity. The software trigger is fully efficient with respect to the
offline selection. The total efficiency varies between 40% and 55%, with the lowest values
being at the edges of the rapidity acceptance.

5 Systematic uncertainties

Systematic uncertainties arise due to the size of the simulation and calibration samples, and
from the luminosity determination; they are mentioned in the sections above. Systematic
uncertainties related to modelling choices are described below. All values are listed in Tables 1
and 2.
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In the modelling of the number of SPD hits, Ngpp, the convolution of the no-bias data
and the J simulation is normalised to the distribution seen in data for Ngp,  20.
Alternatively, one could normalise it to get the best possible description of the tail, i.e. in the
region 8 Ngpp 20. The resulting change in SPD veto efficiency is reported as a systematic
uncertainty.

The efficiencies of the HERSCHEL, track, and photon vetoes, collectively called global event
cuts (GEC) in Table 1, are taken from the yield of QED events passing the veto. The fit models
the non-QED background with the power-law from Ref. 93 , but in this reduced p% region the
sum of two exponential functions also provides a good description. The difference in measured
efficiencies is taken as the associated systematic uncertainty.

The signal J and 2S mass peaks are described by a modified Gaussian function.
Other models, such as the sum of a Gaussian and a Crystal Ball function 88 , are tried but
yield poor-quality fits, without however significantly affecting the signal yields. No uncertainty
is assigned. The peak value of the 2SS mass shape is constrained to be offset from the J
peak by the known mass difference of the two mesons. A systematic uncertainty is estimated
by scaling the offset proportionally to the energy release in each decay.

The p% shapes are modelled by a single exponential, as expected from theory, and there
is no evidence of the need for another model. The p% shapes of the J  from feed-down
are modelled with exponential functions taken from simulation. Alternatively, nonparametric
distributions obtained from simulation are used, which yields a small change in the feed-
down contributions and thus the signal yields. For the . feed-down, a determination of the
contribution from each | state would be needed if their p% distributions were different. The
present data do not require this. A dedicated CEP . study using converted photons would be
needed to resolve the ; and , states.

The mass distribution of the inelastic pp background is described by the same shape as for
the signal J and 2S plus an exponential to describe the nonresonant dimuon contribu-
tion. A systematic uncertainty is estimated by changing the single exponential to the sum of
two exponential functions.

Similarly, the p% shape for each component of the inelastic pp background is modelled
with a power law, as measured by the H1 experiment. However, the fit to the H1 dataset is
not perfect at very low p% 93 . Therefore other models are investigated. The sum of two
exponentials is found to also provide a reasonable fit, though of slightly lower quality. The
systematic uncertainty due to this modelling is determined with pseudoexperiments. In each
rapidity interval the data are fit with the alternate mass—p% model and then 500 pseudodata
samples are generated using the fit result as model. These pseudosamples are then fit with the
default model. The resulting biases of the / and 2S yields are assigned as a systematic
uncertainty.

Fit biases are tested in the same way. This time the default shape is used to generate 500
pseudodata samples which are fit with the same model. The variation of yields is compatible
with the uncertainty returned from the fit, and the biases are negligible in comparison. No
uncertainty is assigned.

Table 1 shows the values of all the systematic uncertainties previously discussed per rapid-
ity interval for the J and 2S cross-section measurements. All uncer-
tainties are assumed to be uncorrelated between rapidity intervals, except those for the SPD
and HeRSCheL. multiplicities, and for the luminosity, which are fully correlated.

The slope of the signal p% shape is only affected by changes in the fit model, leading to the
systematic uncertainties listed in Table 2.
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Table 1: Systematic and statistical uncertainties per rapidity interval for the J

and

2S cross-section in percent. The luminosity uncertainty is listed separately. Values
below 0.005% are not shown.

y bin 2.0-2.25 2.25-2.5 2.5-2.75 2.75-3.0 3.0-3.25

Source state J 28 J 28 J 28 J 28 J 2S
Uncorrelated uncertainties
Simulation sample size 0.35 0.6 0.16 0.28 0.12 0.21 0.10 0.18 0.10 0.18
Bin migration 0.03 0.08 0.01 0.02 0.05 0.04 0.05
Muon efficiency 20 1.9 1.7 1.6 1.6 1.5 1.6 1.5 1.5 15
Mass: PD shape 0.06 0.22 0.01 0.17 0.10 0.22 0.10 0.18 0.19 0.33
Mass: 2S offset 0.03 0.17 0.02 0.15 0.02 0.02 0.01
pzz . feed-down 0.01 0.01 0.01 0.06 0.03 0.01 0.04 0.01 0.02 0.03
p%: 2S feed-down 0.12 0.04 0.01 0.09 0.01 0.02 0.02 0.02 0.03 0.04
p;: PD shape 3.5 1.8 0.20 0.4 0.30 0.11 0.01 0.7 0.32 1.2
Total uncorrelated 4.0 2.7 1.8 1.7 1.7 1.5 1.6 1.7 1.5 2.0
Correlated uncertainties
GEC efficiency 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
GEC background 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
SPD hits efficiency 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
SPD multiplicity shape 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
Total correlated 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
Total uncertainties

Systematic (excl. luminosity) 4.2 2.9 2.1 2.0 20 1.9 1.9 2.0 1.9 23
Luminosity 29 29 29 29 29 29 29 29 29 29
Statistical 2.3 12.6 1.5 6.1 1.1 4.6 1.0 4.1 0.9 4.0

y bin 3.25-3.5 3.5-3.75 3.75-4.0 4.0-4.25 4.25-4.5
Source state J 28 J 2S J 2S J 28 J 28

Uncorrelated uncertainties
Simulation sample size 0.09 0.18 0.10 0.20 0.12 0.25 0.16 0.35 0.32 0.7
Bin migration 0.01 0.02 0.02 0.02 0.03 0.03 0.10 0.09 0.14
Muon efficiency 14 15 1.5 1.5 1.6 1.5 1.6 1.7 1.8 21
Mass: PD shape 0.17 0.28 0.13 0.15 0.13 0.32 0.06 0.20 0.03 0.10
Mass: 2S offset 0.03 0.03 0.02 0.02 0.02 0.06 0.02 0.04 0.09
pi: . feed-down 0.01 0.02 0.03 0.03 0.03 0.03 0.02
py: 28 feed-down 0.04 0.01 0.01 0.02 0.01 0.04 0.05 0.01 0.04
p?: PD shape 0.6 0.6 0.8 1.6 1.0 21 1.5 22 1.5 09
Total uncorrelated 1.6 1.6 1.7 22 1.8 2.6 2.2 2.8 24 24
Correlated uncertainties
GEC efficiency 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
GEC background 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
SPD hits efficiency 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
SPD multiplicity shape 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
Total correlated 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
Total uncertainties

Systematic (excl. luminosity) 1.9 20 2.0 2.5 2.2 28 25 3.0 26 2.6
Luminosity 29 29 29 29 29 29 29 29 29 29
Statistical 0.9 3.6 1.0 4.3 1.2 5.2 1.6 7.7 2.5 16.2
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Table 2: Systematic and statistical uncertainties per rapidity interval on the exponen-
tial slopes b; and b 5, in percent. Values below 0.005% are not reported.

y bin 2.0-2.25 2.25-2.5 2.5-2.75 2.75-3.0 3.0-3.25
Source state J 2S J 258 J 28 J 28 J 28
Mass: PD 0.08 0.20 0.04 0.02 0.04 0.03 0.05 0.02 0.09 0.07
Mass: 2S offset 0.03 0.09 0.01 0.04 0.01 0.03 0.01 0.01 0.01 0.03
pi: oJ feed-down 0.05 0.05 0.03 0.07 0.08 0.01 0.05 0.03
pr: 2S feed-down 0.29 0.08 0.06 0.01 0.02 0.01 0.03
p%: PD shape 40 0.9 0.7 0.30 0.17 2.3 0.03 1.0 0.26 0.5
Total systematic 4.0 0.9 0.7 030 0.19 23 0.10 1.0 0.28 0.5
Statistical 2.6 144 1.5 8.0 1.2 5.6 1.0 5.2 0.9 5.0
y bin 3.25-3.5 3.5-3.75 3.75-4.0 4.0-4.25 4.25-4.5
Source state J 258 J 28 J 28 J 28 J 28
Mass: PD 0.07 0.02 0.06 0.01 0.06 0.07 0.03 0.04 0.25
Mass: 2S offset 0.01 0.01 0.03 0.02 0.03 0.05 0.01 0.03
p%: oj feed-down 0.04 0.01 0.07 0.02 0.04 0.03 0.01 0.01 0.03
pi: 2S feed-down 0.08 0.01 0.01 0.04 0.10 0.03 0.04 0.05
p;: PD shape 0.17 0.26 0.13 0.6 0.08 1.8 04 1.7 2.2 4.1
Total systematic 0.20 0.26 0.16 0.6 0.12 1.8 04 1.7 22 42
Statistical 0.9 4.6 1.0 54 1.2 6.3 1.7 99 29 204
6 Results

The signal yields determined by the two-dimensional fit, the efficiencies and the resulting
differential pp pJ pand pp p 2S p cross-sections are reported in Tables 4 and 5 in
Appendix B. Summing over all rapidity intervals, the total integrated cross-sections for char-

monia with 2.0 y 4.5 and muons with 2.0 4.5 are
J 20 y; 4.5,2.0 45 400 2 5 12pb,
s 20 y o5 45,20 4.5 940 0.15 0.13 0.27pb,

where the first uncertainties are statistical, the second systematic and the third are due to the
luminosity determination. These values are more precise than those reported in the previous
analysis of exclusive J/ and 2S productionat s 13TeV 34 and are compatible with
the previous results at the level of 1.5

The measured cross-sections are corrected for the J and 2S e e branch-
ing fractions 89 and the detector acceptance of the two muons, using simulation. The branch-
ing fractionfor 2S e e isused under the assumption of lepton universality as it is more
precise than that of 2S . The resulting differential cross-sections are shown in
Fig. 7. Theoretical predictions are shown for comparison. The J  cross-section agrees with
the NLO prediction 45 , which is posterior to the previous 13 TeV measurement 34 . On the
other hand, the = 2S cross-section is significantly lower than both the LO and NLO predic-
tions 95 , which predate the LHCb measurement. The present result calls for an updated
calculation of the differential 2S prediction.

The J cross-sections are used to determine the photoproduction cross-section as a func-
tion of the photon-proton energy, which is reported in Appendix A.
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Figure 7: Differential cross-section for (left) J/v and (right) ¢(2S) mesons. Theo-
retical predictions from Jones et al. [95,96] and Flett et al. [45] are shown for com-
parison.
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Figure 8: Measured ratio of (2S) and J/ cross-sections per rapidity interval.
The results from PbPb collisions at /5y = 5.02TeV [41] and pp collisions at
/s = 7TeV [33] are shown for comparison. The latter data points are slightly offset
horizontally to increase visibility.

The ratio of ¢(2S) and J/1 cross-sections integrated over rapidity is found to be

Tp(2s)
Ginp

=0.1763 £0.0029 £ 0.0008 = 0.0039,

where the last uncertainty is due to the knowledge of the branching fractions. The luminosity
uncertainty cancels in the ratio. The ratio is shown in rapidity intervals in Fig. 8 and agrees
with measurements by the LHCb collaboration in pp collisions at /s = 7 TeV [33] and PbPb
collisions at /sy = 5.02TeV [41]. Its average is consistent with those measured by the H1
and ZEUS collaborations [97, 98].

The photoproduction cross-section has an exponential behaviour versus
p%: do/ dp% ~ e~bPT, The exponential slope b can be parameterised as

b= by +4a’ log(ﬁ) , (2)
Wo

where, in Regge theory, a’ is the slope of the pomeron trajectory, W, is the photon-proton

centre-of-mass energy defined in Appendix A, W, is typically taken to be W, = 90 GeV, and b,
is determined experimentally.
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Figure 9: (Left) linear fit to the logarithmic dependence of by, and by a5y with re-
spect to the photon-proton energy W, for J/3 and v(2S) production. The shaded
areas represent the 68% C.L. fit uncertainties. (Right) measured b slopes for J/1
production by the LHCb (this paper), H1 [93,99] and ZEUS [100] experiments. Su-
perimposed is a line with the slope resulting from the fit to the LHCb data.

A linear fit to the b slopes in intervals of rapidity is shown in Fig. 9. The intercepts and
slopes are determined to be

a1 = 0.133 % 0.024 + 0.006 (GeV/c) 2,
a/¥(?8) = 0.178 £0.124 £ 0.004 (GeV/c) 2,
b/¥ = 4.80 % 0.24+0.06 (GeV/c) 2,

b¥S) = 4,024 1.2340.03 (GeV/c) 2,

where the first uncertainty is statistical and the second systematic. The systematic uncertain-
ties are obtained by taking the difference of the central value when the fit is performed with and
without the systematic uncertainties accounted for in the fit. The fit to J/23) data agrees with
previous determinations in ep collisions [93,99-101] but is below the prediction of Ref. [102].

7 Conclusion

This paper presents the first measurement of the exclusive v)(2S) cross-section in pp colli-
sions at /s = 13 TeV in ten intervals of rapidity between 2.0 and 4.5. The corresponding J/v
cross-section is updated and the rapidity-dependent ratio of ¢(2S) and J/3 production is de-
termined for the first time. The results are consistent but more precise than those of Ref. [34].
When expressed as a function of the photon-proton energy, the cross-sections are found to be
consistent with previous measurements, but the v(2S) cross-section is below theory predic-
tions.

For the first time, the dependence of the J/1 and 1(2S) cross-sections on p% ~ At, where
At is the total transverse momentum transfer, is determined in pp collisions and is found
consistent with and more precise than the behaviour observed at HERA [93,99-101].
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A Photoproduction cross-section

The differential cross-sections are used to determine the photoproduction cross-section for J/)
and 1(2S) mesons. The differential cross-section is factorised into two terms depending on
whether the proton travelling from the vertex detector towards the muon chambers interacts

electromagnetically (labelled W, ,) or the opposite-direction proton does (labelled W, _):

do dn W, . dn W,,_
g @0 = ) =5 ) (ks g o, + 8200, ) (ke g,

103 T T T T T T 17T T T T T T TTT] T

2 F ;
— C ']
= [ LHCb W "
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Figure 10: Results for the J/1 photoproduction cross-section as a function of the
photon-proton energy W,,, from different experiments listed in Table 3. The LHCb
results at /s = 13 TeV are estimated with the NLO [45] calculation. Also shown are
the NLO theoretical descriptions given by Flett et al. [45], as well as a power-law
description of the H1 data. The top axis shows the values of x reached for a given
photon-proton energy.
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Table 3: Previous results used in Fig. 10.

Marker | Experiment | collision Energy | Refs.
LHCb pp 5 7Tev 33
ALICE pPb S 5.02Tev 106,107
ALICE pPb S 8.16TeV 38
H1 ep 40 W, 305Gev 99
H1 ep 25 W, 110Gev 93
ZEUS ep 20 W p 290 GeV 100
E87 Be 0 E 250GeV 108
E401 Hand ?H 60 E 300 GeV 109
E516 H 60 E 160GeV 110

with W, M c2 se Y. The S? W p, terms, the so-called survival factors, are taken

from Ref. 103 . The photon flux dn dk for photons with energy equal to k Mc22e”

is calculated following Refs. 104, 105 . The photoproduction cross-sections are given by
w

b, w p,

p’ - p P
x M c¢®> 5e? 45 . The contribution of this term to Eq. A.1 is therefore expected to be
small and can be constrained from theoretical predictions. The antiparallel solution is taken
from the J and 2S NLO cross-section predictions from Refs. 45,95 and subtracted.
Figure 10 shows the measured photoproduction cross-section for J mesons and compares it
with previous measurements listed in Table 3. The numerical values are listed in Table 8.
The LHCbJ dataat s 13TeV are in agreement with the NLO description 45 . They

also follow a power-law fit to H1 data 93 .

The antiparallel p cross-section, corresponds to large values of x, as

B Numerical results

Tables 4 and 5 present the differential cross-sections in rapidity bins, shown in Fig. 7, and
the breakdown of uncertainties for J and 2S , respectively. Their ratio
is given in Table 6. Table 7 lists the exponential slopes for J and 2S in each rapidity

bin, corresponding to Fig. 9. Table 8 lists the values entering the computation of the parallel
p,

cross-sections
p J

) displayed in Fig. 10.
C Fits in all rapidity bins

The distributions of dimuon mass and p% in each rapidity interval are shown in Fig. 11. The
results of the two-dimensional fits described in the main text are overlaid.
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Table 4: Differential CEP J yields and cross-sections corrected for effi-
ciency ( o), acceptance ( geom.ace.) and branching fraction. The systematic uncer-
tainties are split between those uncorrelated across y ranges, those that are 100%
correlated and the luminosity uncertainty.

y; bin 2.0-2.25 2.25-2.5 2.5-2.75 2.75-3.0 3.0-3.25
Nsig 4998 113 18095 265 31591 361 41640 402 47690 432
tot 0.313 0.028 0.403 0.030 0.443 0.030 0.456 0.029 0.467 0.027
Geom.Ace. 0.095 0.002 0.287 0.003 0.466 0.003 0.623 0.003 0.732 0.003
d dy nb 7.41 6.90 6.75 6.46 6.15
Stat. unc. nb 0.17 0.10 0.08 0.06 0.06
Uncorr. syst. unc. nb 0.30 0.12 0.11 0.10 0.09
Corr. syst. unc. nb 0.23 0.21 0.21 0.20 0.19
Lumi. unc. nb 0.21 0.20 0.20 0.19 0.18
y; bin 3.25-3.5 3.5-3.75 3.75-4.0 4.0-4.25 4.25-4.5
Nsig 47303 436 39878 394 26727 329 14428 236 4349 108
tot 0.479 0.027 0.484 0.028 0.462 0.029 0.435 0.029 0.399 0.029
Geom.Acc. 0.733 0.003 0.625 0.003 0.467 0.003 0.300 0.003 0.095 0.002
d dy nb 5.93 5.82 5.47 4.89 5.05
Stat. unc. nb 0.05 0.06 0.07 0.08 0.13
Uncorr. syst. unc. nb 0.09 0.10 0.10 0.11 0.12
Corr. syst. unc. nb 0.18 0.18 0.17 0.15 0.16
Lumi. unc. nb 0.17 0.17 0.16 0.14 0.15
Table 5: Differential CEP  2S yields and cross-sections corrected for effi-

ciency ( o), acceptance ( geom.ace.) and branching fraction. The systematic uncer-
tainties are split between those uncorrelated across y ranges, those that are 100%
correlated and the luminosity uncertainty.

Y a5 bin 2.0-2.25 2.25-2.5 2.5-2.75 2.75-3.0 3.0-3.25
Ngig 127 16 491 30 845 39 1088 44 1163 47
tot 0.400 0.032 0.494 0.032 0.527 0.032 0.518 0.032 0.502 0.031
Geom.Acc. 0.091 0.002 0.284 0.003 0.465 0.003 0.626 0.003 0.735 0.003
d dy nb 1.16 1.16 1.14 1.11 1.05
Stat. unc. nb 0.15 0.07 0.05 0.05 0.04
Uncorr. syst. unc. nb 0.03 0.02 0.02 0.02 0.02
Corr. syst. unc. nb 0.04 0.04 0.04 0.03 0.03
Lumi. unc. nb 0.03 0.03 0.03 0.03 0.03

Y a5 bin 3.25-3.5 3.5-3.75 3.75-4.0 4.0-4.25 4.25-4.5
Ngig 1319 48 980 42 648 34 323 25 81 13
tot 0.505 0.030 0.492 0.030 0.457 0.030 0.427 0.030 0.394 0.035
Geom.Acc. 0.740 0.003 0.622 0.003 0.469 0.003 0.290 0.003 0.099 0.002
d dy nb 1.17 1.06 1.00 0.86 0.69
Stat. unc. nb 0.04 0.05 0.05 0.07 0.11
Uncorr. syst. unc. nb 0.02 0.02 0.03 0.02 0.02
Corr. syst. unc. nb 0.04 0.03 0.03 0.03 0.02
Lumi. unc. nb 0.03 0.03 0.03 0.02 0.02
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Table 6: Ratio of the CEP J and 2S cross-sections per rapidity
bin.

y bin 2.0-2.25 2.25-2.5 2.5-2.75 2.75-3.0 3.0-3.25

d o dy

T 4 0.156 0.168 0.169 0.172 0.170

Stat. unc. 0.020 0.010 0.008 0.007 0.007
Syst. unc. 0.006 0.001 0.001 0.001 0.002

BF unc. 0.003 0.004 0.004 0.004 0.004
y bin 3.25-3.5 3.5-3.75 3.75-4.0 4.0-4.25 4.25-4.5
d d
== 0197 0.182 0.183 0.177  0.137

J y

Stat. unc. 0.007 0.008 0.010 0.014 0.022
Syst. unc. 0.002 0.003 0.004 0.005 0.003
BF unc. 0.004 0.004 0.004 0.004 0.003

Table 7: Values of the b slopes measured in the fit.

J 28

y log b’ log WV‘,}O b 28
2.0-2.25 1.86 6.07 0.16 0.25 1.95 6.1 09 0.1
2.25-2.5 1.99 5.83 0.09 0.04 2.08 54 04 0.0
2.5-2.75 2.11 5.90 0.07 0.01 2.20 5.7 03 0.1
2.75-3.0 2.24 5.99 0.06 0.01 2.33 5.7 03 0.1
3.0-3.25 2.36 6.02 0.05 0.02 2.45 59 03 0.0
3.25-3.5 2.49 6.25 0.06 0.01 2.58 55 0.2 0.0
3.5-3.75 2.61 6.13 0.06 0.01 2.70 5.7 03 0.0
3.75-4.0 2.74 6.20 0.08 0.01 2.83 6.8 04 0.1
4.0-4.25 2.86 6.33 0.11 0.02 2.95 6.3 0.6 0.1
4.25-4.5 2.99 6.51 0.19 0.14 3.08 79 1.6 0.3
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Table 8: Values of the differential cross-section, survival factor, photon flux and an-
tiparallel photoproduction cross-section used for the calculation of the parallel cross-
section. The antiparallel p value is taken from the FMRT NLO description 45 .

y; bin 2.0-2.25  2.25-25  25-275  2.75-3.0  3.0-3.25
d dy nb 741 043 690 027 675 025 646 024 615 0.22
s2w,, 0.786 0.774 0.762 0.748 0.732
k o 1032 22.7 21.6 20.4 19.2 18.0
2w, 0.885 0.888 0.891 0.893 0.896
kot 103 42.5 43.7 44.9 46.0 47.2
"o mb 577 27 511 23 450 20 392 17 339 14
“r o mb 204 25 204 17 319 17 337 17 358 17
y; bin 32535 3.5-3.75 3.75-40 40425 42545
d dy nb 593 021 582 021 547 021 489 021 505 0.26
2w, 0.715 0.695 0.672 0.647 0.618
koL 100 16.8 21.6 14.5 13.3 12.1
2w, 0.899 0.901 0.903 0.905 0.907
k o 102 48.3 49.5 50.7 51.8 53.0
"o mb 200 12 244 09 201 07 162 06 126 0.4
"r o mb 389 18 433 20 467 22 480 25 594 34
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Figure 11: Distributions of dimuon mass and p% for the CEP sample in different
regions of rapidity. The results of the two-dimensional fits are overlaid.
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