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A comprehensive study of the

angular distributions in the

bottom-baryon decays

A) - Afh~(h =, K), followed by Af — Akt with A - pr~ or Al — pK? decays, is performed
using a data sample of proton-proton collisions corresponding to an integrated luminosity of 9 fb~!
collected by the LHCb experiment at center-of-mass energies of 7, 8, and 13 TeV. The decay parameters
and the associated charge-parity (CP) asymmetries are measured, with no significant CP violation
observed. For the first time, the A) — Afh~ decay parameters are measured. The most precise
measurements of the decay parameters a, f, and y are obtained for A} decays and an independent
measurement of the decay parameters for the strange-baryon A decay is provided. The results deepen our
understanding of weak decay dynamics in baryon decays.
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Hadronic weak decays of baryons provide an excellent
platform for studying baryon decay dynamics and the
origin of the asymmetry between matter and antimatter
[1-3]. Among them, the decay of a spin-half baryon to a
spin-half baryon and a pseudoscalar meson is of special
interest. For this type of decay, three decay parameters, first
proposed by Lee and Yang to search for parity violation [4],
can be defined as
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satisfying a® + > +y*> = 1, where s and p denote the
parity-violating S-wave and parity-conserving P-wave
amplitudes, respectively. The interference between the two
amplitudes may generate differences between the differ-
ential decay rates of baryons and antibaryons, allowing
CP-violation phenomena to be probed via angular
analyses [5]. The amount of CP violation can be quantified
by the asymmetries A, = (a¢+a)/(a—a&) and Ry =
(B+pB)/(a—a), where @ and B denote the decay para-
meters of the antibaryons, and should have signs opposite
to their baryonic counterparts. At leading order, these CP
asymmetries are related to the weak and strong phase
differences between the S- and P-wave amplitudes, A¢
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and A5, via the relations A, = —tanAdtan A¢p and
Ry =tan Ag [1].

Many phenomenological models have been used to
calculate baryon decay parameters. For some two-body
beauty-baryon decays, factorization is assumed to hold in
model calculations [6—15], which predict that o~ —1,
consistent with the V — A nature of the weak current and
maximal parity violation. For charm-baryon decays, model
calculations are complicated by the presence of nonfactor-
izable contributions and often do not agree with each
other [16-27]. For strange-baryon decays, nonfactorizable
contributions may dominate, making theoretical calcula-
tions even more challenging [1].

Decay parameters have been measured for several
hyperon and charm-baryon decays [28], while beauty
decays are much less explored. The o parameter of the
A — pn~ decay was recently updated by the BESIII
[29,30] and CLAS [31] Collaborations, which resulted in
a significantly larger value compared to the previous world
average [32]. The a parameters of several A/ decays were
precisely measured by the FOCUS [33], BESIII [34], and
Belle [35] Collaborations, while the precision of the # and y
measurements is still very limited [34,36]. To date, there is
no decay parameter measurement for any A(b) decay to a
baryon and a pseudoscalar meson, despite the observation
of many such decay modes. The decay parameter of the
Ag — J/wA decay was measured in proton-proton (pp)
collisions at the LHC [37-40], together with the Ag
polarization, which is found to be consistent with zero.
Moreover, the photon polarization of the A) — Ay decay
was measured by LHCb [41], suggesting the dominance of
left-handed photons.
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In this Letter, the decay parameters and CP asymmetries
of A) - Afzn~ and AY - AFK~ decays are measured
through an angular analysis. Three Al decays are analyzed:
Af = pK2, Af — Az*, and A} — AKT with the sub-
sequent decays A — pr~ and K3 — z"zx~. The decay
parameters and associated CP asymmetries of the AY,
A}, and A decays are determined simultaneously. The
analysis is performed using data from pp collisions at
center-of-mass energies of /s =7, 8, and 13 TeV, corre-
sponding to an integrated luminosity of 9 fb~! collected
with the LHCb detector. Inclusion of charge-conjugate
processes is implied, unless otherwise stated.

The LHCD detector, designed for the study of particles
containing b or c¢ quarks, is a single-arm forward spec-
trometer covering the pseudorapidity range 2 <n5 <5,
described in detail in Refs. [42,43]. The online event
selection for Ag decays is performed by a trigger [44],
which consists of a hardware stage followed by a software
stage [45-48]. The hardware trigger is based on informa-
tion from the calorimeter and muon systems. The software
trigger requires a secondary vertex with a significant
displacement from any primary vertex (PV).

Simulated samples of Ag decays are produced to
optimize event selection, study potential backgrounds
and model the detector acceptance. These samples are
generated using the software described in Refs. [49-54].
The products of each decay in the A) cascades are
distributed uniformly in the allowed phase space.

In the offline selection, all tracks in the final state are
required to have a large transverse momentum and be
inconsistent with being directly produced from any PV.
The A and K3 candidates are reconstructed using A —
pr~ and Kg — n~n" decays, where the final-state tracks
are required to form a vertex with a good fit quality that is
significantly displaced from any PV and their invariant mass is
consistent with the known value [28]. The A (K g) candidate is
combined with a kaon or pion (proton) track to form the A}
candidate. The A/ invariant mass is required to be within
+26(20)MeV/ c? of the known value [28] forthe Af — pK?
and A7 - Art (A} — AK™) decays. The smaller mass
region for the A} — AK™ decay is used to suppress the
Al — 2= Ay)z" background, where the photon is not
reconstructed. The A) candidate is formed by combining a
Al candidate with a kaon or pion. The Ag invariant mass,
m(Afh™), is required to be larger than 5500 MeV/c? to
reject background due to partially reconstructed Ag decays.

Two types of background peaking in the signal mass
region are identified. For the first type, D® or J /y mesons are
observed in the invariant-mass distributions of the two
charged companion tracks of A) and A decays. The second
type involves a genuine K2 (A) decay reconstructed as the A
(K?) decay. These background candidates are suppressed
using information from particle identification (PID) detec-
tors or rejected by specific vetoes in the corresponding mass

spectra. A boosted decision tree (BDT) classifier imple-
mented in the TM VA toolkit [55] is then used to separate the
Ag signal from the background of random combinations of
final-state particles. The BDT analysis is performed inde-
pendently for Al — pK? and Af — Ah* decays. Each
BDT classifier is trained on simulated signal decays and
background from data in the high-mass region
m(Afh™) > 5900 MeV/c?, using a combination of kin-
ematic, topological, and isolation variables of the A?, A}, A,
or K9 hadrons. In the final stage of the event selection, a
simultaneous optimization of the final-state PID and BDT
classifier requirements is performed to maximize the figure
of merit, N3/(Ng + Ng)3/2, chosen to favor a high signal
purity with small decay-parameter uncertainties. Here, Ng
and Ny represent the signal and background yields in the
signal region chosen to be 432 MeV/c? around the known
AY mass [28], estimated with simulated signal decays and
data in the high-mass region. The Ag invariant mass is
calculated with a kinematic fit [56] constraining the masses
of all intermediate particles to their known values and the AY
momentum to point back to its best-matched PV.

The invariant-mass distributions of the five significant
A) cascade decays to (pK{)zn~, (pK)K~=, (Azt)z~,
(Az")K~, and (AK")z~ final states, where A}
decay products are shown in brackets, are shown in
Fig. 1 for candidates passing all selection criteria.
The signal yields of the five decays are determined
to be (8.63540.032)x10%  (4.16 + 0.07) x 10°,
(2475 £ 0.017) x 10*, (1.19 4 0.04) x 10°, and
(1.010 4 0.034) x 103, respectively, from unbinned maxi-
mum-likelihood fits performed to the A) mass distribu-
tions. The signal component is described by a Hypatia
function [57] and the combinatorial background by an
exponential function. The Ag — A K~ decay misidentified
as Ag — Aln~ decay, or vice versa, is also modeled by a
Hypatia function, whose parameters are fixed to those
obtained from the simulated samples. The relative yields of
these cross-feed contributions are constrained using relative
experimental efficiencies. For every decay mode, the fit
result is used to determine the sPlot weight for each
candidate [58], applied to subtract the background for
the subsequent angular analysis.

The decay parameters are determined by analyzing the
angular distributions of the AY cascade decays. The angular
variables are calculated with the A) invariant mass
constrained to the known value [28]. The kinematics of the
three-step cascade A) — A [ A(— pa~)h|]h; decaysare
fully described by five angular variables Q= (69, 6,,
¢1,0,,¢,), depicted in Fig. 2. The variable 6 is the polar
angle between the normal P . of the production plane formed
by the beam and Ag momenta in the laboratory frame, and the
AF momentum p A+ inthe Ag rest frame. The variable 6, (6,)
is the polar angle between p,+ (p,) and p,, where particle
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The invariant-mass distributions of Ag candidates reconstructed in the (top left) Ag - Al (> ng)ﬂ'_, (top

righty AY) > Af(— pK2)K~, (middle left) A) > Af(—> Az")z~, (middle right) A9 - Af(—> Az")K~, and (bottom)

A) - Af(— AK ")z~ decays, with the fit results drawn.

momenta are defined in the rest frames of the Ag (A)and A}
baryons, respectively. The variable ¢; (¢,) is the angle
between the Ag (A) decay plane and the A decay
plane, spanned by the momenta of their respective decay
products. Similarly, for the two-step cascade decays,
Ag - Af (- pK g)hg , the kinematics are described by three
angular variables Q= (69,01, @), which are the same as the
first three variables of the three-step cascade.

a’r
dcos@,dcosb,dp,

— QpOY A p SID 0, sin @, cos ¢, + aAZﬁAraA sin 6, sin @, sin ¢, ),

The angular distributions can be expanded through the
helicity formalism [59]. Based on previous studies
at the LHC [37-40], the Ag baryon is considered to be
unpolarized, in which case the angular distributions
become uniform in 6, and ¢,. The impact of AY
polarization is considered as a source of systematic
uncertainty. The reduced angular distributions are thus
expressed as

x (14 A0 @p+ COS 01 + aprap cos O, + apo@p COS 6, cos b,
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FIG. 2. Definition of the helicity angles for A)— (A —Ah} )hs
and A) — (Af - pKQ)h~ decays, where A}, h; denote the kaon
or pion.

for A) - Af[—> A(— pr~)h|]h; decays, and

dar
dcos b,

o« 1+ ayay: cost, (3)

for AY - Af(— pK2)h; decays, where the subscript of
the decay parameters denotes the decaying particle. The
decay parameters in this analysis are determined from
simultaneous unbinned maximum-likelihood fits to the five
A (AY) cascade decays, imposing the constraint
(oc,\(f)2 + (,HA;)2 + (7Aj)2 = 1. The f,+ and y,+ parame-
ters are related to the a,+ and A,:+ parameters by

Par =

where A ,+ is the phase difference between the two helicity
amplitudes of the A} — Ah™ decay. This leads to two
equivalent sets of fit parameters for a A7 — Akt decay.
The fit is performed for each set of parameters independ-
ently to directly determine their values and uncertainties.
To test CP violation, an additional joint fit of A9 and A
samples is applied with CP-related fit parameters, which
are the CP asymmetries A,, Rp, and CP averages
(a) = (a=a)/2, Ry = (- P)/(a - @). At leading order,
the weak and strong phase differences are determined using
R; =tanA¢ and Ry =tanAd [1], and the quadrant of
phases can be determined using Eq. (45) in Ref. [60].

The logarithm of the likelihood function (log L) is
constructed as

/1= (ans)?sinAys, yar=4/1=(ay:)*cosA,:,

5 Ny N
og £) =3 (ck Sy x log [Pk<szz|ﬁ>1), @)
k=1 [

i=1

where U is the set of decay parameters, Q is the set of
angular variables, and P(§|D) represents the signal prob-
ability density function (PDF). The subscript k& runs over
the five Ag cascade decays, and the subscript i runs over all

the N candidates of the kth decay. The sPlot weight wy ;
in the logL is used to remove the contribution of
background candidates [58], while the constants C; =
D icdata, Whil Diedan, Wi are scale factors needed to
correct the obtained statistical uncertainties [61]. The signal
PDF P,(%|7) is formulated as

Pk(ﬁk|17) o 6/((91() fk(gk|l_;) (5)

B [ Qe (D) - Fr(lp)’

where f}(|7) represents the angular distribution given

in Egs. (2) or (3), and ek(ék) is the angular acceptance.
The denominator is calculated numerically using the
Monte Carlo integration method beginning with the cor-
responding simulated signal decays after full selection
[62,63]. The distributions of the Ag transverse momentum
and pseudorapidity, and the number of tracks per event in
the simulation samples are corrected to match those in data.
In Fig. 3, the angular distributions of A) — A (- pK9)h~
and A) - Af(—> Ah")z~ decays are shown, superim-
posed by the fit result. Distributions for all decays are
provided in Ref. [64]. A binned y? test between the data and
the fit gives a p value of 28%.

Various sources of systematic uncertainty on the decay
parameters are studied. Possible biases introduced by the
angular fit method are evaluated using pseudoexperiments.
Mass and angular distributions of pseudosamples, includ-
ing possible correlations, are generated according to the
baseline fit results, and then the whole fit procedure is
repeated to extract decay parameters. The parameter’s
systematic uncertainty is taken to be the mean of its pull
distribution times its nominal statistical uncertainty. The
sPlot method is used to subtract the background, hence the
choice of the invariant-mass fit model introduces system-
atic uncertainties. These are estimated by repeating the
invariant-mass fit with alternative fit models, including
alternative descriptions of mass-shape functions and
removing the constraints on yields, then using the corre-
sponding updated sPlot weights to determine decay param-
eters. As the PID variables in simulation samples are
calibrated to match data [65,66], the uncertainty on the
calibration procedure introduces systematic uncertainties
which are estimated with alternative calibration configu-
rations. The limited size of simulation samples introduces
an uncertainty on the efficiency propagated to the decay
parameters, which is estimated with bootstrapped pseu-
doexperiments [67]. The influence of the production
asymmetry for Ag baryons and detection asymmetries on
the final-state particles [68—70] are taken into account.
Following the prescription of CP measurements [71,72],
these asymmetries are introduced in the angular accep-
tance, and the angular fit is repeated to verify their impact
on the measurements. The polarization of Ag baryons is
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FIG. 3. Distributions of (top left) the (cos6,) angle of the A) - Af(— pK3)h~ decays, and the (top right) (cos @), (bottom left)
(cos 0,), and (bottom right) (¢,) angles of the A) — A} (— Ah™)z~ decays. The angular brackets denote that the A and A) samples
are merged, where the ¢, signs are also flipped for A) samples. Points with error bars correspond to background-subtracted data using

the sPlot technique.

considered as a source of systematic uncertainty. The
angular fit is repeated with additional terms in the PDF
incorporating the transverse polarization measured by
LHCDb [38] (see Appendix for details on this PDF). The
impact of the experimental angular resolution is considered
as a systematic uncertainty and found to be negligible. The
spin of the A baryon undergoes a precession in the
magnetic field of the detector, which modifies its angular
distribution depending on the decay length [73]. The

systematic uncertainty arising from the precession is
examined using pseudoexperiments, and found to be
negligible. A summary of the contributions from the
various sources is given in Ref. [64]. The systematic
uncertainties from different sources are added in quad-
rature, resulting in totals that are smaller than the statistical
uncertainties.

The results are listed in Table I for the a parameters of
Ag, Al and A decays, and in Table II for the § and y

TABLE I. Measurements of a parameters and their CP asymmetries for A) — Afz=, A) > AfK~, A} = Axt, Af = AKT,
A} = pK?, and A — pz~ decays. The first uncertainties are statistical and the second are systematic.

Decay a a (a) A,

A) > Afn~ —1.010 £+ 0.011 £ 0.003 0.996 +0.011 £ 0.003 —1.003 4 0.008 £ 0.005 0.007 4 0.008 £ 0.005
A(b) - ATK~ —0.933 £0.042 £ 0.014 0.995 + 0.036 + 0.013 —-0.964 £+ 0.028 +0.015 —0.032 £+ 0.029 4+ 0.006
Af — Axt —0.782 4 0.009 £ 0.004 0.787 4 0.009 £ 0.003 —0.785 4 0.006 £ 0.003 —0.003 4= 0.008 £ 0.002
Al - AKT —0.569 £ 0.059 £+ 0.028 0.464 + 0.058 +0.017 —0.516 £ 0.041 £+ 0.021 0.102 + 0.080 £ 0.023
A — pK) —0.744 4 0.012 £ 0.009 0.765 +0.012 £ 0.007 —0.754 4 0.008 £ 0.006 —0.014 +0.011 £ 0.008
A - pn~ 0.717 £ 0.017 £ 0.009 —0.748 +0.016 4 0.007 0.733 +£0.012 £+ 0.006 —0.022 +0.016 4+ 0.007
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TABLE II. Measurements of the decay parameters f and y, the
phase difference A, the CP asymmetry Rj; and the CP average R;j
for A} — An", A - AK™" decays and their charge-conjugated
decays. The first uncertainties are statistical and the second are
systematic.

Decay AF - Azt Af - AKT

p 0.368 £ 0.019 4+ 0.008 0.35+0.12 +0.04

Vi —0.387 £0.018 + 0.010 —-0.32+0.11 +£0.03

4 0.502 £0.016 £0.006 ~ —0.743 £ 0.067 & 0.024
¥ 0.480 £ 0.016 4+ 0.007 —0.828 £ 0.049 +0.013
A (rad) 0.633 +0.036 + 0.013 2.70 +£0.17 £ 0.04

A (rad) —0.678 +0.035 4+ 0.013 —-2.78 +£0.13 £ 0.03

—0.04 £0.15 £ 0.02
—0.65 £0.17 £0.07

Ry 0.012 +0.017 £ 0.005

R;} —0.481 £ 0.019 £ 0.009

parameters of AT — Ah™ decays. The CP-related param-
eters are also obtained, and no CP violation is found. This
is the first measurement of the parity-violating parameters
of two-body AY decays into a spin-half baryon and a
pseudoscalar meson. The results of the p0 decay

parameters are close to —1, suggesting that A} baryons
in A) > Afh™ decays are almost fully longitudinally
polarized, which corresponds to the V — A nature of weak
decays and supports the factorization hypothesis in theo-
retical calculations [74]. The A decay parameters are
consistent with, and more precise than, the Belle [35] and
BESIII [34] results. The ay: parameters are found to
significantly deviate from —1, which may suggest that
nonfactorizable contributions are substantial in hadronic
decays of charm baryons. The f, y, and A parameters of
A — Ah™ decays are precisely measured for the first time,
and will serve as essential inputs to theoretical models [60].
The weak and strong phase differences are determined to be
A¢p =0.01 £0.02 and A5 =2.693 +0.017 rad for the
Af — AznT decay, and A¢ = —0.03+0.15 and AS =
2.57 4+ 0.19 rad for the A7 — AK™ decay. The a parameter
and the corresponding CP asymmetry of the A — pa~
decay in this analysis are consistent with the BESIII
results [29,30].

In conclusion, based on pp collision data collected by
the LHCb experiment, corresponding to an integrated
luminosity of 9 fb~!, a comprehensive study of the angular
distributions in AY cascade decays is performed. The
analysis provides the first measurements of the decay
parameters for AY — Afh~ decays, and the most precise
measurements for the A} decay parameters. The weak and
strong phase differences for A} — Ah™ decays are also
determined. The CP asymmetries are studied between the
decay parameters of baryon and antibaryon decays,
and no hint of CP violation is observed. The results
provide valuable insights into the weak decay dynamics
of baryons.
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End Matter

Appendix:  Angular  distributions—The  helicity
formalism is employed to describe the angular distri-
butions of the decays in this Letter. For the decay of a
spin-half baryon to a spin-half baryon and a pseudoscalar
meson, two helicity amplitudes are involved with the
respective couplings H,, where the subscript represents
the sign of the helicity of the final-state spin-half baryon.
The helicity couplings are related to the S-wave (s)
and P-wave (p) couplings as s = (H, + H_)/+/2 and
p=(H,—H_)/v2. The decay parameters are defined
using the helicity amplitudes as

H |*—|H_]?
a—7| il |2, p=V1-a’sinA,

TIH P+ |H

y=V1-a’cosA,

(A1)

where A =arg(H,/H_) is the phase angle difference
between the two helicity amplitudes.

The angular distribution is determined by the sum of all
possible helicity amplitudes as

dr 2 *
ok |M|* = E PioiyMiga, My ;.-
Jo Ty I

(A2)

where /1(()/ ) and A, run over the helicities of the initial and

final baryons, p; P is the polarization density matrix of the

. *
decaying baryon, and M, ; , M 74,

are the amplitude
matrix elements.

For the Ag baryon promptly produced in pp collisions,
the possible polarization is expected to be perpendicular to
the production plane due to parity conservation in strong

interactions. Defining the polarization axis as the z axis,
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and the magnitude of the polarization as P_, the polariza-  where di ,(0) is the Wigner d matrix, 4, A. and A, refer to
tion density matrix is expressed as the helicities of A}, A and p baryons, and H} and H are
14 P, 0 the helicity couplipgs of Ag and Al decays. The total

p= < 0 - P,) (A3)  amplitude squared is calculated by

Angular distribution for A) — Af (- pK2)h™ decays: MP? « 1+ P)-IM 20 (1—P)- M 2
For A) - Af(— pK?)h~ decays, the helicity amplitude M ;[( )| UM”' ( | _I/M”| )

. . P
is determined as

(AS)
3 e i %
M, ., = ZHi;di,,,zc (6o) - Hf e l"(/'dzc,z,,(gl)’ (A4)
A which leads to
&' 1+ cos@; + P, - (ayo cos by + s 6y cos 6
x QA0+ COS (a Qp+ CO s

d cos Gyd cos 0, dep A A 1+ e (ayg cos by + apy €os b cos b

—YAOA} sin @, sin 0, cos ¢; + ﬂA?aAj sin 6 sin @, sin ¢, ), (A6)

where a0, Y3 A0, VA0 are the Ag decay parameters defined by Hf’t, and a,: is the A{ decay parameter related to HS.

Angular distribution for A) — Af[— A(— pn~)h{]h; decays: For A) - Af[— A(— px~)hj|h; decays, the relevant
angles are (6,0, ¢;,0,, ¢,), which are defined in Fig. 2. The helicity amplitude is expressed as
M,

bs

3 > A 3 S LA 3
by = ZHZ‘%,A,.(‘QO) ‘Hﬁl\ew"[/'dimz,\.(el) : H}l,,e A"dzdfy\,zp (65), (A7)
e
where /A refers to the helicity of A baryons, and Hj and ij are the helicity couplings of Al and A decays. The total

amplitude is calculated by Eq. (A5), which leads to

&r
dcos@ydcosd;d¢;dcos O,dp,

x (1+ Ap0@p; COS 01 + ayray cost, + ApOap COS 6, cosb,

— anyp O sin @, sin 6, cos ¢, + aAzﬂAjaA sin @, sin 0, sin ¢,)

+ P, - (a,\(b) cos 6y + ay+ cos O cos 0 + QO AN+ COS 6y cos 6,

~+ ap cos 6y cos @ cos b, — NN sin @ sin @, cos ¢p; + ﬂAga/\j sin 6 sin 6, sin ¢,
— Yar 0 €080 sin 0 sin 6, cos ¢, + P+ ay cos by sin 0 sin 6, sin ¢,

—7A00A sin @ sin @, cos 0, cos ¢ + ﬁAgaA sin @, sin 6 cos 0, sin ¢,

+ ﬂAgﬁAjaA sin 6 sin 85 cos ¢, cos ¢, + ﬁAgyAraA sin 6 sin 6, cos ¢ sin ¢,

+ yAgﬁA;aA sin O sin 6, sin ¢h; cos ¢, + VA0V AFOA sin @ sin 6, sin ¢; sin ¢,

— YAV A; OA sin @ cos @, sin B, cos ¢, cos ¢,

+ )/AgﬁA;aA sin @ cos 0 sin 0, cos ¢, sin ¢,

+ Broy ar an sin b cos 0y sin 6, sin ¢, cos ¢,

= ProPa; an sin b cos 0 sin6; sin b, sin ), (A8)

where a, is the A decay parameter related to HY,.
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