979-8-3503-8284-6/24/$31.00 ©2024 IEEE

Universal Framework for
Parametric Constrained Coding

Adir Kobovich*, Orian Leitersdorf*, Daniella Bar-Lev', and Eitan Yaakobi'
*Faculty of Electrical and Computer Engineering, Technion — Israel Institute of Technology, Haifa 3200003, Israel
TFaculty of Computer Science, Technion — Israel Institute of Technology, Haifa 3200003, Israel
{adir.k, orianl}@campus.technion.ac.il, {daniellalev, yaakobi}@cs.technion.ac.il

Abstract—Constrained coding is a fundamental field in coding
theory that tackles efficient communication through constrained
channels. While fixed constraints (e.g., a fixed set of substrings
may not appear in transmitted messages) have a general
optimal solution, there is increasing demand for supporting
parametric constraints that are dependent on the message
length and portray some property that the substrings must
satisfy (e.g., no log(n) consecutive zeros). Several works have
tackled such parametric constraints through iterative algorithms
following the sequence-replacement approach, yet this approach
requires complex constraint-specific properties to guarantee
convergence through monotonic progression. In this paper, we
propose a universal framework for tackling any parametric
constraint problem with far fewer requirements, through a
simple iterative algorithm. By reducing an execution of this
iterative algorithm to an acyclic graph traversal, we prove
a surprising result that guarantees convergence with efficient
average time complexity even without requiring any monotonic
progression. We demonstrate how to apply this algorithm to
the run-length-limited, minimal Hamming weight, local almost-
balanced Hamming weight constraints, as well as repeat-free
and secondary-structure constraints. Overall, this framework
enables state-of-the-art results with minimal effort.

I. INTRODUCTION

Constrained coding stands as a fundamental discipline
within information theory, central to a myriad of applications
ranging from communication systems to data storage [1]. At
its core, constrained coding addresses the task of encoding
information under specific constraints imposed by various
communication channels and storage media.

Over the years, extensive research has yielded a universal
framework [2] for constructing codes that adhere to fixed
constraints — constraints that are independent of the mes-
sage length (e.g., the sequence 1010 may not appear in
the encoded message). The universal method constructs a
deterministic finite automaton that only accepts words that
satisfy the constraints, and then applies the state-splitting
method [3] to devise an encoder/decoder pair. This method
produces encoders with capacity-approaching rates.

Conversely, there is growing interest in parametric con-
straints that require the encoded messages to satisfy criteria
that is parametric on the message length n. Such parametric
constraints commonly restrict all windows of the encoded
message with length £(n) to satisfy some criteria; equiva-
lently, all £(n)-substrings must not belong to a set W (£(n))

The first two authors contributed equally to this work.

The research was funded by the European Union (ERC, DNAStorage,
865630). Views and opinions expressed are however those of the authors
only and do not necessarily reflect those of the European Union or the
European Research Council Executive Agency. Neither the European Union
nor the granting authority can be held responsible for them. This work was
also supported in part by NSF Grant CCF2212437.

of the substrings that do not satisfy the criteria. Previous
works [4]-[11] have often utilized iterative methods that
replace forbidden substrings with alternate representations
appended to the end of the message (e.g., sequence replace-
ment [4]). However, these works typically struggle with guar-
anteeing the encoder convergence due to inter-dependence
between substrings: replacing one forbidden substring with
an appended alternate representation may render another
forbidden substring (either at the end with the appended
representation, or in the original location of the substring due
to the merging of the symbols before and after the substring).
Therefore, they design intricate modifications that are tailored
for each constraint to ensure monotonic progression, lever-
aging properties of the constraint and additional symbols to
limit new forbidden substrings. Hence, existing methods are
often tailored to specific applications, requiring substantial
effort when confronted with new constraints.

We have recently proposed an encoder for the constrained
periodicity task that, in contrast to the previous iterative algo-
rithms, guarantees encoder and decoder convergence without
requiring monotonic progression [12]. Rather, we provided
a graph-theory proof that essentially demonstrates that an
encoder with an invertible step function will always converge
and with complexity O(1) steps on average. In this work,
we generalize the method from [12] to tackle any parametric
constraint which holds some basic requirements, leading to
state-of-the-art results with minimal effort (see Table I).
We demonstrate the effectiveness of the proposed method
on the run-length-limited (RLL), minimal Hamming weight,
and balanced Hamming weight constraints — improving both
results and simplicity. Finally, we generalize beyond the study
of forbidden windows to parametric constraints that may be
dependent on the message itself to tackle the repeat-free and
DNA secondary structure constraints.

II. PROBLEM STATEMENT

Parametric constraints are described according to a general
formulation that generalizes to messages of different lengths.
For example, a parametric constraint may be that messages
of length n may not contain log(n) consecutive zeros. We
generalize this as follows,

Definition 1 (Parametric Constraint). A parametric constraint
C(n) applied to a channel of length n is a channel that can
only accept messages y € X" such that y € C(n).

The encoder and decoder for a parametric constrained code
can be defined as follows.

1023

Table I. Our framework achievable range and redundancy for different constraints in compression to previous works. The ¢-RLL is tackled by [11] and
Construction 1. ¢, p-MW is tackled by [11] and Construction 2. For ¢, p1, p2-AB between the work of [7] and Construction 3. ¢-RF tackled by [13] and
Construction 4. Lastly, for /-SSA we compare between [14] and Construction 5.

Previous Work Our Work
Constraint # Red Achievable Range # Red Achievable Range
¢-RLL 1 > log(n) +1 1 ¢ >Tog(n) +1
LMW | p(n) | €5 Nog(m)T + (o(m) — 1) Tog@F 2T +2 | 1| €5 Mogm] + (p(n) — 1) - [og(@+ DT+ 1
£, p1, p2-AB 1 n>16,(>70> SInn+2 1 n>4,0> 5nn
{— RF 2 £ > 2log(n) + 2 1 > 2log(n)+1
¢— SSA 1 n > 16,0 > 6log(n) + 4 1 ¢>2log(n) +1

Definition 2 (Constrained Code Encoder and Decoder). A
parametric constraint encoder fr : ¥* — C(n) encodes
messages of length k£ to messages of length n = k + r
that satisfy the parametric constraint C(n). A parametric
constraint decoder g : C(n) — XF satisfies gi(fi(x)) = =
for any € ¥, where the redundancy 7 and the message
length k can be functions of n.

Our method addresses the challenges faced by previous
works by proposing a novel construction to general para-
metric constraints. This unified approach aims to overcome
the limitations of existing methods, offering an efficient
framework for constrained coding.

Problem 1 (Universal Framework for Parametric Constrained
Coding). Devising a general method for constructing an
efficient encoder and decoder for any parametric constraint.

While our method can be applied to any parametric
constraint, we focus here on the binary alphabet codes,
¥ = {0, 1}, with a single redundancy bit, » = 1. Additional
cases are studied in the extended version of the paper [15].

Moreover, as the predominant focus of preceding research
has centered on a specific subset of constraints termed
substring-avoiding constraints, we have chosen to showcase
our methodology within this context. By doing so, we aim to
facilitate a comparative analysis with other relevant works.
In contrast, explicit encoder and decoder for a constraint that
falls outside the scope of substring-avoiding constraints are
presented in our concurrent work [16].

Definition 3 (SA). The W (n)-substring-avoiding (SA) con-
straint is a parametric constraint C(n) that includes all words
of length n that do not contain any word w € W(n) as a
substring. We assume for simplicity that all w € W (n) are
of length £ = £(n).!

Problem 2 (Universal Framework for SA). Constructing
explicit encoders and decoders with a single redundancy bit
for common SA channels.

III. UNIVERSAL FRAMEWORK FOR CONSTRAINED
WINDOWS

This section presents a construction for Problem 2, intro-
ducing an encoder (Algorithm 1) and decoder (Algorithm 2)
with a single redundancy bit for any SA channel which
satisfies the basic requirements presented in Theorem 1. The
encoder is based on an iterative approach that searches for
forbidden substrings within the current message and replaces

IOtherwise, the shorter words in W (n) can be padded with all possible
combinations until the maximal length.

them with an alternate encoding of the substring and its index
appended to the end of the message (of length such that
the overall message length is constant). Typically versions of
this approach were utilized in previous sequence-replacement
works, yet they expanded upon this naive encoder with
additional constraint-specific symbols that aimed to guarantee
monotonic progression (e.g., that the alternate representation
does not create new forbidden substrings when appended to
the previous message). Conversely, the proof from [12] that
we generalize here to tackle the more general case of any
constrained-window set W (n) demonstrates that monotonic
progression is not necessary for convergence if the simpler
requirements of Theorem 1 are met.

To apply the universal framework for a specific W (n)-
SA constraint, one should be able to identify whether a
window w is in W(n), which we denote as an indica-
tor Ly : £ — {0,1}, and to be able to represent each
constraint-violating window using ¢ = ¢(n) — [log(n)] — 1
symbols, with an injective function R : W (n) — %. Where
£ and ¢’ are always functions of 7 in the context of parametric
constraints. Using 1y (,) we can create 1¢(,) : 3" — {0,1}
as a function that returns 1 if neither of the n—¢+1 windows
in the message belongs to W (n). Otherwise, the indicator
function returns 0. In the latter case, we assume that an
additional parameter that indicates the index of a forbidden
window is also returned from the function . Lastly we denote
by Z(7) the [log(n—¢+1)] bit representation of the index i.

Theorem 1. For a given W (n)-SA constraint C(n) C X"
such that [C(n)| > |S| = |Z|"" ", and given

1) an injective function R : W (n) — %¢,

2) an indicator Ly () : »¢ - {0,1},
the encoder from Algorithm 1 is well-defined.

Proof: The algorithm converges when 1c¢e,(y) = 1,
Therefore, all we need to prove is its convergence. To do
so, we model the encoder as a walk on a directed graph
G = (V, E) with nodes representing string states and edges
representing the iteration routine (Algorithm 1, Step 3). Let
S represent the possible start nodes of the algorithm. Thus,

V:En, S:{'U01|’062n_1}g‘/,
u ¢ C(n),
FE = {(’U,,'U) v :uzifl OU?JFEOI(’I:)OR(U?Feil)OO}'
Example of such a graph is shown in Figure 1. Let
y® y@ . be the intermediate states of the encoder for
some input & € ¥"~!. Since y*) € X" for all i € N and
|X" < oo, if the encoder does not converge, then there

exist i < j such that ¥ = y(). Therefore, we find that
y(l) — y(H‘l) - e = y(]fl) — y(ﬁ) = y(") is a Cyc]e

1024

Algorithm 1 Universal Iterative Encoder f
Input: = € X271,
Output: y € C(n).

. y<xol.

2: while 3i s.t. y'™"! € W(n) do
3y yi_l oy, oZ(i)o R(yﬁ“_l) 0 0.
4
5

: end while
: return y.

Algorithm 2 Universal Iterative Decoder g
Input: y € C(n) such that f(x) = y for some ¢ € X"~ L.
Output: = € X" 1.

1: while y,, =0 do

) "1, n—t+[log(n—t+1)]

2 1l Ll—(llyziijl1 Ognn—l) n—~¢
3 Yy ORI YLfog(n—ts1)]41) O Yi -
4
5

. end while

. return y7 "l

in G. We note that y() is reachable from a node in S as
y(M € S by properties of the encoder. Thus, we found a
cycle C' in G that is reachable from a node in S, yet this
is impossible due to the fact that the in-degree of all nodes
is at most one (as the encoder routine is injective) and that
the in-degree of all nodes in S is zero (as the output of the
routine always ends in 0).

|

Theorem 2. The decoder from Algorithm 2 is well-defined.

Proof: We prove that g(f(z)) = x for any & € ¥"71;
let £ € "1 be given. Let ¢(z) be the number of itera-
tions performed in f(x) (finite due to Theorem 1), and let
yW y@ .yt be the path taken by the encoder in G.
Notice only y(!) = o1 in S since the in-degree of all nodes
in S is zero (as the output of the routine always ends in 0). By
the design of Algorithm 2, we find that the decoder traverses
the transpose graph G7 starting at f(z) = y*+V) until a
node in S is reached. Since the maximal in-degree in G is
one, then we find that the maximal out-degree in G7 is also
one; thus, the path taken by the decoder is well-defined and
coincides with the reverse of the path taken by the encoder.
Further, since only y(1> is in S, the decoder terminates the
while loop with y) = & o 1 and returns . |

Lemma 1. The average number of iterations of the while
loop in Algorithm 1 is at most |X| = O(1).

Proof: Using the walk on G representation, and the fact
that two paths generated by two distinct inputs are disjoint
as nodes in G possess an in-degree of at most one, we can
deduce that the sum of iterations the encoder does for all
possible input is bounded by |X" \ S]|.

Therefore, we find that the average path length is

1 X"\ SE_ 12T

eyt

Corollary 1. The encoder possess O(n-T'({)) average time
complexity for T'(£) the maximal time amongst R, 1¢(y).

(S =x1 TN\ S = x0

© O =O6

@ O—0-0O-0 @
() =\cm O cm

Figure 1. Example graph which Algorithm 1 traverses. The algorithm starts
in S and applies the iteration routine until a valid node is reached (in C(n)).
While cycles exist, they are unreachable from S.

Corollary 2. The decoder possess O(T'(¢)+n) average time
complexity for T(¢) which is the time complexity of R~1.

While the implementation of 1¢(,) using lyy(,) results
in O(n - 1y (,)) = O(n -) time complexity, for specific
constraints this can be improved to O(n) as we demonstrate
in [12]. Furthermore, it is always possible to use O(¢-|W (n)])
space and achieve T'(¢) = O(¢ - log(|W (n)|)) time com-
plexity using a binary search approach. Further, an efficient
algorithm for computing R may be provided to reduce the
overall complexity, as demonstrated in the following section.

IV. CONSTRAINED WINDOWS

We study in this section a few of the common constrained
codes presented and referenced in [1]: (1) the run-length-
limited (RLL) constraint often utilized in magnetic and
optical storage systems [17]-[19] , (2) the minimal Ham-
ming weight constraint for energy-harvesting devices [20],
[21], and (3) the balanced Hamming weight constraint for
spectrum shaping [10], [22]-[25]. We apply the universal
construction to each of these constraints and demonstrate
state-of-the-art results with trivial adaptations to the core
algorithm. We compare our construction to previous tailored
methods in the different constraints, emphasizing the redun-
dancy and parameter improvements of our constructions.

A. Run Length Limited

The ¢-RLL constraint is a forbidden substring constraint
that prohibits a substring of ¢ zeros,

We_grr(n) = {0}. (D

Thus, we trivially define R(w) = . However, to ensure
that appending the indices does not violate the constraint, in
[6] the authors utilized a variation of the sequence replace-
ment, taking the form y < 2% ' o @, 0 Z(i) o 10. Notably,
the number of distinct indices that may need encoding is
n — ¢+ 1, but for simplicity, we use log(n) > log(n — £+ 1)
bits for index representation. Therefore, this method re-
places ¢ bits with log(n) + 2 bits, making it viable for
any ¢ > log(n) + 2. Notice that [11] later established that
the constraint preservation holds even without the variation,
extending the applicability to ¢ > log(n) + 1.

Notice that our general method, even without explicit
knowledge of the proof from [11], converges to the same
algorithm — as can be seen in the following construction.

1025

Construction 1 ({ — RLL construction). Using the universal
iterative encoder and decoder, and the window representation
R(w) = €, we construct a valid encoder and decoder to the
{-RLL constraint. The construction uses one redundancy bit
and is valid for ¢ > log(n) + 1.

B. Minimal Hamming Weight

A generalization of the ¢-RLL constraint is introduced
in [11] and is denoted as the minimal Hamming weight
constraint — referenced as ¢, p-MW. While ¢-RLL restricts
£-substrings with a Hamming weight of zero, ¢, p-MW broad-
ens this constraint to encompass any weight less than p(n).

Wepaw(n) = {w € X |wg(w) <p(n)}. (2)

The proposed window representation entails encoding each
non-zero location with log(¢) bits, achievable with at most
p(n) — 1 such indices. In cases where the weight is smaller,
the index value is set to be larger than the window size.

To ensure monotonic progression, [11] deviates from a
one-bit redundancy approach, and append p(n) consecutive
ones in the algorithm initialization, resulting in more sub-
stantial redundancy. To underscore, employing our universal
method yields a superior construction both in terms of the
supported range and redundancy.

Construction 2 (¢,p-MW construction). We design R :
W(n) — % as follows: for w € W(n), we define
R(w) = Z(i1) 0 Z(iz) 0 ... 0 L(ipn)—1), fOr i1,. .., ipm)—1
the indices of the non-zero bits? in w and Z(i) the binary
encoding of ¢ using [log(¢ + 1)] bits. Using the universal
iterative encoder and decoder, and the window representation
we construct a valid encoder and decoder to the ¢, p-MW
constraint. The construction uses one redundancy bit and is
valid for ¢ > [log(n)] + (p(n) — 1) - [log(¢ + 1)] + 1.

C. Almost-Balanced Hamming Weight

An additional valuable extension of the minimal Hamming
weight constraint is the almost-balanced (AB) Hamming
weight, which stipulates that the Hamming weight of all /-
substrings falls within the interval [p;¢, pof]. Therefore the
constrained-window set take the form,

Weprpa-ap(n) = {w € B | wy(w) & [p1l.p20]}.)

The previous state-of-the-art [7] establishes the existence
of a one to one mapping Rap : Wy p, p,—an(n) = ¢ for
¢ > In(n)/c?, where ¢ = min {% — p1,p2 — %} However,
this is limited to £ > In(n)/c? + 2 due to the incorporation
of additional bits required to ensure convergence. In contrast,
our method allows £ > In(n)/c? with one redundancy bit.

Construction 3 (¢, p1, p2-AB construction). Using the uni-
versal iterative encoder and decoder, and the window repre-
sentation R 4p, we construct a valid encoder and decoder
to the /,p1,p2-AB constraint. The construction uses one
redundancy bit and is valid for n > 4,¢ > (% Inn.

It is pertinent to note that the construction in [7] assumes
the existence of mappings R 4p without explicitly determin-
ing them. Nevertheless, using our method, we present in
concurrent work [16] an explicit construction for a sub-linear
almost-balanced constraint. More precisely, the Hamming

weight is in [%—a\/z, %—}—a\/ﬂ, for o > /In(2).

2For wy (w) < p(n) — 1, we use a dummy index £ to indicate no entry.

D. Multiple Constraints

While previous methods are tailored to specific constraints,
our general method allows us to combine multiple indepen-
dent constraints and their respective representation into a
unified construction that concurrently satisfies all constraints.

Theorem 3. Let Ci(n),Ca(n),...,Ch(n) C X" be
given W (n)-SA constraints such that Vi, ‘C1(n) <
|E|n*1*“0g(mﬂ

and

1) injective functions Vi, R; : W;(n) — »¢' ~Mog(m)]

2) indicators Vi, 1y, (,) : 2¢ — {0,1}.
There exists an efficient construction for C(n) = (), C;i(n)
with one redundancy bit and O(m - T(n)) average time
complexity for T'(n) the maximal time complexity amongst
Rl, .. ,'R,m, R;l, ... ,'R,,;Ll, and 1(31(”), N]-C,n('rz,)'

Proof: We will demonstrate the desired construction as

a special case of Theorem 1.

1) We verify that ‘C(n)’ < Y71 a5 follows,

o) = e < 5

<m- ‘Z‘nflf[log(mﬂ < |E|n71)

e

2) We propose the following injective function R
W (n) — ¥, where R(w) is computed as follows: let
i be the minimal index such that w € W;(n) (exists
since € C(n)), then R(w) = R;(w) o Z(i), where
Z(4) is the encoding of ¢ using [log(m)] bits.
3) Anindicator function 1¢(y, : ¥™ — {0, 1} is computed
as Loy () = A\ Loy (n) ().
Therefore, according to the correctness of Theorem 1, we
find that there exists a construction for C(n) with r = 1 and
O(m-T(n)) average time complexity for 7'(n) the maximal
time complexity amongst Rq, ..., Rm, Rl_l, . ,R;ll, and

1C1(n)7---71Cm(n)~ |

V. SUBSTRING-PAIR CONSTRAINTS

In recent years, studies have underscored the necessity
for constraints that fall outside the conventional definition
of substring-avoiding constraints but can still be addressed
with the sequence replacement method. These constraints
deviate from a predefined list of forbidden windows W (n),
and instead, windows are restricted by more sophisticated
conditions. The most commonly used family of constraints
involves conditions on pairs of substrings. For example, the
repeat-free constraint [13], which requires the uniqueness
of any ¢(n)-substring w in x. The sequence-replacement
technique can tackle the repeat-free constraint by searching
for duplicate substrings and then replacing one of them with
an appended encoding of both their indices.

A. Overlapping Pairs

While addressing pairs of windows, it is crucial to ac-
knowledge scenarios involving an intersection of these win-
dows since then the removal of a duplicate substring can also
remove parts of the original substring. Conversely, this also
guarantees that the suffix of the substring is a repetition of
its prefix (since the suffix of the original was identical to the
prefix of the duplicate) and thus the entire substring can be

1026

reconstructed only from its prefix. The identity relationship
between the two substrings can be generalized to any bit-
wise function f. We define the ¢-bitwise-overlapping-pairs
(OP) constraints as,

Co_op(n) = {ar: en

Al<i<j<n—4L(n)+1:
w;JrE(n)fl _ f(m;JrZ(")*l))

“4)

Construction 4 (¢ — OP construction). Using the universal
iterative encoder and decoder, and the window representation
R(w,u) = Z(u) (where Z(u) is the bit representation index
of the location of u), we construct a valid encoder and
decoder to the /-OP constraint. The construction uses one
redundancy bit and is valid for £ > 2log(n) + 1.

The state-of-the-art construction for the ¢-repeat-free (¢-
RF) constraint was given in [13], where the authors addressed
¢ > 2logn + 2 and utilized 2 bits of redundancy. Using our
universal construction yields improvements in both achiev-
able range and redundancy.

B. Non-Overlapping Pairs

In cases where the constraint does not consider overlapping
windows, we can expand our construction to any function
f 2% — ¥ We define the f-non-overlapping-pairs (NP)
constraints as,

N<i<n—0+1,
i+0<j<n—{l+1:
flat) =2

Conp(n)=4q X"

&)

Construction 5 (¢ — N P construction). Using the universal
iterative encoder and decoder, and the window representation
R(w,u) = Z(u), we construct a valid encoder and decoder
for the ¢-NP constraint. The construction uses one redun-
dancy bit and is valid for £ > 2log(n) + 1.

An important application of this constraint is found in
the secondary structure problem [14], where the objective
is to prevent a DNA sequence from folding back upon itself.
In this context, a word is considered ¢-secondary structure
avoidance (¢-SSA) if there is no pair of non-overlapping
substrings w, u of length ¢ such that w = RC(u), where the
reverse complement function RC is defined as w; = u,—;.

The previous construction of [14] is applicable for ¢ >
6logn + 4, yet it may be complex to extend beyond the
binary alphabet. The recent work [26] improves this result by
relaxing the constraint. Nonetheless, applying our universal
encoder results in a better achievable range without the need
to modify the constraint.

VI. GENERALIZED CONSTRUCTIONS

We summarize our contributions regarding general para-
metric constraints with arbitrary redundancy bits. These re-
sults are easily extended to non-binary alphabet. The proofs
are based on a similar graph reduction, and due to space
limitation, they are omitted. The details can be found in the
extended version of this work [15].

We begin with a construction for any parametric constraint
C(n) using a single redundancy bit,

Construction 6. Let C(n) C X" be a given constraint such
that ‘C(n)’ < |%[""", and given

1) an injective function ¢ : C(n) — XL,

2) an indicator 1¢(,) : £ — {0,1},
there exists an efficient construction with a single redundancy
bit and O(T'(n)) average time complexity for T'(n) the
maximal time complexity amongst &, £~ and leen).

To address scenarios involving more than a single redun-
dancy bit, we introduce an embedding function 1, and the
set S indicator 1g.

Construction 7 (Universal). For a given constraint C(n) C
3", and given
1) a subset S C X" such that |C(n)| > |S| > [5/F,
2) an injective embedding v : ©¥ — S and indicator
1s: 3" — {0,1},
3) an injective function ¢
1C(n) X" — {0, 1},
there exists an efficient construction with » = n — k redun-
dancy symbols and O(|X|" - T'(n)) average time complexity
for T'(n) the maximal complexity amongst ¢, o, 1, 1¢().

: C(n) — S and indicator

Note that our explicit constructions are using ¢ : 71 —
S such that ¢(x) = o1, and 1g(x) = z, for x =
((L‘l, T2y .. ,l’n).

VII. CONCLUSION AND DISCUSSION

Parametric constrained coding generalizes the well-known
field of fixed constrained coding to address constraints that
depend on the message length and portray some general
property (e.g., avoid windows of log(n) consecutive zeros).
While there is a universal solution to any fixed constrained
coding task, the lack of such a solution for parametric
constraints has led to custom algorithms being designed for
each constraint — typically following the general guideline
of the sequence-replacement concept. Specifically, most ap-
proaches are based on iteratively replacing invalid substrings
in the transmitted message, yet they require complex custom
transition functions that enable the monotonic progression
which guarantees convergence. In this work, we propose
a novel universal framework for all parametric constrained
coding problems that can generalize to all constraints due
to a surprising proof that demonstrates that there is no need
for monotonic progression to guarantee efficient convergence.
We apply this framework to several problems (see Table I)
to provide state-of-the-art results with minimal effort.

Future research should address the diverse challenges
posed by different parametric constraints. Several possible
directions and open problems are listed below.

1) Study the capacity and achievable parameters of differ-
ent parametric constrained channels and compare them
to the constructions obtained by our framework.

2) Analyze the worse-case time complexity of the pro-
posed constructions.

3) Find an explicit and efficient embedding function
that can be used for redundancy of more than one
symbol (see Construction 7).

1027

(11

[3

=

[4

=

(51
(61

(71

[8

—

(9]

[10]

[11]

[12]

REFERENCES

K. A. S. Immink, “Innovation in constrained codes,” IEEE Communi-
cations Magazine, vol. 60, no. 10, pp. 20-24, 2022.

B. H. Marcus, R. M. Roth, and P. H. Siegel, “An introduction to coding
for constrained systems,” Lecture notes, 2001.

R. Adler, D. Coppersmith, and M. Hassner, “Algorithms for sliding
block codes-an application of symbolic dynamics to information the-
ory,” IEEE Transactions on Information Theory, vol. 29, no. 1, pp.
5-22, 1983.

A. Van Wijngaarden and K. S. Immink, “On the construction of
constrained codes employing sequence replacement techniques,” in
Proceedings of IEEE International Symposium on Information Theory.
IEEE, 1997, p. 144.

A. J. d. L. van Wijngaarden, “Frame synchronization techniques:
Rahmensynchronisationsverfahren,” Ph.D. dissertation, 1998.

A. J. Van Wijngaarden and K. A. S. Immink, “Construction of maxi-
mum run-length limited codes using sequence replacement techniques,”
IEEE Journal on Selected Areas in Communications, vol. 28, no. 2,
pp. 200-207, 2010.

T. T. Nguyen, K. Cai, and K. A. S. Immink, “Binary subblock energy-
constrained codes: Knuth’s balancing and sequence replacement tech-
niques,” in [EEE International Symposium on Information Theory
(ISIT). IEEE, 2020, pp. 37-41.

C. Schoeny, A. Wachter-Zeh, R. Gabrys, and E. Yaakobi, “Codes
correcting a burst of deletions or insertions,” IEEE Transactions on
Information Theory, vol. 63, no. 4, pp. 1971-1985, 2017.

K. A. S. Immink and K. Cai, “Design of capacity-approaching con-
strained codes for dna-based storage systems,” IEEE Communications
Letters, vol. 22, no. 2, pp. 224-227, 2017.

, “Properties and constructions of constrained codes for DNA-
based data storage,” IEEE Access, vol. 8, pp. 49523-49 531, 2020.
M. Levy and E. Yaakobi, “Mutually uncorrelated codes for DNA
storage,” IEEE Transactions on Information Theory, vol. 65, no. 6,
pp. 3671-3691, 2018.

A. Kobovich, O. Leitersdorf, D. Bar-Lev, and E. Yaakobi, “Codes
for constrained periodicity,” in IEEE International Symposium on
Information Theory and its Applications (ISITA), 2022.

[13]

[14]

[15]

[16]
[17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

1028

O. Elishco, R. Gabrys, E. Yaakobi, and M. Médard, “Repeat-free
codes,” IEEE Transactions on Information Theory, vol. 67, no. 9, pp.
5749-5764, 2021.

T. T. Nguyen, K. Cai, H. M. Kiah, D. T. Dao, and K. A. S. Immink,
“On the design of codes for DNA computing: Secondary structure
avoidance codes,” arXiv preprint arXiv:2302.13714, 2023.

D. Bar-Lev, A. Kobovich, O. Leitersdorf, and E. Yaakobi, “Uni-
versal framework for parametric constrained coding,” arXiv preprint
arXiv:2304.01317, 2023.

, “Optimal almost-balanced sequences,” in Proceedings of the
IEEE International Symposium on Information Theory (ISIT), 2024.
K. S. Immink, “Runlength-limited sequences,” Proceedings of the
IEEE, vol. 78, no. 11, pp. 1745-1759, 1990.

K. A. S. Immink, Codes for mass data storage systems.
Foundation Publisher, 2004.

, “A survey of codes for optical disk recording,” IEEE Journal on
Selected Areas in Communications, vol. 19, no. 4, pp. 756-764, 2001.
A. Tandon, H. M. Kiah, and M. Motani, “Bounds on the size and
asymptotic rate of subblock-constrained codes,” IEEE Transactions on
Information Theory, vol. 64, no. 10, pp. 6604-6619, 2018.

E. Rosnes, A L Barbero, and @. Ytrehus, “Coding for inductively
coupled channels,” IEEE Transactions on Information Theory, vol. 58,
no. 8, pp. 5418-5436, 2012.

F.-L. Chang, W.-W. Hu, D.-H. Lee, and C.-T. Yu, “Design and
implementation of anti low-frequency noise in visible light commu-
nications,” in International Conference on Applied System Innovation
(ICASI). 1EEE, 2017, pp. 1536-1538.

J. Franklin and J. Pierce, “Spectra and efficiency of binary codes
without DC,” IEEE Transactions on Communications, vol. 20, no. 6,
pp. 1182-1184, 1972.

O. P. Babalola and V. Balyan, “Efficient channel coding for dimmable
visible light communications system,” IEEE Access, vol. 8, pp.
215 100-215 106, 2020.

D. T. Dao, H. M. Kiah, and T. T. Nguyen, “Average redundancy
of variable-length balancing schemes a la knuth,” arXiv preprint
arXiv:2204.13831, 2022.

R. Zhang and H. Wu, “On secondary structure avoidance of codes for
DNA storage,” Computational and Structural Biotechnology Journal,
2023.

Shannon

