
Code Rate Optimization via Neural Polar Decoders
Ziv Aharoni

Ben-Gurion University
zivah@post.bgu.ac.il

Bashar Huleihel
Ben-Gurion University
basharh@post.bgu.ac.il

Henry D. Pfister
Duke University

henry.pfister@duke.edu

Haim H. Permuter
Ben-Gurion University

haimp@bgu.ac.il

Abstract—In this work, we explore the enhancement of po-
lar codes for channels with memory, focusing on achieving
low decoding complexity and optimizing input distributions for
maximum transmission rates. Polar codes are known for their
efficient decoding, exhibiting a complexity of O(N logN) in
memoryless channels, and complexity of O(|S|3N logN) in finite
state channels (FSCs), where |S| is the state space size. A notable
recent advancement is the integration of neural networks (NNs)
to create an neural polar decoder (NPD), which is adept at
learning from data without the knowledge of the channel model,
effectively bypassing the cubic complexity growth associated with
the channel state size. In this paper, we propose a framework
to optimize the input distribution for polar codes, aiming to
maximize the mutual information of effective bit channels. This
framework has been tested on both memoryless and FSCs,
including the additive white Gaussian noise (AWGN) channel
and the Ising channel, yielding promising results. The key
contribution of this paper is the demonstration of the feasibility
of simultaneously selecting an optimal input distribution and
creating a practical decoder for various channel types, even in the
absence of a channel model. This approach paves the way for new
advancements in data-driven communication theory, especially
for channels with memory.

Index Terms—Channel capacity, channels with memory, data-
driven, polar codes.

I. INTRODUCTION

Polar codes [1] have emerged as a groundbreaking tool
in the field of information theory, enabling the construction
of capacity-achieving codes with remarkably low decoding
complexity. For memoryless channels, polar codes achieve
a decoding complexity of O(N logN), and this extends to
O(|S|3N logN) for finite state channels (FSCs) [2], where
|S| denotes the state size of the channel. This advancement
has positioned polar codes as a pivotal component in modern
communication systems, offering both efficiency and scalabil-
ity.

In a recent paper [3], the authors proposed the integration
of neural networks (NNs) to further enhance polar codes. By
developing an algorithm that inherits the structure of polar
codes, they devised an neural polar decoders (NPDs) that
can be constructed from data without requiring access to
an explicit channel model. A significant advantage of this
approach is its non-cubic growth in decoding complexity
with respect to the channel state size. However, a critical
gap remains in the optimal selection of an input distribution
that can maximize the rate transmitted by the polar code.

Addressing this gap is essential for the full realization of polar
codes’ potential in complex communication scenarios.

To bridge this gap, we introduce a framework specifi-
cally designed to optimize the involved input distribution.
Our proposed algorithm operates by iteratively estimating the
mutual information (MI) of the effective bit channels, and
simultaneously adjusting the input distribution to maximize
this MI. This approach is tested on various channels, including
both memoryless channels and FSCs, exemplified thorough the
additive white Gaussian noise (AWGN) channel and the Ising
channel [4], respectively. The empirical results from these
experiments are promising, demonstrating the framework’s
efficacy across different channel models.

The primary contribution of this work lies in its demon-
stration that even when a channel is treated as a black box,
devoid of an explicit channel model, it is feasible to simul-
taneously identify an input distribution that maximizes the
communication rate and develop a practical decoder tailored
to this distribution. This dual capability marks a stride forward
in the field of communication theory, suggesting potential
implications for how we approach channel encoding and
decoding in a data-driven world.

II. NOTATIONS AND PRELIMINARIES

A. Notation

Throughout this paper, we denote by (Ω,F ,P) the under-
lying probability space on which all random variables are de-
fined. Sets by calligraphic letters, e.g. X . We use the notation
Xn to denote the random variable (RV) (X1, X2, . . . , Xn)
and xn to denote its realization. The probability Pr[X = x]
is denoted by PX(x). Stochastic processes are denoted by
blackboard bold letters, e.g. X := (Xi)i∈N. An n-coordinate
projection of P is denoted by PXnY n := P

∣∣
σ(Xn,Y n)

, where
σ(Xn, Y n) is the σ-algebra generated by (Xn, Y n). We
denote by [N] the set of integers {1, . . . , N}. The MI between
two RVs X,Y is denoted by I (X;Y) and the binary entropy
of X is denoted by H (X).

The tuple
(
WY |X ,X ,Y

)
defines a memoryless channel with

input alphabet X , output alphabet Y and a transition kernel
WY |X . Throughout the paper we assume that X = {0, 1}.
The tuple

(
WY ∥X ,X ,Y

)
defines a time invariant channel with

memory, where WY ∥X =
{
WY0|Y −1

−i+1,X
0
−i+1

}
i∈N

. The term

2424979-8-3503-8284-6/24/$31.00 ©2024 IEEE

WY N∥XN =
∏N
i=1WY0|Y −1

−i+1,X
0
−i+1

denotes the probability
of observing Y N causally conditioned on XN [5]. We denote
by DM,N = {xj,i, yj,i}j∈[M],i∈[N] ∼ PXMN ⊗WYMN∥XMN a
finite sample of inputs-outputs pairs of M consecutive blocks
of N symbols, where xj,i, yj,i denotes the i-th input and output
of the j-th block. The term xNj,1 denotes {xj,i}Ni=1.

The class of shallow NNs with fixed input and output
dimensions is defined as follows [6].

Definition 1 (NN function class). For the ReLU activation
function σR(x) = max(x, 0) and di, do ∈ N, define the class
of NNs with k ∈ N neurons as:

G(di,k,do)
NN := (1)g : Rdi → Rdo : g(x) =

k∑
j=1

βjσR(Wjx+ bj), x ∈ Rdi

 ,

(2)

where σR acts component-wise, βj ∈ R,Wj ∈ Rdo×di and
bj ∈ Rdo are the parameters of g ∈ G(di,k,do)

NN .

B. Polar codes

Let GN = BNF
⊗n be Arikan’s polar transform with the

generator matrix for block length N = 2n for n ∈ N. The
matrix BN is the permutation matrix associated with the bit-
reversal permutation. It is defined by the recursive relation
BN = RN (I2 ⊗ BN

2
) starting from B2 = I2. The term

IN denotes the identity matrix of size N and RN denotes a
permutation matrix called reverse-shuffle [1]. The term A⊗B
denotes the Kronecker product of A and B when A,B are
matrices, and it denotes a tensor product whenever A,B are
distributions. The term A⊗N := A⊗A⊗ · · · ⊗A denotes an
application of the ⊗ operator N times. The symbol := denotes
an assignment operator.

We define a polar code by the tuple (X ,Y,W,E, F,G,H)
that contains the channel W , the channels embedding E
and the core components of the successive cancellation (SC)
decoder, F,G,H . We define the effective bit channels by
the tuple

(
W

(i)
N ,X ,X i−1 × YN

)
for all i ∈ [N]. The term

E : Y → E denotes the channel embedding, where E ⊂ Rd.
The functions F : E ×E → E , G : E ×E ×X → E denote the
check-node and bit-node operations, respectively. We denote
by H : E → R a mapping of the embedding into an log
likelihood ratio (LLR) value, i.e. a soft decision. For example,
for a memoryless channel W := WY |X , a valid choice of
E,F,G,H is given by

E(y) = log
W (y|1)
W (y|0)

+ log
PX (1)

PX (0)
, (3)

F (e1, e2) = 2 tanh−1
(
tanh

e1
2
tanh

e2
2

)
, (4)

G(e1, e2, u) = e2 + (−1)ue1, (5)
H(e1) = e1, (6)

where e1, e2 ∈ R, u ∈ X , y ∈ Y .

Applying SC decoding on the channel outputs yields an
estimate of the transmitted bits and their corresponding pos-
terior distribution [1]. In this work, we aim to use the polar
coding scheme in order to estimate I

(
XN ;Y N

)
and therefore

we assume both uN , yN are known to the decoder, i.e. all uN

are frozen. Specifically, given yN , uN , SC decoding performs
the map

l
(
yN , ui

)
= log

PY N ,Ui−1|Ui
(
yN , ui−1|ui

)
PY N ,Ui−1|Ui (y

N , ui−1|1− ui)
(7)

for i ∈ [N]. From l
(
yN , ui

)
the kernels W (i)

N

(
yN , ui−1|ui

)
,

i ∈ [N], are recovered by the following mapping

σ
(
l
(
yN , ui

))
=

{
W

(i)
N

(
yN , ui−1|0

)
ui = 0

W
(i)
N

(
yN , ui−1|1

)
ui = 1

, (8)

where σ(x) = (1 + e−x)−1 is the logistic function. For more
details on SC decoding, the reader may refer to [1, Section
VIII].

III. NEURAL POLAR DECODERS

This section describes the integration of NNs as a core com-
ponent in polar decoders. Let UN , XN , Y N be the information
bits, channel inputs and channel outputs, respectively. A NPD
operates by decoding Y N into ÛN via a SC procedure. The
SC procedure systematically decodes the information bits in a
sequential manner, utilizing the four core functions E, F , G,
and H , that are repeatedly applied throughout the decoding
procedure. In an NPD, these four functions are approximated
by NNs.

Let Eθ, Fθ, Gθ, Hθ be the NNs components of the NPD,
with Eθ ∈ G(1,k,d)

NN , Fθ ∈ G(2d,k,d)
NN , Gθ ∈ G(2d+1,k,d)

NN , and
Hθ ∈ G(d,k,1)

NN . Here, k is the number of hidden units and d
is the dimension of the embedding space E ⊂ Rd. The term
θ = {θE , θF , θG, θH} denotes the parameter of all the NNs
EθE , FθF , GθF , HθH ; for simplicity, all networks are denoted
by the same notation θ. Application of the recursive formulas
of SC decoding [1] with Eθ, Fθ, Gθ, Hθ define the NPD. First,
the channel outputs are embedded into Rd by employing

e0i = Eθ (yi) , (9)

where eji denotes the i-th bit at the j-th decoding depth. E.g.,
eni is the embedding of Ui and e0i is the embedding of Xi.

Let ej =
(
eji

)N
i=1

. Then, for any j ∈ {0, . . . , n}, i ∈ [N], the
recursive formulas are given by

ej+1
2i−1 = Fθ

(
eji , e

j
i+2j

)
, (10)

ej+1
2i = Gθ

(
eji , e

j
i+2j , u

j+1
2i−1

)
. (11)

The last function Hθ converts an embedding value into an
LLR value, as defined by

lji = Hθ

(
eji

)
. (12)

2425

Similar to (7), we define the mappings of the NPD for i ∈ [N],
as follows

lθ
(
yN , ui

)
= log

P θY N ,Ui−1|Ui

(
yN , ui−1|ui

)
P θ
Y N ,Ui−1|Ui (y

N , ui−1|1− ui)
, (13)

where θ in the superscript of P θY N ,Ui−1|Ui indicates that the
LLR is an estimate based on the NPD’s parameters θ.

The parameters of the NPD are determined in a training
phase. The goal of the training phase is to tune θ such that
the performance of the NPD would match the performance of
an optimal polar decoder. E.g., for memoryless channels, the
NPD is trained to comply with the “vanilla” SC decoder [1];
for FSCs, the NPD is trained to comply with the successive
cancellation trellis (SCT) decoder [2]. The training procedure
of the NPD is composed of an iterative process in which
samples of channel input-output pairs are used to compute a
gradient for updating θ via stochastic gradient descent (SGD)
optimization. The training algorithm is given in Algorithm 1,
and it is described hereafter.

Let Pψ
XN

be a parametric model of the input distribution
with fixed ψ ∈ Ψ ⊂ Rd, where Ψ is a compact parameter
space. We denote by Dψ

M,N =∼ Pψ
XMN

⊗ WYMN∥XMN a
finite sample of inputs-outputs pairs of M consecutive blocks
of N symbols. At every iteration of the algorithm, a block is
drawn uniformly from Dψ

M,N . Next, the information bits are
computed by uN = xNGN and the channel embeddings are
computed by e0i = Eθ (yi) , i ∈ [N]. Equipped with e0 and
uN , the NPD computes the LLRs of the effective channels
lθ
(
yN , ui

)
, i ∈ [N]. These terms are used to compute the

optimization objective of the algorithm, the negative-log-loss
function, as given by

L
(
yN , uN ; θ

)
=

N∑
i=1

− log σ
(
lθ
(
yN , ui

))
. (14)

Finally, the gradient of the loss is computed and θ is updated
via SGD. After the completion of a predetermined number of
iterations Niter, the algorithm ends and its output is the trained
parameters of the NPD, denoted by θ∗.

Remark 1. Algorithm 1 uses both Y N and XN (and therefore
also UN) to tune the parameters θ. This is true only for the
training phase, for the exclusive purpose of learning the NPD’s
parameters. After the training phase, the trained parameters θ∗

are used for decoding, as described in [1], [2].

In [7], Algorithm 1 was shown to be consistent. That is,
as M approaches infinity, the NPD, defined by the optimized
parameters θ∗, recovers the conditional entropies of the effec-
tive channels. The consistency of the NPD [7, Theorem 4] is
given herein.

Theorem 1. Let X,Y be the inputs and outputs of an inde-
composable FSC. Let DM,N ∼ PXMN ⊗WYMN∥XMN , where
N = 2n, M, n ∈ N. Let uj,i = (xNj,1GN)i. Then, for every

Algorithm 1 Data-driven NPD Estimation
input: Dataset DM,N , block length N , #of iterations Niters,
learning rate γ
output: Optimized θ∗

Initiate the weights of Eθ, Fθ, Gθ, Hθ

for k = 1 to Niters do
Sample xN , yN ∼ DM,N

uN = xNGN
Compute e0 by e0i = Eθ (yi)
Compute L

(
yN , uN ; θ

)
using (14)

Update θ := θ − γ∇θL
(
yN , uN ; θ

)
end for
return θ∗

ε > 0 there exists p ∈ N, compact Θ ∈ Rp and m ∈ N such
that for M > m and i ∈ [N], P− a.s.∣∣HMΘ (

Ui|U i−1, Y N
)
− H

(
Ui|U i−1, Y N

)∣∣ < ε, (15)

where

HMΘ
(
Ui|U i−1, Y N

)
= min

θ∈Θ

 1

M

M∑
j=1

− log σ
(
lθ
(
yN , ui

)) .

(16)

Theorem 1 states that, asymptotically, the NPD recovers
the true conditional entropies H

(
Ui|U i−1, Y N

)
, i ∈ [N].

This implies that the NPD is consistent in recovering true
distributions PUi|Y N ,Ui−1 , i ∈ [N].

IV. RATE OPTIMIZATION VIA POLAR CODING

This section addresses the problem of choosing an input
distribution Pψ

XN
that maximizes the rate Iψ

(
XN ;Y N

)
. From

this section onwards, the subscript ψ in the MI emphasizes
the dependence of the MI on the specific input distribution
parameterized by ψ. The process of determining an input
distribution that maximizes Iψ

(
XN ;Y N

)
is composed of two

main steps. In the first step, the input distribution is fixed. For
a fixed ψ, Algorithm 1 is employed to estimate Iψ

(
XN ;Y N

)
.

In the second step, the parameters of the NPD are fixed.
For a fixed NPD, the gradient of the input distribution ψ
is computed. Together, these two steps complement each
other and are applied interchangeably to form an alternated
maximization procedure. This completes the overview of the
rate optimization scheme that is detailed herein.

A. Step 1: MI Estimation

The first step considers a fixed input distribution Pψ
XN

, and
a time-invariant channel WY N∥XN . These distributions define
the joint distribution PXN ,Y N = Pψ

XN
⊗ WY N∥XN , and a

corresponding MI Iψ
(
XN ;Y N

)
. Since UN = XNGN is

bijective, it follows that Iψ
(
XN ;Y N

)
= Iψ

(
UN ;Y N

)
. Also,

2426

by the factorization of the MI as a difference of conditional
entropies and the chain rule, we have

Iψ
(
UN ;Y N

)
=

N∑
i=1

Hψ
(
Ui|U i−1

)
−

N∑
i=1

Hψ
(
Ui|U i−1, Y N

)
.

(17)

Equation (17) implies that by learning two NPDs the MI
Iψ

(
UN ;Y N

)
is estimated. Specifically, in order to estimate

the second sum in the right-hand-side (RHS) of (17), Algo-
rithm 1 is applied with Dψ

M,N ∼ Pψ
XMN

⊗WYMN∥XMN as
input; this is exactly as illustrated in Section III. Formally,
employing Algorithm 1 with input Dψ

M,N yields in the param-
eters θ∗XY such that for some ε > 0∣∣∣∣∣∣ 1M

M∑
j=1

L
(
yNj,1, x

N
j,1GN ; θ∗XY

)
− H

(
Ui|U i−1, Y N

)∣∣∣∣∣∣ < ε

(18)
For the first sum in the RHS in (17), Algorithm 1 is applied
with D̃ψ

M,N ∼ Pψ
XMN

⊗PYMN as inputs, for some distribution
on Y , independent with Pψ

XMN
. For simplicity and without loss

of generality, we choose Yi = 0 with probability 1 for i ∈
[N]. Thus, the dependence on Y N in the conditional entropy
cancels out and Hψ

(
UN

)
is recovered. Formally, employing

Algorithm 1 with input D̃ψ
M,N yields in the parameters θ∗X

such that for some ε > 0∣∣∣∣∣∣ 1M
M∑
j=1

L
(
0N , xNj,1GN ; θ∗X

)
− H

(
Ui|U i−1

)∣∣∣∣∣∣ < ε. (19)

Together, the parameters θ∗XY and θ∗X form the parameters for
the estimation Iψ

(
UN ;Y N

)
as given by

Îψ
(
UN ;Y N

)
=

1

M

M∑
j=1

L
(
yNj,1, x

N
j,1GN ; θ∗XY

)
− 1

M

M∑
j=1

L
(
0N , xNj,1GN ; θ∗X

)
(20)

B. Step 2: MI maximization

The maximization step involves holding the parameters
of the NPDs, θXY , θX , fixed and maximize Îψ

(
UN ;Y N

)
with respect to (w.r.t.) ψ. The following theorem presents the
gradient w.r.t. ψ.

Theorem 2. The gradient of Iψ
(
UN ;Y N

)
w.r.t. ψ is given by

∇ψIψ
(
UN ;Y N

)
= EPψ

XN
⊗WYN∥XN

[
∇ψ logPψ

XN

(
XN

)
Q
(
XN , Y N

)]
,

(21)

where

Q
(
XN , Y N

)
= log

PUN |Y N
(
XNGN |Y N

)
PUN (XNGN)

. (22)

Theorem 2 states that the gradients of the input distribution
parameters ψ are computed via a re-parameterization trick [8];

it computes the gradients of the input distribution through
samples drawn from it. Practically, the algorithm exploits the
consistency of the NPDs to substitute L

(
Y N , XNGN ; θ∗XY

)
−

L
(
0N , XNGN ; θ∗X

)
as plug-in estimator of log

PUN |YN

PUN
. The

proof of Theorem 2 is omitted due to space limitations.

C. Overall Algorithm

The overall algorithm integrates the two steps outlined in
Section IV-A through an alternating maximization procedure.
The algorithm initiates with a ”warm-up” phase, during which
only step 1 is repeated exclusively. This initial phase focuses
on estimating Iψ

(
UN ;Y N

)
, as its estimate is subsequently

utilized as a proxy for log
PUN |YN

PUN
in (21). Following the

warm-up phase, step 1 is repeated for K iterations, succeeded
by a single iteration of step 2. The value of K is taken as a
hyper-parameter, representing the ratio between iterations on
step 1 and step 2. It is tailored to maintain the accuracy of the
MI estimation in step 1 before proceeding to the computation
of the input distribution gradients. The complete algorithm is
detailed in Algorithm 2.

Algorithm 2 Rate optimization via polar coding
input: Channel W , block length N , #of iterations Niters, #of
warm-up iterations Nwarm−up, #of iterations per estimation K,
learning rate γ
output: Optimized θ∗XY , θ

∗
X , ψ

∗

Initiate the weights of θ, ψ
Generate Dψ

M,N ∼ Pψ
XN

⊗WY N∥XN

Warm-up step:

θXY = Alg1
(
Dψ
M,N , N,Nwarm−up, γ

)
θX = Alg1

(
D̃ψ
M,N , N,Nwarm−up, γ

)
for k = 1 to Niters do

Sample xN , yN ∼ Dψ
M,N

Maximization step: update ψ according to (21) by

ψ := ψ + γ∇ψIψ
(
UN ;Y N

)
Generate Dψ

M,N ∼ Pψ
XN

⊗WY N∥XN

Estimation step:

θXY = Alg1
(
Dψ
M,N , N,K, γ

)
θX = Alg1

(
D̃ψ
M,N , N,K, γ

)
end for
return θXY , θX , ψ

V. EXPERIMENTS

This section presents the performance of Algorithm 2 for
both memoryless channels and FSCs. The AWGN is chosen as
an instance of a memoryless channel, while the Ising channel

2427

102 103 104

0.2

0.4

0.6

0.8

1

Iterations

P
X
(1
)

Figure 1: Evolution of ψ ≜ PX(1) with respect to the iteration
number of Algorithm 2 for the binary-input AWGN channel.

is chosen as an instance of a FSC. The AWGN channel
is defined by the relation Y = X + N , where X is the
channel input, Y is the channel output, and N ∼ N (0, σ2)
is an independent and identically distributed (i.i.d.) Gaussian
noise. In our experiments we took σ2 = 0.5. The Ising
channel [4] is defined by Y = X or Y = S with equal
probability, and S′ = X , where X is the channel input, Y
is the channel output, S is the channel state at the beginning
of the transmission and S′ is the channel state at the end of the
transmission. Algorithm 2 is applied on both channels where
the estimated MI Îψ

(
UN ;Y N

)
is evaluated.

Figures 1 and 2 illustrate the results obtained for the
binary-input AWGN channel. In Figure 1, the progression of
ψ ≜ PX(1) with the iterations of Algorithm 2 is illustrated.
The figure present results from 10 independent simulations,
each initialized with a randomly chosen value for ψ within the
interval [0, 1]. Algorithm 2 is executed with Nwarmup = 1000,
and therefore, during the initial Nwarmup iterations, PX(1)
remains constant. After Nwarmup iterations, the algorithm starts
optimizing ψ with K = 1. Notably, after approximately 2000
iterations, the algorithm converges to the optimal value of
PX(1) = 0.5. Figure 2 illustrates the evolution of the esti-
mated MI throughout the iterations of the algorithm. Similarly,
the estimated MI values converge to the optimal MI for the
binary-input AWGN channel.

Figure 3 illustrates the results for the Ising channel [4].
This experiment showcases the estimated value Îψ

(
UN ;Y N

)
obtained upon termination of Algorithm 2 for various block
lengths N = 2n. The benchmark for comparison in this
experiment is a lower bound on the capacity of the Ising
channel of 0.5451, as derived in [9]. As established in [10],
this lower bound closely approximates the capacity, with
0.5451 ≤ CIsing ≤ 0.5482. The results demonstrate that as
n increases, 1

N Îψ
(
UN ;Y N

)
converges toward the true value

of the channel capacity.

102 103 104

0.2

0.4

0.6

Iterations

I(
X
;Y

)

Figure 2: Evolution of Iψ
(
UN ;Y N

)
with respect to the

iteration number of Algorithm 2 for the binary-input AWGN
channel.

4 6 8 10
0.5

0.52

0.54

n

1 N
I(XN

;Y
N
)

Figure 3: Estimated value of 1
N I

(
UN ;Y N

)
against the block

length N = 2n for the Ising channel.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have addressed two challenges in the field
of communication theory: optimizing polar codes for channels
with memory and identifying the optimal input distributions
for these codes. Our approach utilized NPDs, which notably
circumvents the limitations of traditional polar decoders for
channels with memory by avoiding cubic complexity growth
with respect to the channel state size. By iteratively estimating
and maximizing the MI of effective bit channels, we have
demonstrated our framework across a variety of channel types,
including both memoryless channels and FSCs. The empirical
results from the AWGN and Ising channels underscore the
efficacy and adaptability of our approach.

Looking ahead, our findings open up exciting avenues for
further research, particularly in extending these methods to
multi-user communication settings. The tools and method-
ologies developed in this work have the potential to unravel
complexities in multi-user systems, much like they have done
for point-to-point channels. The implications of this research
offer practical solutions that could be instrumental in shaping
the future of communication systems.

2428

REFERENCES

[1] E. Arikan, “Channel polarization: A method for
constructing capacity-achieving codes for symmetric
binary-input memoryless channels,” IEEE Trans. Inf.
Theory, vol. 55, no. 7, pp. 3051–3073, 2009.

[2] R. Wang, J. Honda, H. Yamamoto, R. Liu, and Y.
Hou, “Construction of polar codes for channels with
memory,” in 2015 IEEE Information Theory Workshop-
Fall (ITW), IEEE, 2015, pp. 187–191.

[3] Z. Aharoni, B. Huleihel, H. D. Pfister, and H. H. Per-
muter, “Data-driven polar codes for unknown channels
with and without memory,” IEEE Int. Symp. Inf. Theory
(ISIT), 2023.

[4] T. Berger and F. Bonomi, “Capacity and zero-error
capacity of Ising channels,” IEEE Trans. Inf. Theory,
vol. 36, pp. 173–180, 1990.

[5] G. Kramer, Directed Information for Channels with
Feedback. 1998, vol. 11.

[6] A. M. Fer and H. G. Zimmermann, “Recurrent neural
networks are universal approximators,” in Proceedings
of International Conference on Artificial Neural Net-
works, Springer, 2006, pp. 632–640.

[7] Z. Aharoni, B. Huleihel, H. D. Pfister, and H. H.
Permuter, “Data-driven neural polar codes for unknown
channels with and without memory,” arXiv preprint
arXiv:2309.03148, 2023.

[8] J. Schulman, N. Heess, T. Weber, and P. Abbeel, “Gra-
dient estimation using stochastic computation graphs,”
Advances in neural information processing systems,
vol. 28, 2015.

[9] A. Sharov and R. Roth, “On the capacity of generalized
ising channels,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), 2015, pp. 2256–2260.

[10] B. Huleihel, O. Sabag, H. H. Permuter, N. Kashyap, and
S. Shamai, “Computable upper bounds on the capacity
of finite-state channels,” IEEE Trans. Inf. Theory, 2021.

2429

