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Abstract—DNA emerges as a promising medium for the expo-
nential growth of digital data due to its density and durability.
This study extends recent research by addressing the coverage
depth problem in practical scenarios, exploring optimal error-
correcting code pairings with DNA storage systems to minimize
coverage depth. Conducted within random access settings, the
study provides theoretical analyses and experimental simulations
to examine the expectation and probability distribution of sam-
ples needed for files recovery. Structured into sections covering
definitions, analyses, lower bounds, and comparative evaluations
of coding schemes, the paper unveils insights into effective coding
schemes for optimizing DNA storage systems.

I. INTRODUCTION

The rapid growth of digital data, projected to reach 180
zettabytes by 2025, is causing a data storage crisis, with
demand surpassing supply [1]. Existing storage technologies
face challenges meeting big data demands. In response, DNA
emerges as a promising medium due to its density and durabil-
ity. The DNA storage process involves synthesis, creating arti-
ficial DNA strands encoding user information with limitations
leading to short strands and multiple noisy copies [2], storage
by a storage container and sequencing, a key component [3],
[4], [5], [6], translates DNA into digital sequences. Despite
the potential of DNA storage, current DNA sequencers face
challenges such as slow throughput and high costs compared to
alternatives [7], [8], [9]. Coverage depth, the ratio of sequenced
reads to designed strands, impact system latency and costs,
highlighting the need for optimization [10], [4].

We extend recent research addressing the coverage depth
problem [11] by generalizing it to a more practical scenario.
Specifically, we consider a container storing m files, each
composed of k information strands. These strands are encoded
into mn strands using some coding scheme, and the objective
is to recover a files out of the total m. Our focus is on
investigating the required coverage depth, considering factors
such as the DNA storage channel and the error-correcting code.
Additionally, we aim to explore the optimal pairing of an error-
correcting code with a given DNA storage system to minimize
coverage depth. This investigation is conducted within the
framework of random access settings, where the user seeks
to retrieve only a fraction of the stored information. In this
context, we conduct both theoretical and experimental analyses
to examine the expectation and probability distribution of the
number of samples needed to fully recover the specified a files.

The DNA coverage depth problem is akin to well-known
problems such as the coupon collector’s, dixie cup, and urn
problems, where the objective is to collect all types of coupons
or objects [12], [13], [14], [15]. In our context, the "coupons”
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represent copies of synthesized strands, and the aim is to read
at least one copy of each information strand. For example,
if n coupons are drawn uniformly at random with repetition,
it is well known that the expected number of draws needed
to obtain at least one copy of every strand is approximately
nlogn. However, in this work, we consider the setting where
one is allowed to employ the use of a code in order to reduce
the number of draws necessary to recover a given subset of
information, and it is required to read a specific set of strands
that constitute a file.

The paper is structured as follows. In Section II, we provide
definitions and articulate the problem statement, focusing on
the coverage depth problem in our more practical settings.
We also discuss some relevant prior results on this matter.
In Section III, we address the scenario where the user aims to
retrieve a single file (a = 1 out of m). We conduct analyses for
three coding schemes: the local MDS scheme, which employs
an [n, k] MDS code for each of the m files; the global MDS
scheme, employing an [mn, mk] systematic MDS code on the
combined strands of the m files; and the partial MDS scheme
(PMDS), specifically analyzed for the case of m = 2 files.
We present the expected value of samples required to recover
a file and explore the expected limit as n approaches infinity
for both local and global schemes. In Section IV, we establish
two lower bounds on the expected number of samples needed
for file recovery. Section V includes a comparative analysis of
the coding schemes. We prove that, in terms of expectation,
the local scheme surpasses the global one. Then, a simulation
is conducted, providing insights crucial for determining the
optimal coding scheme. While the local scheme demonstrates
superior expectations, analysis of probability distribution and
variance suggests that the global and PMDS schemes may
be more favorable options. Finally, in Section VI, we present
results for the case where we aim to recover a > 1 files and
extend our lower bound to this case. Due to the lack of space,
we omit some of the proofs in the paper and they appear in
the long version of this paper [16].

II. DEFINITIONS, PROBLEM STATEMENT, RELATED WORK

A. Definitions

For a positive integer n, [n] denotes the set {1,...,n} and
H,, denotes the n-th Harmonic number. We consider a DNA-
based storage system in which the data is stored as a codeword,
described by a vector of length-¢ sequences or strands over the
alphabet ¥ = {4, C, G, T}, so the set of all length-¢ vectors
over ¥ is denoted by . Often, an outer error-correcting
code is employed to protect the data across these length-¢
sequences. In the setting studied in this paper, it is assumed
that these strands represent some m files and so the input is
represented by a vector of m files U = (U, Us,...,Un),
where each file consists of k length-¢ information strands
U = (i1, ui2,...,u;x) € (X% for i € [m]. The mk
information strands are then encoded to mn encoded strands
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using some linear [mn, mk| code C over ¢ (typically ¢ is
embedded into a field of size 4%). The resulting encoded vector
is denoted by X = (x1,@2,...,&Tm,) which represents the
input vector to the DNA storage system. Note that the files
can be encoded either seprately or all together.

The DNA storage channel, denoted by S, initially produces
numerous noisy copies for each strand in X'. These noisy copies
undergo amplification using PCR, and a sample of M strands is
then sequenced [17]. The output of the sequencing process is a
multiset Yar = {¥1, Y2, - -, Y}, Which consists of reads y,
for j € [M], each being a noisy version of some x;, ¢ € [mn].
The model assumes that the index i € [mn] such that y; is
a noisy copy of x; is known. The number of reads in Yy,
corresponding to the i-th strand «;,i € [mn], depends on a
categorical probability distribution p = (p1,...,Pmn), Where
for i € [mn], p; is the probability to sample a read of x;.
However, for simplicity, it is assumed in this work that p is
the uniform distribution and we further assume that there is no
noise in the reading process so every read in an error-free copy
of some x;. Since we consider the noiseless scenario, there
is no need to apply clustering or reconstruction algorithm as
well as an error-correcting code to correct the errors during
reading. However, we do apply an error-correcting code in
order to reduce the required number of reads in order to decode
the information. For a more detailed description of this model
which include noise we refer the reader to [11].

B. Problem Statement

The main goal of this paper is to explore the necessary
sample size for the retrieval of some requested a files by the
user out of m from U. Successful decoding of a file U; for
i € [m] is defined as sampling enough encoded strands from
X that are sufficient to decode all the & information strands
of U;. Note that since the strands in ¢/ are encoded using an
error-correcting code C, it is not necessary to sample all the
k information strands from U; but any set of encoded strands
from X that allows to decode them. We also note that the
main difference in the model studied in this paper and the one
from [11] is that the latter work does not assume the partition
of the data into files and considers it as one file. Then, the goal
is to either decode the entire file or one information strand.

Mathematically speaking, assume C is the code which is used
to encode the m files and let F' C [m] be the set of files that are
requested by the user. Let v, )(C) be the random variable
that governs the number of reads that should be sampled for
successful decoding of the a files in F'. The problems studied
in this paper are formally defined as follows.

Problem 1. Given an [mn,mk| code C, F' C [m],|F| = a.
Find the following values:
1) The expectation value E[v(,, )(C)] and the probability
distribution Pr[v(,, #y(C) > r] for any r € N.
2) The maximal expected number of samples to retrieve any
a files, i.e.,
TC

(a) &  max
e |F|=a,FC[m

]E[V(m,F)(C)}-
Problem 2. For given values of n, k, m,a find:
1) An [mn,mk] code C, that is optimal with respect to
minimizing 7€, (a).
2) The minimum value of TS, (a) over all possible

[mn, mk] codes C. That is, find the value T'(n, k;m, a) =
mine {7}, (a)}.

In order to address Problem 1, we consider in Section III
three coding schemes and analyze their maximal expected

number of samples. These results, in particular, provide an
upper bound on the value of T'(n, k;m,a) from Problem 2,
while lower bounds on this value are given in Section IV.

C. Previous Results

Two special cases of Problem 2 have been investigated
in [11]. Specifically, in case there is only one file, i.e., m =1,
which implies that ¢ = 1 the value of T'(n, k;1,1) has been
fully solved and it was shown that T'(n,k;1,1) = n(H, —
H,,_}), which is achieved by any [n, k] MDS code. Similarly, it
is easily deduced that T'(n, k; m, m) = mn(Hym — Hpn—mk)
which is achieved by any [mn, mk] MDS code. On the other

hand, if £ = 1 and m > 1 then we achieve the random
access version of the problem in [11], which was studied
mainly for ¢ = 1. However, the value of T'(n,1;m,1) is

still far from being solved. A lower bound states that for
all n, T(n,1;m,1) > n = "™ (g, — H, ), while
several code constructions verify that T'(n,1;m,1) < m. For
example, it was shown that there exists n large enough such
that T'(n, 1;2,1) < 0.91-2 and T'(n, 1;3,1) < 0.89-3 and if m
is a multiple of 4 then T'(n = 2m, 1;m, 1) < 0.95 - m. Based
on the results [11], it is simple to deduce that T'(k, k;m,a) =
mkH,y, and thus for the rest of the paper we assume that
n > k. Several more results on this value and related problems
have been studied lately in [18], [19].

III. RANDOM ACCESS EXPECTATION FOR A
SINGLE FILE (a = 1)
This section studies the problem of optimizing the sample
size for random access queries, where the user wishes to
retrieve 1 file. Three coding schemes will be analyzed.

A. The Local MDS Scheme

In this coding scheme, denoted as C;, we employ an MDS
code on each of the m files separately and store each file in
n strands. Note that in this coding scheme, in order to decode
any file, it is necessary and sufficient to retrieve any k& out of
its n encoded strands.

Our main goal in this section is to determine the expected
number of samples for recovering any of the m files while
applying the coding scheme C;. To analyze the performance
of the coding scheme C;, we let t(h, i) be the random variable
that denotes the number of samples required to progress from
drawing ¢ to ¢ + 1 different strands out of the pool of n
encoded strands for the h-th file. Note that ¢(h,4) follows a
geometric distribution ¢(h,i) ~ Geo (fn’rf), where 7:;712 is the
probability of drawing the (i + 1)-st strand, and consequently,
the expected value, E [t(h,i)] = % Furthermore, let T'(h, b)
be the random variable representing the number of samples
needed to progress from drawing O to b different strands of the
h-th file. Hence, by definition T'(h,b) = E?;é t(h,4) and thus

b—1 b—1
E[T(h,b)] = E [Z t(h, i)} = Et(h,i)]

i=0 =0
b—1

-2

=

Theorem 1. For any 1 < k£ <n and m > 1, it holds that

mn

— =mn(Hn — Hn—s). (1

3

T(n,k;m,1) < TS

max

(1) = mn(H,, — H,—y).

Proof. Assume without loss of generality that F' = {1}. Note

that by applying b = k in (1) it holds that E[v(,, (1})(C1)] =

E[T(1,k)] = mn(H, — Hp—). This also implies that
T(n,k;m,1) < TS (1) = mn(H, — H,_}). 0

max
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Corollary 1. For fixed m, 0 < R < 1, R = % for n large

enough it holds that T (1) = mnlog (%) Furthermore,

“R
for any fixed m and £, it holds that,
lim inf T'(n, k;m, 1) < liminf TS,

n—00 n—oo max
B. The Global MDS Scheme

In this coding scheme, denoted as C,, we employ a sys-
tematic MDS code on the combined strands of the m files.
Hence, we store the mk information strands into mn encoded
strands. In order to decode any of the m files, it is necessary
and sufficient to either retrieve all the systematic k& strands of
the file, or any mk out of mn strands. The latter option decodes
all m files and in particular the required file.

Our main goal is to find the expected number of samples
to recover any of the m files as defined in Problem 1 while
applying the coding scheme Cs. Let ¢(4) be the random variable
that denotes the number of samples required to progress from
drawing ¢ to ¢ + 1 different strands out of the pool of mn
encoded strands. Note that ¢(¢) follows a geometric distribution
t(i) ~ Geo ("Z;—n’z), where % is the probability of drawing
the (i + 1)-st strand, and thus E[t(i)] = ™. Furthermore,
let T'(b) be the random variable representing the number of

samples needed to progress from dravging 0 to b different
—1

(1) = mk.

strands. Hence, by definition T'(b) = >".— ¢(¢) and
b—1 b—1
) mn
E[T(b)] = ;]E [t(i)] = ; — = mn(Hpn — Hyp ).

In order to analyze the collection process we will represent it
as a discrete-time Markov chain. Let X; be a random variable
that represents the state of the collection process after drawing
b different strands. Indeed, the collection process satisfies
the Markovian property, i.e., for a collection of b states say
S05815---5Sp—1 Pr (Xb = 8b|X0 = S50y - 7Xb—1 = Sb—l) =
Pr (X}, = sp|Xp—1 = sp—1). For the setups under considera-
tion, the states will be all compositions of different types
of collected strands which will depend in general on the
underlying coding scheme itself. We denote 5; to be the sum
of collected strands at state s;. Moreover, we let M denote
the transition matrix of this Markov chain where M, 5, =
Pr(X, = s;|Xp—1 = s;) for two states s; and s;. Define
M, = Pr(X,, = s;|Xo = s;) which is the probability of
collecting the additional strands from s; to the composition of
collected strands in s; (ie., 5, —5; =n strands)'. Also, define

the n-step transition probability matrix M (™) £ (]st(f)& ). Note
that Mg:i)sl = ZSU Mé(._:i;yl)Msy,si, where for 3; —3; # n then,

M §]")s = 0. For shorthand, we refer to the initial state as sg
(i.e., collect nothing from the pool of strands).

Our aim is to compute the expected hitting times for the
absorbing states which will depend in general on the underlying
coding scheme itself. This is established in the next theorem.

Theorem 2. For any 1 < £k < n and m > 1 it holds that
T(n,k;m,1) < TS, (1) and

Tmix(l) =mn (Hrnn _Hmnfmk)

mk—k—1
mn k=14 B mk—1
(5 () ()

Proof sketch. Assume without loss of generality that ' = {1}.

At state s;, we have two potential transitions: either remaining in the
current state by drawing a previously collected strand or collect a new one
and progressing to a new state. The variables M, and M (™) are analyzed and
defined as the conditional probabilities of transitioning to a new state given
new strands were drawn.

o States definition: The set of states is & =
{(4,j) |0<i<k,0<j<mn—k}, where i is the
number of strands drawn from the k systematic strands
of the first file, and j is the number of strands that were
drawn from the other mn — k strands.

o Transition matrix: The valid transitions in M (.e.,
M3, 1), (ia,j2) 7 0) and their values are

k—i
mn =+ )

mn—Fk—j

M 5, (i41.5) = s Mgy, Gg+1) = p— R
M(iJFj)

The next claim provides a closed formula for (0,0),(5.7)

which holds for the non-absorbing states.
Claim 1 M(’H‘j) _ (itj)(m"g—(iﬁj))
aim 1. My o' o = e
Proof sketch. At state (i, j), we have (’f) options to choose 7
systematic strands and (m”fk) options to choose j strands
from the rest of the pool, considering all possibilities for
drawing a total of (¢ + j) strands out of the mn strands,
which is (;'_f;). The algebraically derived formula is pre-
sented in the long version [16]. 0
o Absorbing states: These are the states that allow the
recovery of the first file, so the drawing process ends. In
coding scheme C,, the absorbing states are those where
we either drew the k systematic strands of the first file or
any mk different strands from the pool of mn strands. We
denote ©1, O, as the set of absorbing states corresponding
to the first, second option, respectively. That is

O1 2 {(k,j) |0<j<mk—k—1},
Oy 2 {(i,mk —i) |0<i<k}.

Note that given (k,j) € ©q, since (k,j — 1) is also an
absorbing state, we have that

M(k+j)

_ ag(k=1+7)
©0,0),(k,5) = M

(0,0),(k—1,5) Mk—1,5),(k.5)>

which follows directly from the definition of ©;.

o The expectation: In order to calculate E[v(,, (1})(C2)],
we let Y be the random variable representing in which
absorbing state the collection process ends. The expectation
E[V(m,{1})(C2)] is conditioned on Y". Hence,

E[v(m,(1})(C2)] = Ey [E[V(m, (1})(C2)| Y]]
= D Pr(Y =0) - E[ym,1))(C2)|[Y = 0]

0€O1UB

é\ o~
= > My 0 EITO)] = mn (Hyp—Hypn-mr)
6€©01UB2

mk—k—1
mn k—1+4j mk—1
-E5( % () -t (1))

(2)
The full proof of (2) can be found in [16]. Since the code
is symmetric it implies that E[v(,, 11})(C2)] = TS (1).

Corollary 2. For any fixed m and k > 2, it holds that
liminf T'(n, k;m, 1) < liminf TS2_(1) = mk.
n—oo

max
n—oo

C. The Partial MDS Scheme

In this section, we consider the case where the underlying
retrieval code, denoted Cs, is a partial-MDS (PMDS) code and
we apply to m = 2 files. We briefly review the definition of a
[r; s] code before proceeding.

Definition 1. Let C be a linear [mpnp,mp(np — rp) — 25
code over a field such that if codewords are taken row-wise as
mp X np arrays, each row belongs to an [np,np —7p,rp+1]
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MDS code. Given o7, ..., 0, such that for j € [t], o0; > 1, we
say that C is an (rp;oy,...,0)-erasure correcting code if,
forany 1 <1y < --- <14y <m, C can correct up to o; +rp
erasures in row ¢, of an array in C. We say that C'is an (rp; 2s)
PMDS code if, for every (oy,...,0;) where 23:1 oj = 2s,
C'is an (rp;o1,...,04)-erasure correcting code.

Constructions of (r;s) PMDS codes have been shown to
exist for all  and s provided large enough field sizes [20]. For
the purposes of our problem, we assume that mp = 2 and that
the information dimension of each of the two files we encode is
k=3 (2(np—rp) —2s) =np —rp—s and where n = np
so that we can interpret for instance the information for the
first file being contained in a systematic code that appears in
the first row and the information for the second file appearing
as the second row in our codeword according to the previous
definition. Then according to Definition 1, we can recover file
1 in the following ways:

1) File 1 can be recovered by collecting the k systematic
strands for File 1 which appear in the first row.

2) File 1 can be recovered by collecting np —rp = k + s
strands out of the n strands in the first row.

3) File 1 can be recovered by collecting 2k distinct strands
whereby at least np — rp — 2s = k — s and at most
np —rp = k + s originate from the first row.

Since the code is symmetric, the ways for recovering file 2
mirror those for recovering file 1. By using the same notations
of ¢(z), T(b) and the Markov chain properties as mentioned in
Section III-B, the next theorem is proved similarly.

Theorem 3. For any 1 < k <n and m = 2, T'(n,k;2,1) <
TS (1) and:

max
C RN ()
J

TS (=203 3"

j=0 h=0 (k 12+";+h)

U (MGG
D9 )

CHan — Hon—(htj+h)
2n—(k—14+j5+h)

(k— i+ 1)(Hon—Hon_(ktstn))
2n —(k+s—1+h)

i=1 h=0 k+5 1+h
+2n’§’§ ) (k+2—];—1) () (n=2k—s+i+1)(Hon—Hop— (ktstn))
i=0 h=0 (k+.«2—nl+h) 2n—(k+s—1+h)
s

(k—i+1))(Hon—Hap— (h—s+th))
2n —(k—s—1+h)

k— n k n—k \(n
o Z Z G2) (k:z—”s—l.)(h) )
et Geestien)

J Z )G, '2 - (z)'(n_2k+5+i+1)(H2n_H2n—(k—s+h))
i=0 h=hts+1 (k s— 1+h) 2n—(k—s—1+h)

s T 00 et
i=0 j=max(0,k—s—i) ()
IV. LOWER BOUNDS
In this section, we present two lower bounds on the value
of T'(n, k;m,1). The first bound does not depend on n, while
the second presents an improvement considering it.

— Hap—2k)-

Lemma 1. For any n, k,m it holds T'(n, k;m,1) > w

In order to consider the effect of » on the value of
T(n, k;m, 1), we obtain a tighter lower bound on T'(n, k; m, 1)
compared with Lemma 1.

Theorem 4. For any n, k, m it holds that
= k(m+1)
T(n,k;m,1) > mnH,,, — Hopp i > ———=.
(n,k;m,1) > mn n; k 5

The asymptotic behavior of this bound is given in the next
corollary.
Corollary 3. For fixed m,k,R = % it hold
that  lim, o T'(n, k;m, 1) > limy, s oo (MmN Hpp,
T Hoogi) = 25 Also, for fixed 0 < R < 1,

T(n,k;m,1)

. . m
limy, 00 > limgy 00 mMHpyy — Zi:l Hopp—ri =

R(m+1)
—

V. COMPARISONS AND EVALUATIONS

In this section, we will conduct a comparative analysis
of the coding schemes introduced in Section III, focusing
on their expected retrieval time, variance, and probability
distribution. Our evaluation will commence with a comparison
of expected retrieval times. Then, we will present and discuss
the simulation results of the three coding schemes. Finally, we
will conclude which of the schemes is superior. This knowledge
proves pivotal for the optimization of DNA storage systems, as
our objective is to minimize the number of samples required
for file recovery.

First, we note that for two files (m = 2) the first coding
scheme is superior of the second one in terms of the expectation
for the number of reads. This is proved in the next lemma.

Lemma 2. For any 1 < k < n,m = 2. We have that,
TS (1) > TS (1).

max max

For each C;, ¢ € [3], we conducted a simulation comprising
10 million experiments with parameters n = 35, m = 2,
k = 20, and for Cs, s = 2; see Fig. 1. We assessed the values of
TC: (1). Furthermore, we assess the probability distribution of
the schemes, considering them to be normally distributed based
on prior research [21], [22] that has demonstrated this tendency
using the Central Limit Theorem. To utilize this distribution,
the long version of the paper [16] provides a methodology for
computing the variance. Consequently, employing the normal
distribution, we determine the minimum sample size required
to ensure confidence levels of 90%, 95%, and 99% for each
coding scheme. Although TS. (1) might have the smallest

max

—— scheme 1
----- scheme 1 E at 57.999
90% of scheme 1 at 76.019
—=- 95% of scheme 1 at 79.470
99% of scheme 1 at 86.218
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! —— scheme 3
: """ scheme 3 E at 58.324
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i ——- bound Theorem 4. at 41.002
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Fig. 1: Illustrates the distribution of necessary sample sizes
for file recovery and confidence levels of 90%, 95%, and 99%
across 3 coding schemes. And the lower bounds specified in
Theorem 4 and in Lemma 1.

value, TS (1) and TS (1) demonstrate greater stability.
Notably, the number of samples ensuring a 95% successful file
recovery significantly differs from 7C._(1); however, it closely
aligns with 7€2_(1) and T2 (1). While C3 mirrors C in terms
of expectation with minor discrepancies, Cy exhibits superior
stability, albeit not as pronounced as C;. The average values
of the expected number of samples for file recovery across all
three coding schemes exhibited negligible disparities compared
to their respective expected value as analyzed in Section III all
registering at 0.00. Similarly, for the minimum sample sizes
required to attain confidence levels of 90%, 95%, and 99%,
differences between the suggested normal distribution and
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experimental simulations were minor. Full simulation results
are detailed in the extended version [16]. Considering this
comprehensive analysis, the coding scheme Co emerges as a
preferable choice. In essence, while expected values are crucial,
factors like stability also wield significant influence. Thus,
identifying the optimal scheme demands meticulous analysis
and consideration of various factors, pivotal for achieving the
overarching goal of minimization.

VI. RANDOM ACCESS EXPECTATION FOR MULTIPLE FILES

In this section, we extend the results in the paper to randomly
accessing multiple files, i.e., a > 1. We will analyze the
expectation results of the first two coding schemes and show
how to extend the bound from Theorem 4. For both analyses,
let us use the same notations of ¢(¢), 7'(b) and the Markov chain
properties as mentioned in Section III-B. We start with the local
MDS scheme. We let F' C [m], |F| = a be the set of requested
files. Assume without loss of generality that ' = {1,...,a}
Then, the Markov chain is described as follows.

o States definition: The set of states is: S3 =
{f =, s far far1) | Vi € F, fi <n, fag1 <mn—an}.
where for each ¢ in F, f; is the number of strands drawn
from the n encoded strands of file ¢ and f, is the number
of strands that were drawn from the other files (i.e., the
other mn — an strands). Given state f, let (f_;,b) denote
a new state where only the i-th value of f changes to b,
that is, (f_;,0) = (f1, fas-- ;b fag1)-

« Transition matrix: The valid transitions in M (i.e., My ,, #
0) and their values are:

n—fi .
Mg 5 .41 = —=,1<i<a,
mn — f
n-(m—a)—= fay1 .
Mf,(f7(<,+1)yfa+1+1) =—“ " i=a+1.

mn — f

The next claim provides a closed formula for M S’z , f,which

holds for the non-absorbing states.

Ctaim 2. 17— GGG ()

so.f (%)

Proof. At state f, we have (}i) options to choose f;

encoded strands of file 7 for each i in F and ("(’::“))
options to choose f,41 strands from the rest of the strands
in the pool, considering all possibilities for drawing a total
of f strands out of the mn strands, which is ("i") O

« Absorbing states: These are the states that allow to recover
the files in F, so the drawing process ends. For Cy, the
absorbing states are those where we drew the k-th strand
from file j € F, which is last to be recovered, i.e., we
already read at least k strands from the other files in F' and j
is the last one. Denote © as the set of absorbing states. Our
approach involves investigating the transient states prior to
absorption since those states determine a specific absorbing
state. Denote G; as the set of states reachable from a non-
absorbing state to an absorbing one.

GE{f|PeFvie F\{j}(fi>kand fj=k—1)}.

For g € G; with j as the last file to be recovered, it is
possible to reach exactly 1 absorbing state =(g—;, k) €01.
Thus the probability of reaching 6 from g is: M, 55,)9 - My,
which follows from the definition of Gj.

Theorem 5. For any 1 <k <nand 1 <a < m, it holds that

T(n,k;m, a) < Tihe(a)

vy GG

J=1g€G1,9;=k—1

(g) - () o)
("7)

mn—(G+1))-

“Mg,(g_; k) mn(Hmn —

Proof. Assume without loss of generality that F' = {1,...,a}.
We wish to find E[v, #)(C1)]. We let Y be the random
variable representing in which absorbing state the collection
process ends. The expectation E[v(,,, zy(C1)] is conditioned on
Y. Hence,

EV(m,F)(C1)] = By [E[V(m, 7y (C1)[Y]]
= > Pr(Y =0) - E[ygm,r)(C1)|[Y = 0]
6cO;
=03 MY, My - EITG+1)]
j=1g€G1,9;=k-1
_ Z 5 (G- () () (5o
j=1g€G1,9;=k—1 (W_%n)

mn—(G4+1))s

. A{g,(g_j,k) . mn(Hmn —

where (%) follows from the definitions of G; so we it-

erate over all absorbing states ), o Pr(Y = 0) =
> qughgjzk_lMs(f?g - Mg (g_, k) Since the code is
symmetric it implies that E[v(,, z)(C1)] = TS, (a). O

The next theorem states the extension result of the global
MDS scheme for accessing multiple files.

Theorem 6. For any 1 < k <n and 1 < a < m, it holds that

T('I’L, k7 m, (1) S Tlflix(a) =mn (H'm‘n. _Hmnf”m,k)

mk—ak—1
mn ak—1+j mk—1
—_ H — '7Hm71,—m, :
(’::)( 2 <ak—1> et < ak

Lastly, we present our lower bound of T'(n, k;m, a).

Theorem 7. Let C be an [mn, mk] code. It holds that

m—1
2

('HL)
a/ i=a—1

VII. CONCLUSION AND FUTURE WORK

T(n,k;m,a) >

i—1 .
<a1> (m—=1)(Hmn—ki—Hmn—k(i+1))-

This paper investigates the random access coverage depth
problem in practical scenarios, focusing on storing m files and
retrieving portions of them. By analyzing the maximal expected
number of samples required for file recovery and T'(n, k;m, a),
the study sheds light on the structural attributes of various
coding schemes that impact random access expectations and
probability distributions. While the findings represent signif-
icant progress in this domain, several intriguing avenues for
future research remain unexplored. In our future research we
will extend our analysis to encompass the more general setup
of comparing across all 3 schemes when a, m > 2, and plan to
find the exact value of T'(n, k;m,a) and study the probability
distribution additionally, attention will be directed towards
addressing challenges related to the noisy channel of DNA
storage, specifically concerning Problem 1 and Problem 2.
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