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Abstract—Data storage in DNA is developing as a possible
solution for archival digital data. Recently, to further increase
the potential capacity of DNA-based data storage systems, the
combinatorial composite DNA synthesis method was suggested.
This approach extends the DNA alphabet by harnessing short
DNA fragment reagents, known as shortmers. The shortmers are
building blocks of the alphabet symbols, each consisting of a
fixed number of shortmers. Thus, when information is read, it
is possible that one of the shortmers that forms part of the
composition of a symbol is missing and therefore the symbol
cannot be determined. In this paper, we model this type of error
as a type of asymmetric error and propose code constructions
that can correct such errors in this setup. We also provide a
lower bound on the redundancy of such error-correcting codes
and give an explicit encoder and decoder for our construction.
Our suggested error model is also supported by an analysis of
data from actual experiments that produced DNA according to
the combinatorial scheme. Lastly, we also provide a statistical
evaluation of the probability of observing such error events, as
a function of read depth.

I. INTRODUCTION

In the last decade, there has been notable progress in DNA
storage systems, where the stability and density of DNA
molecules are utilized to create robust and high-capacity data
storage platforms [2], [4], [8], [19]. In standard DNA storage
systems, binary data is encoded into sequences over the DNA
alphabet {A,C,G,T}, in which each symbol represents a
DNA base (also known as nucleotide). Then, based on these
sequences, DNA molecules called strands are generated by
a biological process termed DNA synthesis, that can only
generate multiple copies per strand. The synthesized strands
are stored in a storage container. To read back the binary
information the strands are read back into their digital repre-
sentation using DNA sequencing. The sequencing data is called
reads, and the reads are used as an input to the decoder that
retrieves the stored information. The synthesis, storage, and
sequencing are error-prone processes, and thus, to retrieve the
information error-correcting codes should be considered.

Recently, Anavy et al, and Choi et al. [1], [6] suggested
an innovative way to extend the DNA alphabet by harnessing
the inherent redundancy (multiple copies) of the synthesis and
sequencing process with the use of composite DNA symbols.
A composite DNA symbol is a representation of a position
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in a sequence in which there is not just a single base, but a
mixture of the four DNA bases. By using a mixture of bases,
the alphabet is extended with more symbols that are defined
by the bases in the mixture and their ratios.

Later, Preuss et al. [12] suggested an extension to the
composite DNA synthesis, which is referred to as the combi-
natorial composite synthesis method and the design of codes
suitable for this emergent method is the main focus of this
paper. In the combinatorial composite synthesis method, the
building blocks of the composite symbols are the so-called
shortmers. A shortmer (also known as a motif) is a fixed-
length sequence that consists of DNA bases. The shortmers
are synthesized using a standard DNA synthesis technology,
and then they are connected to each other using biochemical
process called ligation [12]. In this case, each valid composite
symbol is in fact a set of w € N* distinct shortmers. Thus,
the alphabet consists of sets of shortmers. To improve the data
reliability, and to allow easier detection of the shortmers, they
are selected as a subset of all shortmers of a specific length.
Other extensions of this method can be found in [14], [20].

The alphabet symbols of the combinatorial composite
method are sets of shortmers. Therefore, it is possible that
one or more shortmers are not represented in the sequencing
reads. In such cases, the observed set of shortmers is missing
a subset of them causing an error in reading the data. In this
paper, we model these cases as asymmetric errors and study
error-correcting codes (ECCs) for the combinatorial composite
synthesis. We provide constructions for such codes, including
an explicit encoder, and present bounds on their redundancy.

The rest of this paper is organized as follows. Section II
gives the preliminaries and defines the main problem discussed
in the paper. In Section III we present a construction for a
composite asymmetric error-correcting code. In Section IV
we give a sphere-packing bound on such codes. In Section V
explicit encoder and decoder for our construction are provided,
while Section VI presents an analysis of data from previous
experiments as well as an evaluation of the probabilities of
our discussed error models. Lastly, in Section VII we give a
lower bound on the redundancy of error-correcting codes for
a more general error model. Due to lack of space, the proofs
can be found in the longer version of this paper [15].

II. DEFINITIONS AND PROBLEM STATEMENT

In the following, we represent our data as a sequence of
length m where each element in the sequence is a set of
shortmers. Under this representation, each set of shortmers
will be represented as a binary vector of length n with exactly
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w ones in it where the location of the ones in the vector
indicate which shortmers are contained in every set. Since
every element in our sequence is itself a set, we will find it
useful to represent our data as a set of m X n binary arrays
with each row in the array specifying a set of shortmers.

A. Notations

For a positive integer n, let [n] £ {0,...,n — 1}. For a
binary vector @, wy () denotes the Hamming weight (shortly
the weight) of @, which is the number of ones in x.

Let ¥ = {A,C,G, T} be the DNA alphabet and let £ € N
be the shortmer length. We let S = {sg,81,...,8,-1} be a
set of n > 1 shortmers, s; € X¢ for i € [n], which are indexed
lexicographically. For w < n, we define the w-combinatorial
composite alphabet of S as Y5 = {z§,z¥,...,x%, _1},

1

is a set of w different shortmers chosen from the shortmers set
S. For simplicity, the set of symbols in 35 can be abstracted
as length-n binary vectors of weight w in which every bit
indicates whether a shortmer in S belongs to the set. Thus,
every ¥ € Y7 is mapped to its indicator binary vector,
denoted by z; € {0,1}" and note that 22:01 x;,; = w. From
this point, we refer to the composite symbols in our alphabet
by their binary vector representation and denote the set of
length-n binary vectors of weight w by X7.

where each combinatorial composite symbol ¥, for i € [(1!)]

Example 1. In [12], the authors used the following parameters ¢ =
3, n=16 and w = 5,
S0 = AAT, 81 = ACA, 82 = ATG, 83 = AGC,
s4 =TAA, s5 =TCT,s6 =TTC,s7 =TGG,
Sg = GAG, Sg = GCC, S10 = GTT,SH = GGA,
S12 = CAC, S13 = CCG, S14 = C"TA7 S15 = CGT

S =

The set S was selected as a code with Hamming distance of
d = 2. In this setup, an example of the 99-th composite symbol of
the alphabet is 5, = (1,1,0,1,0,0,1,1,0,0,0,0,0,0,0,0), which
represents the set consisting of the shortmers {so, s1, 83, S¢, S7}.

A sequence of length m over a composite alphabet 3 is
denoted by X® = (xf ,..., @5 )€ (X5)™. This sequence
can be abstracted as an m X n binary matrix &X', in which each
row is matched with its corresponding composite symbol from

5. That is,

Tig Tig,0y Lig,1;Lig,2 -+ Lig,n—1
x=\| : = : ,

L1 Ly 1,00 Ligy 1,1+« o s Lipy_1,m—1

n—1

and note that for any h € [m], 320" x4, ; = w.

In this paper, we consider the combinatorial composite-DNA
channel, which receives an m x n matrix &X', and outputs a
noisy version of X', denoted by ). Similarly, we denote the
rows of the matrix ) by y,, h € [m], such that y,, is a noisy
version of x;,

y() Y0,0,Y0,15-+-,Y0,n—1

Ym—1 Ym—1,0,Ym—-1,1,- - -
Lastly, since the exact shortmers in the set S do not matter but

only the number of shortmers, we refer to the combinatorial
composite alphabet from now on by the set £, and a length-m

s Ym—1,n—1

sequence is simply an m X n matrix in X7°*", where X7 *"
refers to the set of all m x n matrices in which the weight of
every row is w.

B. Problem Statement

Next, we define composite-asymmetric errors, which is our
main interest in this paper.

Definition 1. Composite asymmetric errors. For a positive
integer e and a row vector &; = (xg,...,Zn—1) € X7, we say
that the corresponding channel output ¥y, = (Y0, ..,Yn—1) €
X7 _., suffers from e composite-asymmetric errors if y; < x;,

and Y0y =w —e.
Definition 1 can be extended to matrices as described below.

Definition 2. (¢, e)-composite asymmetric errors. For pos-
itive integers e and ¢ and a matrix X = (xo, ... ,wm,l)T €
Ymxn. we say that the channel output matrix ) =
(yo, - -- ,ymfl)T , suffers from (¢, e)-composite asymmetric
errors if at most t rows of A’ are noisy, each of them suffers
from at most e composite-asymmetric errors.

A length-m (n,w)-composite code C is a set of matrices
over X" and every codeword in C is referred to as a
composite codeword. We say that a length-m (n, w)-composite
code is a (t,e)-composite-asymmetric ECC (in short (t,e)-
CAECC), if it can correct any (t,e)-composite asymmetric
error. Such a code will be referred as an [m, (n,w);t,e]-
composite code.

We denote by A(m,n,w) the size of the set of all binary
matrices of dimension m X n, in which each row is of weight
exactly w, that is A(m,n,w) = |[Z0*"| = (Z)m We denote
by A(m,n,w;t,e) the size of the largest [m, (n,w);t, e]-
composite code. For a composite code C C X7, we define
its redundancy to be 7(C) £ log(|A(m,n,w)|) — log(|C|).
Furthermore, we denote by r(m,n,w;t,e) the minimum re-
dundancy of such a composite code.

The main goal of this paper is to study (¢, e)-CAECCs and
more specifically to solve the following problem.

Problem 1. Find the value of A(m,n,w;t,e), the size of the
largest [m, (n,w);t, e]-composite code and correspondingly
find the minimum redundancy r(n,w, m;t, e).

Although the problem of coding for the asymmetric channel
has been studied extensively in the past, our setup departs
from previous works such as [3], [9], [10], [17] in that the
sequences over which our codes are being developed over
satisfy a local weight constraint. In particular, recall that each
row of our codeword matrices has exactly w ones in it, and
this extra information can be leveraged to dramatically reduce
the redundancy of our resulting coding schemes. To the best of
our knowledge this setup has not been studied before, and one
of the goals in this work will be to identify parameter regimes
where we can design efficient codes capable of correcting
such errors that are larger than traditional asymmetric error-
correcting codes.

III. CoDE CONSTRUCTIONS

In this section we give a code construction for

(t,e)-CAECCs. For any length-n binary vector & =
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(xo,x1,...,2n—1) € {0,1}", positive integers ¢ and p, we
define the ¢-VTI-syndrome over p [17] of x, denoted by
sb(x), as follows s%(xz) 2 (31—, i‘x;) mod p. Note that
the VT-syndrome is usually defined such that s}*'(z) =
(X ite;) mod (n 4 1) and therefore s+ (z) € [n + 1),
however, we use the above definition with a prime number
to correct multiple errors and to be able to construct outer
codes using tensor product codes [18]. Therefore, according
to our definition, we have that s}/ (x) € F,, and for the rest of
the paper, it is assumed that p is the smallest prime such that
p > n and according to Bertrand’s Postulate [5], we assume
that n < p < 2n.

We also define the e-complete-VT-syndrome over p, denoted
by SP(x), to be SP(z) £ (s}(x),sh(x),...,sP(x)), and
note that S?(x) can be interpreted as an element in Fp.. We
extend this definition to matrices X' € X"*", whose rows
are given by xg, x1,...,Tm,_1, and define the e-complete-VT-
syndrome-vector over p of X, denoted by SE(X), to be the
vector in which its ¢-th entry corresponds to the e-complete-
VT-syndrome of the i-th row in X. That is,

SE(X) = (SE(wo), SE(1), .., SE(m—1)) € (Fpe)™

Next, a construction of an [m, (n,w);t, €]-composite code
is presented.

Construction 1. Let e > 1, p be the smallest prime number
such that p > n, and C; be an [m, k,t + 1] code over F.
capable of correcting t erasures. If m < p©, then C; is selected
as an MDS code with k£ = m —¢. The code Cfﬁ’_]f«lw is defined
as follows. cﬁﬁ:i),w ={X e X" . SP(X) € Ct}.

Theorem 1. The code Ci5) is a (t, ¢)-CAECC.

Proof. Let Y be an m X m matrix, obtained from a com-
posite codeword X in the code C,(ﬁ’,f%w. We denote by 1 <
i1,...,% < m, the t indices of the rows of ) that suffer from
e composite-asymmetric errors (if any of these rows suffer
from less errors, the proof can be adapted accordingly). That
is, wy (y;,) = wu(y;,) = - = wu(y;,) = w—e. We prove
that it is possible to decode the codeword by proving that any
of the above rows can be uniquely decoded. Without the loss
of generality, we show the latter for y, , and the same proof
works for any of the other erroneous rows. As C; is capable
of correcting ¢ erasures, by using the decoder of the code C;,
it is possible to decode the correct e-complete-VT-syndrome
of the i;-th row, SE(x;,), and thus also the ¢-VT-syndrome,
sy(x;,), for 1 < £ < e. Welet hy < --- < h, be the set
of e indices corresponding to the locations in which y;, had
asymmetric errors. Then we have that for any 1 < /¢ <e,

B+ 4+ e = (85 (xi,) — s5(y;,)) mod p.

Hence, we get e equations per erroneous row. In Theorem 1
in [7], it was shown that these equations have an equivalent
polynomial form in which the roots are the indices hy, 1 < ¢ <
e. This polynomial form can be obtained by considering the
Newton-Girard formulas [16]. Thus, as was done in [7], Vieta’s
formula can be used to get the set of roots of the polynomial,
which is known to be unique by Lagrange theorem [11]. This
proves the theorem.

Construction 1 leads to the following corollary.
Corollary 1. For m < p©, it holds that r(n,w,m;t,e) <
etlog(p) < etlog(2n), and for e = 1, we have that,
r(m,n,w;t,1) <t log(n).

IV. BOUNDS ON THE SIZE OF COMPOSITE ASYMMETRIC
ERROR-CORRECTING CODES

This section provides a sphere packing bound on the size of
[m, (n,w);t, e] composite code. We first note that our code C
is defined over the space ;"> ™. Hence, given a codeword X’ €
C, any asymmetric error changes the weight of at least one of
X’s rows. Thus, all resulting matrices do not necessarily have
the same structure, and therefore the sphere-packing bound
cannot be used directly. However, in this section we show how
by defining a specific distance and proving some properties on
CAECGC s, it is indeed possible to get a sphere packing bound
for a (t,e)-CAECC for any ¢ and e.

First, we define the Hamming distance between two vectors
@,y of the same length, denoted by dy(x,y) as the number
of positions in which their bits are different. Next, we define
the e-Hamming distance of two matrices X', ) € X7'*".

Definition 3. Let X', € ¥7"*", and integer e > 0. Then,

00,if Ji € [n] : du (i, y;) > e,

N
de-rr(X,Y) = {|{z : x; # Y, }|, otherwise.

The e-Hamming distance of a code C, denoted by d..i(C),
is defined as the minimum e-Hamming distance between
any two different codewords in C. That is, d.x(C) =
miny yee,x2y{de-a(X,Y)}. Finally, we define the e-
Hamming error ball of radius t of a word X € 37"*", denoted
by Be.m(X,t), as the set of all words in X!7*" that have e-
Hamming distance of ¢ or less from X’

Bepr(X,1) ={Y € B3 dent (X, V) <t}

Lemma 1. For any two integers t < m, e < w, it holds that a
code C C 7™ is a (t, e)-CAECC if and only if dae.pz (C) >
t+ 1.

Lemma 1 states that a code C C XI"*™ is a (¢, e)-CAECC
if and only if its 2e-Hamming distance is at least ¢ 4 1. It
is further possible to show that the e-Hamming distance is a
metric for any e > 0. The above implies that the radius-|% |
2e-Hamming error balls of C are mutually disjoint. Based on
this observation, we can compute an explicit sphere-packing

bound on (¢, e)-CAECCs.
Theorem 2. It holds that,

I
(27)
rmnwitee 2 [ 5t - |5 1 (| 5

+ g EJ log(w(n — w)) + 2% EJ —e EJ log|(e).

Lastly, we have another bound on A(m,n,w;t,e).

A(m7 n, w; tv 6) S
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(0) 7, and

Theorem 3. It holds that, A(m,n,w;t,e) < vy

n—w+e) .

r(m,n,w;t,e) > tlog( .

Note that the last bound does not depend on m, and thus, it
will be effective only for smaller values of m, while for larger
values, it is preferable to apply the bound from Theorem 2.

To give some intuition to our results, let us assume the
simplified case in which m = n = p is a prime number, and
w = 2L Tn this case, Construction 1 and Corollary 1 show
that there exists, for example a (2, 2)-CAECC with redundancy
which is at most 4log(n), while Theorem 2 and Theorem 3
show that the redundancy is at least log(n) + log(n? — 1) — 2
and 2 log(n2 +n+3) — 6, respectively. Thus, our construction
is only constant away from optimality.

V. EXPLICIT ENCODER AND DECODER

Next, we describe explicit encoder and decoder for the
code Cffl’}},w when n = p is a prime number, and m < n.
The overall redundancy of the code is tlog(n). In the next
algorithm, we show how to encode m - [log (') | — tlog(n)
information bits into a codeword in C,(,tl’,%)’w. Recall that under
these given parameters, the code Cf,tlji)’w is defined as all the
matrices X € X7*" such that ST(X) € C;, where C; is an
[m, m — t] MDS code over F,,.

Before moving forward into the description of the encoding
algorithm, we define the (i,n,w) coset of the VI-syndrome
over n, denoted by s7(i,n,w), as the set of all vectors & €
X7, such that st (x) =7 mod n. Theorem 4 states that for
coprime w and n, the cosets st (i,n,w) for all ¢ € F,, have
the same size.

Theorem 4. Let n € NT and let w < n such that w and n
are coprime, we have that for all i € [n], |s] (i, n,w)| = 2~

Our encoder assumes a mapping function that receives
llog ()] bits and encodes them into vectors over X7. This
mapping is denoted by F. Furthermore, from Theorem 4, we
have that since the size of all the cosets s7(i,n,w) is the

same, it is possible to create a mapping that receives a pair

of a syndrome in IF,, and log(|*%~]) bits of information and
encodes them into a vector © € X},. We denote this mapping
by Es. Our suggested encoder is described in Algorithm 1.
VI. SIMULATION AND STATISTICS

In this section, we analyze data from previous experi-
ments [12], [20] to support our channel model and error
characterization. Furthermore, we provide an evaluation of the
error probabilities of observing asymmetric errors.

A. Statistics on real data

To emphasize the importance of error correction code in
recovering data effectively, Fig. 1 shows the direct correlation
that exists between the quality and quantity of sequencing
reads and the number of shortmers observed. An insufficient
number of observed shortmers can lead to errors in data recov-
ery, which are defined in this paper as asymmetric errors. Fig.
1 depicts data from two combinatorial composite shortmers
experiments with different synthesis protocols and different
sequencing technologies [12] [20]. The plots represent sam-
pling of reads from the overall full set of reads with varying

Algorithm 1 Encoding Algorithm

1: procedure ENCODER
2 Input. The encoder receives m - [log ()| — tlog(n) bits

and encodes them into a codeword in Cf,f,’,lL?,,L. For this purpose
the all zero binary matrix X of dimension m X n is initialized.

3:  Step 1. Take the first (m —t) - [log ()] bits, and encode
them using Ei into (m — t) combintorial-composite symbols
over X7,. Fill the resulted binary vectors in the first (m — t)
rows of X.

4: Step II. Compute the phantom-syndrome vector of the first
m — t rows of X, (sT(x1),...,8T(Tm—t)).

5: Step III. Encode the phantom-syndrome vector
(8T (x1),...,87(®m—¢)) wusing the encoder of the
[m,m — t] MDS code C;. By the end of this step,

we obtained the encoded phantom syndrome vector,
sT(X) = (st(x1),...,8T(®m—t),r1,...,7¢)). The
symbols ri,...,7¢ are the redundancy symbols over
[n] of the code C;. The redundancy symbols ri,..., 7

can be interpreted as syndromes of the last ¢ rows of
the matrix, i.e., rows m — ¢t 4+ 1,...,m. In particular, it
holds that sT(X) = (sT(x1),...,87(®m—t),71,...,7¢) =
(S?(ml)7 ERE) S?(wmft)y S?(wm7t+l)7 ey S?(wm)) .

6: Step IV.. The last ¢ rows of the matrix X are encoded as
follows. For 1 < 4 < t, the m — t + i-th row of X is encoded
with E2 by considering the combination of sT(Zm—t4i) = 73

and log( L%J ) bits of information.

7: Output. The matrix X is returned as output.

sampling rates. The number of observed unique shortmers is
plotted against the average number of reads per strand. Fig.
la shows results from [20] where a single combinatorial
synthesis cycle was demonstrated (meaning m = 1) with a
n = 96 and w = 32. The sequencing in this experiment
was performed using Oxford Nanopore MinlON. Clearly,
even with an average coverage of 1,000 reads we could not
recover all 32 shortmers. Fig. 1b shows the results from [12]
where four combinatorial synthesis cycles (m = 4) were
demonstrated with n = 16 and w = 5. The sequencing was
performed using Illumina MiSeq. In this case, a coverage of
100 reads was sufficient for recovering all five shortmers. Note
that it is possible that more than five shortmers can be observed
due to wrong classification or other experimental errors.

B. Evaluation of error probability

Fig. 2 and Table I depict the probabilities of observing
composite asymmetric errors directly calculated using the
coupon collector’s model described in [13]. It should be noted
that this calculation is based on the combinatorial factor w
alone, ignoring n, as the model assumes uniform sampling
of the w observed s;. In Fig. 2 the probability of observing
e errors or more is shown as a function of the number of
analyzed reads (R) for a single combinatorial letter (m = 1)
using combinatorial factor w = 5. As expected, the error
probability decreases as more reads are analyzed. However, it
is likely to observe several composite asymmetric errors when
analyzing 10-20 reads. This emphasizes the need for efficient
ECCs for correcting composite asymmetric errors.

Table I shows direct calculation of the probability of a mes-
sage encoded using the (¢, e) code to be successfully decoded.
That is, the table presents the probability of observing at most ¢
letters with at most e errors in each for a combinatorial word of
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Fig. 1: Asymmetric combinatorial errors in experimental results. The x-axis represents the average reads per strand, in sampling
from actual NGS data. The y-axis shows the number of observed s;. Midpoints represent the mean count of observed s;, and
the whiskers represent the std of 10 repeated samplings aggregated over the different strands to each experiment.

length m = 10 and combinatorial factor w = 5. For instance,
the probability of observing at most one symbol with at most
one error is presented in the first cell (p(1,1) = 0.0137).
Clearly, the probability increases as ¢ and e increase.

=
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P
fury
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©
D XXV D

Fig. 2: Probability to observe e asymmetric errors or more in a
single combinatorial symbols. The x-axis indicates e or more
errors, each line represents a different number of analyzed
reads (R) and the y-axis shows the error probability. Results
forw=5R=1,5,10,20,25,e =0,1,...,4.

ff 1 ] 2 3 [ a] s ] 6 | 7] s 9 [ 10 |
0.3138 0.5967 0.8031 0.9019 0.9343 0.9417 0.9429 0.9430 0.9430 0.9430
0.3201 0.6187 0.8425 0.9526 0.9897 0.9984 0.9998 1.0000 1.0000 1.0000
0.3201 0.6187 0.8425 0.9526 0.9898 0.9984 0.9998 1.0000 1.0000 1.0000
0.3201 0.6187 0.8425 0.9526 0.9898 0.9984 0.9998 1.0000 1.0000 1.0000

)
>

BW(N R

TABLE I: Probability of observing at most (¢, e) asymmetric
combinatorial errors. Rows correspond to ¢. Columns corre-
spond to e. In each calculation w = 4, R = 10, m = 10,e =
1,2,...,5,t=1,2,...,10 and n > w.

VII. EXTENSIONS OF THE ASYMMETRIC ERROR MODEL

This section discusses more generalized error models that
include asymmetric errors.

A. (t1,1t2)-CAECCs

In practice, as can be seen in our analysis of data from
previous experiments in Section VI, asymmetric errors of more
than e = 2 shortmers rarely happen. However, it is more likely
that ¢y rows can suffer from 1 asymmetric errors each, while
ty < t1 rows suffer from e = 2 asymmetric errors. Codes that
can correct errors of this pattern are termed (¢1, t2) —CAECC.
For two integers t1 > to, we assume Ci, 44,,C;, are codes
correcting t1 + to, t2 erasures (respectively) over IF),, where p
is the smallest prime number, such that p > n. Construction 1
can be extended to form a (¢, t2)—CAECC as follows.

Construction 2. Let p be the smallest prime number such that
n < p and m < p. Then, we have that,

C(tl,tz) = {X S EZL,X" : S?(X) S Ct1+t2,S§’(X) S CtQ}.

Using the same techniques that were used in the proof of
Construction 1 it can be shown that the code C, ¢,) can
correct up to t; rows with 1 asymmetric error and ¢y rows
with 2 asymmetric errors.

Corollary 2. There exists a (¢1,t2)-CAECC with redundancy
of (t1 + 2t2) log(p).

The latter construction can be further extended to correct
e1 in ¢t1 rows and es > ey errors in to rows.

Construction 3. Let e; > e; > 1, and let p be the smallest
prime number such that n < p. Then, we have that,

Cltr,er taen) = {X € 07" SV(X) € Ciy 145, S5 (X) € Coy,
forany 1 <i<ejand1<j<es}.
Similarly to Theorem 3, we can show that a lower bound
on the redundancy of the code from the latter construction is

t log(("772’1+81)) + to log(("7?2+e2)).
B. 2-CAECC

Lastly, we study the case in which the channel can introduce
up to e = 2 composite asymmetric errors anywhere in the
codeword X € X7"*™. Such codes are termed 2-composite
asymmetric error-correcting codes (2-CAECC). Next, we give
a sufficient condition for a code to correct e = 2 asymmetric
errors. For a word X € 77" we define A.(X) as the e-
asymmetric error ball of X as all the words that can be
obtained from X" by introducing up to two asymmetric errors.
Lemma 2. Let X,)Y € X" we have that if Ay(X) N
As(Y) # 0 then, Ba.gy(X,1) N Ba.g (Y, 1) # 0. Hence, given
acode C C Xm>™ if C satisfies Bo g (X,1)NBo.g (Y, 1) =0
for any X, Y € C then C is 2-CAECC.

Lemma 2 implies that by considering the size of the e-
Hamming error balls of radius 1, it is possible to apply a
sphere packing bound on 2-CAECCs. For this purpose, we
denote by A(m,n,w,e) the maximum size of an e-CAECC,
where r(m,n,w, e) denotes its minimum redundancy.

Theorem 5. It holds that, A(m,n,w,e) < %,
r(m,n,w,e) > log(m - (w) - (n — w)).

Lastly, it should be noted that using Construction 2 it is
possible to create a a 2-CAECC that by Corollary 2 has a
redundancy of 3log(p). Assuming m = n = p prime and
w = %, we get by Theorem 5 that an optimal redundancy
of such code is log(p”%lp—;l) = 3log(p) +1log(1— p%) —-2>
3log(p) — 2.5, which implies that Construction 2 is only a
constant away from optimality.

and
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