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ABSTRACT: Machine learning is an effective tool for predicting
reaction rate constants for many organic compounds with the
hydroxyl radical (HO•). Previously reported models have achieved
relatively good performance, but due to scarce data (<1400
records), the applicability domain (AD) has been significantly
limited. To address this limitation, we curated a much larger
experimental data set (Primary data set), which contains 2358
kinetic records. We then employed both the group contribution
method (GCM) and a semisupervised learning (SSL) strategy to
add new data points, aiming to effectively expand the model’s AD
while improving model performance. The results indicated that
GCM improved the model’s performance for chemicals outside the
AD, while SSL expanded the model’s AD. The final model, after incorporating 147,168 new data points, achieved an R2 = 0.77, root-
mean-square-error = 0.32, and mean-absolute-error = 0.24 on the test set. Importantly, the AD was expanded by 117% compared to
the model developed solely based on the Primary data set, and the final model can be reliably applied to more than 560,000
chemicals from the DSSTox database. Further model interpretation results indicated that the model made predictions based on a
correct “understanding” of the impact of key substituents and reactive sites toward HO•. This research provides an effective method
for augmenting data sets, which is important in improving ML model performance and expanding AD. The final model has been
made widely accessible through a free online predictor.
KEYWORDS: applicability domain, group contribution method, hydroxyl radical, machine learning, reaction rate constant,
semisupervised learning

■ INTRODUCTION
Machine learning (ML) is a powerful tool for addressing many
real-world problems. However, its application in various fields,
including the environmental field, is often constrained by the
lack of sufficient data.1−3 Specifically, the sample size for
modeling environmental chemical reactivity usually ranges
from dozens to thousands. For example, an ML model
designed to predict the bioaccumulation of organic pollutants
from soil to plant roots relied on 341 data points for 72
chemicals.4 Recent ML models for predicting chemical
reactivity across different processes included just 117 organic
and 10 inorganic species for abiotic reduction by Fe(II)-
associated reductants,5 1978 chemicals for adsorption,6 978
records for 206 chemicals for anaerobic biodegradation,7

12,750 records spanning 6032 chemicals in aerobic biode-
gradation,8 and 195, 191, 759, and 557 records for oxidation by
HClO, chlorine dioxide, ozone, and sulfate radicals,
respectively.9 Even in the extensively studied field of organic
chemical degradation by hydroxyl radicals (HO•), the latest
model for predicting reaction rate constants (k) used only
1374 data points.10 This data scarcity inherently limits the

diversity of chemical structures in the data set, so the
corresponding ML models face at least three main limitations.
First, the model applicability domain (AD) is limited by the
chemical structures present in the training data sets. Therefore,
it is challenging to extend these models to many environ-
mentally relevant compounds, such as those within the
Distributed Structure-Searchable Toxicity (DSSTox) database
with over 840,000 chemicals.11 In fact, only 38% of the
chemicals in the DSSTox database fall within the model AD for
the Fe(II)-associated reductants.5 Second, with smaller data
sets, the risk of overfitting increases, where models may capture
noise rather than underlying principles. This limits the models’
ability to generalize to new compounds, reducing their
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predictive accuracy and robustness. Lastly, small sample sizes
restrict the depth of mechanistic insights and hinder the
discovery of new knowledge from the models. Therefore, the
obtained ML models capture only partial trends within the
data sets, and these trends may even sometimes be biased.9

Common methods for obtaining environmental data include
literature reviews, database extractions, experiments, and
computational techniques.5,12,13 While literature and databases
are commonly used data sources for ML models, existing
models have often already summarized the available data.
Therefore, expanding the data sets typically requires additional
experiments, which can be time-consuming. For example, the
OECD 301 tests take 28 days to assess chemical biodegrad-
ability.14 Moreover, the absence of commercial standards for
many chemicals makes experimental evaluation challenging. As
a result, it is necessary to develop an efficient strategy to
significantly expand the data beyond the aforementioned
methods. For image data, common augmentation methods
include geometric transformations, color space transforma-
tions, noise injection, and affine transformations.15,16 For
tabular data, augmentation methods involve synthetic data
generation, noise injection into numerical features, and feature
transformations.17 However, these approaches have significant
limitations because they do not introduce new, meaningful
data points or chemicals. For example, phenol remains phenol
regardless of how its images are flipped or rotated.18 Synthetic
data generation methods, such as the synthetic minority
oversampling technique (SMOTE) and generative adversarial
networks (GANs), only create new data points that resemble
the original data to address data imbalance issues,19 but these
synthetic data may lack practical chemical meaning.
Furthermore, image data augmentation methods are not
applicable to molecular descriptors or molecular fingerprints,
which are crucial for describing chemical information.
Consequently, the corresponding model ADs remain limited
to the data obtained by traditional methods. Therefore,
developing alternative data augmentation methods that are
suitable for different types of ML models and capable of
generating a significant amount of new data is critically needed.
To this end, there are two potentially promising strategies:

the group contribution method (GCM) and semisupervised
learning (SSL). The GCM refers to a set of techniques used
primarily in the field of chemistry and chemical engineering to
estimate the properties of molecules and mixtures.20,21 In
terms of chemical reactivity, GCM decomposes a chemical
structure into several groups, each of which contributes to a
portion of the overall reactivity.22,23 It performs well when
applied to chemical substances with specific structures. For
example, Minakata et al. 2009 developed a GCM model based
on 310 chemicals to predict the log k between organic
compounds and HO•, which performed well for chemicals that
typically undergo hydrogen-atom abstraction and aromatic
compound addition.23 Therefore, as long as appropriate
chemicals are selected for prediction using GCM, the
prediction results can serve as new data points. Besides, unlike
traditional quantitative structure−activity relationship (QSAR)
models that require extensive features such as molecular and
quantum chemical descriptors to accurately represent chemical
reactions,9,24−26 GCM models do not require such complex
computational data, which can often be challenging to
obtain.27,28 For SSL, it is useful when there are some labeled
data�data points with output values�but many more
unlabeled data�data points without output values,29 a

situation that closely mirrors our current predicament. Self-
training is a specific SSL technique where a model uses its own
predictions (pseudolabels) to teach itself. It trains iteratively
on a labeled data set, predicts labels for unlabeled data, and
then retrains on the combined data set.30,31 Therefore, SSL is
an effective method for addressing data scarcity and the high
costs of labeling. Common SSL applications include text
classification and image recognition. For example, Meng et al.
2018 trained a text classification model using a pseudodocu-
ment generator and self-training module with only 20 labeled
documents per class and 500−1000 pseudo documents of each
class, resulting in an increase in the micro-F1 score from 0.668
to 0.823.32 Lee et al. 2013 used SSL to train an image
classification model with 600 labeled data points and 70,000
unlabeled data points, improving the classification error from
8.57% to 5.03%.33 Although there are no relevant environ-
mental applications of SSL so far, we could employ SSL to
obtain new data based on the existing unlabeled database.
More information on GCM and SSL can be found in Texts
S1−S2.
In this work, we coupled GCM with SSL for the first time to

significantly expand the sample size, and examined the
accuracy and generalization ability of the corresponding ML
model. Our study focused on the oxidation of organic
chemicals by the HO•, a process with extensive experimental
data and previously reported GCM models.34−36 While many
studies have developed machine learning models to predict the
log k between HO• and chemicals, these models are limited by
the small size and diversity of the data sets.10,18,36,37 For
example, Zhong et al. 2021 reported a model combining deep
neural networks and extreme gradient boosting (XGBoost)
that achieved R2 = 0.60−0.71 with a data set comprising 1089
points.37 Similarly, Sanches-Neto et al. 2021 developed an
XGBoost model to attain an R2 = 0.82, based on a data set
containing 1374 data points.10 In our approach, as illustrated in
Figure 1, we first significantly expanded the Primary data set to
include 2358 data points and developed the ML-based Primary
model. Then, we identified chemicals suitable for prediction
using the GCM model and integrated the prediction results
into the training set to develop an improved ML model�the
Primary + GCM model. Next, we predicted the log k for all
chemicals in the DSSTox data set using the Primary model,
selected predictions that met a specific confidence threshold as
pseudolabels, and added these predictions and the correspond-
ing chemicals into the training set to update the Primary
model. We iteratively refined the model as described above,
resulting in the development of the Primary + SSL model.
Finally, SSL was applied to the Primary + GCM model to
obtain the final Primary + GCM + SSL model. To evaluate the
models’ applicability, we defined the AD by applying these
models to the DSSTox database. For model validation, we
utilized the SHAPley Additive exPlanations (SHAP) method,
alongside comparisons with known mechanisms, to interpret
the resulting models. Finally, the final model has been made
accessible through a free, user-friendly online predictor,
available at https://envmodel-cwru.streamlit.app/.

■ METHOD
Kinetic Data Set. In this research, all kinetic data records

were collected from published journal articles and the National
Institute of Standards and Technology (NIST). A data set,
named “Primary dataset”, which comprises 2358 data points, is
summarized in the Excel file provided in the Supporting
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Information. The data collection process followed four steps:
(1) gathering data records from both published papers and
NIST, including chemical information, pH, temperature (T),
and log k values; (2) acquiring the SMILES notation for each
chemical; (3) for data points with the same SMILES, pH, and
T, removing outliers based on the log k values and averaging
the remaining values to obtain the final log k value; and (4)
preprocessing the data, including calculating species acid/base
fractions (α notation) and standardizing data format. For more
information on the data collection and processing methods,
please refer to Texts S3−S4.
Model Development. Primary Model. The development

of the Primary model for predicting log k included three key
stages: (1) Initial screening of 13 ML algorithms, 5 chemical
representations, and 5 descriptors (molecular fingerprint, pH,
T, pKa, and α notation). This stage was essential for identifying
the most effective combination for our predictive models; (2)
data grouping and splitting: to ensure that each type of data
records was evenly distributed across training, validation, and
test sets, chemicals were meticulously grouped by three distinct
strategies: K-means clustering, agglomerative hierarchical
clustering, and spectral clustering. Then, the data points of
each group were divided into training, validation and test sets
in a ratio of 8:1:1; (3) hyperparameter tuning using Bayesian
optimization, following the selection of the optimal ML
algorithm and chemical representation. This step was critical to

enhancing the model’s performance. More details of Primary
model development can be found in Texts S5−S7.

Primary + GCM Model. The Primary + GCM model was
built based on the Primary model after selecting suitable
chemicals from the DSSTox database (details below). GCM
was then used to predict the log k of these chemicals (details in
Text S8). To accurately assess the impact of incorporating
GCM predictions on model performance, we strictly used
experimental data for the validation and test sets. This
approach ensures that these sets accurately represent real-
world experimental data and unseen scenarios, thereby
maintaining the integrity of our model evaluation. After adding
the prediction results to the training set, we retrained the
Primary model to obtain the Primary + GCM model. One
critical aspect of using GCM to acquire new data points was
discerning which chemicals were amenable to GCM prediction
to ensure the prediction quality. In this research, three
methods were deployed for chemical selection: similarity
analysis; classification model; a combination of similarity
analysis and classification model. Prior to employing these
methods, preliminary steps were undertaken, as detailed below
and in Figure S2.

Preparation. This step aimed to establish the foundation for
the three methods. The Primary data set contained 2358
experimental data points, encompassing 1756 distinct chem-
icals. GCM was utilized to predict log k for all 1756 chemicals.
Based on the prediction results, the chemicals were categorized
into three types: type I, where the prediction fell within 0.5−2
times the experimental value; type II, where the prediction fell
outside the 0.5−2 times range; and type III, where GCM was
incapable of predicting the log k values of the chemicals. The
number of chemicals in each category was 476, 417, and 863 in
type I, II, and III, respectively.

Similarity Analysis (Method 1). We conducted similarity
calculations between all chemicals in DSSTox and the 476 type
I chemicals. Details of the similarity calculation method can be
found in Text S9. Chemicals from DSSTox with the highest
similarity exceeding 0.7 were selected for GCM prediction,
resulting in a total of 116,233 chemicals. We chose a threshold
of 0.7 because previous research suggested that a high
similarity between the query data and the training data
increased the reliability of predictions.8 A lower threshold
might result in inaccurate predictions from GCM; whereas a
higher threshold could make the added chemicals too similar
to the original ones, limiting the model’s AD expansion.

Classification Model (Method 2). A classification model
was developed based on the 1756 chemicals and their
corresponding types. The input was the SMILES of the
chemicals, and the output was its type (I, II or III). This
classification model was then applied to the whole DSSTox
database to identify chemicals that belonged to type I, resulting
in a total of 183,759 chemicals. More details of the
classification model can be found in Text S10.

Combination of Similarity Analysis and Classification
Model (Method 3). The third method combined the first two
selection methods. Specifically, the classification model was
applied to the preselected 116,233 chemicals, resulting in a
total of 67,181 chemicals that not only exhibited a similarity
over 0.7 to type I chemicals from the Primary data set but also
were classified as type I by the classification model.
We also investigated how the selection methods, and the

similarity and quantity of chemicals added impacted model
performance and AD. As shown in Figure S3, 116,233,

Figure 1. Flowchart of this research.
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183,759, and 67,181 chemicals were selected by Methods 1, 2,
and 3, respectively. The similarity of these three groups of
chemicals to the chemicals in the Primary data set was
calculated, and each group was classified into different
similarity ranges according to the maximum similarity value.
Using Method 1 as an example, since the lowest similarity of
the chemicals selected must be higher than 0.7, the 116,233
chemicals were divided into three similarity ranges: 0.7−0.8,
0.8−0.9, and 0.9−1.0. The number of chemicals in each range
was 14,274, 36,422, and 65,537, respectively. A portion of the
chemicals in each range was then randomly selected for
prediction using GCM. Methods 1 and 2 investigated the
impact of adding high and low similarity chemicals on model
performance, respectively; while Method 3 focused on the
comprehensive impact of both methods. Specifically, Methods
1 and 3 were designed to select chemicals within similarity
ranges of 0.7−0.8, 0.8−0.9, and 0.9−1.0, while Method 2
targeted chemicals with lower similarities, within the ranges of
0.4−0.5, 0.5−0.6, and 0.6−0.7. For each similarity range, we
randomly selected 100, 200, 300, or 400 chemicals and used
GCM to predict their log k values, which were then added to
the training set to retrain the Primary model. It should be
noted that the GCM predictions were assumed to represent
log k under standard conditions (pH = 7.0, T = 25 °C).
Additionally, chemicals with a similarity equal to 1 were
eliminated.
Primary + SSL Model. The Primary + SSL model was also

built based on the Primary model. Specifically, we used the
Primary model to predict log k’s (referred to as pseudolabels)
for the unlabeled chemicals in the DSSTox database and
selected the most confident predictions (details below). Then,
we added the selected chemicals with their pseudolabels to the
training set and retrained the model. The prediction-
augmentation-retrain process was repeated until a stopping
criterion was met to obtain the Primary + SSL model. In SSL
for regression tasks, confidence filtering was used to assess the
level of trust we could place in the model’s predictions for
unlabeled data. As shown in Figure S2, two strategies were
used to determine the confidence of the predictions: similarity
analysis and standard deviation.
Similarity Analysis (Method 4). First, we calculated the

similarity between each chemical in DSSTox and all chemicals
in the Primary data set. When the similarity was higher than a
certain threshold, the quarry chemical and its prediction results
were added to the training set to retrain the model. In the next
iterations, the similarity between each chemical in the DSSTox
database and the chemicals in the updated training set was
recalculated, and then new chemicals were selected again based
on the same threshold.
Standard Deviation (Method 5). By generating multiple

models with the same training set and comparing their
predictions, we could evaluate the variability of these
predictions, which reflected uncertainty. Specifically, we
created five models using cross-validation in each iteration.
These models concurrently predicted the log k for chemicals in
DSSTox, allowing us to compute the predictions’ standard
deviation for each chemical. A standard deviation below a
specified threshold signified a high confidence level in the
chemical’s prediction. Chemicals with high confidence
predictions were then added to the training set for model
retraining.
In the process of establishing the Primary + SSL model, we

studied the impact of threshold values, the number of added

chemicals, and the number of iterations on model perform-
ance. For Method 4, we examined the similarity thresholds of
0.70, 0.75, 0.80, 0.85, 0.90, and 0.95. For Method 5, we used
standard deviations of 0.0075, 0.01, 0.02, 0.03, or 0.04 as the
threshold. Since using the entire DSSTox chemicals was too
time-consuming, we only used 10% when testing different
thresholds. To analyze the impact of the number of added
chemicals, we selected 10% or 100% of the DSSTox chemicals.
We conducted a sensitivity analysis to assess the impact on
model performance in two ways: (1) by varying pH and
temperature to understand how changes in these input
assumptions affect predictions, and (2) by introducing
different levels of noise into the pseudolabels to evaluate the
impact of errors in these labels (details in Text S11). In all
cases, the above process was repeated until no new chemicals
were selected or a maximum of 9 iterations was reached. Note
that if a new iteration selected the same chemical as before, the
updated prediction result was added to the training set to
replace the previous pseudo label. More details about
hyperparameter tuning during SSL can be found in Text S12.

Primary + GCM + SSL Model. For the Primary + GCM
model, we identified the most effective method for selecting
chemicals and determined the optimal number to add to the
training set to enhance model performance. For the Primary +
SSL model, we established the most suitable threshold, number
of iterations, and the appropriate volume of data from the
DSSTox database to use as our selection pool. After
determining these parameters, we applied the SSL approach
to the Primary + GCM framework, resulting in the final
Primary + GCM + SSL model. To address the concern about
error propagation, we employed two methods to explore how
prediction inaccuracies of GCM could be propagated by the
SSL process (details in Text S13).

Model Evaluation and AD. To comprehensively evaluate
the practical application potential of the models and the
effectiveness of the GCM and SSL strategies, we employed two
types of test sets: a similar test set and a dissimilar test set. The
similar test set was obtained by grouping all chemicals in the
Primary data set, then randomly splitting off 10% from each
group and combining them. For the dissimilar test set, the
Primary data set was divided into a dissimilar test set (10%)
and the remaining set (90%). The similarity between each
chemical in the dissimilar test set and all chemicals in the
remaining set was below 0.70. After that, the remaining set was
grouped and then divided into the training and validation sets.
The similar and dissimilar test sets were able to comprehen-
sively reflect the performance of the models against within-AD
(similar) and out-of-AD (dissimilar) chemicals, respectively
(more below). The test sets were fixed during the model
training process to ensure consistent comparison among
different models, and the robustness of the models was
assessed by different splitting of training and validation sets. It
should be noted that since it took a long time for SSL to train a
series of iterations, there was only one test set to evaluate
model performance during the training process, and the
robustness of the model was ensured by dividing the remaining
set in five random states. More details of the test sets can be
found in Text S14. R2 (R-squared), RMSE (root-mean-square
error) and MAE (mean absolute error) were used to evaluate
model performance. More details of the parameters and model
evaluation can be found in Text S15.
The AD of a model assessed the model’s applicability to a

given chemical.38 This was achieved by calculating the
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similarity between the query chemical and each chemical in the
training data set. The highest similarity value indicated the
similarity level between the target chemical and the training
set. If this value surpassed 0.7, the chemical was within the
model’s AD, indicating a reliable prediction, and the opposite if
it did not. After defining the AD for each model, we calculated
its coverage on the DSSTox database. The performance of the
final model against DSSTox chemicals was determined by
testing chemicals across four different ranges of similarity levels
(i.e., 0.9−1.0, 0.8−0.9, and <0.7−0.8) under five random
states. Their corresponding RMSE and R2 values were then
determined. More details of the AD can be found in Text S16.
Model Interpretation. To validate the ML models and

evaluate the importance and contribution of different features
to log k, we employed two methods: (1) the SHAP (SHapley
Additive exPlanations) analysis and (2) mechanistic inter-
pretation. SHAP analysis is a method for interpreting complex
ML models by attributing the contribution of each feature to
the final prediction.37 To explain the reaction mechanisms
learned by the model from the training data, we first correlated
the SHAP values of the MACCS fingerprint bits for
monosubstituents of aromatic compounds with the reported
Hammett constants.39 As the model development process
involved a few times of random splitting of the data, each
splitting might result in slightly different SHAP values and
their rankings. Therefore, we calculated the mean absolute
SHAP values (feature importance scores) as the final SHAP
values for each feature. More details of the MACCS fingerprint
can be found in Text S17. We predicted log kpred values for
selected compounds under experimental conditions and then
built linear correlations between the log kpred values and the
highest occupied molecular orbital (EHOMO) under selected
conditions. A good correlation would indicate that our model
was based on a correct understanding of the mechanism.5,37

We also compared the model’s prediction results for aromatic
and nonaromatic chemicals in the DSSTox database. More
details of SHAP analysis and mechanistic interpretation can be
found in Texts S18−S19.

■ RESULTS AND DISCUSSION
Meta-Analysis of the Primary Data Set. The compiled

Primary data set contained a total of 2358 data records for
1756 chemicals. Compared with recent studies on HO• (data
points < 1400),10,18,36,37 the amount of data had been greatly
improved. The log k of various chemicals toward HO• were
mainly between 109 and 1010 (Figure S4). When the Primary
data set was compared with the DSSTox database, 1126
chemicals were common between the Primary data set and the
DSSTox database, representing 0.15% of the 844,412 DSSTox
chemicals. Additionally, 710 chemicals were common between
the Primary data set and the ANST/POL list (chemicals
detected or identified in environmental media,40 Text S19)
(Tables S1−S2), accounting for 3.60% of the total 19,776
chemicals in the list.40 Among the top 500 chemicals in the
ANST/POL list, only 107 were in the Primary data set. As the
distribution of the 710 chemicals shown in Figure S5, the top
seven categories studied for reaction kinetics with HO•,
representing 81.83% of the 710 common chemicals, include
pharmaceuticals, pesticides in use, chemicals of emerging
concern, plastics additives, gases/VOCs/CFCs/HFCs, dis-
infection byproducts, and fragrances.

Model Development and Evaluation. ML Algorithms,
Chemical Representation, and Descriptor Prescreening. The
performance of different ML algorithms is shown in Figure S6.
The results indicated that Random Forest (RF) and XGBoost
(XGB) had better performance than the other ML algorithms.
To further compare the performance of RF and XGB, the two
models were tuned using Bayesian optimization. After
optimization, XGB had better performance and less overfitting
than RF (Figure S7).41 Therefore, XGB was selected as our
default algorithm for the regression models. When we
compared different chemical representations (Figures S8−
S10), the MACCS fingerprint had the best model performance
so it was used as the chemical representation below. More
discussion about chemical representation can be found in Text
S21.
In this study, there are two types of descriptors: compound

descriptors, including molecular fingerprint, pKa and α
notation; and reaction descriptors, including pH and T. The
best model performance was obtained using pH, T and

Figure 2. Box plot of log k values for 70 groups using K-means clustering. The left blue area represents the ten groups with the smallest log k. The
right red area represents the ten groups with the largest log k. “Negative” and “Positive” mean the representative substructures belonging to the left
and right ten groups, respectively. (R indicates the ring structure, while R′ indicates the aromatic ring structure).
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Figure 3. (a) Model performance (R2) for the similar test set and dissimilar test set before and after the addition of GCM predictions based on
Methods 1, 2, and 3. The numerical range represents the similarity of the newly added chemicals to the chemicals in the Primary data set. The
number in parentheses indicates the number of newly added chemicals. (Method 1: similarity analysis, Method 2: classification model, Method 3:
combination of similarity analysis and classification model). (b) Model performance (R2) for the similar test set and dissimilar test set after different
iterations of self-learning based on Method 4 (similarity analysis) and Method 5 (standard deviation). (c) Comparison of the percentages of
DSSTox chemicals in different similarity ranges among different models. The black dotted line, based on the Primary model, divides DSSTox
chemicals with a similarity value ≥0.7 from those <0.7. More information can be found in Text S16.
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MACCS fingerprint as inputs (Figure S11). Adding pKa and α
notation did not improve the performance and might
introduce unwanted noise.
Chemical Grouping. Model performance for the similar test

set, using various grouping strategies, is depicted in Figure S12,
with K-means of 70 clusters showing optimal results, and
chemical distribution across groups is detailed in Table S5. For
the dissimilar test, the best performance was achieved with 85
clusters (Figure S13), guiding further optimizations for this
test set.
The 70 groups were arranged in order based on their median

log k values, from smallest to largest. Representative functional
groups were identified from the 10 groups with the highest and
lowest rate constants. The results in Figure 2 indicated that
aromatic compounds generally exhibited higher log k than
aliphatic compounds, consistent with previous results.42,43 The
conjugated π electron systems of aromatic compounds not
only increased electron density but also boosted the stability of
the molecules.44,45 This, in turn, made reactions with HO•

more feasible. Functional groups altered a molecule’s electron
density by donating or withdrawing electrons, affecting its
reactivity with HO•.46 For example, electron-withdrawing
groups (−NO2, −SO3

−, halogens, −COOH) reduced electron
density around carbon atoms, making them less reactive
toward HO•; while the opposite was true for electron-donating
groups (e.g., −OH, −NH2).

47,48

Hyperparameter Tuning. As shown in Figure S14a−c, after
Bayesian optimization, model performance for the similar test
set achieved Rtest

2 = 0.75, RMSEtest = 0.35 and MAEtest = 0.24,
improved by 13.64%, 17.50% and 7.69%, respectively, after
optimization. For the dissimilar test set (Figure S14d−f), the
Rtest

2, RMSEtest and MAEtest of the model before and after
optimization are 0.43, 0.56, 0.42 and 0.47, 0.53, 0.39,
respectively, improved by 9.30%, 5.36% and 7.14% respec-
tively. The optimized hyperparameters are shown in Tables
S6−S7.
Chemical Selection Methods. Chemical Selection

Methods for GCM. As shown in Figures 3a and S17, model
performance against the similar test set became worse after
adding the GCM predicted log k by Methods 1 and 3, but
improved marginally by Method 2. The chemicals selected by
Methods 1 and 3 are highly similar to the chemicals in the
Primary data set, which leads to many more chemicals in one
category than in others (sample imbalance), causing the model
to favor frequently occurring categories, affecting the overall
performance. In contrast, the chemicals selected by Method 2
have low similarity to the Primary data set, which augments
categories with insufficient data types, thereby improving
model performance. For the dissimilar test set, the chemicals
added through the three methods all improved model
performance to a certain extent. Specifically, 200 chemicals
added through Method 2, with a similarity range of 0.4−0.5,
most effectively improved the model’s performance by 6.00%,
2.79%, and 3.27% in Rtest

2, RMSEtest, and MAEtest, respectively.
These results indicated that adding chemicals with low
similarity could enhance the model’s performance for out-of-
AD chemicals. In other words, for out-of-AD chemicals, it is
crucial to select additional (different) data points that can
enable the model to learn new information.
The chemical percentages in DSSTox before and after data

augmentation by GCM are shown in Figure 3c. Based on the
Primary data set, chemicals with a similarity greater than 0.7
comprised 30.73% of the entire DSSTox database. After adding

400 chemicals with a similarity between 0.6 and 0.7 through
Method 2, this proportion increased most effectively to
36.86%. Although adding chemicals with similarity between
0.4 and 0.5 through Method 2 improved model performance, it
only increased this proportion to 32.15%. The likely reason is
that 37.75% of the DSSTox chemicals were in the similarity
range of 0.6 to 0.7, while only 5.10% were in the range of 0.4−
0.5. Therefore, adding chemicals within the 0.6 to 0.7 similarity
range more effectively encompassed a larger number of
chemicals to be within the AD. Generally speaking, adding
data points from the range with higher density should be more
efficient in expanding the AD.

Chemical Selection Methods for SSL. According to Figures
3b and S18, for the similar test set, Method 4 with a 0.90
threshold effectively improved performance, whereas Method 5
across various thresholds did not significantly impact model
performance. The likely explanation is that the model’s initial
performance was sufficiently high (Rtest

2 = 0.737). Con-
sequently, the selected chemicals and pseudolabels represented
“knowledge” the model had learned. Retraining the model
using these pseudolabels helped the model to refine its
knowledge and improve its performance on data that was
similar to the training set. However, using different percentages
of the DSSTox database as the selection pool did not
significantly affect model performance on the similar test set
(Figure S19). For the dissimilar test set, both Methods 4 and 5,
regardless of the threshold, generally negatively affected model
performance. Given the model’s initial poor performance
against the dissimilar test set (Rtest

2 = 0.485), it is evident that
the model struggled with these chemicals. Adding pseudolabels
further biased the model toward chemicals similar to those in
the training set, exacerbating its inability to handle dissimilar
data.
When Method 4 was applied to 100% of DSSTox (Figure

3c), the percentage of chemicals added to the training set
increased with an increasing number of iterations. Considering
both model performance and AD, the model achieved its best
performance at iteration 8, where 135,929 chemicals had been
added, increasing the proportion of within-AD chemicals
(similarity ≥0.7) from the initial 30.73% to 65.15%. This
increase signified that an additional 34.87% of the chemicals
(over 294,000 chemicals) from DSSTox were incorporated
into the AD. Therefore, selecting an appropriate threshold and
iteration of SSL effectively enhanced the model robustness and
expanded the AD. However, SSL did not improve the
generalization ability of the model, that is, the predictive
ability, for chemicals outside the AD. Therefore, a combined
GCM and SSL strategy might both improve model perform-
ance and expand AD, as shown below. The sensitivity analysis
showed that varying pH (0−13) and temperature (3−85 °C)
had minimal impact on the Primary + SSL model. While
random GCM prediction errors did not degrade performance,
larger systematic errors reduced accuracy, without worsening
across iterations. Besides, introducing noise into pseudolabels
lowered performance, but the model stabilized with more
iterations, highlighting the importance of high-quality inputs.
Details on the above sensitivity analysis and error propagation
results are provided in Text S22.

Final Model Performance and AD. In the final Primary +
GCM + SSL model, the Primary + GCM model used the 200
chemicals in the 0.4−0.5 similarity interval selected by Method
2; the SSL utilized Method 4, employing a threshold of 0.9 and
a DSSTox percentage of 100%, to train the final model based
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on the Primary + GCM model. According to Figure S25a,b
and Table S9, the model’s performance on the similar test set
improved marginally, with the R2 increasing from 0.75 in the
Primary model to 0.77 in the Primary + GCM + SSL model at
iteration = 9. The performance of the Primary + GCM + SSL
model for chemicals in different similarity intervals is shown in
Table 1. For chemicals with a similarity value greater than 0.7,

the model achieved an R2 of 0.69−0.83 and a RMSE of 0.27−
0.32. In contrast, chemicals with similarity below 0.7 are
considered outside the AD, resulting in an R2 = 0.51 and
RMSE = 0.45. The analysis of the MACCS fingerprint bit
distribution for the Primary data set (Figure S26a) revealed
that nearly all bits were represented, indicating that the data set
effectively captured the essential structural features necessary
for predicting log k. The similar distribution of log k values in
the Primary data set versus the added chemicals (Figure S25c)
suggested that the log k values obtained for the added
chemicals would enhance the data density at the peak of the
Primary data set. Furthermore, the distribution of chemicals in
the Primary data set was relatively uniform (Figure S26b), with
the added chemicals increasing density in several regions.
However, compared with the DSSTox database, some sparse
areas remained (Figure S26c,d), likely due to the structural
similarity-based chemical selection methods. As shown in
Figure S25d, the model’s AD significantly expanded from
30.73% to 66.90% after integrating GCM and SSL, such that
over 560,000 chemicals from DSSTox are now included in the

Table 1. AD of the Primary + GCM + SSL Model and the
Model Applicability toward the DSSTox Database

expected prediction
percentages of DSSTox

chemicals

similarity R2 RMSE each level (%)
cumulative

(%)

0.9−1.0 0.83 ± 0.02 0.27 ± 0.02 19.24 19.24
0.8−0.9 0.76 ± 0.01 0.34 ± 0.01 19.25 38.49
0.7−0.8 0.69 ± 0.04 0.41 ± 0.03 28.41 66.90
<0.7 0.51 ± 0.02 0.45 ± 0.02 33.10 100

Figure 4. (a) Common features of the top 20 most important features based on their mean absolute SHAP values for the Primary model (blue) and
Primary + GCM + SSL model (red). The box plots show their importance scores; while the “+” and “−” symbols on top indicate positive and
negative contributions to the log k, respectively. The “*” symbol on the bottom indicates there is statistical difference (p-values <0.05) between the
SHAP values. A: any valid periodic table element symbol; Q: hetro atoms, any non-C or non-H atom; X: halogens; =: double bond; $: ring bond; !:
chain or nonring bond. More information about MACCS fingerprints can be found in Text S17 and Table S3. Note: there is no symbol above pH
because the effect of pH on log k is 2-fold. (b) Correlations between average SHAP values of electron donating/withdrawing groups and Hammett
constant of inductive effect. The specific functional groups, MACCS fingerprint bits, and Hammett constant values (σI, σR, and σP) are shown in
Table S11. (c) Correlations of log kpred with EHOMO.
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AD, allowing our model to provide reliable predictions for
them.
Model Interpretation. To validate the Primary + GCM +

SSL model, we first identified the most influential factors on
log k by calculating the SHAP values for all 168 features�166
MACCS fingerprint bits, pH, and T. According to Figures 4a
and S27 and S28, the top 20 important features of the Primary
and Primary + GCM + SSL models largely overlapped,
indicating that the integration of GCM and SSL did not
significantly alter the prediction mechanism of the models.
Specifically, for both models, aromatic functional groups and
ring structures had a strong positive impact on log k, consistent
with the meta-analysis results (Figure 2). S and C�C double
bonds also had positive effects on log k, likely because they are
electron-donating.49−51 In fact, the H−S group typically reacts
first, compared to H−C and H−N groups.34 Features that had
a negative impact on log k mainly included heterocyclic ring,
chain structures, and halogens functional groups (i.e.,
QAAAAA@1, X(HALOGEN), AA(A)(A)A, XA(A)A). This
is also consistent with the meta-analysis results. pH
significantly influenced log k, exhibiting both positive and
negative effects, although the positive effects were more
predominant due to the pH-dependent reduction potential of
HO• and deprotonation of functional groups.52,53 Meanwhile,
T was not highlighted due to limited data, revealing a
limitation of SHAP analysis.8 Further discussion of pH and T is
in Text S23. Note that for the Primary + GCM + SSL model,
the order of the top 20 features slightly differed from that in
the Primary model, and their importance values were also
slightly lower. This variation may be due to the expanded
training set, allowing the model to learn more about chemical
structures and better assess the impact of structural features.
Figure S30a shows the distribution of the final model

predicted log k values for the DSSTox database. While the
values for both aromatic and nonaromatic chemicals largely fall
between 9 and 10, the nonaromatic chemicals show a broader
distribution in the 7−9 range. A statistically significant
difference (p-value <0.05) between the two groups confirms
that the model has correctly learned the effect of aromatic rings
on log k values. For aromatic compounds, the effects of
substituents are evident in the significant correlation between
log k and the Hammett constant.54 As shown in Figures 4b and
S30b,c, important electron-donating and -withdrawing func-
tional groups (based on the SHAP values) had a good linear
relationship with their corresponding Hammett σ values for
the Primary and Primary + GCM + SSL models. However, the
fitting performance of the Primary + GCM + SSL model was
slightly inferior to that of the Primary model. A possible reason
is that the training set of the Primary + GCM + SSL model has
been significantly expanded, allowing for a comprehensive
consideration of multiple features and feature interactions
during predictions.37 As a result, the fitting performance for
individual features and the Hammett constant has decreased.
To further validate and interpret the models, we analyzed

log kpred values for selected compounds under experimental
conditions similar to those in the literature. While EHOMO has
been proven by many studies to have a strong linear
correlation with log k,55−57 it was not used as input because
not many chemicals had this value available. The results in
Figure 4c showed that there was a good linear relationship
between log kpred and EHOMO for the Primary model (R2 =
0.667) and the Primary + GCM + SSL model (R2 = 0.638),

demonstrating that the models predicted a chemical’s log k
based on correct knowledge.

■ ENVIRONMENTAL SIGNIFICANCE
This study developed enhanced ML models to predict the
reaction rate constants of HO• with organic compounds in
water, as a case study to explore the impact of two data
augmentation approaches�GCM and SSL. A Primary data set
comprising 2358 experimental data points was collected, which
is significantly larger than those previously reported (typically
less than 1500 data points). However, the model’s AD based
solely on this data set covered only 30.73% of the DSSTox
database. To significantly enhance the model’s applicability, we
integrated GCM with SSL for the first time to effectively
expand the data set to include more than 140,000 chemicals.
The AD of the final Primary + GCM + SSL model covered
66.90% of the DSSTox database, encompassing approximately
560,100 chemicals. Additionally, the model exhibited good
predictive performance for chemicals within the AD (R2 =
0.69−0.83 and RMSE = 0.27−0.32). To enhance the
accessibility of the final model developed in this study, we
created a free online predictor (https://envmodel-cwru.
streamlit.app/) (a user guide in Text S24). This tool simplifies
the model’s usage, even for users with limited knowledge of
ML. Compared to previous models, the AD of our model is
significantly improved. Industries can leverage the model to
predict the reactivity of chemical intermediates with HO•,
optimizing synthetic pathways to reduce undesirable by-
products and enhance yield and safety in manufacturing. The
model’s expanded AD ensures accurate assessment of a wide
range of chemicals, enabling more efficient and cost-effective
production. Additionally, understanding how contaminants
react with HO• allows water treatment facilities to improve
purification systems, ensuring more effective removal of
contaminants and advancing treatment strategies. Pollutants
with low reaction rate constants tend to persist in natural and
engineered systems. Our model can prioritize these persistent
pollutants, help assess their environmental risks, and guide
their classification to support regulatory and remediation
efforts.
Our study goes beyond simply building a predictive model

for the reaction rate constants of hydroxyl radicals. The
primary goal of this research is to develop an effective method
for expanding data sets in a meaningful way. This approach
offers potential benefits not only for environmental research
but also for the broader chemical sciences, where limited data
sets often constrain research progress. This new approach is
not only applicable to HO• but also to other reactive species,
such as ozone, sulfate radical, and chlorine, by leveraging
existing QSAR models to generate new data points.58−60

Furthermore, this study is the first to apply SSL in the
environmental field to address data scarcity, and this
methodology can be extended to other fields where large
sets of unlabeled data are available. However, the effectiveness
of SSL is dependent on the underlying model performance.
Poor initial predictions could introduce noise in pseudolabels,
limiting model reliability. Additionally, some of the findings
from this study offer practical guidance for future experimental
work. Notably, there are currently few experimental studies on
chemicals with low similarity. Targeted experiments in this
area would not only advance our understanding of these
substances but also broaden the applicability of the proposed
model. In this way, our work bridges the gap between data-
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driven modeling and experimental research, laying a
foundation for more comprehensive future studies.
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