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Abstract— One of the primary sequencing methods gaining
prominence in DNA storage is nanopore sequencing, attributed
to various factors. In this work, we consider a simplified model
of the sequencer, characterized as a channel. This channel takes
a sequence and processes it using a sliding window of length /,
shifting the window by § characters each time. The output of
this channel, which we refer to as the read vector, is a vector
containing the sums of the entries in each of the windows. The
capacity of the channel is defined as the maximal information rate
of the channel. Previous works have already revealed capacity
values for certain parameters ¢ and ¢. In this work, we show that
when § < ¢ < 26, the capacity value is given by 3 log, $(£+ 1+
V(€ +1)2 —4(0—8)(¢ — & + 1)). Additionally, we construct an
upper bound when 2§ < /. Finally, we extend the model to the
two-dimensional case and present several results on its capacity.

I. INTRODUCTION

DNA storage is an emerging technology driven by the
increasing demand for data storage. Consequently, there has
been significant progress in both synthesis and sequencing
technologies [1]-[4]. One particular sequencing methodology,
named the nanopore sequencer, is mainly renowned for its sup-
port in long reads, low cost, and high probability [S]-[7]. The
nanopore sequencing process proceeds as follows: when read-
ing a DNA strand, its nucleotides traverse a pore sequentially.
In this continuous process, a constant number of nucleotides,
denoted by ¢, pass through the pore simultaneously each time.
The output of the reading process is determined by the values
of each of the ¢ nucleotides. While this sequencing technique is
efficient in multiple aspects, it also presents some challenges.
Primarily, the output of the reading process experiences inter-
symbol interference (ISI) due to the dependence on the values
of ¢ nucleotides simultaneously rather than just one. Moreover,
this process may frequently introduce random errors in the
reading output, leading to occurrences like duplications or
deletions of certain nucleotides Thus, various models have
been proposed for the nanopore sequencer [8], [9].

In this work, we focus on a specific model corresponding
to the transverse-read model as outlined and studied in [10],
which was motivated by racetrack memories. This model has
been proposed in [9], and also studied in [11]. It constitutes
a specific instance of the ISI channel, which is characterized
by parameters (¢,¢), and is denoted as (¢, d)-weighted read
channel. From this point forward, we refer to it as the
(¢,0)-read channel. This channel characterizes the reading
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operation of the sequencer as a sliding window of size /,
shifting over the sequence in increments of . Thus, for a
sequence (x1,Za, ..., Ty, ), the initial read examines the first ¢
characters, (x1,x2,...,x¢), while the subsequent read occurs
with a shift of J characters, i.e., (541, Ts42,...,Ts+e). Each
read produces a value corresponding to the values of the /¢
characters. In our case, for simplification, we concentrate on
the cases where the emitting value is the sum of all these /¢
characters. Distinct sequences may produce identical outputs
under the (¢, §)-read channel. Therefore, our focus in this work
is to study the capacity of the (¢, ¢)-read channel, denoted by
cap(¢,9), and is defined as the logarithmic ratio between the
number of outputs and inputs of the (¢,4)-read channel.

Several works have already studied this and similar models,
focused on finding both the capacity [9], [10], and error-
correcting codes [9]-[13] for the channel. In the subject
of finding the capacity, both [9], [10] introduce algorithms
for computing the capacity value with fixed parameters. In
particular, [9] focused on the cases where § = 1, and the
output of each read is a general function dependent on the ¢
characters. On the other hand, [10] focused on the case where
the read function is the Hamming weight for any ¢ and 4,
which is the (¢,0)-read channel studied in this paper. More
specifically, [10] solved cap(¥,d) for the following cases: 1)
¢ <6, 2) ¢ is a multiple of §, and 3) § = 2 and ¢ = 3,5,7,
using an algorithm that can be generalized for other values .
The main goal of this paper is to determine the capacity value
cap(¥, §) for more parameters of £ and 9.

The rest of this paper is organized as follows. In Sec-
tion II, we introduce the definitions describing the model.
Section III is dedicated to solve the capacity cap(¢,d) for
§ < £ < 26, where it is shown that cap((, §) = $ log, & ({+1+
V(0 +1)2 —4(¢ —0)(¢ — 6 + 1)). Furthermore, when ¢ > 6,
in Section IV, it is shown that cap((,d8) < log, 3(m +
vm? 4+ 4m), where m = (£ mod 6)((—¢) mod 8) +4. Lastly,
in Section V, we extend the model to the two-dimensional case
and present several results on the capacity as well. Due to
the lack of space, we omit some of the proofs and plots in the
paper and they appear in the long version of this paper [14].

II. DEFINITIONS AND PRELIMINARIES

Let X5 denote the binary alphabet {0, 1}. For every vector
x € I, we refer to its sub-vector (z;, Ziy1,...,%ite—1)
where 1 < i < n —{, as x[; 4. The Hamming weight of a
vector « is denoted by wt(x).

Definition 1. The (¢, 0)-read vector of x € X7 is denoted by,

Rz’g(il:) £ (Wt(a:[u]), Wt(:c[g_;,_lyg]), e ,wt(a:[t.(;H’z]))
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where t = "T_Z. For simplicity, we assume that §|n — ¢. For
each binary vector x, the (¢,0)-read channel produces the
(¢,8)-read vector of x.

Example 1. Let ¢ = (0,0,1,0,1,0,1,1,0,0,0,0), the
(4,2)-read vector of = is Ryo(x) = (1,2,3,2,0). We
can notice that there exist other vectors, such as y =
(0,0,0,1,0,1,1,0,0,0,0), y # x that have the same
read vector, i.e., R4 2(y) = Ry2(x).

Hence, a notable issue is that the read channel might have
the same output for multiple inputs. As a result, our main
focus will be on assessing and describing this reduction. To
achieve this, we will establish the following definitions:

Definition 2. A code C C X% is called an (¢, 0)-read code if
for all distinct =,y € C it holds that R, 5(x) # Res(y). The
largest size of any (¢,0)-read code of length n is denoted by
A(n, £,0). The capacity of the (¢, 0)-read channel is given by:

log, A
cap(£, ) £ limsup logy A(n,£,0)

n— 00 n

A straightforward example of the (¢,)-read channel, oc-
curs when 6 = 1, as explored in [10]. In this case, all
distinct vectors, @,y € X%, have distinct (¢, 1)-read vector,
for every ¢ and n. Consequently, A(n,¢,1) = 2™ and the
capacity of the (¢,1)-read channel is given by cap({,1) =
limsup,, o % log, 2™ = 1. For the rest of the paper, it is
assumed that § > 1.

The binary model described here can be extended to the
g-ary case. Within this model, the L, weight is defined as
the sum of all the entries in the vector and is also denoted
by wt(x). The definitions remain the same as in the binary
model, and here we refer to this channel as the (¢, ¢),-read
channel for the g-ary alphabet, and we let cap, (¢, ) denote its
capacity. The capacity value in the g-ary model can be directly
deduced from the capacity in the binary case as is proved next
in Theorem 1. Consequently, our focus in this work is directed
towards the binary case.

Theorem 1. Let ¢,§ be integers, for every integer ¢ > 2 it
holds that,

-1
ap, (£:0) = o camal(g = 1)+ £, (g = 1) 0)

This and similar models have been studied in several works,
focusing on exploring the capacity [9], [10], which focuses on
finding expressions and bounds for the capacity. Additionally,
there is a concerted focus on finding error-correcting codes
for the channel [9]-[11] which are mainly focused on finding
constructions and bounds on the size of the code in the
cases where there is one deletion. Our primary focus is on
investigating the capacity of the (¢,d)-read channel across
various parameters. Multiple parameters of the (¢, d)-read
channel have already been studied in [10]. First, explicit
expressions and bounds for the capacity within the following
parameters have been revealed.

Theorem 2 ([10]). Let ¢, be positive integers,
1) For £ <4, cap({,8) = logy (€ + 1).

2) If ¢ is a multiple of d, then cap(/,d) = L 1log, (5 + 1).
3) For 1 <d <4, cap(¢,0) > +logy(6 + 1).

Second, the capacity value of the following cases, where
0 =2 and 6 < ¢ have been calculated:

=3[ €=4]¢=5]¢=6]¢=7]£=38]
[ 6=2 ] 08857 | 0.7958 | 0.9258 | 0.7925 | 0.9361 | 0.7925 |

In this work, we present an explicit expression for cap(¥, J),
where § < ¢ < 26. Additionally, we establish an upper bound
on the capacity for the rest of the cases. Table I presents the
current results on cap(¢, §), with entries in bold indicating new
results derived from this work.

TABLE I
[ £0>1 I cap(¥,9)
<46 cap(¢,6) = %log2(€+ 1)
0 <l<20 cap(¢,0) = % log, f1(4,6)
0> 9 )¢ cap(¢,d) = %log2(5+1)
- o) § log, (6 + 1) < cap(¢,6) < 5 logs f2(£, )

F1(£,8) =056+ 14++/((+1)2—4(—-686)(L—5+1)),
f2(€,8) =0.5(m — 1+ /(m —1)2 — 4(m — 1)),
and m = (¢ mod § + 1)(((—¢) mod 6 + 1)).

III. THE CAPACITY FOR § < £ < 2§

In this section, we study the value of cap(¢,d) when ¢ <
¢ < 20. First, we observe that the (¢,0)-read channel is a
regular language and therefore can be recognized by a non-
deterministic transition state diagram. In the next definition,
we present such a diagram for any ¢ > §. This diagram was
proposed in [10] and we present it here with an explanation of
its correctness for the completeness of the results in the paper.
All edges in such a graph are labeled. Thus, we refer to any
directed edge (u,v) with a label a as u > v.

Definition 3. The graph G(¢,0) is defined as follows.

o The nodes in G(¢,d) are the set of all vectors s of length
(=6, ie, V(G(£,8)={s:se i}
o The set of directed labeled edges in G(,9) is defined as

E(G(6,8))={@[1,0—6) = T(s+1,0-5): @ € By, a=wi(x)}.

That is, an edge between the nodes u and v with label «
exists if there is a vector « € Eg such that, u = x1 ,_g),
v = x[541,0—5 and wt(xz) = o

For every n,t, where n =t - + ¢, every vector x € X7,
has the following (unique) path @[; o4 X T[541,0-6] X
T[25+1,0—6] B3 L[(t+1)-6+1,6—5] in Q((, 5), such that
(o, a1, a2, .. ., ) is the (¢, 0)-read vector of x. Therefore,
there is a path in G(¢, ) for every read vector. On the other
hand, every path in G(¢,J) can correspond to more than one
vector x, but to only one read vector. That is, all vectors x
that generate this path have the same read vector, and thus,
G(£,9) is a state diagram of the (¢,d)-read channel. Note
that there might be two distinct vectors x,y € ¥4, such that
T(10-5) = Y[,e—s) = U and T(541,0-5] # Y[541,0—0)> With the
same Hamming weight, denoted by «. Therefore, the edges
v S @414, and v S Ylo+1,0—s] €Xist in G(£,6), and
thus, G(¢,4) is not necessarily deterministic. In fact, for the
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case where § < £ < 24, G(¢,0) is a regular graph, and between
any two nodes, there exists the same number of parallel edges,
which is 20 — ¢ + 1.

Example 2. For 6 = 3,¢{ = 5, the nodes set in G(¢,0), as
shown in Fig. 1, are the vectors (0, 0), (0,1), (1,0) and (1, 1).
The vectors (0,0,0,0,1) and (0,0, 1,0,0) are both in X%, and
therefore, (0,0) = (0,1) and (0,0) = (0,0) are edges in
G(¢,6). In conclusion, G(¢, ) is not deterministic.

Fig. 1. The graph G(4, ) for £ =5 and § = 3.

A common approach to deriving the capacity from a non-
deterministic state diagram is to convert the graph to a
deterministic one. A known way to create a deterministic graph
is the determinizing graph demonstrated in [15], where each
vertex represents a subset of vertices in the non-deterministic
graph. Here, we present a deterministic graph based on the
determinizing graph with some changes in both the definition
of the vertices and edges to enable analysis. To do so, we first
introduce another useful definition.

Definition 4. For every subset V' of V(G(¢,0)), and a label
a. Let E(V,a) C V(G(¥,6)) be the set of all nodes with an
incoming edge labeled o from any node in V, i.e.,

EWV,a)={u:FweV:v3ucEG{Y9))}
Next, we introduce a deterministic graph of G(¢,0).

Definition 5. The graph # (¥, ) is defined as follows.

o The nodes of the graph (¢, ) are the set of all subsets of
nodes in G(¢,9), denoted as V|, ;), where the Hamming
weights of the nodes are between a and b, 0 < a < b <
£ -9, ie.,

V(H(&d)) = {V(a,b) 0<a<b< L~ 5}3

where, Vi, ) = {s € 570 a < wt(s) < b}

o The set of directed labeled edges in # (¢, ), denoted by
E(H(L,0)), is defined as

{‘/(al,bl) g> ‘/(az,bz) : g(wal,b1)7a) g ‘/(aQ,bQ)7
Ju' w? € E(Vigy b)), wi(u') =az, wi(u?) =bs}.

That is, an edge between the nodes Vi, ) and V(4, p,)
with label « exists if, 1) all nodes of G(¢,¢) in
E(Viay,b1), ) belongs to V4, 4., and 2) there are nodes
u', u? € Vi, p,),a) such that wt(u') = ay and
wt(u?) = by.

Example 3. For § = 3,¢ = 5, the graph H(¢,0) of G(¢,¢
from Example 2, is shown in Fig. 2. The graph H(¢,¢
contains the edge V(g o EN V(o,1)» because, 1. £(V(o,0),1) =
{(07 O)v (07 1)’ (17 O)} = Vv(O,l)v and thus, 5(‘/(0,0)3 1) - ‘/(0,1)-
2. Both (0,0) 5 (0,0) and (0,0) N (0,1) are edges in
G(¢,0), while wt(0,0) = 0 and wt(0,1) = 1.

Fig. 2. The determinizing graph H(5, 3) of G(5, 3) in Fig. 1.

Next, we prove that H(¢,0) is a determinizing graph of
g(¢,9).

Claim 1. The graph (¢, d) is a deterministic graph of G(¢, 9).

We have established that #H(¢,0) is a deterministic, finite
state transition diagram of the regular language of the (¢, 9)-
read channel. To find the adjacency matrix of H(¢,d), we start
by determining the number of edges from V(4, 5,) 10 Vi, ps)-

Claim 2. 1) If as = 0 and by, = ¢ — 4, then the number of

edges is max{0,30 — 20+ b; —a; + 1}.

2) If a = 0 and by < £ — §, then the number of edges is
1 when by < b; — a1 + 26 — £ and otherwise 0.

3) If as > 0 and by = ¢ — ¢, then the number of edges is
1if ay > 2¢ — 36 — by + a1 and otherwise 0.

4) Otherwise, there is an edge only if a; + by = by +as +
20 — /4.

As observed in Example 3, the in or out degree of some
nodes in H (¢, §) might be zero. These nodes, as known, do not
influence the value of the capacity and can thus be excluded
from the graph. We can see by Claim 2, that the in and out
degree of all the nodes V, ;) where a = 0 or b = £ — 0 is
at least one. We denote A, s to be the set of all such nodes.
The in-degree of all other remaining nodes is at least one if
b—a > 20 — ¥, because in this case, there exist a; and b; such
that by — as = by — a; + 26 — £. All remaining nodes have
an in-degree of zero. Let 7{*(¢,J) denote the graph (¢, 9)
without those nodes.

Example 4. For § = 3,¢ = 5, the graph H*(¢,0) of H(¢, )
in Example 3, is the same graph as H (¢, 0) excluding the node
V(1,1) which its in-degree is zero.

From now on, we focus on the graph H*(¢,d). We observe
from Claim 2 that the number of edges between V,, 1,) and
Vias,by) 18 exclusively determined by whether Vg, p,) is in
Ay s, as well as the values of by — a; and by — as. For every
such node V(, 1), we define its size to be b — a. For every
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20 — ¢ < d < {—§—1, the number of nodes which are not in
Ay s and are of size d, denoted by mg, is the number of options
for nodes of size d where a # 0 and b # {—6, i.e., {—d—d—1.
Therefore, the total number of nodes in H*(¢, ), denoted by
m, is |Aos| + X505t ma = 1+ 2(£ = 8) + (35%). Let
A+ (£,8) € N™*™ be the adjacency matrix of H*(¢, §) where
its indices are ordered by the sizes of their nodes, while nodes
with the same size are ordered lexicography. For shorthand, let
A j & (Ag(€,6))i5. We denote ¢ : {1,...,m} — {Vigp) :
0 <a<b<{¢—4} to be a mapping between an index in the
matrix to its node, and let d : {1,...,m} — {0,...,£—45} be
a mapping between an index in the matrix to the size of its
node. For example, ¢(2) = V(g ¢—5-1), and d(2) = £ — 5 — 1.
From Claim 2, we get that for every 1 <i<m,2<j<m,

. Ai71 = max{O, 3(5 — 2[ =+ d(l) =+ 1}

o If t(j) € Aps, d(j) <25 — £+ d(i), then A, ; = 1.

o If t(y )¢A“, d(j) =26 — € +d(i), then 4; ; = 1.

e Otherwise, 4; ; = 0.

Example 5. For § = 3, ¢ = 5, the adjacency matrix Ay~ (¢, J)
of H*(¢, ) from Example 4, is

2 11 11\ = (Vog)
1111 1| — (Vo)
An(3,3)=11 1 1 1 1| — (Vao)
0111 1) = (Voo)
01111/ = (V)

To the right of the matrix, the values of V{, ;) indicate the
values of t(¢) for each index 1.

Claim 3. The characteristic polynomial of A (¢,4), is
pes(x) = (@ =L+ Dz + (-8 —5+1))am™ 2

By Perron-Frobenius Theorem [15], we can establish the
expression for the capacity.

Theorem 3. For every integers ¢ and §, where 6 < £ < 2§
the capacity of the (¢, d)-read channel is given by

CH144/(0+1)2—4(6=8) (6—6+1)
2 2

)
IV. AN UPPER BOUND ON THE CAPACITY FOR ¢ > 2§

cap((,6) =

In this section, we propose an upper bound on the capacity
for the rest of the cases where § does not divide ¢, and ¢ > 26.
To accomplish this, we introduce a constrained system with a
higher capacity than the one of the (¢, §)-read channel. For the
rest of this section, for every ¢ and §, such that § f¢, ¢ > 26 and
n,t integers such that n = 0t + £. Let a = ng, b= /¢ mod 9,
and d = J —b, note that £ = ad+b. We introduce the following
claims and definitions.

Observation 1. For every v € X7, and 0 < ¢ < ¢, it holds
that Wt(v[(g.i+17g])ll equals to

Wt(”[é-iﬂ,b])“‘z(Wt(v[s-(iﬂ)—dﬂ,d])+Wt(U[5-(i+j)+1,b]))-
J=1

First, for shorthand, let A(37) £ §i —d+ 1, for every 1 <

i <t+a,and B(i) £ §i + 1 for every 0 < i < t + a. Next,

as a result from Observation 1, the (¢, 0)-read vector depends
only on the weights of the sub-vectors v(g(;),;] and v[a(j),q)»
where 0 < ¢ < t+4a, 1 < j < t+a. Therefore, the sequence of
ones and zeros within these sub-vectors has no impact on the
value of the read vector. Consequently, to establish an upper
bound on the number of read vectors, we focus exclusively
on vectors where all zeros appear before the ones in all sub-
vectors v(g(;),p] and va(;),q- Thus, we concentrate only on

vectors in

H[,;—HbXHdX XHbg

where 1II,, {om1m—« 0 < a < m}. Note that
I} 5| > A(n, ¢,6), and thus, IT, 5 provides an upper bound on
ca p’(f, 0). To find a tighter bound, we introduce the following
lemma.

Lemma 4. For every v,u € II}}; and 1 <4 <t —1,if
Wt(V[ax),5]) = WHU[AG),5]), WHV[B(i+a),8]) = WEHW[B(i4a),5])
WH(V[(i),6)) + WHO[B(i4a),) = WHB[B(0),5]) + WH[B(i+a),b))s

= Rw(u).

Thus, we introduce the following mapping designed to
maintain the value of the (¢, §)-read vector.

Definition 6. Let ¢y, : II}; — 1[5 be a function that
changes the value of any v according to the following steps:

while all other sub-vectors are equal, then Ry 5(v)

For every i = 1,...,t— 1, if there exists u € Zéf% such that
V[A(D),6+2d] = 190b11%09, then
b.6(V)(a(i) 0424 = 0147101 1001710711,

Example 6. For / = 8, § = 3, and n = 14, we have that, a =
2,b=2,d=1.Letv=(0,1,1,0,0,0,0,1,1,1,1,0,1,1),
the bold values in v are the sub-vectors v(g;,, While the
rest are the sub-vectors v[a(j),q- For i = 1, A(l) = 3,
B(i) = 4, i + a) = 10, and A(i + a+ 1) = 12, and
we have that v{a(;)r12q) = 100u110 = 190°%1°0%. Thus,
07 5(V)[aG), 424 — 019710~ 11401°~ 10410 and

¢z,a(”) =(0,1,0,0,1,0,0,1,1,0,1,1,1,1).
As we can see Ry (7 5(v)) = Res(v) = (3,4,6).

Note that, every change of the function ¢y ;, maintains
the values of wt(v[A(Z), ]) Wt(’v[g(l+a)75]) and Wt(’v[g(z) b])
Wt(V[8(ita),p))» While all other sub-vectors are not changed.
Thus, by Lemma 4, we have that Ry 5(v) = Ry s(d7 s(v)).
In addition, gf)g s ensures that there are no sub-vectors

V[A(i) 042d] = 190P% 1207, Thus, we construct the following
code from ¢y 5.

Definition 7. The code C; 5(n) is denoted to be the co-domain

of (;525(1;), R
Crs(n) = {df5(v) : v € I} 5}

Using the last observation on ¢y 5, we can derive an upper
bound on the value of A(n,?,?).

Lemma 5. For every n € N, A(n,{,0) < |C¢5(n)|.

In Lemma 5, we establish an upper bound for A(n,Z,J),
however, determining the exact values of the bounds remains
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challenging. To address this, we introduce a more relaxed
bound through the following constraint.

Definition 8. Let L, 5 be the following constraint. First, the
vector must be in ITj’ 5, and second, every sub-vector of length
20, that starts in an index of the form of A(%), is not in the form
of 190°190°, ie, Ly5 = {v : Vi,vaq) 2 # 190°190°}.
Let A(n, Ly ), be the number of length-n vectors that satisfy
the constraint. The capacity of the constraint is denoted by
cap(Ly,s), ie., cap(Les) = limp o0 +logy A(n, Ly5).

Let Wy s(n) C Hzé be a code that satisfies the L
constraint such that W, s5(n)] = A(n,Lys). To show that
cap(4, ) < cap(Lyp,s), we first define the following function.

Definition 9. Let g : Cr5(n + ad) — {u € H%”“s SU,) €

W, s(n)} be a function, such that for each v, g(v) is the value
of v after the following steps:
Fori=1,2,...,t+a—1,if vjaz)as = 190°140°, then

Vg(ita).s) = 1704 viag11).a) = 071977, wpg() ) = 091077

where a = Wt(V[g(ita),b))> and v = Wt(V[A(ita+1),q))- The
changes are well defined since a > 2, ensuring that there is
no overlap between the changed sub-vectors. Note that, after
every step, v[a(i),2s) # 170°190°, and if v(a(;)26] Was equal
to 170°190° then v{a () o424 # 190°u1°0%.

Example 7. For the parameters as in Example 6 and n = 8§,
let v = (0,1,1,0,0,1,0,0,1,0,1,1,1,1). We can see that
there is no 4 such that v(a () ¢+24 = 190°u1°0%, and thus v €
Cr,5(n+ad). We can see that for i = 1, vja(i),2) = 190°190°,
and in addition, v[g(;14),s] = 011. Therefore, by applying g
on v, we get that after the first iteration v(a(;41),5) = 001 and
v[B(i+a)75] = 110, i.e.,

g(v) = (071’ 1’ 0707 O’ 0717 17 1’ 17071’ 1)'
We notice that now, g(v)a@)2s # 190°190°, while

9(v)[ai),er2q) = 170°u1P0%, and thus, g(v) is in Wi 5(n)
and not in Cy s5(n + ad).

Claim 4. For every v € Cys(n + ad), g(v)[1,n] € Wh,s(n).
Claim 5. The function g is injective.

From Claims 4 and 3, [{v € HE{“‘; SV € Whs(n)} >
|Ce,5(n + ad)|, leading to the following upper bound.

Theorem 6. For every ¢,d, such that 26 < ¢ and ¢}/,
cap(Lyp,s5) is an upper bound of the capacity of the (¢, §)-read
channel, i.e., cap(¢,§) < cap(Lps), and

m—1+4/(m—1)244(m—1)

5 b
where m = (b+1)(d + 1).

We conjecture that for every § and 1 < b < J, the capacity
value cap(d-a+b,0) increases with a. Under this conjecture,
the limit L(0,b) = lim,—, o cap(d - a + b, ) is exists. From
Theorem 6 we get that L(4,b) < cap(Lps). For example, as
it can be observed from Table II when 6 = 2 and ¢ is odd the

TABLE II
7.5 3,2 5,2 7.2 9,2
cap(0,8) | 0.8857 | 0.9257 | 0.9361 | 0.9399

capacity is increasing as ¢ increases. Yet, this conjecture has
not been proven and we hope to explore it in future works.

V. THE TWO-DIMENSIONAL WEIGHTED CHANNEL

Coding for multiple dimensions, particularly two-
dimensional storage systems, has gained significant attention
in recent years due to its potential applications in diverse
fields. This is mainly due to the unique properties of the
information which can be more accurately described in
multiple dimensions. Examples of such coding schemes were
explored in [16], [17], [18], and [19]. Thus, we are interested
in extending the read channel to its two-dimensional version.
The two-dimensional read channel is defined as follows.

For a matrix B € X1 ""2, let Bk, ¢k, ¢, be the £1 X £o
sub-matrix of B with entries between rows k1 and k1 + ¢1 — 1,
and columns between ko and ko + f5 — 1. The weight of
Bik, 01:k,0,) 18 denoted by wt(Bx, ¢,:k,,0,]) and is defined
as the sum of entries in the window.

Definition 10. The  ((¢1,%2),(d1,02))-read matrix,
Rgi’fi(B), of B is a (t1 + 1) x (t2 + 1) matrix,

where ¢, = ”17:[1 and t2:"25;e2, and its (4,7)-
th entry is defined by Wt(Bjg, ¢,:k,.0,)), Where
ki = 61+ 1, ke = 625 +1, 0 < i < t, and
0<j <t

Definition 11. A code C C Zglxn? is called an
((41,4€2), (01,02))4-read code if for all distinct B,D € C
we have that Rgif;i(B) # Rf;igz(D) The largest
size of any n; x na ((¢1,42),(d1,92))4read code is
denoted by Aq(nl, nao, (61, 62), (51, 52)) The capacity
of the ((¢1,02),(01,02))q-read channel denoted by
cap,((f1,£2), (d1,02)) is defined by:

. log, Aq(ny,na, (01, 42), (01, 02))
lim sup .
n,mM—00 ny-ng

Theorem 7. For positive integers d1, d2, {1, {2, we have that
for every two integers q1,q2 > 1 such that ¢ = q192 + 1, the
capacity of the (({1,42), (d1,92))q-read channel, equals

m'capz((fh l1,q2 - £2), (q1 - 61,92 - 02)).

Theorem 7 implies that all the results in the two-dimensional
binary model can be generalized to any g-ary model as
well. Furthermore, we demonstrate in the next theorem the
connection between the capacity of the two-dimensional read
channel and that of the one-dimensional channel.

Theorem 8. For positive integers ¢, d, {1, {2, we have that
1) If 65 > 45 ¢
cap, (61, 62), (01,02)) = Fcap, (b - (1,2 - 01).

2) If 65 divides /5
cap,((¢1,4€2), (01,02)) = cap,(da - £1, 02 - &1).

In addition, for all cases where §; < ¢;
cap, (01 - £2,01 - 62) < cap,((£1,£2), (01,02)) < cap,(f2,d2).
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