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Datalog→ is an extension of Datalog that allows for aggregation and recursion over an arbitrary commutative
semiring. Like Datalog, Datalog→ programs can be evaluated via the natural iterative algorithm until a !xed
point is reached. However unlike Datalog, the natural iterative evaluation of some Datalog→ programs over
some semirings may not converge. It is known that the commutative semirings for which the iterative
evaluation of Datalog→ programs is guaranteed to converge are exactly those semirings that are stable [11].
Previously, the best known upper bound on the number of iterations until convergence over 𝐿-stable semirings
is
∑𝐿
𝑀=1 (𝐿 + 2)𝑀 = ω(𝐿𝐿) steps, where 𝑀 is (essentially) the output size. We establish that, in fact, the natural

iterative evaluation of a Datalog→ program over a 𝐿-stable semiring converges within a polynomial number of
iterations. In particular our upper bound is 𝑁 (𝑂𝐿𝑀2 (𝑀2 lg 𝑃 + lg𝑂)) where 𝑂 is the number of elements in the
semiring present in either the input databases or the Datalog→ program, and 𝑃 is the maximum number of
terms in any product in the Datalog→ program.
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1 Introduction
Motivated by the need in modern data analytics to express recursive computations with aggregates,
Khamis et al. [11] introducedDatalog→, which is an extension ofDatalog that allows for aggregation
and recursion over an arbitrary commutative semiring.1 As a quick example, given a graph with
edge set 𝑄, the Datalog rule for computing the transitive closure of 𝑄 can be written as (see [1, 3]):

𝑅 (𝑆 ,𝑇 ) :- 𝑄 (𝑆 ,𝑇 ) ↓ ↔𝑁 (𝑅 (𝑆 ,𝑈 ) ↗ 𝑄 (𝑈 ,𝑇 )) (1)

1The results in [11] are on Partially Ordered Pre-Semirings (POPS). However, the key convergence properties are re"ected in
the core semiring of the POPS. Thus, it is su#cient to restrict our attention to semirings for the purpose of this paper.
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Datalog→ expands the expressiveness of the above rule by replacing ↓ with ↘ and ↗ with ≃, for a
given semiring2 𝜴 = (𝑉, ↘, ≃, 0, 1); the rule becomes:

𝑅 (𝑆 ,𝑇 ) :- 𝑄 (𝑆 ,𝑇 ) ↘
⊕
𝑁

(𝑅 (𝑆 ,𝑈 ) ≃ 𝑄 (𝑈 ,𝑇 )), (2)

where 𝑅 and 𝑄 are no longer just relations, but they are functions Dom ⇐ Dom ↑ 𝑉 , where Dom
is the domain of 𝑆 ,𝑇 and 𝑈 . These functions are also called 𝜴-relation, or 𝑊-relation in [8]. The
semantic and interpretation of the rule depends on the semiring 𝜴 and the database instance
(de!ning the function 𝑄) at hand. For example, when 𝜴 is the Boolean semiring we get back the
transitive closure problem; when 𝜴 is the min-plus semiring (R+ ⇒ {⇑},min, +,⇑, 0), and 𝑄 is the
edge-weight function of a graph, the rule de!nes recursively the shortest path length between
every node pair in a graph3

𝑅 (𝑆 ,𝑇 ) :- min{𝑄 (𝑆 ,𝑇 ),min
𝑁

(𝑅 (𝑆 ,𝑈 ) + 𝑄 (𝑈 ,𝑇 ))}. (3)

The striking similarity between transitive closure and all pairs shortest paths and a host of other
problems was recognized since at least the 1960s [6, 14, 19, 21, 22]. This is often referred to as the
algebraic path problem [18]. Standard algorithms textbooks (e.g. [3]) present generic solutions to
this problem, such as the Floyd-Warshall algorithm.

In our much more general setting, the transitive closure rule becomes Datalog, and the algebraic
path problem becomes Datalog→. Like Datalog, Datalog→ programs can be evaluated via the natural
iterative algorithm until a !xed point is reached. This is sometimes called the “naïve evaluation”
algorithm, or in other contexts Jacobi iteration, Gauss-Seidel iteration, or Kleene iteration [7,
18]. Furthermore, Datalog→ is attractive for practical applications because it also allows for a
generalization of semi-naïve evaluation to work, under some assumptions about the semiring [11].
While semi-naïve evaluation makes each iteration faster to compute, the total number of iterations
is the same as that of the naïve evaluation algorithm. Thus, bounding the number of iterations of
the naïve evaluation is an important question in practice.

In Datalog, it is easy to see that the number of iterations until a !xed point is reached is at most
the output size. This is because every iteration before convergence must derive at least one new
fact, due to monotonicity. For example, the transitive closure rule (1) reaches a !xpoint if we can
no longer infer the reachability of a new pair (𝑆 ,𝑇 ) of vertices. In contrast, the naïve evaluation of
Datalog→ programs over some commutative semirings may not converge. A simple example is the
sum-product semiring over the reals.
It is known that the commutative semirings for which the iterative evaluation of Datalog→

programs is guaranteed to converge are exactly those semirings that are stable [11]. A semiring
is 𝐿-stable [7] if 𝑋 (𝑂+1) (0) = 𝑋 (𝑂 ) (0) for every linear function 𝑋 (𝑌) = 𝑍 ≃ 𝑌 ↘ 𝑎 over the semiring.
(See Section 2 for a more formal de!nition of stability.) A semiring is stable if there exists a 𝐿 for
which it is 𝐿-stable. Previously, the best known upper bound [11] on the number of iterations until
convergence is

∑𝐿
𝑀=1 (𝐿 + 2)𝑀 = ω((𝐿 + 2)𝐿) steps, where 𝑀 is (essentially) the output size, and 𝐿 is

the stability index of the underlying semiring. In contrast there are no known lower bounds that
show that iterative evaluation requires an exponential (in the parameter 𝑀) number of steps to
reach convergence.

There are special cases where polynomial convergence rate is known. The !rst case is when the
semiring is 0-stable, as in the standard Boolean semiring, where it is known that naïve evaluation
converges in𝑁 (𝑀) steps [11]. The second case is when the input program is linear, meaning that in
every rule the product only contains at most one IDB relational symbol. In [10] it is shown that if
2See Section 2 for a formal de!nition of semirings.
3Here, we wrote min in pre!x notation for readability. The generic ↘ operator is more naturally written in in!x notation.
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the semiring is 𝐿-stable with 𝑏 elements in the semiring domain, then the iterative evaluation of all
linear Datalog→ programs converge after 𝑁 (min(𝐿𝑀3, 𝐿𝑀 lg𝑏)) steps.

Our Contributions. The open problem we address in this paper is whether the iterative evaluation
of Datalog→ programs over 𝐿-stable semirings might indeed require an exponential number of
steps to converge. Another way to frame our motivating research question is whether or not
polynomial convergence is a special property of linear Datalog→ programs that is not shared by
general Datalog→ programs. Our main !nding is stated in Theorem 1.1.

T!"#$"% 1.1. Let 𝜴 be a 𝐿-stable commutative semiring. Let 𝑐 be a Datalog→ program where the
maximum number of multiplicands in any product is at most 𝑃. Let 𝑑 be the input database instance.
Let 𝑂 be the number of the semiring elements referenced in 𝑐 or 𝑑 . Let 𝑀 denote the total number of
ground atoms in an IDB that at some point in the iterative evaluation of 𝑐 over 𝜴 on input 𝑑 have
a nonzero associated semiring value. Then the iterative evaluation of 𝑐 over 𝜴 on input 𝑑 converges
within

⇓𝐿𝑀(𝑀 + 3) · (𝑂 (𝑀(𝑀 + 3)/2) lg(𝑃 + 1) + 4𝑂 lg𝑂 + 1)⇔
steps.

As 𝑃 is only a property of the Datalog→ program, and 𝐿 is only a property of the semiring, they
do not scale with the data size. Thinking of them as constants in data complexity, the bound in the
Theorem 1.1 is reduced to 𝑁 (𝑀4𝑂 lg𝑂). Note that 𝑂 is bounded by the input size plus the query size
and so it is linear in the input size under combined complexity.4 The maximum number of ground
IDB atoms is 𝑁̃ ( |𝑑 |𝑃 ) where 𝑒 is the maximum arity of IDB atoms, where 𝑁̃ hides less signi!cant
factors such as 𝐿, 𝑃 and 𝑂 . Thus, Theorem 1.1 gives a polynomial bound on the convergence rate (in
data complexity), and furthermore, as the bound depends on several parameters of the instances, it
is more sensitive to properties of the data instance.

RelatedWorks. Finding a least !xed point solution to aDatalog→ program is equivalent to !nding a
least !xed point solution to a system of polynomial equations over a semiring. (Section 2 will explain
why this is the case.) There is a large body of research on !xed points of multi-variate polynomial
functions over semirings, which were studied by many communities since the 1960s. (For more
details, see e.g. [5, 11, 13, 19].) In some special cases, such as closed semirings or 𝑓-continuous
semirings, there are non-iterative methods to !nd the !xpoint [5, 14]. In general, however, the
iterative algorithm is still the most general.
One particularly interesting connection to our problem is Parikh’s theorem [16] in formal

language theory, discovered in 1960s. The theorem essentially states that, if we ignore the order of
letters, then every context free language is isomorphic to a regular language. (See Section 2 for
a formal statement.) Pilling [17] observed that the theorem can be generalized to be a statement
about the least !xed point solution of a system of “regular equations”. Hopkins and Kozen [9]
generralized Pilling’s theorem further to the least !xed point solution of a system of polynomial
equations over a semiring.
The two recent papers in the literature that we directly build on are [11] and [10]. In [11] it is

shown that the naïve evalution of Datalog→ programs converges in𝑁 ((𝐿 + 2)𝐿) steps; this bound is
obtained by showing how to bound the convergence time for a high dimensional function in terms
of the convergence time for a 1-dimensional function.

The paper [10] considers linear Datalog→ programs, where the grounded immediate consequence
operator (ICO) is a linear function 𝜶 : 𝑉𝐿 ↑ 𝑉𝐿 associated with a semiring 𝜴 = (𝑉, ↘, ≃, 0, 1) that can
4Note that in [11] the parameter 𝑄 denoted the number of references to semiring elements, not the number of semiring
elements referenced.
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be expressed as 𝜶 (𝑌) = 𝑔 ≃ 𝑌 ↘ 𝑎 where 𝑔 is an 𝑀 by 𝑀 matrix with entries from the semiring. Then
𝑋 (𝑅)
𝑀 (0) becomes

⊕
𝑆 ↖W𝐿

𝑀
𝑈 (𝑕 ), whereW𝑀

𝑅 is the collection of all walks starting from ground atom 𝑖

with at most 𝑗 hops in the natural complete digraph underlying 𝑔, and 𝑈 (𝑕 ) is the product of 𝑍𝑇𝑈 for
every edge 𝑘𝑙 ↖𝑕 . The crux of the 𝑁 (𝐿𝑀3) upper bound analysis in [10] was then that any walk𝑕
longer than𝑁 (𝐿𝑀3) must contain a cycle𝑚 where all the edges are traversed many times. The fact that
adding 𝑈 (𝑕 ) didn’t change the sum followed from the stability of the semiring element that is the
product of the semiring values on the edges in 𝑚 . Our analysis for the nonlinear case is more involved
than the analysis for the linear cases because !nding the collection of semiring values that will serve
the role of the cycle 𝑚 in the linear case is more involved. It is interesting to note that, however, the gap
between the two cases is 𝑁 (𝑀𝑂 lg𝑂).

Paper Organization. Section 2 covers background knowledge required to understand this result.
Section 3 gives a brief technical overview of the proof of Theorem 1.1. Sections 4, 5, and 6 give the
proof details. Finally Section 7 concludes the paper.

2 Background
2.1 Semirings
A semiring is a tuple 𝜴 = (𝑉, ↘, ≃, 0, 1) where ↘ and ≃ are binary operators on 𝑉 , (𝑉, ↘, 0) is a
commutative monoid (meaning ↘ is commutative and associative, and 0 is the identity for ↘),
(𝑉, ≃, 1) is a monoid (meaning ≃ is associative, and 1 is the identity for ≃), 𝑍 ≃ 0 = 0 ≃ 𝑍 = 0 for
every 𝑍 ↖ 𝑉 , and ≃ distributes over ↘. 𝜴 is said to be commutative if ≃ is commutative. De!ne

𝑘 (𝑂 ) := 1 ↘ 𝑘 ↘ 𝑘2 ↘ · · · ↘ 𝑘𝑂 ,

where 𝑘𝑀 := 𝑘 ≃ 𝑘 ≃ · · · ≃ 𝑘 (𝑖 times). An element 𝑘 ↖ 𝑉 is 𝐿-stable if 𝑘 (𝑂 ) = 𝑘 (𝑂+1) , and a semiring 𝜴
is 𝐿-stable if every element 𝑘 ↖ 𝑉 is 𝐿-stable.

A function 𝑋 : 𝑉𝐿 ↑ 𝑉𝐿 is 𝐿-stable if 𝑋 (𝑂+1) (0) = 𝑋 (𝑂 ) (0), where 0 is the all zero vector, and 𝑋 (𝑃 )

is the 𝑒-fold composition of 𝑋 with itself. The stability index of 𝑋 is the smallest 𝐿 such that 𝑋 is
𝐿-stable. See [7] for more background on semirings and stability.
Commonly used semirings include the Boolean semiring ({true, false},↓,↗, false, true), the

(min-plus) tropical semiring Trop+ = (R+ ⇒ {⇑},min, +,⇑, 0) , and sum-product semirings such as
(R, +,⇐, 0, 1) and (N, +,⇐, 0, 1).
The sum-product semirings above are not stable. Both the Boolean and the min-plus semirings

are 0-stable, because

true ↓ 𝑌 = true for any 𝑌 ↖ {true, false},
min{0, 𝑌} = 0 for any 𝑌 ↖ R+ ⇒ {⇑}.

Given a positive integer 𝐿 , the tropical semiring Trop+𝑂 = (B𝑂+1, ↘𝑂 , ≃𝑂 , 0𝑂 , 1𝑂 ) is 𝐿-stable, where
the domain B𝑂+1 are bags of 𝐿 + 1 values in R+ ⇒ {⇑}. The additive operator 𝑌 ↘𝑂 𝑛 returns the
smallest 𝐿 +1 elements from the bag-union of the bag 𝑌 and𝑛, and the multiplicative operator 𝑌 ≃𝑂 𝑛
returns the smallest 𝐿 + 1 elements of the bag {𝑌𝑀 + 𝑛 𝑉 | 𝑌𝑀 ↖ 𝑌,𝑛 𝑉 ↖ 𝑛}. Obviously, Trop+0 = Trop+.

2.2 Datalog
A (traditional) Datalog [1] program 𝑐 consists of a set of rules of the form:

𝑜0 (𝜷0) :- 𝑜1 (𝜷1) ↗ · · · ↗ 𝑜𝑊 (𝜷𝑊) (4)

where 𝑜0, . . . ,𝑜𝑊 are predicate names (not necessarily distinct) and each 𝜷𝑀 is a tuple of variables
and/or constants. The atom 𝑜0 (𝜷0) is called the head, and the conjunction 𝑜1 (𝜷1) ↗ · · · ↗ 𝑜𝑊 (𝜷𝑊)
is called the body. Multiple rules with the same head are interpreted as a disjunction. A predicate
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that occurs in the head of some rule in 𝑐 is called an intensional database predicate (IDB), otherwise
it is called an extensional database predicate (EDB). The EDBs form the input, and the IDBs represent
the output computed by the Datalog program. The !nite set of all constants occurring in an EDB
is called the active domain, and denoted ADom. An atom 𝑜(𝜷 ) is called a ground atom if all its
arguments are constants. There is an implicit existential quanti!er over the body for all variables
that appear in the body, but not in the head, where the domain of the existential quanti!er is ADom.
Thus, a Datalog program can also be viewed as a collection of unions of conjunctive queries (UCQs),
one UCQ for each IDB.

E&’%()" 1. A classic example [1] of a Datalog program is the transitive closure program

𝑅 (𝑆 ,𝑇 ) :- 𝑄 (𝑆 ,𝑇 )
𝑅 (𝑆 ,𝑇 ) :- 𝑅 (𝑆 ,𝑈 ) ↗ 𝑄 (𝑈 ,𝑇 )

Here 𝑄 is an EDB predicate, representing the edge relation of a directed graph, 𝑅 is an IDB predicate,
and ADom is the vertex set. Written as a UCQ, where the quanti!cations are explicit, this program is:

𝑅 (𝑆 ,𝑇 ) :- 𝑄 (𝑆 ,𝑇 ) ↓ ↔𝑁 (𝑅 (𝑆 ,𝑈 ) ↗ 𝑄 (𝑈 ,𝑇 )) (5)

A Datalog program 𝑐 can be thought of as a function, called the immediate consequence operator
(ICO), mapping a subset of ground IDB atoms to a subset of ground IDB atoms. (The ground EDB
atoms are inputs and thus remain constants.) In particular, the ICO adds a ground (IDB) atom
𝑜(𝜸) to the output if it can be logically inferred by the input ground atoms via the rules of 𝑐 . The
iterative evaluation of a Datalog program works in rounds/steps, where on each round the ICO is
applied to the current state, starting from the empty state.

In Example 1, the ICO starts by setting 𝑅 = ↙, namely no pair of vertices are reachble from one
another. Then, in the !rst round, the rule𝑅 (𝑆 ,𝑇 ) :- 𝑄 (𝑆 ,𝑇 ) !res for every edge (𝑆 ,𝑇 ) in the graph.
In the second round, in addition to the edges, the rule 𝑅 (𝑆 ,𝑇 ) :- 𝑅 (𝑆 ,𝑈 ) ↗ 𝑄 (𝑈 ,𝑇 ) !res for every
pair of vertices 𝑆 ,𝑇 that are reachable via a path of length 1, and thus we add to 𝑅 all pairs (𝑆 ,𝑇 )
of vertices that are reachable via a path of length 2. This process repeats until no new pairs of
vertices can be added to 𝑅 . The number of iterations is thus at most the number of reachable pairs
of vertices, which is the output size.

2.3 Datalogo
Like Datalog programs, a Datalog→ program consists of a set of rules, where the UCQs are replaced
by sum-sum-product queries over a commutative semiring 𝜴 = (𝑉, ↘, ≃, 0, 1), where ↓ is replaced
with ↘ and ↗ with ≃. Speci!cally, in a Datalog→ program each rule has the form:

𝑜0 (𝑆0) :-
⊕

𝑜1 (𝜷1) ≃ · · · ≃ 𝑜𝑊 (𝜷𝑊) (6)

where sum is over the ADom of the variables not in 𝑆0. Multiple rules with the same head are
combined using the ↘ operation, which is the analog of combining rules using ↓ in Datalog.

Furthermore, each ground EDB or IDB atom is associated with an element of the semiring 𝜴 , and
the non-zero elements associated with ground EDB atoms are speci!ed in the input. A !xed point
solution to the Datalog→ program associates a semiring element to ground IDB atoms. Just like in
Datalog, we do not have to explicitly represent the zero-assigned ground IDB atoms: every ground
atom not in the output are implicitly mapped to 0.

E&’%()" 2. The Datalog→-version of the Datalog program given in line (5) with ↓ replaced by ↘,
↗ replaced by ≃ and ↔𝑁 replaced by

⊕
𝑁 is

𝑅 (𝑆 ,𝑇 ) :- 𝑄 (𝑆 ,𝑇 ) ↘
⊕
𝑁

𝑅 (𝑆 ,𝑈 ) ≃ 𝑄 (𝑈 ,𝑇 ), (7)
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Here 𝑄 is an EDB predicate, and 𝑅 is an IDB predicate, ↘ is the semiring addition operation, ≃ is the
semiring multiplication operation and

⊕
𝑁 is aggregation, that is an iterative application of ↘ over

ADom.
When interpreted over the Boolean semiring, the Datalog→ program in (7) is the transitive closure

program from Example 1.
When interpreted over the tropical semiring Trop+ = (R+ ⇒ {⇑},min, +,⇑, 0), the Datalog→

program in (7) solves the classic All-Pairs-Shortest-Path (APSP) problem, which computes the shortest
path length 𝑅 (𝑆 ,𝑇 ) between all pairs 𝑆 ,𝑇 of vertices in a directed graph speci!ed by an edge relation
𝑄 (𝑆 ,𝑇 ), where the semiring element associated with 𝑄 (𝑆 ,𝑇 ) is the length of the directed edge (𝑆 ,𝑇 ).

𝑅 (𝑆 ,𝑇 ) :- min
(
𝑄 (𝑆 ,𝑇 ),min

𝑁
(𝑅 (𝑆 ,𝑈 ) + 𝑄 (𝑈 ,𝑇 ))

)
(8)

When interpreted over the sum-product semiring (R, +,⇐, 0, 1), the Datalog→ program in (7) com-
putes, for every pair (𝑆 ,𝑇 ) of vertices, the sum of the products of the lengths of all paths from 𝑆 to 𝑇
in the graph. This process generally does not converge for graphs with cycles, and it is an example of
how an unstable semiring can lead to non-convergence.

A Datalog→ program can be thought of as an immediate consequence operator (ICO). A simple
way to understand the semantics of Datalog→ is to think of each body predicate 𝑜𝑀 in (6) as a
function from the domain of 𝜷𝑀 to the domain 𝑉 of the semiring. The functional value 𝑜𝑀 (𝜹𝑀 ) for
a particular binding 𝜹𝑀 in the domain of 𝜷𝑀 is the value assigned to the ground atom 𝑜𝑀 (𝜹𝑀 ). The
rule (6) is thus exactly a sum-product query (or a functional aggregate query [2] over one semiring),
and multiple rules with the same head are combined into a sum-sum-product query. The Datalog→
program containing these queries compute new (IDB) functions from old (IDB and EDB) functions,
using the sums and products from the semiring.
As mentioned in the introduction, these EDBs and IDBs are called 𝑊-relations in the landmark

paper [8]. While every EDB/IDB of arity 𝑝 needs up to |ADom|𝑋 tuples to represent, we only need
to explicitly materialize the non-zero-valued tuples, and use this number to denote the “size” of the
representation.

The iterative evaluation of a Datalog→ program works by initially assigning all IDB “functions” to
be identically 0 (i.e. their ground atoms are assigned with 0). The ICO is then repeatedly applied to
the current IDB state. In the context of the Datalog→ program in (8), initially all𝑅 (𝑌, 𝑞) are assigned
with +⇑ (the 0 of the tropical semiring), and the rule (8) e$ectively is the well-known Bellman-Ford
algorithm [4]. The convergence rate of a Datalog→ program is the stability index of its ICO.
A Datalog→ program is linear if every rule (6) has no more than one IDB predicate in its body.

The Datalog→ program in Example 2 is linear. While many natural Datalog→ programs are linear,
there are also natural nonlinear Datalog→ programs.

E&’%()" 3. As a classic example of a nonlinear Datalog→ program, consider the following alternate
formulation of APSP, which is equivalent to (8)

𝑅 (𝑆 ,𝑇 ) :- min
(
𝑄 (𝑆 ,𝑇 ),min

𝑁
(𝑅 (𝑆 ,𝑈 ) +𝑅 (𝑈 ,𝑇 ))

)
(9)

It is interesting to note that, for unit-edge lengths, this program takes a logarithmic number of iterations
to converge, because at the 𝑖th iteration we will have discovered all shortest paths of length ∝ 2𝑀 .
However, many iterations take longer to compute, because we are joining 𝑅 with itself, and 𝑅 may be
much larger than 𝑄.
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2.4 Grounding the ICO
Since the !nal associated semiring values of the ground IDB atoms are not initially known, it is
natural to think of them as (IDB) variables. Then the grounded version of the ICO of a Datalog→
program is a map 𝜶 : 𝑉𝐿 ↑ 𝑉𝐿 , where 𝑉 is the semiring domain, and 𝑀 is the number of ground IDB
atoms that ever have a nonzero value at some point in the iterative evaluation of the program. For
instance, in (8), there would be one variable 𝑅 (𝑌,𝑛) for each pair (𝑌,𝑛) of vertices where there is a
directed path from 𝑌 to 𝑛 in the graph. So the grounded version of the ICO of a Datalog→ program
has the following form:

𝑆1 :- 𝑋1 (𝑆1, . . . ,𝑆𝐿)
. . . (10)

𝑆𝐿 :- 𝑋𝐿 (𝑆1, . . . ,𝑆𝐿)
where the𝑆𝑀 ’s are the IDB variables, and 𝑋𝑀 is the component of 𝜶 corresponding to the IDB variable
𝑆𝑀 . Note that each component function 𝑋𝑀 is a multivariate polynomial in the IDB variables of degree
at most the maximum number of factors in any product in the body of some rule (6) in the Datalog→
program. After 𝑗 iterations of the iterative evaluation of a Datalog→ program, the semiring value
associated with the ground atom corresponding to 𝑆𝑀 will be:

𝑋 (𝑅)
𝑀 (0) (11)

E&’%()" 4. Consider the binary recursive formulation in (9), written over a generic semiring.

𝑅 (𝑆 ,𝑇 ) :- 𝑄 (𝑆 ,𝑇 ) ↘
⊕
𝑁

𝑅 (𝑆 ,𝑈 ) ≃ 𝑅 (𝑈 ,𝑇 ) (12)

Suppose ADom = {1, 2, 3, 4}, and the input EDB contains ground EDB atoms 𝑄 (1, 2), 𝑄 (2, 3), 𝑄 (3, 4),
with corresponding (constant) semiring values 𝑟12, 𝑟23, 𝑟34. Then there will be 16 equations and 16
variables in the grounded ICO; For each 𝑍,𝑎 ↖ {1, . . . , 4} there will a variable 𝑆𝑌𝑍 , and an equation of
the form:

𝑆𝑌𝑍 :- 𝑟𝑌𝑍 ↘
⊕
𝑀↖ [4]

𝑆𝑌𝑀 ≃ 𝑆𝑀𝑍

But, as many of these variables will always be 0, they are “inactive” and thus they can e"ectively be
ignored from the grounded ICO formulation. Thus e"ectively one can think of the grounded ICO as
having the following 6 variables and 6 equations:

𝑆12 :- 𝑟12 𝑆23 :- 𝑟23
𝑆13 :- 𝑆12 ≃ 𝑆23 𝑆24 :- 𝑆23 ≃ 𝑆34

𝑆14 :- 𝑆12 ≃ 𝑆24 ↘ 𝑆13 ≃ 𝑆34 𝑆34 :- 𝑟34.

2.5 Context Free Languages
It is convenient to reason about the formal expansion of 𝑋 (𝑅)

𝑀 (0) using context-free languages (CFL).
See [12, 15] for an introduction to CFLs. As mentioned in the introduction, this is e$ectively the
connection that Pillings [17] and Hopkins and Kozen [9] made between CFLs and the least !xed
point of a system of polynomial equations over a semiring. To explain the connection, it is probably
best to start with a concrete example.

E&’%()" 5. The map 𝜶 : 𝑉2 ↑ 𝑉2 where

𝑋1 (𝑔,𝑠) = (𝑍 ≃ 𝑔 ≃ 𝑠) ↘ (𝑎 ≃ 𝑠) ↘ 𝑡

𝑋2 (𝑔,𝑠) = (𝑡 ≃ 𝑔 ≃ 𝑠) ↘ (𝑎 ≃ 𝑔) ↘ 𝑍
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can be represented by the following context free grammar 𝑢 :

𝑔 ↑ 𝑍𝑔𝑠 | 𝑎𝑠 | 𝑡 𝑠 ↑ 𝑡𝑔𝑠 | 𝑎𝑔 | 𝑍
Suppose we would like apply the map 𝜶 twice to write down an expression for

𝜶 (2) (𝑔,𝑠) = 𝜶

(
𝜶

( [
𝑔
𝑠

] ))
= 𝜶

( [
(𝑍 ≃ 𝑔 ≃ 𝑠) ↘ (𝑎 ≃ 𝑠) ↘ 𝑡
(𝑡 ≃ 𝑔 ≃ 𝑠) ↘ (𝑎 ≃ 𝑔) ↘ 𝑍

] )
= · · ·

Then, this can be done by expanding the context free grammar𝑢 to depth 2, where the !rst component
of 𝜶 (2) (𝑔,𝑠) is the sum of the products of the leaves of the parse trees of depth at most 2 and rooted at
𝑔, and the second component corresponds to the parse trees rooted at 𝑠.

More generally the variables (e.g. 𝑔,𝑠) in 𝑋 become non-terminals in𝑢 , the constants (e.g. 𝑍,𝑎, 𝑡)
in 𝑋 become the terminals in 𝑢 , multiplication ≃ in 𝑋 becomes concatenation in 𝑢 , and addition ↘
in 𝑋 becomes the or operator | in𝑢 . Given a parse tree𝑅 for the grammar, de!ne the yield 𝑇 (𝑅 ) of𝑅
to be the string of terminal symbols at the leaves of 𝑅 , and the product yield 𝑈 (𝑅 ) to be the product
of the semiring values in 𝑇 (𝑅 ). Let T 𝑀

𝑅 denote the set of all parse trees with starting non-terminal
𝑆𝑀 , and depth ∝ 𝑗. Note that then:

𝑋 (𝑅)
𝑀 (0) =

⊕
𝑎 ↖T𝐿

𝑀
𝑈 (𝑅 ). (13)

That is, the value of the semiring value associated with a IDB variable 𝑆𝑀 after 𝑗 iterations is the
sum of the product of the leaves of parse trees of depth at most 𝑗 and rooted at 𝑆𝑀 .

2.6 Parikh’s Theorem
Since our semiring is commutative, many summands in the sum (13) are identical. Studying CFLs
with commutative alphabet was exactly the goal of Parikh’s theorem [16]. The upper bound on
the time to convergence for iterative evaluation of Datalog→ programs in [11] essentially relied on
black-box application of Parikh’s theorem. (See standard computability textbooks such as [12] for
an introduction to Parikh’s theorem.) The Parikh image of a word𝑣 ↖ ε′, denoted by ϑ(𝑣), is the
vector ϑ(𝑣) = (𝑒1, . . . ,𝑒𝑄 ) ↖ N𝑄 where 𝑒𝑀 is the number of occurrences of the letter 𝑍𝑀 ↖ ε that
occur in the word𝑣 (So |ε| = 𝑂). Similarly, for a language 𝑏, de!ne ϑ(𝑏) := {ϑ(𝑣) | 𝑣 ↖ 𝑏}. Then
using our assumption that the underlying semiring 𝜴 is commutative, we observe that

𝑋 (𝑅)
𝑀 (0) =

⊕
𝑎 ↖T𝐿

𝑀
𝑈 (𝑅 ) =

⊕
𝑎 ↖T𝐿

𝑀

⊗𝑄

𝑉=1
𝑍
ϑ𝑁 (𝑏 (𝑎 ) )
𝑉 (14)

where ϑ𝑉 (𝑣) is component 𝑤 of the Parikh image. One version of Parikh’s theorem [16] states
that the Parikh images of the words in a context free language forms a semi-linear set. A set is
semi-linear if it is a !nite union of linear sets. A set L ∞ N𝑄 is said to be linear if there exist o$set
vector 𝝐0 and basis vectors 𝝐1, . . . , 𝝐𝑋 ↖ N𝑄 such that L is the span of these vectors, that is if:

L ={𝝐0 + 𝑒1𝝐1 + . . . + 𝑒𝑋𝝐𝑋 | 𝑒1, . . . ,𝑒𝑋 ↖ N}.
If a vector

𝝐 = 𝝐0 + 𝑒1𝝐1 + . . . + 𝑒𝑋𝝐𝑋
then we say (𝑒1, . . . ,𝑒𝑋 ) is a linear representation of 𝑙 within L.

The textbook proof of Parikh’s theorem (see [12]) uses what we will call a wedge. A wedge within
a parse tree 𝑅 can be speci!ed by identifying two internal nodes in the parse tree that correspond
to the same nonterminal, say 𝑔, and that have an ancestor-descendent relation. The corresponding
wedge𝑕 then consists of the nodes in the parse tree that are descendents of the top 𝑔, but not the
bottom 𝑔. See Figure 1.
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Fig. 1. Illustration of a wedge𝑕

3 Technical Overview
We now give a technical overview of the proof of Theorem 1.1. To build intuition, let us !rst
consider the analysis of linear Datalog→ programs from [10], where the critical insight was that
every walk of length ϖ(𝐿𝑀3) must contain a cycle 𝑚 in which all edges are traversed 𝐿 times. For
general Datalog→ programs, the natural way to extend the analysis of the linear case is to identify
a type of substructure of a parse tree that has similar properties to the cycle used in the analysis
of linear Datalog→ programs. So in particular, the removal of such a substructure will result in a
valid parse tree, and any su#ciently deep parse tree must have many disjoint copies of a particular
substructure of this type. Given knowledge of the standard proof of Parikh’s theorem [12], the !rst
natural candidate substructure type is a wedge. It is relatively straight-forward to observe that
if a parse tree is su#ciently deep, it must contain 𝐿 disjoint copies of some wedge𝑕 . The proof
that adding/removing such a wedge does not change the sum then follows from the 𝐿-stability of
the terminals in𝑕 . However, it is not di#cult to see that one can not improve the bound on the
depth to subexponential using wedges as the type of substructure as there are parse trees that are
exponentially deep and that do not contain repeated wedges.

Thus we turn to the semilinear representation of the context free language that is guaranteed to
exist by Parikh’s theorem. First we need to better understand the relationship between a linear
set and the parse trees for strings in this linear set than is given by Parikh’s theorem. We !rst
show, in Theorem 3.1, that there is a particular semilinear representation M in which every linear
set consists of o$set and basis vectors with small 1-norm. Theorem 3.1 also shows that one can
essentially polynomially bound the 1-norm of the linear representation of the yield of a parse tree
by the depth of the parse tree, and conversely polynomially bound the depth of a valid parse tree by
the 1-norm of a linear representation. Thus, it would be su#cient to show that if the yield of a deep
parse tree has a linear representation with small support then this parse tree does not add to the
sum; This is because by the pigeon hole principle it would have to be the case that the coe#cient of
some basis vector in the linear representation would have to be large, and thus one could appeal to
the 𝐿-stability of that basis vector. But this is not a general proof as the number of basis vectors in
a linear set may be exponential. Thus to make this proof technique general, we need to show that
for every word in the context free language there is a linear set where the yield of that word has a
linear representation will small support. This is accomplished in Lemma 3.2, the proof of which
uses the 𝐿-stability of the underlying semiring.

T!"#$"% 3.1. Let 𝑏 be a context free language generated by a grammar 𝑢 = (𝑥 , ε,𝑜, 𝑉), where
𝑥 is the collection of nonterminals, ε is the collection of terminals, 𝑜 is the collection of rules, and
𝑉 ↖ 𝑥 is the start non-terminal. Let 𝑀 be the cardinality of 𝑥 and let 𝑃 be the maximum number
of symbols on the righthand side of any rule. Then there exists a !nite semi-linear set M with the
following properties:
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(1) Every linear set L ↖ M has an associated o"set vector 𝑙0 and basis vectors 𝑙1, . . . 𝑙𝑋 whose
1-norm is at most 𝑃𝐿 (𝐿+3)/2.

(2) M = ϑ(𝑏).
(a) M ∞ ϑ(𝑏). Further, for each vector 𝝐 = 𝝐0 + 𝑒1𝝐1 + . . . + 𝑒𝑋𝝐𝑋 in the span of some L ↖ M,

there is a word𝑣 ↖ 𝑏, with ϑ(𝑣) = 𝝐, where𝑣 can be generated by a parse tree with depth
at most (𝑒 + 1)𝑀(𝑀 + 3)/2, where 𝑒 = 𝑒1 + 𝑒2 + . . . + 𝑒𝑋 .

(b) M ∈ ϑ(𝑏). Further, for any parse tree 𝑅 of depth 𝑦 such that 𝑇 (𝑅 ) ↖ 𝑏, there exists a
linear representation of ϑ(𝑇 (𝑅 )) = 𝝐0 + 𝑒1𝝐1 + . . . + 𝑒𝑋𝝐𝑋 within some L ↖ M such that
𝑒 + 1 ∋ 𝑦/(𝑀(𝑀 + 3)/2), where 𝑒 = 𝑒1 + 𝑒2 + . . . + 𝑒𝑋 .

The proof of Theorem 3.1 is given in Section 4. The most important way that Theorem 3.1 extends
the standard version of Parikh’s theorem is property (2)(a), which upper bounds the depth of some
parse tree of a word by the 1-norm of the representation of that word. The bound given in the
textbook proof [12] of Parikh’s theorem gives a depth bound that is exponentially large. To achieve
property (2)(a), our proof contains a constructive forward process P that creates a linear set L ↖ M
from the parse tree 𝑅 of some word𝑣 ↖ 𝑏 by removing wedges from 𝑅 . We are careful to design
P so that it is reversible; that is, to recover a parse tree from a linear representation we can just
reverse the process P. To accomplish this we need that in the forward process every wedge that is
removed does not remove any nonterminal from the parse tree. Our process P ensures that the
parse tree for the o$set and the wedges for the basis vectors have depth 𝑁 (𝑀2).
Property (2)(b) establishes the converse and further states that if a parse tree has a large depth,

then there must exist a linear representation of its Parikh’s image within some L ↖ M that has a
large 1-norm. The proof of this property is similar to that of Property (2)(a).

L"%%’ 3.2. Let 𝑏 be an arbitrary context free language. Let 𝑧 = 2(𝑂 (𝑀(𝑀+3)/2) lg(𝑃+1) +4𝑂 lg𝑂).
Let M be the semilinear set that is guaranteed to exist in Theorem 3.1. Let𝑣 be a word in 𝑏. Let L in
M be a linear set such that ϑ(𝑣) ↖ L. Let ϑ(𝑣) = 𝝐0 +𝑒1𝝐1 + . . .+𝑒𝑊𝝐𝑊 be a linear representation of
ϑ(𝑣) with respect to the o"set and basis vectors of L. Then there exists another linear representation
ϑ(𝑣) = 𝝐0 +𝑒 △1𝝐△1 + . . . +𝑒 △𝑐𝝐△𝑐 of ϑ(𝑣) with respect to 𝑧 basis vectors of L such that

∑𝑊
𝑀=1 𝑒𝑀∝

∑𝑐
𝑀=1 𝑒

△
𝑀 .

The proof of Lemma 3.2, given in Section 5, uses properties of L established in our strengthened
version of Parikh’s theorem (Theorem 3.1), and the pigeon hole principle to establish that any
word in L that has a linear representation with respect to L with large support, also has a
linear representation with smaller support. Here, we do not decrease the 1-norm of the linear
representation with respect to L, which will be important for the proof of our main result. In
particular we use the !nding that all the o$set and basis vectors have (relatively) small 1-norms.
This makes formal the intuition that one might draw from standard vector spaces that the number
of basis vectors needed to represent a vector/word in the span of some basis vectors shouldn’t be
more than the dimensionality of the spanned space.

Finally in Section 6 we use Lemma 3.2 to prove Theorem 1.1. To show that for su#ciently large 𝑗
it is the case that 𝑋 (𝑅)

𝑀 (0) = 𝑋 (𝑅+1)
𝑀 (0), we show that for every tree𝑅 △ ↖ T 𝑀

𝑅+1 \T 𝑀
𝑅 , the corresponding

summand 𝑈 (𝑅 △) is “absorbed” by the earlier terms, that is:⊕
𝑎 ↖T𝐿

𝑀

𝑈 (𝑅 ) ↘ 𝑈 (𝑅 △) =
⊕
𝑎 ↖T𝐿

𝑀

𝑈 (𝑅 ) (15)

From property (2)(b) of Theorem 3.1 we know that that there exists a linear representation of
ϑ(𝑇 (𝑅 △)) that has a large 1-norm; and from Lemma 3.2 we know that there is a linear representation
with the same or larger 1-norm of ϑ(𝑇 (𝑅 △)) with small support. Thus we can conclude by the
pigeonhole principle that one of the basis vectors, in this small support linear representation, must
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have a coe#cient greater than the stability 𝐿 of the ground set. Finally, Eqn. (15) follows from the
stability of the semiring element that corresponds to the semiring element that is the “product” of
that basis vector.

4 The Strengthened Parikh’s Theorem
Our goal in this section is to prove Theorem 3.1. cummutitave semirings, we will ignore orderings of
terminals in a string. Thus, for simplicity, we may allow a string to denote the product of terminals
in it. In the analysis it will be convenient to de!ne the depth of strings.
We begin our proof by de!ning a particular semi-linear setM with the desired properties. Let

𝑡 := 𝑀(𝑀 + 3)/2 throughout this section; recall that 𝑀 denotes the number of non-terminals. Let T 𝑑
𝑒

denote the set of all parse trees (starting with the non-terminal 𝑉) of depth at most 𝑡 . Recall that𝑅 ’s
yield, denoted as 𝑇 (𝑅 ), is the word obtained by a parse tree𝑅 . For a wedge𝑕 , 𝑇 (𝑕 ) is analogously
de!ned by ignoring the unique non-terminal leaf node in the wedge𝑕 . Let 𝑥 (𝑅 ) denote the set of
non-terminals that appear in𝑅 . For a parse tree𝑅 and a non-terminal 𝑔 ↖ 𝑥 (𝑅 ), letW𝑓

𝑒 (𝑅 ) be the
collection of wedges𝑕 where the root of𝑕 is 𝑔, 𝑥 (𝑕 ) ∞ 𝑥 (𝑅 ), and𝑕 has height/depth at most
𝑡 (Recall that the depth/height of a tree is the number of hops in the longest simple root to leaf
path). Note that the de!nition of W𝑓

𝑒 (𝑅 ) depends only on the non-terminals in 𝑅 , and not on the
structure of𝑅 ; so in particular there is no requirement that a wedge𝑕 ↖ W𝑓

𝑒 (𝑅 ) be a subtree of𝑅 .
Let B𝑒 (𝑔,𝑅 ) := {𝑇 (𝑕 ) | 𝑕 ↖ W𝑓

𝑒 (𝑅 )}. In other words, starting with 𝑔, B𝑒 (𝑔) is the collection
of all words (more precisely the product of the terminals in each word) that one can obtain by a
parse tree rooted at 𝑔 of depth at most 𝑡 where all leaf nodes are terminals, except one leaf being 𝑔.
Notably, while we use notationsW𝑓

𝑒 (𝑅 ) and B𝑒 (𝑔,𝑅 ) for notational brevity, their dependence is
on 𝑥 (𝑅 ) rather than 𝑅 . For notational brevity, we may use B(𝑔,𝑅 ) instead of B𝑒 (𝑔,𝑅 ).
Then, for each tree 𝑅 in T 𝑑

𝑒 , we de!ne a linear set where the o$set vector is ϑ(𝑇 (𝑅 )) and the
basis vectors are ⇒𝑔 ↖𝑕 (𝑎 )ϑ(B(𝛥 ,𝑅 )). Here, ϑ(𝑏△) denotes the collection of vectors corresponding
to a subset of words, 𝑏△. Notice that because of the way we created the o$set vector and basis
vectors, there is a parse tree in T 𝑑

𝑒 corresponding to each o$set vector and a wedge corresponding
to each basis vector, all of depth at most 𝑡 .

In the following we recall the de!nition of wedges (Figure 1) and de!ne how to index them. For
an arbitrary parse tree 𝑅 we will map it to a tree in T 𝑑

𝑒 by iteratively removing a wedge.

De!nition 4.1. De!ne a wedge of a parse tree 𝑅 as follows. Consider two occurrences of a non-
terminal 𝑔 in 𝑅 where one is an ancestor of the other. Let 𝑔△ be the ancestor node and 𝑔△△ the
descendant node. The wedge induced by the pair (𝑔△,𝑔△△) is de!ned as the subtree of 𝑅 rooted
at 𝑔△ with the subtree rooted at 𝑔△△ removed. The wedge is denoted as𝑕𝑎 (𝑔△,𝑔△△). The wedge’s
depth is de!ned as the maximum number of edges from 𝑔△ to a leaf node in𝑕𝑎 (𝑔△,𝑔△△).

Lemma 4.2 states the properties that we will want to maintain during each step of our iterative
process to decompose our parse tree 𝑅 .

L"%%’ 4.2. Given a parse tree 𝑅 of depth at least 𝑡 starting with non-terminal 𝑉 , we can obtain a
parse tree 𝑅 △ starting with 𝑉 that satis!es the following:
(1) (Preserving Non-terminals) 𝑥 (𝑅 ) = 𝑥 (𝑅 △).
(2) (Reversibility) 𝑅 can be obtained by replacing one non-terminal 𝑔 in 𝑅 △ with a wedge𝑕 ↖

W𝑓
𝑒 (𝑅 △) for some 𝑔 ↖ 𝑥 (𝑅 △).

Alternatively, the second property means that 𝑅 can be obtained from𝑅 △ by augmenting 𝑅 △ with
a wedge𝑕 of depth at most 𝑡 corresponding to a vector in ϑ(B(𝑔,𝑅 △)) for some non-terminal 𝑔
in 𝑥 (𝑅 △). Here it is worth noting that W𝑓

𝑒 (𝑅 ) = W𝑓
𝑒 (𝑅 △) because 𝑥 (𝑅 ) = 𝑥 (𝑅 △). See Figure 2 for

an illustration of reversibility.
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Fig. 2. The right tree 𝑅 is recovered from the le! tree 𝑅 △ by augmenting the wedge𝑕 .

The !rst property in the lemma is worth special attention. Suppose we obtained 𝑅 △ from 𝑅 by
repeatedly applying the lemma, but without guaranteeing the !rst property. Suppose {𝑕1,𝑕2, . . . }
are the wedges we removed in the process; so𝑕𝑀 is the wedge removed in iteration 𝑖 . Then, we
may not be able to augment 𝑅 △ with an arbitrary subset of the wedges, which is critical to establish
the ϑ(𝑏) ∈ M direction of the !rst property of Theorem 3.1.
To show Lemma 4.2, consider an arbitrary parse tree 𝑅 of depth more than 𝑡 . We show how to

obtain 𝑅 △ by collapsing a wedge induced by two occurrences of the same non-terminal. Below,
we describe how we !nd a “good” pair of two occurrences of the same non-terminal we want to
collapse. We !rst de!ne what makes pairs good in the following.

De!nition 4.3. For a given parse tree𝑅 , we say a pair of ascendant and descendant nodes (𝑔△,𝑔△△)
of the same non-terminal 𝑔 is good if it satis!es the following:

• Let 𝑅 △ be the tree 𝑅 with the wedge𝑕𝑎 (𝑔△,𝑔△△) removed. We have 𝑥 (𝑅 ) = 𝑥 (𝑅 △).
• The height of 𝑔△ is at most 𝑡 in 𝑅 . In other words, the subtree of 𝑅 rooted at 𝑔△ has depth at
most 𝑡 .

In the following we will show that a tree of large depth must have a good pair. Note that we will
immediately have Lemma 4.2 as corollary if we prove the following lemma.

L"%%’ 4.4. A parse tree 𝑅 of depth at least 𝑡 has a good pair of nodes.

P$##*. We prove the lemma by an induction on the number of non-terminals, 𝑀. Let 𝑡𝐿 :=
(𝑀 + 1) + 𝑀 + . . . + 2; notably, 𝑡𝐿 = 𝑡 . Then, the second property of De!nition 4.3 becomes that the
height of 𝑔△ is at most 𝑡𝐿△ when 𝑅 has at most 𝑀△ non-terminals. Consider an arbitrary node 𝑙 of
the largest depth, which must be at least 𝑡𝐿 . Since the base case 𝑀 = 1 is trivial, suppose 𝑀 ∋ 2.
Consider the unique path from 𝑙 to the root non-terminal 𝑉 in 𝑅 . The height of a node 𝑘 on the
path is de!ned as the number of nodes below 𝑘 on the path, including 𝑘.

Consider walking from 𝑘 towards the root. On this path, consider the !rst time two occurrences
of the same non-terminal 𝛥1 appear. Say they appear at nodes 𝑙 (𝛥1) and 𝑘 (𝛥1), where 𝑘 (𝛥1) is an
ascendant of 𝑙 (𝛥1). Observe that 𝑘 (𝛥1) has height at most 𝑀 + 1 due to the pigeon hole principle.
This is because some non-terminal must repeat among 𝑀 + 1 nodes.

If (𝑘 (𝛥1), 𝑙 (𝛥1)) is a good pair, we are done. If not, it means that the wedge𝑕𝑎 (𝑘 (𝛥1), 𝑙 (𝛥1))
must include a non-terminal that doesn’t appear anywhere else in the tree. Consider the tree 𝑅2 with
the subtree rooted at 𝑘 (𝛥1) removed. This subtree𝑅2 has at most 𝑀 ▽ 1 non-terminals and has depth
at least 𝑡𝐿▽1 = 𝑡𝐿 ▽ (𝑀 + 1). By induction, this implies that 𝑅2 must have a good pair (𝑘2, 𝑙2).
We verity that the pair (𝑘2, 𝑙2) remains to be good with respect to 𝑅 as well: First, 𝑘2 has height

at most (𝑀 + 1) + (𝑀 + (𝑀 ▽ 1) + . . . + 2) = 𝑡 in the tree 𝑅 . Second,𝑕𝑎 (𝑘2, 𝑙2) does not intersect the
subtree rooted at 𝑘 (𝛥1), and therefore, the set of non-terminals remains unchanged after removing
the wedge from 𝑅 , just as it does when we remove the wedge from 𝑅2. ↭
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We are now ready to prove Theorem 3.1.
Property (1). By de!nition of the o$set and basis vectors, it immediately follows that their depth
is at most 𝑡 . Furthermore, the 1-norm of any of them is at most 𝑃𝑒 because each node has at most 𝑃
children.
Property (2)(b). Given a parse tree 𝑅 for 𝑣 ↖ 𝑏, suppose we obtained a sequence of trees 𝑅0 =
𝑅 ,𝑅1, . . . ,𝑅𝑖 by repeatedly applying Lemma 4.2, where 𝑅𝑖 ↖ T 𝑑

𝑒 and 𝑅𝑀 is obtained from 𝑅𝑀▽1 by
deleting a wedge𝑕𝑀 inW𝑓

𝑒 (𝑅 ) for some non-terminal𝑔 in𝑥 (𝑅 ) = 𝑥 (𝑅𝑖); noteW𝑓
𝑒 (𝑅 ) = W𝑓

𝑒 (𝑅𝑖)
since 𝑥 (𝑅 ) = 𝑥 (𝑅1) = . . . = 𝑥 (𝑅𝑖). Let 𝜻𝑀 = ϑ(𝑇 (𝑕𝑀 )). Clearly, ϑ(𝑣) can be expressed as
ϑ(𝑇 (𝑅𝑖)) +

∑𝑖
𝑀=1 𝜻𝑀 .

Since we created a linear set for each parse tree in T 𝑑
𝑒 , thus for 𝑅𝑖 , this is a linear representation

within L which consists of o$set vector ϑ(𝑇 (𝑅𝑖)) and basis vectors ⇒𝑔 ↖𝑕 (𝑎𝑂 )ϑ(B(𝛥 ,𝑅𝑖)). This
proves M ∈ ϑ(𝑏).

We now show that the 1-norm of ϑ(𝑣)’s linear representation, 𝛩 + 1, is large. Suppose that the
parse tree 𝑅 has depth 𝑦 . The two trees 𝑅𝑀▽1 and 𝑅𝑀 have depths di$ering by at most 𝑡 since we
obtained 𝑅𝑀 from 𝑅𝑀▽1 by deleting a wedge of depth at most 𝑡 . Further, the last tree 𝑅𝑖 has depth at
most 𝑡 as well. Thus, 𝑡 (𝛩 + 1) ∋ 𝑦 . Since 𝛩 = 𝑒 where 𝑒 is described as in the theorem, we have
proven this property.
Property (2)(a). Conversely, suppose𝑣 has a linear representation within some L ↖ M. Say the
linear representation is ϑ(𝑇 (𝑅 △)) +∑𝑃

𝑀=1 𝜻𝑀 for some 𝑅 △ ↖ T 𝑑
𝑒 . Note that for each basis vector 𝜻𝑀 ,

there exists 𝛥𝑀 ↖ 𝑥 (𝑅 △) such that 𝜻𝑀 ↖ ϑ(B(𝛥𝑀 ,𝑅 △)). Because of the way we de!ned linear sets,
𝜻𝑀 = ϑ(𝑇 (𝑕𝑀 )) for some𝑕𝑀 ↖ W𝑔𝐿

𝑒 (𝑅 △). We can augment 𝑅 △ with the wedges𝑕𝑀 in an arbitrary
order. Adding each wedge𝑕𝑀 increases the tree depth by at most 𝑡 . By repeating this for each 𝜻𝑀 ,
we obtain a parse tree 𝑅 such that ϑ(𝑇 (𝑅 )) = ϑ(𝑣). This proves M ∞ ϑ(𝑏) and 𝑅 has depth at
most at most 𝑡 (𝑒 + 1).

Together, the proof of the above properties prove Theorem 3.1.

5 Small Support Representations
In this section we prove Lemma 3.2. The lemma shows that any linear representation of the Parikh
image of a word in a context-free language 𝑏 can be converted into another linear representation
with no smaller 1-norm, but with small support.

L"%%’ 5.1. [Lemma 3.2 Restated] Let 𝑏 be an arbitrary context free language. Let 𝑧 := 2(𝑂 (𝑀(𝑀 +
3)/2) lg(𝑃 + 1) + 4𝑂 lg𝑂). Let M be the semilinear set that is guaranteed to exist in Theorem 3.1. Let
𝑣 be a word in 𝑏. Let L inM be a linear set such that ϑ(𝑣) ↖ L. Let ϑ(𝑣) = 𝝐0 + 𝑒1𝝐1 + . . . + 𝑒𝑊𝝐𝑊
be a linear representation of ϑ(𝑣) with respect to the o"set and basis vectors of L. Then there exists
another linear representation ϑ(𝑣) = 𝝐0 + 𝑒 △1𝝐△1 + . . . + 𝑒 △𝑐𝝐△𝑐 of ϑ(𝑣) with respect to 𝑧 basis vectors of
L such that

∑𝑊
𝑀=1 𝑒𝑀 ∝

∑𝑐
𝑀=1 𝑒

△
𝑀 .

P$##*. To streamline our analysis, we will assume that 𝑃 ∋ 2. This is without loss of generality
because in the case that 𝑃 = 1 we can add an unused terminal to ε. The value of 𝑃 will increase by
one in the !nal bound for this boundary case. For an arbitrary word𝑣 in our language 𝑏, suppose
we are given a linear representation of ϑ(𝑣),

𝝐0 + 𝑒1𝝐1 + . . . + 𝑒𝑊𝝐𝑊,

where
𝑒1,𝑒2, . . .𝑒𝑊 > 0 and

𝛬 > 𝑧 := 2(𝑂 (𝑀(𝑀 + 3)/2) lg 𝑃 + 4𝑂 lg𝑂).
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Without loss of generality, we can assume that for any 𝑖 ↖ {0, 1, 2, . . . ,𝛬}, | |𝝐𝑀 | |1 ∝ 𝛯 := 𝑃𝐿 (𝐿+3)/2

thanks to Theorem 3.1 (1).
To prove the lemma, it su#ces to !nd another linear representation of ϑ(𝑣),

𝝐0 + 𝑒 △1𝝐1 + . . . + 𝑒 △𝑊𝝐𝑊 (16)

such that
𝑒1 + 𝑒2 + . . . + 𝑒𝑊 ∝ 𝑒 △1 + 𝑒 △2 + . . . + 𝑒 △𝑊 and (17)
𝑒 △𝑀 = 0 for some 𝑖 ↖ [𝛬] := {1, 2, . . . ,𝛬}. (18)

A key step to our proof is showing that there exist two distinct subsets 𝛱1 and 𝛱2 of [𝛬] such
that ∑

𝑀↖𝑗1

𝝐𝑀 =
∑
𝑀↖𝑗2

𝝐𝑀 (19)

We will prove this claim by proving that

𝑊 := |{
∑
𝑀↖𝑗

𝝐𝑀 | 𝛱 ∞ [𝛬]}| < 2𝑊 . (20)

Note that 𝑊 is the number of distinct vectors we can generate by summing a subset of vectors from
𝝐1, 𝝐2, . . . , 𝝐𝑊 . The existence of the desired pair of 𝛱1 and 𝛱2 satisfying (19) will then follow from
pigeonhole principle.
Since | |𝝐𝑀 | |1 ∝ 𝛯 for all 𝑖 ↖ [𝛬], we have | |∑𝑀↖𝑗 𝝐𝑀 | |1 ∝ 𝛯𝛬 for any 𝛱 ∞ [𝛬]. We use the

following well-known fact: the number of distinct vectors in N𝑘 with 1-norm of 𝑒 is exactly(𝑃+𝑘▽1
𝑘▽1

)
∝ (𝑒 + 𝑦 ▽ 1)𝑘▽1 (see [20]). In our case, 𝑒 ∝ 𝛯𝛬 and 𝑦 = 𝑂 . Thus, we have 𝑊 ∝ (𝛯𝛬 + 𝑂 ▽

1)𝑄▽1 (𝛯𝛬 + 1) ∝ (𝛯𝛬 + 𝑂)𝑄 . If 𝑂 = 1 (there exists only one terminal), we have a tighter bound of
𝑊 ∝ 𝛯 + (𝛯 ▽ 1) + . . . +𝛯 ▽ (𝛬 ▽ 1) =𝛬(2𝛯 ▽ (𝛬 ▽ 1))/2.

To prove (20), it remains to show that (𝛯𝛬+𝑂)𝑄 < 2𝑊 when 𝑂 ∋ 2 and that𝛬(2𝛯▽𝛬+1)/2 < 2𝑊
when 𝑂 = 1. We consider two cases: 𝑂 ∋ 2 and 𝑂 = 1.
Case i: 𝑂 ∋ 2. We shall now establish

2𝑊 > (𝛯𝛬 + 𝑂)𝑄 when 𝑂 ∋ 2 (21)

By taking the logarithm, the inequality (21) is equivalent to:

𝛬 > 𝑂 lg(𝛯𝛬 + 𝑂) (22)

Since𝛯 ∝ 𝑃𝐿 (𝐿+3)/2, the following equation would imply Eqn. (22):

𝛬 > 𝑂 lg(𝛬𝑃𝐿 (𝐿+3)/2 + 𝑂) (23)

Using the fact that lg𝑌 is sub-additive when 𝑌 ∋ 2 and the assumptions that 𝑃,𝑂 ∋ 2, we have

𝑂 lg(𝛬𝑃𝐿 (𝐿+3)/2) + 𝑂 lg𝑂 ∋ 𝑂 lg(𝛬𝑃𝐿 (𝐿+3)/2 + 𝑂) (24)

Thus, it is su#cient to show:

𝛬 > 𝑂 lg(𝛬𝑃𝐿 (𝐿+3)/2) + 𝑂 lg𝑂
= 𝑂 lg𝛬 + 𝑂 (𝑀(𝑀 + 3)/2) lg 𝑃 + 𝑂 lg𝑂

̸ 𝛬 ▽ 𝑂 lg𝛬 > 𝑂 (𝑀(𝑀 + 3)/2) lg 𝑃 + 𝑂 lg𝑂 (25)

We show that
𝛬 ▽ 𝑂 lg𝛬 ∋ 𝛬/2

when𝛬 ∋ 8𝑂 lg𝑂 : Since𝛬/2▽𝑂 lg𝛬 is increasing in𝛬 when𝛬 ∋ 8𝑂 lg𝑂 , we have𝛬/2▽𝑂 lg𝛬 ∋
4𝑂 lg𝑂 ▽ 𝑂 lg(8𝑂 lg𝑂) = 𝑂 lg(𝑂3/(8 lg𝑂)) ∋ 0 when 𝑂 ∋ 2, as desired.
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Thus, we have
𝛬 ▽ 𝑂 lg𝛬 ∋ 𝛬/2 > 𝑂 (𝑀(𝑀 + 3)/2) lg 𝑃 + 4𝑂 lg𝑂, (26)

where the second inequality follows from the fact that𝛬 > 𝑧. From Eqn. (21), (22), (23), (24), (25),
and (26) we have 2𝑊 > 𝑊 when 𝑂 ∋ 2.
Case ii: 𝑂 = 1. If 𝑂 = 1, as mentioned above, we have

𝑊 ∝ 𝛯 + (𝛯 ▽ 1) + . . . +𝛯 ▽ (𝛬 ▽ 1)
=𝛬(2𝛯 ▽ (𝛬 ▽ 1))/2
< 𝛯𝛬

∝ 𝛯2𝑊/2 [Since𝛬 ∋ 2]

∝ 𝑃𝐿 (𝐿+3)/22𝑊/2

∝ 2𝑊 .

The last inequality is true due to the assumption that 𝑂 = 1 and
𝛬 > 𝑧 = 2(𝑂 (𝑀(𝑀 + 3)/2) lg 𝑃 + 4𝑂 lg𝑂) ∋ 𝑀(𝑀 + 3) lg 𝑃

Thus, we have shown that 2𝑊 > 𝑊 for all 𝑂 ∋ 1, which establishes the existence of𝛱1 ω 𝛱2 ∞ [𝛬]
satisfying Eqn. (19).
We now explain how to construct a new representation of ϑ(𝑣) that contains less basis vectors.

First observe that one of two sets 𝛱1,𝛱2 doesn’t contain the other since no basis vectors are 0 and
we have Eqn. (19). Assume without loss of generality that |𝛱1 | ∝ |𝛱2 |. Let 𝑖 be argmin𝑀△ ↖𝑗1▽𝑗2 𝑒𝑀△ ,
breaking ties arbitrarily. Then for 𝑤 ↖ 𝛱1 ▽ 𝛱2 let 𝑒 △𝑉 = 𝑒 𝑉 ▽ 𝑒𝑀 , for 𝑤 ↖ 𝛱2 ▽ 𝛱1 let 𝑒 △𝑉 = 𝑒 𝑉 + 𝑒𝑀 , and
for all other 𝑤 let 𝑒 △𝑉 = 𝑒 𝑉 .

Note that there was no change in the sum, i.e.,
ϑ(𝑣) = 𝝐0 + 𝑒1𝝐1 + . . . + 𝑒𝑊𝝐𝑊

= 𝝐0 + 𝑒 △1𝝐1 + . . . + 𝑒 △𝑊𝝐𝑊,
which establishes (16).
This new representation ↦𝑒 △1,𝑒 △2, . . . ,𝑒 △𝑊∀ has a strictly smaller support since 𝑒 △𝑀 = 0; so we have

Eqn. (18). Observe that
𝑊∑
𝑉=1

𝑒 △𝑉 ▽
𝑊∑
𝑉=1

𝑒 𝑉 = ▽𝑒𝑀 |𝛱1 \ 𝛱2 | + 𝑒𝑀 |𝛱2 \ 𝛱1 | ∋ 0

since |𝛱2 | ∋ |𝛱1 |. This gives Eqn. (17).
Thus, we have found another linear representation 𝝐0 + 𝑒 △1𝝐1 + . . . + 𝑒 △𝑊𝝐𝑊 of ϑ(𝑣) that has a

smaller support than the given linear representation 𝝐0 + 𝑒1𝝐1 + . . . + 𝑒𝑊𝝐𝑊 without decreasing the
1-norm value of the linear representation with respect to L. We can repeat this process until we
obtain a linear representation of support size at most 𝑧.

Finally, recall that we assumed 𝑃 ∋ 2. To remove this assumption, as mentioned at the beginning,
we can add an unused terminal to ε, which increments the value of 𝑃 by one in the bound. ↭

6 Bounding the Number of Iterations
This section is devoted to proving Theorem 1.1, restated here.

T!"#$"% 6.1 (T!"#$"% 1.1 R"+,’,"- ). Let 𝜴 be a 𝐿-stable commutative semiring. Let 𝑐 be a
Datalog→ program where the maximum number of multiplicands in any product is at most 𝑃. Let 𝑑
be the input EDB database. Let 𝑂 be the number of the semiring elements referenced in 𝑐 or 𝑑 . Let 𝑀
denote the total number of ground atoms in an IDB that at some point in the iterative evaluation of 𝑐
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over semiring 𝜴 on input 𝑑 have a nonzero associated semiring value. Then the iterative evaluation of
𝑐 over semiring 𝜴 on input 𝑑 converges within

⇓𝐿𝑀(𝑀 + 3) · (𝑂 (𝑀(𝑀 + 3)/2) lg(𝑃 + 1) + 4𝑂 lg𝑂 + 1)⇔
steps.

For a vector 𝝐 ↖ N𝑄 , we let 𝑈 (𝝐) denote the product corresponding to 𝝐, i.e.
∏𝑄

𝑙=1 𝑍
𝜴𝑃
𝑙 , where 𝑍𝑙

is the element corresponding to the 𝛴th entry of the vector. We naturally extend the notation to a
vector set 𝜼 , by letting 𝑈 (𝜼 ) :=

⊕
𝜴↖𝜶 𝑈 (𝝐). To prove the theorem, we need the following lemma,

which shows that the summation of all products corresponding to vectors in L with coe#cients up
to 𝐿 doesn’t change when added a product corresponding to any other vector in L. This lemma
can be extracted from the proof of [11] (See Section 5.2, in particular the proof of Theorem 5.10 in
the journal / ArXiV version of [11]). Since this paper did not state the lemma exactly as we will use
it (the lemma only states that if the underlying semiring is stable, a multivariate polynoial function
is stable) and our lemma is not easy to extract from the the previous work at !rst sight, we include
the following lemma and its proof for completeness.

L"%%’ 6.2 ([11]). Let L be a linear set with o"set vector 𝝐0 and basis vectors 𝝐1, 𝝐2, . . . 𝝐𝑊 . Let
L∝𝑂 := {𝝐0 +𝛶1𝝐1 +𝛶2𝝐2 + . . . +𝛶𝑊𝝐𝑊 | 𝛶𝑀 ↖ [0, 𝐿]∃ 𝑖}. Consider an arbitrary𝜽 = 𝝐0 + 𝑒1𝝐1 + 𝑒2𝝐2 +
. . . + 𝑒𝑊𝝐𝑊 where (𝑒1,𝑒2, . . . ,𝑒𝑊) ↖ N𝑊 and 𝑒𝑀 > 𝐿 for some 𝑖 . Then, we have

𝑈 (L∝𝑂 ) = 𝑈 (L∝𝑂 ) ↘ 𝑈 (𝜽)
P$##*. Assume wlog that 𝑒1, . . . ,𝑒𝑊△ > 𝐿 and 𝑒𝑊△+1, . . . ,𝑒𝑊 ∝ 𝐿 . Let 𝑢 𝑉 := {𝜾 =

(𝛶1, . . . ,𝛶𝑊) | 𝛶𝑀 ↖ [0,𝑒𝑀 ] ∃𝑖 ↖ [0, 𝑤] ⇒ [𝛬△ + 1,𝛬] and 𝛶𝑀 ↖ [0, 𝐿] ∃𝑖 ↖ [ 𝑤 + 1,𝛬△]} for all 𝑤 ↖ [0,𝛬△].
Note that to prove the lemma it su#ces to show

𝑈 (𝑢0) = 𝑈 (𝑢0) ↘ 𝑈 (𝜽)
because {𝝐0 + 𝛶1𝝐1 + . . . + 𝛶𝑊𝝐𝑊 | 𝜾 ↖ 𝑢0} ∞ L∝𝑂 . We are going to establish

𝑈 (𝑢0) = 𝑈 (𝑢1) = . . . = 𝑈 (𝑢𝑊△ ) (27)

and

𝑈 (𝑢 𝑉 ) ↘ 𝑈 (𝑢 𝑉+1 \𝑢 𝑉 ) = 𝑈 (𝑢 𝑉 ) ∃𝑤 ↖ [0,𝛬△ ▽ 1] (28)

Indeed if we have them,

𝑈 (𝑢0) ↘ 𝑈 (𝜽) = 𝑈 (𝑢𝑊△▽1) ↘ 𝑈 (𝜽) = 𝑈 (𝑢𝑊△▽1) = 𝑈 (𝑢0),
as desired, since (𝑒1,𝑒2, . . . ,𝑒𝑊) ↖ 𝑢𝑊△ \𝑢𝑊△▽1 and𝜽 = 𝝐0 + 𝑒1𝝐1 + . . . + 𝑒𝑊𝝐𝑊 .

It now remains to show Eqn. (27) and (28). Consider a !xed 𝑤 ↖ [0,𝛬△ ▽ 1]. Consider an arbitrary
𝜾 ↖ 𝑢 𝑉 . Let 𝜾 △ (𝑗) be 𝜾 with 𝜾 𝑉+1 ( 𝑤 + 1-th coordinate of 𝜾 ) replaced with 𝑗. Let 𝝐 (𝜾 △ (𝑗)) :=
𝝐0 + 𝛶△1 (𝑗)𝝐1 + . . . + 𝛶△𝑊 (𝑗)𝝐𝑊 be the vector represented by the linear representation 𝜾 △ (𝑗). Let
𝑞𝑀 := 𝑈 (𝝐𝑀 ). Then, we have

𝑂⊕
𝑅=0

𝑈 (𝝐 (𝜾 △ (𝑗))) =
𝑂⊕

𝑅=0

(
𝑊∏

𝑀=1:𝑀ω𝑉+1
𝑞𝑚𝐿𝑀

)
𝑞𝑅𝑉+1 =

𝑊∏
𝑀=1:𝑀ω𝑉+1

𝑞𝑚𝐿𝑀

𝑂⊕
𝑅=0

𝑞𝑅𝑉+1

=
𝑊∏

𝑀=1:𝑀ω𝑉+1
𝑞𝑚𝐿𝑀 𝑞 (𝑂 )𝑉+1

=
𝑊∏

𝑀=1:𝑀ω𝑉+1
𝑞𝑚𝐿𝑀 𝑞

(𝑃 𝑁+1 )
𝑉+1 [𝐿-stability and 𝑒 𝑉+1 > 𝐿]
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=
𝑂⊕

𝑅=0

(
𝑊∏

𝑀=1:𝑀ω𝑉+1
𝑞𝑚𝐿𝑀

)
𝑞𝑅𝑉+1 +

𝑃 𝑁+1⊕
𝑅=𝑂+1

(
𝑊∏

𝑀=1:𝑀ω𝑉+1
𝑞𝑚𝐿𝑀

)
𝑞𝑅𝑉+1

=
𝑂⊕

𝑅=0
𝑈 (𝝐 (𝜾 △ (𝑗))) +

𝑃 𝑁+1⊕
𝑅=𝑂+1

𝑈 (𝝐 (𝜾 △ (𝑗)))

Since
𝑂

𝑅=0 𝝐 (𝜾 △ (𝑗)) ∞ 𝑢 𝑉 , and any vector in 𝑢 𝑉+1 \ 𝑢 𝑉 is of the form of 𝜾 △ (𝑗) for some 𝑗 ↖
[𝐿 + 1,𝑒 𝑉+1] for some 𝜾 ↖ 𝑢 𝑉 , we have 𝑈 (𝑢 𝑉 ) = 𝑈 (𝑢 𝑉+1). In other words, we showed that any
product corresponding to𝑢 𝑉+1\𝑢 𝑉 is subsumed by some 𝐿+1 products in𝑈 (𝑢 𝑉 ) using the 𝐿-stability.
For the same reason, we have Eqn. (28). ↭

We now have all tools to prove Theorem 1.1. Consider an arbitrary IDB variable 𝑆𝑛 and let 𝑏 be
the CFL associated with this variable. Let M be a semi-linear set that satis!es the properties stated
in Theorem 3.1. Let T 𝑛

𝑅 denote the collection of the parse trees of depth at most 𝑗 starting with 𝑆𝑛 .
Our goal is to show:

𝑋 (𝑅)
𝑛 (0) = 𝑋 (𝑅+1)

𝑛 (0) (29)

where
𝑋 (𝑅)
𝑛 (0) =

⊕
𝑎 ↖T𝑄

𝑀

𝑈 (𝑅 ), and

𝑗 := ⇓𝐿𝑀(𝑀 + 3) · (𝑂 (𝑀(𝑀 + 3)/2) lg(𝑃 + 1) + 4𝑂 lg𝑂 + 1)⇔ (30)

Consider an arbitrary 𝑅 ↖ T 𝑛
𝑅+1 \ T 𝑛

𝑅 . By Theorem 3.1 (2)(b), 𝑇 (𝑅 ) has a linear representation

ϑ(𝑇 (𝑅 )) = 𝝐0 + 𝑒1𝝐1 + 𝑒2𝝐2 + . . . + 𝑒𝑊𝝐𝑊
within some L in M such that 1 + 𝑒1 + 𝑒2 + . . . + 𝑒𝑊 > 𝑗/(𝑀(𝑀 + 3)/2). Thus, we have 𝑒 :=
𝑒1 + 𝑒2 + . . . + 𝑒𝑊 > 𝐿𝑧 where

𝑧 := 2(𝑂 (𝑀(𝑀 + 3)/2) lg(𝑃 + 1) + 4𝑂 lg𝑂)

By Lemma 3.2, we can !nd a linear representation ϑ(𝑇 (𝑅 )) = 𝝐0 + 𝑒 △1𝝐△1 + 𝑒 △2𝝐2 + . . . + 𝑒 △𝑐𝝐△𝑐 , where
𝑒 △1 + 𝑒 △2 + . . . + 𝑒 △𝑐 > 𝐿𝑧. By the pigeonhole’s principle, we have that 𝑒 △𝑉 > 𝐿 for some 𝑤 .

Let L△ be the subset of L that only consists of basis vectors 𝝐△1, 𝝐
△
2, . . . , 𝝐

△
𝑐 together with o$set

vector 𝝐0. Clearly, L△ is a linear set. Then, by Lemma 6.2, we have⊕
𝜷↖L△

∝𝑅

𝑈 (𝜿) =
⊕
𝜷↖L△

∝𝑅

𝑈 (𝜿) ↘ 𝑈 (𝑅 ),

where we used
⊕

𝜷↖L△
∝𝑅
𝑈 (𝜿) = 𝑈 (L△

∝𝑂 ), which is the case by de!nition. To complete the proof of
Theorem 1.1, it is su#cient to show

L△
∝𝑂 ∞ {ϑ(𝑇 (𝑅 )) | 𝑅 ↖ T 𝑛

𝑅 } (31)

To see this consider any 𝝐 = 𝝐0 + 𝛶1𝝐1 + . . . + 𝛶𝑐𝝐𝑐 ↖ L△
∝𝑂 . By de!nition of L△

∝𝑂 , 𝛶𝑀 ∝ 𝐿 for all
𝑖 ↖ [𝑧]. Then, thanks to Theorem 3.1 (2)(a), we know that there is a word 𝑣 ↖ 𝑏 with ϑ(𝑣) = 𝝐
such that𝑣 is generated by a parse tree 𝑅 △ of depth at most (𝐿𝑧 + 1)𝑀(𝑀 + 3)/2 ∝ 𝑗. Thus, it must
be the case that 𝝐 ↖ {ϑ(𝑇 (𝑅 )) | 𝑅 ↖ T 𝑛

𝑅 }. This establishes Eqn. (31) as desired, and therefore we
have proven Theorem 1.1.
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7 Conclusion
This paper considers the convergence of recursive Datalog→ programs using natural iterative
evaluation over the semirings over stable commutative semirings, where convergence is not
program dependent. Previously the best-known bound on convergence time was exponential in the
output size. Our main contribution is to show that in fact the time to convergence can be bounded
by a polynomial in the natural parameters, such as the output size. One consequence of this result
is a better understanding of how much worse the time to convergence can be for general Datalog→
programs than linear Datalog→ programs. One reasonable interpretation of our results is that the
worst-case time to convergence for general Datalog→ programs is not too much worse than the
worst-case time to convergence for linearDatalog→ programs, which was a bit surprising to us given
that generally one doesn’t expect algorithmic convergence bounds for non-linear optimization to
be competitive with the bounds for linear optimization.
There are several natural directions for followup research. While essentially tight bounds are

known for convergence time for linear Datalog→ programs, we do not establish the tightness of
our bound. So one natural research direction is to determine tight bounds on the convergence rate
for general Datalog→ programs. Another natural research direction is to show certain bounds on
convergence time over non-stable semirings. Note that such bounds would have to be program-
dependent. A further research direction would be to develop other algorithms for evaluating
Datalog→ programs and analyze their convergence bounds.
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