Efficient Algorithms for Cardinality Estimation and
Conjunctive Query Evaluation With Simple Degree
Constraints

SUNGJIN IM, University of California at Santa Cruz, USA
BENJAMIN MOSELEY, Carnegie Mellon University, United States
HUNG Q. NGO, RelationalAI USA

KIRK PRUHS, University of Pittsburgh, USA

Cardinality estimation and conjunctive query evaluation are two of the most fundamental problems in database
query processing. Recent work proposed, studied, and implemented a robust and practical information-
theoretic cardinality estimation framework. In this framework, the estimator is the cardinality upper bound
of a conjunctive query subject to “degree-constraints”, which model a rich set of input data statistics. For
general degree constraints, computing this bound is computationally hard. Researchers have naturally sought
efficiently computable relaxed upper bounds that are as tight as possible. The polymatroid bound is the tightest
among those relaxed upper bounds. While it is an open question whether the polymatroid bound can be
computed in polynomial-time in general, it is known to be computable in polynomial-time for some classes of
degree constraints.

Our focus is on a common class of degree constraints called simple degree constraints. Researchers had not
previously determined how to compute the polymatroid bound in polynomial time for this class of constraints.
Our first main result is a polynomial time algorithm to compute the polymatroid bound given simple degree
constraints. Our second main result is a polynomial-time algorithm to compute a “proof sequence” establishing
this bound. This proof sequence can then be incorporated in the PANDA-framework to give a faster algorithm
to evaluate a conjunctive query. In addition, we show computational limitations to extending our results to
broader classes of degree constraints. Finally, our technique leads naturally to a new relaxed upper bound
called the flow bound, which is computationally tractable.

CCS Concepts: » Theory of computation — Database query languages (principles).

Additional Key Words and Phrases: Cardinality estimation, conjunctive query evaluation, polymatroid bound,
proof sequence, polynomial time algorithms

ACM Reference Format:

Sungjin Im, Benjamin Moseley, Hung Q. Ngo, and Kirk Pruhs. 2025. Efficient Algorithms for Cardinality
Estimation and Conjunctive Query Evaluation With Simple Degree Constraints. Proc. ACM Manag. Data 3, 2
(PODS), Article 96 (May 2025), 26 pages. https://doi.org/10.1145/3725233

Authors’ Contact Information: Sungjin Im, sungjin@ucsc.edu, University of California at Santa Cruz, Computer Science
and Engineering, Santa Cruz, California, USA; Benjamin Moseley, Carnegie Mellon University, Tepper School of Business,
Pittsburgh, PA, United States, moseleyb@andrew.cmu.edu; Hung Q. Ngo, RelationalAl, Berkeley, CA, USA, hung.q.ngo@
gmail.com; Kirk Pruhs, University of Pittsburgh, Computer Science Department, Pittsburgh, PA, USA, kirk@cs.pitt.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2025/5-ART96

https://doi.org/10.1145/3725233

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 96. Publication date: May 2025.

HTTPS://ORCID.ORG/0000-0001-5994-7280
HTTPS://ORCID.ORG/0000-0001-8162-017X
HTTPS://ORCID.ORG/0000-0002-3498-4744
HTTPS://ORCID.ORG/0000-0001-5680-1753
https://doi.org/10.1145/3725233
https://orcid.org/0000-0001-5994-7280
https://orcid.org/0000-0001-8162-017X
https://orcid.org/0000-0002-3498-4744
https://orcid.org/0000-0001-5680-1753
https://doi.org/10.1145/3725233

96:2 Sungjin Im, Benjamin Moseley, Hung Q. Ngo, and Kirk Pruhs

1 Introduction
1.1 Motivations

Estimating a tight upper bound on the output size of a (full) conjunctive query is an important
problem in query optimization and evaluation, for many reasons. First, the bound is used to es-
timate whether the computation can fit within a given memory budget. Second, cardinalities of
intermediate relations are the main parameters used to estimate the cost of query plans [23], and the
intermediate size bound is used as a cardinality estimator [9, 10, 17, 18, 26]. These “pessimistic” esti-
mators are designed to be robust [31], removing the assumptions that lead to the well-documented
impediment of selectivity-based estimators [21], where the estimates often under approximate the
real intermediate sizes by orders of magnitudes. Third, the bound is used as a yardstick to measure
the quality of a join algorithm [25].

The history of bounding the output size of a conjunctive query (CQ) is rich [2-6, 8, 11, 12, 14,
15, 19, 24, 25, 29]. In the simplest setting where the query is a join of base tables with known
cardinalities, the AGM-bound [5] is tight w.r.t. data complexity. up to a O(2") factor, where n is the
number of variables in the query. Join algorithms running in asymptotically the same amount of
time are “worst-case optimal” [27, 28, 30]. In practice, however, we know a lot more information
about the inputs beyond cardinalities. Query optimizers typically make use of distinct value counts,
heavy hitters, primary and and foreign keys information [22, 26], in addition to function predicates.
Every additional piece of information is a constraint that may drastically reduce the size of the
query output. For example, in a triangle query R(a, b) AS(b,c) AT (a, c), if we knew a was a primary
key in relation R, then the output size is bounded by min{|T|, |R| - |S|}, which can be asymptotically
much less than the AGM-bound of +/|R| - |S| - |T|.

To model these common classes of input statistics and key constraints, Abo Khamis et al. [2, 3]
introduced an abstract class of constraints, called degree constraints.! A degree constraint is a triple
(X,Y,c), where X C Y are sets of variables, and 2° is positive integer. The constraint holds for a
predicate or relation R if maxy |ryox=xR| < 2¢, where 7 and o are the projection and selection
operators, respectively. The intuitive meaning of the triple (X, Y, ¢) is that the number of possible
bindings for variables in Y can attain, given a particular binding of the variables in X, is at most 2°.
If X = (then this is a cardinality constraint, which says |ryR| < 2; if ¢ = 0 (i.e. 2¢ = 1) then this is
a functional dependency from X to Y.

Given a set DC of degree constraints, and a full CQ Q; we write I = DC to denote that a database
instance I satisfies the constraints DC. A robust cardinality estimator is supy_pc [Q(I)], the upper
bound on the number of output tuples of Q over all databases satisfying the constraints [7, 17, 26].
We will refer to this bound as the combinatorial bound. For arbitrary degree constraints, it is not
clear how to even compute it. Even in the simplest case when all degree constraints are cardinality
constraints, approximating the combinatorial bound better than the 2"-ratio is already hard [5],
where n is the number of variables in Q.

Consequently, researchers have naturally sought relaxed upper bounds to the combinatorial
bound that are (efficiently) computable, and that are as tight as possible [3, 5, 13, 14, 25, 26, 31]. Most
of these bounds are characterized by two collections: the collection F of set-functions h : 21" — R,
we are optimizing over, and the collection DC of (degree-) constraints the functions have to satisfy.
Here, n is the number of variables in the query. Abusing notations, we also use DC to denote the
constraints over set-functions: h(Y) — h(X) < c, for every (X, Y, c) € DC. Given DC and ¥, define

DC[F] := sup{h([n]) | h € F N DC}. (1)

IDegree constraints are also generalized to frequency moments collected on input tables [19, 26].

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 96. Publication date: May 2025.

Efficient Cardinality Estimation with Simple Degree Constraints 96:3

Different classes of ¥ and DC give rise to classes of bounds with varying degrees of tightness
(how close to the combinatorial bound) and computational complexities [3]. This paper focuses
on the polymatroid bound [3, 19], obtained by setting ¥ = I},, the collection of all n-dimensional
polymatroid functions. The upper bound log, sup;pc |Q(I)| < DCIIL,] is the tightest known
upper bound that is plausibly computable in polynomial-time [26]. (See Section 2 for more.)

More precisely, the polymatroid bound DC[T,] for a collection DC = {(X;, Y;,¢;) | i € [k]} of k
degree constraints over variables X; C Y; C [n], can be computed by solving:

max h([n])
st. h(Y:) -h(X;)) < ¢ Vie[k] (2)
h e T,

The optimization problem (2) is a linear program (LP, see Sec. 2). with an exponential number of
variables and constraints. In the query processing pipeline, for every query the optimizer has to
issue many cardinality estimates when searching for an optimal query plan. Hence, solving the
LP (2) in polynomial time is crucial.

While it is an open question whether the polymatroid bound can be computed in poly-time for
general degree constraints, it is known to be computable in poly-time if the input degree constraints
fall into one of the following cases: (a) all degree constraints are cardinality constraints [5, 19]; in
this case the polymatroid bound is the same as the AGM bound; (b) the constraint dependency graph
is acyclic [25]; this is a generalization of the all cardinality constraints case;? or (c) the constraints
include cardinality constraints and simple functional dependencies (FD) [14]; Simple FDs are degree
constraints of the form (X, Y, c) withc=0and |X| =1

Our focus in this paper will be on another class of commonly occurring types of degree constraints
called simple degree constraints. A degree constraint (X, Y, ¢) is simple if |X| < 1. This class strictly
generalizes cardinality constraints and simple functional dependencies. Simple degree constraints
also occur in the context of query containment under bag semantics, where they are the key
ingredient for the rare special case when the problem is known to be decidable [1]. In particular,
Lemma 3.13 from [1] showed that, for simple degree constraints, there is always an optimal
polymatroid function of a special type called a normal function. The proof was a rather involved
constructive argument that showed how to iteratively modify any feasible polymatroid function to
obtain a feasible normal function without decreasing the objective value. While this observation
offered some structural insight, it certainly did not resolve the issue of whether the polymatroid
bound could be efficiently computed when the degree constraints are simple.

The polymatroid bound (2) is deeply connected to conjunctive query evaluation thanks to the
PANDA framework [3, 19]. From an optimal solution to the dual D of the LP (2), [3] showed
how to construct a specific linear inequality that is valid for all polymatroids called a Shannon-
flow inequality. The validity of the Shannon-flow inequality can be proved by constructing a
specific sequence of elemental Shannon inequalities. This sequence is called a proof-sequence for
the Shannon-flow inequality. From a proof sequence of length ¢, the PANDA algorithm can answer
a conjunctive query in time O(|I|) + (log [I|)°©U, where U = 2P€II»] is the upper bound on the
output size given by the polymatroid bound, and I is the input database instance.

While PANDA is a very general framework for algorithmically constructing completely non-
trivial query plans that optimize for the total number of tuples scanned, the major drawback in the
runtime expression is that as the length of the proof sequence appears in the exponent. Previous
results [3] can only establish ¢ to be exponential in n. A shorter proof sequence would drastically
improve the running time of PANDA.

2The constraint dependency graph is the graph whose vertices are the variables [1] and there is a directed edge (u, v) if
and only if there exists a degree constraint (Xj, Y, c;) where u € X; and v € Y; — X;.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 96. Publication date: May 2025.

96:4 Sungjin Im, Benjamin Moseley, Hung Q. Ngo, and Kirk Pruhs

The problems outlined above set the context for our questions and contributions. First, under
simple degree constraints is it possible to efficiently compute the polymatroid bound? Second,
can a proof sequence of polynomially bounded length be constructed? And third, what is a good
relaxation of the polymatroid bound that is tractable?

1.2 Our Contributions

Our first main contribution, stated in Theorem 1.1, is to show that the polymatroid bound can
be modeled by a polynomial-sized LP for simple degree constraints, and thus is computable in
poly-time when the degree constraints are simple.

Theorem 1.1. Let DC be a collection of k simple degree constraints over n variables. The polymatroid
bound DC[T,] can be modeled by a LP where the number of variables is O(kn?®) and the number of
constraints is O(kn). Thus the polymatroid bound is computable in time polynomial in n and k.

We prove Theorem 1.1 in Section 3, but let us give a brief overview here. The proof outline is
shown schematically in Figure 1. The LP formulation P of the polymatroid bound DC[I},] in (2)
has exponentially many variables and exponentially many constraints, and so does P’s dual D. The
starting point is the observation that there are only polynomially many constraints in P where
the constant right-hand side is non-zero (namely the constraints that correspond to the degree
constraints), and thus the objective of D only has polynomial size. By projecting the feasible region
for the LP D down onto the region of the variables in the objective, we show how to obtain an

simple

LP formulation D of the polymatroid bound that has polynomially many variables, but still

exponentially many constraints. The most natural interpretation of D™ i as a sort of min-cost

hypergraph cut problem. We show that this hypergraph cut problem can be reformulated as n
min-cost network flow problems in a standard graph. This results in a natural polynomially-sized
LP formulation Dgo‘”.

(taking dual)
P D _ (exponential size)
(project) RN
Lemmas 3.2 and 3.3
I I o
simple simple D1ow (polynomial size)
s (taking dual) s Lemma3.1 ° (poly

Fig. 1. Outline of the proof of Theorem 1.1.

As an ancillary result, we observe in Section 3 that the dual of D;mple is a natural LP formulation

of the polymatroid bound when the polymatroidal functions are restricted to normal functions.
This gives an alternate proof, that uses LP duality, of the fact that for simple degree constraints
there is an optimal polymatroid function that is normal. We believe that this dual-project-dual
proof is simpler and more informative than the inductive proof in [1].

Our second main contribution, stated in Theorem 1.2, is to show that there is a polynomial
length proof sequence for simple instances. Beyond improving PANDA’s runtime, this theorem is a
fundamental result about the geometry of submodular functions.

Theorem 1.2. Let DC be a collection of k simple degree constraints over n variables. There is a
polynomial-time algorithm that computes a proof sequence for the polymatroid bound of length
O(k?*n? + kn%).

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 96. Publication date: May 2025.

Efficient Cardinality Estimation with Simple Degree Constraints 96:5

The proof of Theorem 1.2 in Section 4 constructively shows how to create a proof sequence
from a feasible solution to our LP Dgo“’, where the length of the proof sequence is linear in the
cardinality of the support of the feasible solution. Intuitively, this proof sequence is exponentially
shorter than the one that would be produced using the method in [3] (even under simple degree
constraints) because it utilizes the special properties of the types of feasible solutions for the LP
D that are derivable from feasible solutions to our LP Dg"“’. And because the proof sequence is
exponentially shorter, this exponentially decreases the run time when using the PANDA algorithm.

We next prove that allowing other types of degree constraints that are “just beyond simple” in
some sense results in problems that are as hard as general constraints. The proof of the following
theorem is in Section 5.

Theorem 1.3. Even if the set of input degree constraints DC is restricted to either any one of the
following cases, computing DC[IL},] is still as hard as computing the polymatroid bound for general
degree constraints:

(a) If DC is a union of a set of simple degree constraints and a set of acyclic degree constraints.
(b) If DC is a union of a set of simple degree constraints and a set of FD constraints.
(c) If DC contains only degree constraints (X, Y, c) with |X| < 2 and |Y| < 3.

As for simple degree constraints there is always an optimal polymatroid function that is normal,
one might plausibly conjecture that an explanation for the polymatroid bound being efficiently
computable for simple degree constraints is that the optimal normal function is efficiently com-
putable for general degree constraints. We show that this conjecture is highly unlikely to be true
by showing that it is NP-hard to compute the optimal normal function on general instances. This is
stated in Theorem 1.4, which is proved in Section 6.

Theorem 1.4. Given a collection DC of degree constraints, it is NP-hard to compute the polymatroid
bound DCI[I,,] when the functions are additionally restricted to be normal.

Theorem 1.3 implies that, perhaps, we have reached (or are at least nearing) the limits of
natural classes of degree constraints for which computing the polymatroid bound is easier than
computing the polymatroid bound for general instances. We next seek a tractable relaxation of
the polymatroid bound. Section 7 introduces a new upper bound called the flow bound, denoted by
flow-bound(DC,), which is parameterized by a permutation r of the variables. The flow bound
is strictly better than the previously known tractable relaxation called the chain bound DC,[I},]
(See [25] and Sec 2), thus it can be used as a tighter yet poly-time computable cardinality estimator.

Theorem 1.5. The flow-bound satisfies the following properties:
(a) For all collections DC of degree constraints, and any given permutation 7 of the variables, the
flow bound can be computed in polynomial time, and is tighter than the chain bound, that is:

DC[T},] < flow-bound(DC,) < DC,[I}] (3)

(b) If DC is either simple or acyclic, then in polynomial time in n and |DC|, we can compute a
permutation 7 such that flow-bound(DC, r) = DC[T},].

(c) There are classes of instances DC where there exists permutations x for which the ratio-gap
DCr (T]

flowbound (DT 1S unbounded above.

2 Background

This section presents the minimal background required to understand the results in this paper.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 96. Publication date: May 2025.

96:6 Sungjin Im, Benjamin Moseley, Hung Q. Ngo, and Kirk Pruhs

2.1 Classes of set functions

Given a function h : 2" — R, and X C Y C [n], define h(Y|X) = h(Y) — h(X). The function h is
monotone if h(Y|X) > 0 for all X C Y; it is submodularif h(III N J) > h(IU J|J),VL,J C [n].Itis a
polymatroid if it is non-negative, monotone, submodular, with h(0) = 0. For every W C [n], a step
function sy : 21"l — R, is defined by sy (X) = 0if X C W and sy (X) = 1 otherwise. A function h
is normal (also called a weighted coverage function) if it is a non-negative linear combination of step
functions. A function h is modular if there is a non-negative value w; for each variable i € [n] such
that for all X C [n] it is the case that h(X) = X;ex Wi.

Let I,, My, N,, denote the set of all polymatroid, modular, normal functions over [n], respectively.
It is known [3] that M,, € N, C I},. Note that all three sets are polyhedral. In other words, when
we view each function as a vector over 2["] the set of vectors forms a convex polyhedron in that
vector space, defined by a finite number of hyperplanes. To optimize linear objectives over these
sets is to solve linear programs.

2.2 Shannon-flow inequalities and proof sequences

Let # C 2["l x 2["] denote the set of all pairs (X,Y) suchthat ® € X C Y C [n]. Let § =
(8y|x)(x,v)ep be a vector of non-negative reals. The inequality

h([n]10) < Z dyix - h(Y]X) 4)
(X.Y)eP
is called a Shannon-flow inequality [3] if it is satisfied by all polymatroids h € T,.
One way to prove that (4) holds for all polymatroids is to turn the RHS into the LHS by repeatedly
applying one of the following replacements:
e Decomposition: h(Y|0) — h(X|0) + h(Y|X), for X C Y.
e Composition: h(X|0) + h(Y|X) — h(Y|0),for X C Y.
e Monotonicity: h(Y|X) — 0,for X C Y.
o Submodularity: h(III N J) — h(IU J|]), for I L J, whichmeansI ¢ Jand J £ I.
Note that, we can replace — by > in all four cases above to obtain valid Shannon inequalities
that are satisfied by all polymatroids. Each replacement step is called a “proof step,” which can be
multiplied with a non-negative weight w. For example, w - h(I|II N J) > w - h(I U J|]) is a valid
inequality. We prepend w to the name of the operation to denote the weight being used, so we
will refer to the prior inequality as an w-submodularity step. Note also that, the terms h(Y|X) are
manipulated as symbolic variables.
A proof sequence for the inequality (4) is a sequence of proof steps, where
e Every step is one of the above proof steps, accompanied by a non-negative weight w

o After every step is applied, the coefficient of every term h(Y|X) remains non-negative.

e The sequence starts with the RHS of (4) and ends with the LHS.
Every proof step thus transforms a collection of non-negatively weighted (“conditional polyma-
troid”) terms into another collection of non-negatively weighted terms. One of the main results in
the paper [3] stats that, the inequality (4) is a Shannon-flow inequality if and only if there exists a
proof sequence for it.

2.3 Comparison of polymatroid bound to other bounds

Recall the bound DC[¥] defined in (1). By parameterizing this bound with combinations of ¥
and DC, we obtain a hierarchy of bounds, which we briefly summarize here. By setting ¥ = [},,
N,, M,, we obtain the polymatroid bound DC[I,,], the normal bound DC[N,], and the modular
bound DC[M,], respectively. For a permutation 7 of [n], let DC, denote the collection of degree

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 96. Publication date: May 2025.

Efficient Cardinality Estimation with Simple Degree Constraints 96:7

constraints obtained by modifying each (Xj, Y;, ¢;) € DC by retaining the variables in Y; that either
are in X; or are listed after all variables in X; in the m-order. Note that DC,, is a relaxation of
DC in the sense that if a database instance satisfies DC, then it also satisfies DC,. The following
inequalities are known [25, 29]:

DC[M,] £ DC[N,] < DCI[IL},] < mlin DC,[I,] DC[M,] <n-log {P:aD)é |O(I)| (5)
loglr'n:%% |Q(I)| < DCIL,] DC[N,] < 2" -loglrfl:%% Q)| (6)

Fix a permutation 7 (a “chain”), then the chain-bound DC, [I},] is computable in poly-time [25]. If
DC is acyclic, then we can compute a permutation 7 (in poly-time) such that DC,[I},] = DC[M,].

3 Computing the polymatroid bound in polynomial time
3.1 Review of the linear programming formulation

This subsection reviews the relevant progress made in [3]. The LP formulation for computing the
polymatroid bound DC[I,] on a collection DC = {(X;, Y, ¢;) | i € [k]} of degree constraints was
shown in equation (2). We now write down this LP more explicitly, by listing all the constraints
defining the polymatroids. To make the formulation more symmetrical, in the following, we do not
restrict h(0) = 0; instead of maximizing h([n]), we maximize the shifted quantity A([n]) — h(0).
The function h’(X) = h(X) — h(0) is a polymatroid.

There is a variable h(X) for each subset X of [n]. The LP, denoted by P, is:

P: max h([n]) - h(0)

st. A(YUX)—h(X) —=h(Y)+h(YNX) < 0 VXVY,X 1Y ;
h(Y)—h(X) > 0 VXVY,XCY @)
h(Y) —h(X)) < ¢ Vie [k]

where X | Ymeans X € Y and Y ¢ X. The first collection of constraints enforce that the function
h is submodular, the second enforces that the function A is monotone, and the third enforces the
degree constraints. We will adopt the convention that all variables in our LPs are constrained to
be non-negative unless explicitly mentioned otherwise. Note that the linear program P has both
exponentially many variables and exponentially many constraints.

To formulate the dual LP D of P, we associate dual variables ox y, dual variables px y and dual
variables §; with the three types of constraints in P (in that order). The dual D is then:

D: min Zie[k] Ci- 51‘
s.t. excess([n]) > 1 ®)
excess(0) > -1
excess(Z) > 0, VZ # 0, [n]

where excess(Z) is defined by:

excess(Z) := Z O; — Z 0; + Z ory+ Z opy — Z oz — Z Ux.z + Z Hzy

7=, 1Z7=X; 1L riy JJLzZ X:X¢Z Y:ZgY
Inj=z rujy’=z
We use &, o, p to denote the vectors of §;, ox y, and pix y variables.

The dual D can be interpreted as encoding a min-cost flow problem on a hypergraph L. The
vertices of L are the subsets of [n]. Each variable px y in D represents the flow on a directed edge
in £ from Y to X. Each variable §; in D represents both the flow and capacity on the directed
edge from X; to Y; in L. The cost to buy this capacity is J; - ¢;. Each variable ox y in D represents
the flow leaving each of X and Y, and entering each of X N Y and X U Y through the hyperedge

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 96. Publication date: May 2025.

96:8 Sungjin Im, Benjamin Moseley, Hung Q. Ngo, and Kirk Pruhs

containing four vertices. The o variables involve flow between four nodes, which is why this is a
hypergraph flow problem, not a graph flow problem. Flow can not be created at any vertex other
than the empty set, and is conserved at all vertices other than the empty set and [n]. That is, there
is flow conservation at each vertex like a standard flow problem. The objective is to minimize the
cost of the bought capacity subject to the constraint that this capacity can support a unit of flow
from the source s = 0 to the sink ¢ = [n].

Example 1 (Running Example Instance). It is challenging to construct a small example that
illustrates all the interesting aspects of our algorithm design, but the following collection of degree
constraints is sufficient to illustrate many interesting aspects:

(1) h(ab) < 1; (2) h(be) <25 (3) h(ac) < 1; (4) h(ad) — h(a) < 1

These degree constraints are indexed (1) through (4) as indicated and k = 4. The optimal solution
for D to buy the following capacities, and route flow as follows:

{a,b,c,d}
{a,b,c}
J{a.b}.{uy/ \ O{abc}{ad}

{a, b}

Fig. 2. The feasible flow in the optimal solution for D, where all depicted variables are set to 1.

Set &1, 83, 84 equal to 1 and J, to 0. The objective will be 3. This can support the flow as follows.
A flow of 1 is sent from @ to {a, b} and from 0 to {a, c} on the corresponding degree constraints.
Then a flow of 1 is sent from {a, b} and {a, c} to both {a, b, c} and {a} using o4} {a.c}. The flow of
1 at {a} is sent to {a, d} on the degree constraint J,. A flow of 1 is then sent to both {a, b, c,d} and
{a, } from {a, b, c} and {a,d} using o(4p ¢} {aq4}- Thus, a flow of 1 reaches the set of all elements.
Finally the leftover flow of 1 at {a} is returned to 0 on pig 4}.

3.2 Polynomial sized linear programming formulation (proof of Theorem 1.1)

This is where we leave the foundation laid by [3] and begin covering new ground. We shall show
that the LP D can be replaced by projecting its feasible region down to the space of the §; variables,
resulting in the following LP:

impl .
D;mpe : min Z i+ O 9)
ielk]
s.t. Z =1 VYV ¢ [n]
ie[k]: X;CV,Y;¢V

Dfsimple can be interpreted as a min-cost cut problem in the hypergraph network £, where the goal

is to cheaply buy sufficient capacity on the § edges so the § edges crossing various cuts, determined
by the degree constraints, have in aggregate at least unit capacity. Note that D;mple has only linearly

many variables (one for each degree constraint), but exponentially many constraints.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 96. Publication date: May 2025.

Efficient Cardinality Estimation with Simple Degree Constraints 96:9

We next present a linear program Dg"‘” that shall be shown to be equivalent to D and D;mp]e,

but with only polynomially many variables and only polynomially many constraints. The intuition
behind Dgo“’ is that it has a natural interpretation as a min-cost flow problem in a (directed graph)
network G = (V, E) with a single source s = () and one sink for each variable. The vertices in V
consist of the empty set 0, the singleton sets {i} for i € [n], and the sets Y;, i € [k]. The edges in E
are all the degree constraint edges (X, V;) from £, and all the px y edges from £ where X and Y
are vertices in V. The cost of the degree constraint edges (Xj, ¥;) remains §;, and the costs of the
Ux.y edges remain 0. So G is a subgraph of the hypergraph L. See Figure 3 for an illustration of G
for our running example. Now the problem is to spend as little as possible to buy enough capacity
so that for all sinks/vertices t € [n] it is the case that there is sufficient capacity to route a unit of
flow from the source s = 0 to the sink t.

We—__
wa) W
(@) wd
el (e}
») el
»)
et {b.c}

{a}

0 | > {a.b}
0

Fig. 3. The auxiliary graph G for the running
example. The blue edges correspond to the de-
gree constraints, with annotated costs. The green
edges correspond to the p variables, and cost 0.

Fig. 4. A unit flow in the auxiliary graph G from 0
to {d}. For this flow to be feasible, a unit capacity
must be bought on these edges.

. . . . flow .
This problem is naturally modeled by the following linear program D°":

Dg"w : min Z ¢ - (10)

ielk]

s.t. fir <6 Vi € [k] Vt € [n]
excess;(t) =1 Vt € [n]
excess;(0) = -1 Vt € [n]
excess;(Z) = 0 VZ € G\ {0} \ {t} Vt € [n]

where,
excess;(Z) := Z fir — Z fir+ Z Ux.zr+ Z UZY .t
iZ=Y; iZ=X; X:XCZ Y.Zgy

The interpretation of f;; is the flow routed from X; to Y; in G for the flow problem where the sink
is {t}; piz.v.+ is the flow routed from Y to Z in G. So the first set of constraints say that the capacity
bounds are respected, the second and third set of constraints ensure that unit flow leaves the source
and arrives at the appropriate sink, and the last set of constraints ensure flow conservation. Note
that as the graph G has O(k + n) vertices and O(kn) edges, the LP Dgo“’ has O(kn?) variables and
O(kn) constraints.

Example 2 (Running example). The optimal solution for Dg"“’ on our running example is to buy
unit capacity on the y edges for a cost of 0, buy unit capacity on degree constraint edges 0 — ab,
0 — ac, and a — ad for a cost of 1 each, resulting in a total cost of 3. This supports a flow of 1 to a
by routing a unit of flow on the path 0 — ab — a, supports a flow of 1 to b by routing a unit of flow

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 96. Publication date: May 2025.

96:10 Sungjin Im, Benjamin Moseley, Hung Q. Ngo, and Kirk Pruhs

on the path @ — ab — b, supports a flow of 1 to ¢ by routing a unit of flow on the path ® — ac — c,
and supports a flow of 1 to d by routing a unit of flow on the path ® — ab — a — ad — d. This
flow to d is shown in Figure 4.

We now formally show that the linear programs D, D;mp '* and Dgo“’ all have the same objective
function. Refer to Fig. 1 for the high-level plan. To show that they are equivalent, it is sufficient
to just consider the feasible regions for these LPs. We prove equivalence in the following manner.
Lemma 3.1 shows feasible regions of the LPs D;mple and Dfs[°“’ are identical. Then Lemma 3.2 shows
that the polyhedron defined by projecting the feasible region of the LP D onto the §-space is a
subset of the feasible region defined by the LP Dg"‘”. Finally Lemma 3.3 shows that polyhedron
defined by projecting the feasible region of the LP D onto the §-space is a superset of the feasible
region defined by the LP Dg"“’.

simple

LEMMA 3.1. The feasible regions of the linear programs D

and Dgo‘” are identical.

Proor. Assume for some setting of the §; variables, that Dg"‘” is infeasible. Then there exists
at € [n] such that the max flow between the source s = () and {¢} is less than 1. Since the value
of the maximum s-¢ flow is equal the value of the minimum s-t cut, there must be a subset W of
vertices in G such that s € W and t ¢ W, where the aggregate capacities leaving W is less than one.

By taking V := {i € [n] | {i} € W} we obtain a violated constraint for Dsaimple.

Conversely, assume that for some setting of the §; variables, that D‘c']m'o[e is infeasible. Then
there is a set V. C [n] such that };c.x,cvv,¢v 8 < 1. Fix an arbitrary ¢t € [n] \ V, and let
W= {s} U {{i} | i € V}. The (s,t)-cut (W,V(G) \ W) has capacity >;c[x].x;cv,v;¢v 6; Which is

strictly less than 1. This means § is not feasible for Dg"‘”, a contradiction. O

LEmMMA 3.2. The polyhedron defined by projecting the feasible region of the linear program D onto
the 8-space is a subset of the feasible region defined by the linear program Dg"“’.

Proor. Let (8, o, i) be a feasible solution to the linear program D, where § = (8;);c[x]. We
show that § is feasible for the linear program Dg"“’. Assume to the contrary that § is not feasible
for Dg"‘”, then there exists a t € [n] such that there is a cut in the flow network G with capacity
< 1 that separates s = 0 and {¢}. In particular, let V be the union of all singleton sets that are on
the same side of this cut as s = 0; then, ;¢ (). x,cv v,gv 6 < 1.

Now consider the flow hypernetwork £ associated with the linear program D. Let W := {s} U
{{i} | i € V} be a set of vertices in L. Then in the hypergraph £ we claim that the aggregate flow
coming out of W can be at most Y’;c (k). x,cv,v,¢v 6 < 1. Since the net flow out of W is equal to the
total flow received by vertices not in W, which is 3’74, excess(Z) > 1, we reach a contradiction.

To see that the claim holds, note that no ux y edge can cause flow to escape W, and no oxy
hyperedge can contribute a positive flow to leave W:if X €e Wand Y € W then X UY € W, and if
either X ¢ W or Y ¢ W then ox y does not route any positive net flow out of W. O

LEmMMA 3.3. The polyhedron defined by projecting the feasible region of the linear program D onto
the &-space is a superset of the feasible region defined by the linear program Dg”‘”,

Proor. To prove this lemma we constructively show how to extend a feasible solution § for
Dgow to a feasible solution (6, o,) for D by setting y and o variables. The extension is shown in
Algorithm 1. After initialization, the outer loop iterates over i from 0 to n — 1. We shall show that
this loop maintains the following outer loop invariant on the setting of the variables in D, at the
end of iteration i

(1) The excess at the vertex [i + 1] in L is 1.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 96. Publication date: May 2025.

Efficient Cardinality Estimation with Simple Degree Constraints 96:11

Algorithm 1 Constructing a feasible solution (8, o,) to the LP D

I ug«—0,0<0

2: for j =1tok do > For each degree constraint (X;, Y}, c;)
3: Hx,y; < 5j
4 fori=0ton—-1do > Outer Loop
5 Let P*! be the collection of simple flow paths routing 1 unit of flow froms = 0 to t = {i+1}
6 for each path P € P! with flow value € do > Forward Path Loop
7: for each edge (A, B) € P from 0 to {i + 1} do
8: if AU [i] € BU [i] then
9: Decrease fi4u(i1,Bu[i] by €
10: else if BU [i] € AU [i] then
11: Increase ppyil,aufi] by €
122 for each path P € P! with flow value € do > Backward Path Loop
13: for each edge (A, B) € P from {i + 1} back to 0 do
14: if AU[i+1] € BU[i+ 1] then
15: Increase payfis1],Bufi+1] bY €
16: elseif BU[i+1] S AU [i+ 1] then
17: Decrease ppu[ij,aufi] by €
18: if i+1 € A then > This means AU [i] = AU [i+ 1]
19: Increase pipyi],Bufi+1] by €
20: else
21: Increase oaui],Bufi+1] bY €
22: for each j € [k], where X; U [i+1] € Y; U [i+1] do > Cleanup Loop
23: € — (Sj _f}',i+1
24: Reduce px;u(i),y,uli] by €
25: if i+1 €Y, then
26: Increase px,ufi).x;uli+1] @nd px;ufir],y;ufi+1] by € each
27: else
28: Increase ox;uli+1],y;u[i] bY €

(2) The excess at every vertex in L, besides () and [i + 1] is zero.

(3) For every j € [k],if X; U [i+1] C Y; U [i+ 1], then we have pix,u[i+1],v,0[i+1] = Jj-

(4) po=>0.

Note that, if the invariant is satisfied at the end of iteration i = n — 1, then the resulting (8, o, p)
will represent a feasible solution for the LP D, which proves the lemma.

We now prove the invariant by induction on i. It is satisfied at i = 0, where [0] is defined to
be the empty set. For the inductive step, note that the body of the outer loop has three blocks of
inner loops: the forward path loop, the backward path loop, and the cleanup loop. To extend the
inductive hypothesis from i to i + 1, let P € P™*! be a simple flow path in the graph G that routes
e-amount of flow from s = @ to t = {i + 1}. The first claim examines the effect of the forward path
loop on the variables in D.

Claim 1. The net effect on an iteration of the forward path loop processing a path P, with flow e,
on the setting of the variables in D is:

(a) The excess at the vertex [i] in £ is reduced by ¢, and at the vertex [i + 1] is increased by €.
(b) The excess at every vertex in £, besides 0, [i] and [i + 1] is zero.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 96. Publication date: May 2025.

96:12 Sungjin Im, Benjamin Moseley, Hung Q. Ngo, and Kirk Pruhs

(c) For each degree constraint j € [k] where (X;,Y;) = (A,B) € P,and AU [i] € BU [i], itis
the case that y[;jux; [ijuy, decreases by e.
(d) po > 0.

While the algorithm examines each edge (A, B) in P one by one, the real changes are on the
“lifted” edge (A U [i], BU [i]). In particular, the algorithm examines the path P[i] constructed from
P by replacing each edge (A, B) by (AU [i], BU [i]). An illustration of the paths P, P[i], P[i + 1],
and flow value settings is shown in Figure 5. Note that P[i] starts from [i] and ends at [i + 1];

AUli+1] CuUli+1] BU[i+1]

N AN AN A

BU[i] AU [i] [i+1] [i+1] < BU[i+1] A U[i+1]
BUli+1] AU[i+1] AUli+1]=AU[i]
~
Pep™ Hr=e AU [i]
/\/\/\ - .
{i+1} AUli+1] BUJ[i+1] p-=¢€ BU[i+1]
\ p+= (¢
BU [i] BU[i]

Fig. 5. lllustrations of Forward and backward passes

furthermore, if A U [i] = BU [i] (i.e. a self-loop) then the edge is not processed. Statements (a) and
(b) follow from the fact that, as we enter a vertex on the path P[i], we either increase or decrease
the excess by ¢, only to decrease or increase it by € when processing the very next edge. The only
exceptions are the starting vertex [i] which loses € excess, and the ending vertex [i + 1] which
gains € excess. Statement (c) follows trivially from line 9 of the algorithm. Part (d) follows from the
induction hypothesis that condition (3) of the outer loop invariant holds for iteration i.

Thus the aggregate effect of the forward path loop (after all paths are processed) is to increase
the excess at [i + 1] from 0 to 1, and to decrease the excess at [i] from from 1 to 0. This establishes
the first two conditions of the outer loop invariant for iteration i + 1. The purpose of the backward
path loop and the cleanup loop is to establish the 3rd condition of the outer loop invariant for
iteration i + 1. We always maintain o, g > 0 throughout. The backward path loop increases such a
Ex;uli+]y;uli+1] to the flow value fj 11, where the value of fj ;.1 comes from the optimal solution
to the linear program Dgo‘”. This can still be smaller than ;. The cleanup loop then increases
Hx,uli+1],y;uli+1] to &, giving the desired property.

The next claim examines the effect of the backward path loop on the variables in D.

Claim 2. The net effect of an iteration of the backward path loop processing a path P is:
(a) The excess of all nodes in £ does not change.
(b) If there is a degree constraint j where (Xj,Y;) = (A,B) € P,and X; U [i+ 1] # Y; U [i + 1]
then p1au[i+1],Bufi+1] Will increase by e.
(c) po > 0.

Let P[i + 1] be the lifted path constructed from P by replacing each edge (A, B) by an edge
(AU [i+1],BU [i+1]), and removing all self loops. The backward path loop processes edges in
P[i+ 1]. Note that P[i + 1] is a closed loop as both the start and the end are [i + 1]. Thus it will be
sufficient to argue that for each processed edge (A, B) in P it is the case that the excess of AU [i + 1]
increases by ¢, the excess of BU [i + 1] decreases by €, the excess of all other nodes does not change,

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 96. Publication date: May 2025.

Efficient Cardinality Estimation with Simple Degree Constraints 96:13

and if there is a degree constraint j where A = X;, B = Y;, and X; U [i + 1] # Y; U [i + 1] then
Hauli+1],Bu[i+1] Will increase by e.

First consider the case that AU [i + 1] € B U [i + 1], and thus there is a degree constraint j
where (A, B) = (X, Y;). Since we increase pay[ir1],Bufi+1] bY € in line 15, it follows that the excess
of AU [i+ 1] increases by € and the excess of B U [i + 1] decreases by €. The excess of all other
nodes does not change. Furthermore, (b) and (c) hold for this case.

Second, consider the case that BU [i + 1] € A U [i + 1]. Decreasing ppy[i],aufi] by € in line 15
has the effect of increasing the excess of A U [i] and decreasing the excess of B U [i]. Figure 5
illustrates the following cases. If i + 1 € A then, since A U [i] = AU [i + 1] we have an excess
increase of € at A U [i + 1]. Increasing p1guyi1,supi+1] by € in line 19 balances the excess at B U [i]
and reduces the excessat BU [i+ 1] by e. If i+ 1 ¢ A, then (BU [i+1]) N AU [i] = BU [i] and
(BU[i+1]) U (AU [i]) = AU [i+1]. In this case, increasing cau[;],Bu[i+1] by € in line 21 balances
the excess changes at A U [i] and B U [i] (due to the decrease in pigy[i].au[i]), increases the excess
at AU [i + 1], and decreases the excess at BU [i + 1], as desired.

In summary, after the backward path loop, for each degree constraint j € [k], where X; U [i+1] €
Y; U [i+1], it is the case that yix;u(i+11,v,0[i+1] = fj.i+1, and the value of ux,ui),v;u[i] is what remains,
which is §; — fj i+1. To bring it up to &}, in the cleanup loop we iterate over each degree constraint
Jj € [k] where fj ;1 < §; and adjust the p and o variables accordingly. The analysis is analogous
to the analysis of the backward path loop above. O

Example 3 (Running example — constructing a feasible solution for D). Order the nodes as
(1) a,(2) b,(3) c,(4) d. Briefly, we discuss iterations i = 0 and i = 3. Recall that the optimal
solution sets 1, 93 and J, all to one and initially these variables are one in the lattice. Before the
outer loop, g {a.b}> H0,{a,c} A0d {4} (a4} are all also set to one.

First Iteration: Consider the outer loop where i = 0. In the auxiliary graph, the flow to {a} is
a single path 0, {ab}, {ab}, {a} . During the forward path loop, the variable y¢ (45} decreases by
1 and ji{4p},{q) increases by one. In the backward path loop, 14} {45} decreases by one and then
increases again by one. During the cleanup loop, the degree constraint (0, {a, c}) results in yip (4c}
decreases by one. Then fig {4} and ji{4} {4} increase by one. Next consider the degree constraint,
({a}, {a,d}). The variable ji(4} (4,4} decreases by one and then immediately increase by one again.

Last Iteration: In this case [i] is {a, b, c}. Just before the outer loop, fi{ap.c},{ab.cd} iS Set to one,
corresponding to 4 and the excess at vertex {a, b, ¢} is one. In the auxiliary graph, the flow to {d}
a single path 0, {ab}, {ab}, {a}, {a}, {ad}, {a, d}, {d}. In the forward pass, nothing changes when
processing the edges 0, {ab} and {ab}, {a}.> When {a}, {ad} is processed, {4 p ¢} {abca} decreases
by 1. Nothing changes when processing the last edge of the path and [i+1] is the universe {a, b, ¢, d}
so nothing changes in the backward or cleanup loops. This effectively gets a flow of 1 to the universe.

3.3 Simple degree constraints and the normal bound
An interesting consequence of our approach is the following result, first proved in [1].

Proposition 3.1. If the input degree constraints are simple, then DC[I},] = DC[N,].
ProoF. The dual LP of D}™" (9) is

impl
P;mpe : max Z Ay (11)
Vc(n]

s.t. Z Av <c, Vi € [k]
vclnl: X;SV,Y,gV

3There is no change because @ U [i] = {ab} U [i] = {a} U [i].

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 96. Publication date: May 2025.

96:14 Sungjin Im, Benjamin Moseley, Hung Q. Ngo, and Kirk Pruhs
From the results of Section 3.2, we know that the LP P;mple shown in (11) has optimal value equal
DCITI;]. We prove that this LP is the same as DC[N,]. Recall that h € N, iff h = >}, Aysy, for
some non-negative Ay, and where sy is the step function defined by sy (X) := 1x¢y (the indicator
function for the event X C V). It follows that (11) is exactly DC[N,], because

h(X):ZAV h([n]):Z/IV h(Y) - h(X) = Z Av. XcCY

VXV vcln] V:XCV,YEV

In terms of weighted coverage function [20], Ay is the weight of the vertex connected to vertices in
V in the standard bipartite representation (WLOG we assume that there is only one such vertex). O

4 Computing a polynomial sized proof-sequence for simple instances

This section proves Theorem 1.2 by constructing, from a feasible solution to the linear program Dfs[°‘”,
a proof sequence for the Shannon-flow inequality h([n][0) < X ;c(x) d; - h(Y]X). The construction
is given in Algorithm 2, whose execution traces the construction of the ¢ and p variables from
the § variables in Algorithm 1. We now show in Lemma 4.1 an invariant of Algorithm 2 that is
sufficient to show that the proof sequence is correct. To see this note that this invariant implies
that in the end the excess at [n] is 1.

Lemma 4.1. Starting from the sum 3. ;cx) 8;-h(Y;|X;), the proof sequence constructed in Algorithm 2
satisfies the following invariants. If we were to run Algorithm 1 in lock step with Algorithm 2, then
after every edge (A, B) is processed the following holds:

(a) The coefficient of h(Y | Q) is the excess at Y, for every Y C [n].
(b) The coefficient of h(Y | X) is exactly ux y, forevery® # X C Y C [n].

Proor. We prove the lemma by induction. Initially, when we initialize g in line 3 of Algorithm 1,
the invariants hold trivially. We verify that the invariant holds after each proof step. Please also
refer to the proof of Lemma 3.3 as we need to run the two proofs in parallel.

In the forward path loop, we traverse edges (A U [i], BU [i]) of P[i] from 0 to {i + 1}. When
AU [i] ¢ BU [i], in Algorithm 1 we decrease pay[;],Bufi] by €, increase the excess at BU [i] by e,
reduce the excess at AU [i] by €, which correspond precisely to e-composing h(AU [i]) +h(BU [i] |
AU [i]) = h(BU [i]) in Algorithm 2. The case when B U [i] € AU [i] is the converse.

In the backward path loop, we traverse edges (AU [i + 1],BU [i + 1]) of P[i + 1] from i + 1
back to 0. For AU [i+ 1] ¢ BU [i+ 1], in Algorithm 1 we increase pay[ir1],Bufi+1]> decrease the
excess at BU [i + 1], and increase the excess at A U [i + 1] by €. These correspond precisely to
e-decomposing h(BU [i+1]) = h(AU [i+1]) +h(BU [i+1] | AU [i +1]) in Algorithm 2. When
BU[i+1] ¢ AU[i+1], there are two cases. For i+1 € A, Algorithm 1 decreases yigy|;},4u[i] increases
HBu[i],Bu[i+1], Teduces the excess at B U [i + 1], and increases the excess at AU [i + 1] by €. This
corresponds to the e-decomposing step h(BU [i+1]) — h(BU[i]) +h(BU [i+1] | BU [i]) and the
e-composing step h(BU [i]) +h(AU [i] | BU [i]) — h(AU[i]) = h(AU [i+1]) in Algorithm 2. For
i+1¢ A, Algorithm 1 increases oay[;],Bufi+1], reduces yipu[i],aufi], reduces the excess at BU [i+1],
and increases the excess at AU [i+ 1] by €. This corresponds to the e-submodularity and e-compose
steps as shown in lines 20 and 21 of Algorithm 2.

Lastly, the cleanup loop is self-explanatory, designed to maintain the invariants. O

Note that as the graph G has O(k + n) vertices and O(kn) edges, one can assume without loss of
generality that the cardinality of P**! is O(kn), and the length of each path P € P is O(k + n). As
each edge e € P introduces O(1) steps to the proof sequence when P is processed, and there are at
most n choices for the sink ¢, we can conclude that the length of the resulting proof sequence is
O((k + n)kn?), or equivalently O(k?n? + kn?).

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 96. Publication date: May 2025.

Efficient Cardinality Estimation with Simple Degree Constraints 96:15

Algorithm 2 Constructing a proof sequence from & feasible to Dg"“’

1: (We write h(X) to mean h(X | 0) for short)

2. fori=0ton—-1do > Outer Loop
3: Let P*! be the collection of simple flow paths routing 1 unit of flow froms = @ to t = {i+1}
4: for each path P € P! with flow value € do > Forward Path Loop
5: for each edge (A, B) € P from 0 to {i + 1} do

6: if AU [i] € BU [i] then

7: e-Compose: h(A U [i]) + h(BU [i] | AU [i]) — h(BU [i])

8 elseif BU [i] € AU [i] then

9 e-Decompose: h(A U [i]) = A(BU [i]) + h(AU [i] | BU [i])

10: for each path P € P! with flow value € do > Backward Path Loop
11: for each edge (A, B) € P from {i + 1} back to 0 do

12: if AU[i+1] € BU[i+1] then

13: e-Decompose: h(BU [i+1]) = h(AU [i+1])+h(BU[i+1] |AU [i+1])

14: elseif BU[i+1] S AU [i+ 1] then

15: if i+1 € A then > This means AU [i] = AU [i+ 1]
16: if BU [i+1] # BU [i] then

17: e-Decompose: h(BU [i+1]) = h(BU [i]) + h(BU [i+ 1] | BU [i])

18: e-Compose: h(BU [i]) + h(AU [i] | BU[i]) = h(AU [i]) = h(AU [i+1])
19: else

20: e-Submodularity: A(AU [i] | BU[i]) > h(AU [i+1] | BU [i+1])

21: e-Compose: h(BU [i+1]) +h(AU [i+1] | BU[i+1]) > h(AU [i+1])
22: for each j € [k], where X; U [i+1] CY;U[i+1] doand [i+1] ¢ X » Cleanup Loop
23: € — 5j _fj,i+l

24: ifi+1 €Y, then

25: e-Decompose: h(Y;U[i] | X;U[i]) — h(Y;U[i] | X;U[i+1])+h(X;U[i+1] | X;U[i])
26: e-Monotonicity: A(X; U [i+1] | X; U [i]) = 0

27: else

28: e-Submodularity: A(X; U [i] | Y; U [i]) = h(X; U [i+1] | Y; U [i +1])

Example 4 (Running example). Algorithm 2 yields the following proof sequence:
h(0) + h(ab|0) + h(ac|0) + h(ad|a)
= h(ab) + h(ac|0) + h(ad|a) [Forward pass 1-Compose: h(ab) = h(0) + h(ab|0)]
= h(a) + h(abla) + h(ac|0) + h(ad|a) [Forward pass 1-Decompose: h(ab) = h(a) + h(ab|a)]
h(ab) + h(ac|0) + h(ad|a) [Backward pass 1-Compose: h(a) + h(abla) = h(ab)]
h(a) + h(ab|a) + h(ac|0) + h(ad|a) [Backward pass 1-Decompose: h(ab) = h(a) + h(ab|a)]

vV v

h(a) + h(ab|a) + h(ac|a) + h(ad|a) [Clean-up: 1-Monotonicity: h(a|0) > 0]

h(ab) + h(acla) + h(ad|a) [Forward pass 1-Compose: h(ab) = h(a) + h(ab|a)]
h(ab) + h(abc|ab) + h(ad|a) [Clean-up: 1-Submodularity: h(ac|a) > h(abc|ab)]
h(ab) + h(abc|ab) + h(abd|ab) [Clean-up: 1-Submodularity: h(ad|a) > h(abd|ab)]
h(abc) + h(abd|ab) [Forward pass 1-Compose: h(abc) = h(ab) + h(abc|ab)]
h(abc) + h(abcd|abc) [Clean-up: 1-Submodularity: h(abd|ab) > h(abcd|abc)]

v v

\%

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 96. Publication date: May 2025.

h(a) + h(abla) + h(ac|a) + h(a|0) + h(ad|a) [Clean-up: 1-Decompose: h(ac|0) > h(ac|a) + h(a|0)]

96:16 Sungjin Im, Benjamin Moseley, Hung Q. Ngo, and Kirk Pruhs

> h(abced) [Forward pass 1-Compose: h(abed) = h(abc) + h(abed|abc)]

5 Lower bounds

In this section we present three classes of seemingly easy instances which turn out to be as hard
as general instances. Lemmas 5.1, 5.2, and 5.3 combined would imply Theorem 1.3. Due to page
limitations, we only provide a proof sketch here, with the full proofs deferred to Appendix A.

Lemma 5.1. For the problem of computing the polymatroid bound, an arbitrary instance can be
converted into another instance in polynomial time without changing the bound, where the degree
constraints is the union of a set of acyclic degree constraints and a set of simple degree constraints (in
fact functional dependencies) Further, each FD contains exactly two variables.

The reduction is as follows. Consider an arbitrary instance I consisting of the universe U := [n]
and a set of degree constraints, DC. The new instance I’ has U’ := Uj¢[,]{x;, yi} as universe where
x; and y; are distinct copies of i and the following set DC’ of degree constraints. For each i € [n],
we first add simple degree constraints ({x;}, {x;, y;},0) and ({y;}, {x:, yi}, 0) to DC’. Then for each
(A, B, c) € DC, we create a new degree constraint (A’, B, c) by replacing each i € A with x; and each
Jj € B with y;, and add it to DC’. By construction these degree constraints are from {xy,x, -+, xp}
to {y1,y2, - - - , yn} and therefore are acyclic.

The key observation is that x; and y; are indistinguishable in computing the polymatroid bound
for I'. We then show that given a polymatroid f achieving the optimum bound for I, we can create
a polymatroid g for I’ such that f(U) = g(U’), and vice versa.

Lemma 5.2. There is a polynomial-time reduction from a general instance to an instance preserving
the polymatroid bound, where for each degree constraint (X,Y,c) we have |Y| < 3 and |X| < 2.
Further, the new instance satisfies the following:

o If|Y| =3, then|X|=2andc=0.

o If|Y| =2, then |X| = 1.

The high-level idea is to repeatedly replace two variables with a new variable in a degree
constraint. We first discuss how to choose two variables to combine. Assume there is a degree
constraint (X, Y, c) where |X| > 2. Then we combine an arbitrary pair of elements in X. If | X| < 2
for all degree constraints, and there is a degree constraint where |Y| > 3, we combine arbitrary
two variables in Y \ X. If there is a degree constraint (X, Y, ¢) where |X| =2, |Y| =3 and ¢ > 0, we
combine the two variables in X. Here, we make this replacement in only one degree constraint in
each iteration.

Assume we are to combine variables x, y € [n] into a new variable z ¢ [n] (e.g.z=n+1)ina
degree constraint (X, Y, c) € DC. We do so by creating a new degree constraint (X’,Y’, ¢) and add
it to DC’” where

X = {(x Vb Ufeh Y\ (xy} Ulzho) if{ryhcX Y

XY\ {x,y} U{z},c) if {x,y} CY\X
Further, we add functional dependencies ({x, y}, {x,y, z},0), ({z}, {x, z},0) and ({z}, {y, z},0) to
DC’, which we call consistency constraints. Intuitively, consistency constraints enforce that the

variable z and the tuple of variables (x, y) are equivalent. We show this iterative reduction process
terminates and preserves the polymatroid bound.

Lemma 5.3. There is a polynomial-time reduction from a general instance to an instance consisting
of a set of simple degree constraints and a set of functional dependency constraints, while preserving
the polymatroid bound.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 96. Publication date: May 2025.

Efficient Cardinality Estimation with Simple Degree Constraints 96:17

To show the lemma, we transform a general instance as follows. We repeat the following: If there
exist x; # x; € X for some degree constraint (X, Y, c), replace the constraint with (X \ {x1,x2} U
{x12}, Y \ {x1, %2} U {x12}, ¢) and analogously update other constraints; and ii) For consistency, we
add functional dependencies ({x1, x2}, {x1, x2, x12}, 0) and ({x12}, {x1, x2, x12}, 0).

6 Hardness of computing normal bounds

This section sketches the proof that the normal bound DC[N,,] cannot be solved in polynomial
time unless P = NP, i.e., Theorem 1.4. The full proof can be found in Appendix B. Recall that a
function is normal if it is a non-negative linear combination of step functions, where a step function
is defined as sy (X) = 0if X C V and 1 otherwise for a subset V C [n]. To show the hardness result,
we consider the dual linear programming formulation, which is exactly D;'mple in equation (9).
Let A(DC) denote the convex region over ¢ defined by the constraints in DC. We first show the

separation problem is hard.

LEMMA 6.1. Given a set DC of degree constraints and a vector § € RIPC! checking lfg ¢ A(DC) is

>0

NP-complete. Further, this remains the case under the extra condition that A6 € A(DC) for some A > 1.

We prove this theorem using a reduction from the Hitting Set problem, which is well-known
to be NP-complete. In the Hitting Set problem, the input is a set of n elements E = {ey, ..., e,}, a
collection S = {Sy,...,Sm} of m subsets of E, and an integer k > 0. The answer is true iff there
exists a subset L of k elements such that for every set S; € S is ‘hit’ by the set L chosen, i.e.,
LNS; #0forallie [m].

LEMMA 6.2. There exists a hitting set of size k in the original instance H if and only lf(§ ¢ A(DC).

The above lemma shows checking 5 ¢ A(DC) is NP-hard. While there exist certain relationships
among optimization problems, membership problems and their variants [16], in general hardness of
the membership problem doesn’t necessarily imply hardness of the optimization problem. However,
using the special structure of the convex body in consideration, we can show such an implication
in our setting, proving the desired hardness result.

7 The flow bound

Deferring the proof of Theorem 1.5 to Appendix C, we give a high-level overview of the bound here.
The flow bound flow-bound(DC,) is based on a relaxation DC°¥ of the input degree constraints
DC that is less relaxed than the relaxation DC, used in the chain bound. In particular, every
simple degree constraint in DC,; is retained in DCf°" as is. Let k, denote the number of simple
degree constraints. And, for every non-simple degree constraint (X, Y, c) € DC, DCg°W contains
the constraint (X, Y’, c) where Y’ C Y contains the variables in Y that come after all variables in X
in the permutation 7 (note that this is the same as DC). For convenience we reindex the degree
constraints in DCf°" such that all k, simple degree constraints appear before any non-simple
degree constraints.

The flow bound flow-bound(DC, r) is then defined by the objective value of the following
polynomial-sized linear program:

Drow : min Z ci - O (12)
ielk]
s.t. fir < 6; Vi € [ks],Vt € [n] (13)
excess;(t) > 1— Z d; Vt € [n] (14)
ie[k]\[ks],
teYi-X;

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 96. Publication date: May 2025.

96:18 Sungjin Im, Benjamin Moseley, Hung Q. Ngo, and Kirk Pruhs

excess; (0) > -1 Vt € [n] (15)
excess;(Z) > 0 VZ € G\ {0} \ {t}, Vt € [n] (16)
fir=0 Vi€ [ks].t € [n] N (Y;\ X)) (17)

where excess;(Z) is defined as follows:

excess;(Z) := Z fir — Z fir+ Z Hx.Zt + Z HZY 1t

i:Z=Y; i:Z=X; X:XcZ Y:ZcY

As in the dual linear program Dgo‘” for simple degree constraints, intuitively Dfo,, encodes n
min-cost flow problems, however the difference is in the constraint (14) that in Doy, the demand of
node ¢ is reduced (from 1) by an amount equal to the capacity of the non-simple degree constraints
that can route flow directly to ¢t. We additionally note that the objective only considers cardinality
constraints, simple degree constraints and non-simple constraints that agree with . Finally, flow
is only sent on simple degree constraints and cardinality constraints.

Note that one could modify the linear program for flow-bound, (DC) by allowing the “source”
for the flow to sink ¢ to not only be the empty set, but also any singleton vertex in [t — 1]. All
of theoretical results would still hold for this modified linear program, but this modified linear
program would be better in practice as it would never result in a worse bound, and for some
instances it would result in a significantly better bound. Further note that, by our reduction in
Appendix A.1, computing DCV[T},], the polymatroid bound on our relaxed degree constraints
DC!°¥ is as hard as computing the polymatroid bound on arbitrary instances.

8 Concluding Remarks

Our main contributions are polynomial-time algorithms to compute the polymatroid bound and
polynomial length proof sequences for simple degree constraints. These results nudge the informa-
tion theoretic framework from [2, 3] towards greater practicality. In fact, our technique and the
flow-bound from Section 7 were adopted in the recent work of Zhang et al. [31] to make part of
their cardinality estimation framework practical.

The main major open problem remains determining the computational complexity of the poly-
matroid bound. While we proved some negative results regarding the hardness of computing the
polymatroid bound beyond simple degree constraints, we should still be looking for other ways to
parameterize the input so that the polymatroid bound can be computed in polynomial time.

Acknowledgments

Sungjin Im was supported in part by NSF grants CCF-2423106, CCF-2121745, and CCF-1844939,
and Office of Naval Research Award N00014-22-1-2701. Benjamin Moseley was supported in part
by a Google Research Award, an Infor Research Award, a Carnegie Bosch Junior Faculty Chair, NSF
grants CCF-2121744 and CCF-1845146, and Office of Naval Research Award N00014-22-1-2702. Kirk
Pruhs was supported in part by the NSF grants CCF-2209654 and CCF-1907673, and an IBM Faculty
Award. Part of this work was conducted while the authors participated in the Fall 2023 Simons
Program on Logic and Algorithms in Databases and AL

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 96. Publication date: May 2025.

Efficient Cardinality Estimation with Simple Degree Constraints 96:19

References
[1] Mahmoud Abo Khamis, Phokion G. Kolaitis, Hung Q. Ngo, and Dan Suciu. 2020. Bag Query Containment and

[10
[11
[12

(13

[14
[15
[16
[17
[18
[19

[20

[21

—

[t G '

—_ = = O

]

= =

—

Information Theory. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 2020, Portland, OR, USA, June 14-19, 2020, Dan Suciu, Yufei Tao, and Zhewei Wei (Eds.). ACM, 95-112.
https://doi.org/10.1145/3375395.3387645

Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. 2016. Computing Join Queries with Functional Dependencies.
In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2016,
San Francisco, CA, USA, June 26 - July 01, 2016, Tova Milo and Wang-Chiew Tan (Eds.). ACM, 327-342. https:
//doi.org/10.1145/2902251.2902289

Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. 2017. What Do Shannon-type Inequalities, Submodular Width,
and Disjunctive Datalog Have to Do with One Another?. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS 2017, Chicago, IL, USA, May 14-19, 2017, Emanuel Sallinger, Jan Van
den Bussche, and Floris Geerts (Eds.). ACM, 429-444. https://doi.org/10.1145/3034786.3056105

Noga Alon. 1981. On the number of subgraphs of prescribed type of graphs with a given number of edges. Israel J.
Math. 38, 1-2 (1981), 116-130. https://doi.org/10.1007/BF02761855

Albert Atserias, Martin Grohe, and Daniel Marx. 2008. Size Bounds and Query Plans for Relational Joins. In FOCS.
IEEE Computer Society, 739-748.

Béla Bollobas and Andrew Thomason. 1995. Projections of bodies and hereditary properties of hypergraphs. Bull.
London Math. Soc. 27, 5 (1995), 417-424. https://doi.org/10.1112/blms/27.5.417

Walter Cai, Magdalena Balazinska, and Dan Suciu. 2019. Pessimistic Cardinality Estimation: Tighter Upper Bounds for
Intermediate Join Cardinalities. In Proceedings of the 2019 International Conference on Management of Data, SIGMOD
Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019, Peter A. Boncz, Stefan Manegold, Anastasia
Ailamaki, Amol Deshpande, and Tim Kraska (Eds.). ACM, 18-35. https://doi.org/10.1145/3299869.3319894

F.R. K. Chung, R. L. Graham, P. Frankl, and J. B. Shearer. 1986. Some intersection theorems for ordered sets and graphs.
J. Combin. Theory Ser. A 43,1 (1986), 23-37. https://doi.org/10.1016/0097-3165(86)90019-1

Kyle Deeds, Dan Suciu, Magda Balazinska, and Walter Cai. 2023. Degree Sequence Bound for Join Cardinality
Estimation. In 26th International Conference on Database Theory, ICDT 2023, March 28-31, 2023, Ioannina, Greece (LIPIcs,
Vol. 255), Floris Geerts and Brecht Vandevoort (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 8:1-8:18.
https://doi.org/10.4230/LIPICS.ICDT.2023.8

Kyle B. Deeds, Dan Suciu, and Magdalena Balazinska. 2023. SafeBound: A Practical System for Generating Cardinality
Bounds. Proc. ACM Manag. Data 1, 1 (2023), 53:1-53:26. https://doi.org/10.1145/3588907

Ehud Friedgut. 2004. Hypergraphs, entropy, and inequalities. Amer. Math. Monthly 111, 9 (2004), 749-760. https:
//doi.org/10.2307/4145187

Ehud Friedgut and Jeff Kahn. 1998. On the number of copies of one hypergraph in another. Israel J. Math. 105 (1998),
251-256. https://doi.org/10.1007/BF02780332

Tomasz Gogacz and Szymon Torunczyk. 2017. Entropy Bounds for Conjunctive Queries with Functional Dependencies.
In 20th International Conference on Database Theory, ICDT 2017, March 21-24, 2017, Venice, Italy (LIPIcs, Vol. 68),
Michael Benedikt and Giorgio Orsi (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, 15:1-15:17. https:
//doi.org/10.4230/LIPIcs.ICDT.2017.15

Georg Gottlob, Stephanie Tien Lee, Gregory Valiant, and Paul Valiant. 2012. Size and Treewidth Bounds for Conjunctive
Queries. . ACM 59, 3 (2012), 16. https://doi.org/10.1145/2220357.2220363

Martin Grohe and Daniel Marx. 2014. Constraint Solving via Fractional Edge Covers. ACM Transactions on Algorithms
11, 1(2014), 4. https://doi.org/10.1145/2636918

Martin Grétschel, Laszlé Lovasz, and Alexander Schrijver. 2012. Geometric algorithms and combinatorial optimization.
Vol. 2. Springer Science & Business Media.

Mahmoud Abo Khamis, Kyle Deeds, Dan Olteanu, and Dan Suciu. 2024. Pessimistic Cardinality Estimation. SIGMOD
Rec. 53, 4 (2024), 1-17. https://doi.org/10.1145/3712311.3712313

Mahmoud Abo Khamis, Vasileios Nakos, Dan Olteanu, and Dan Suciu. 2024. Join Size Bounds using lp—Norms on
Degree Sequences. Proc. ACM Manag. Data 2, 2 (2024), 96. https://doi.org/10.1145/3651597

Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. 2024. PANDA: Query Evaluation in Submodular Width. CoRR
abs/2402.02001 (2024). https://doi.org/10.48550/ARXIV.2402.02001 arXiv:2402.02001

Andreas Krause and Daniel Golovin. 2014. Submodular Function Maximization. In Tractability: Practical Approaches to
Hard Problems, Lucas Bordeaux, Youssef Hamadi, and Pushmeet Kohli (Eds.). Cambridge University Press, 71-104.
https://doi.org/10.1017/CB0O9781139177801.004

Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. 2015. How
Good Are Query Optimizers, Really? Proc. VLDB Endow. 9, 3 (2015), 204-215. https://doi.org/10.14778/2850583.2850594

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 96. Publication date: May 2025.

https://doi.org/10.1145/3375395.3387645
https://doi.org/10.1145/2902251.2902289
https://doi.org/10.1145/2902251.2902289
https://doi.org/10.1145/3034786.3056105
https://doi.org/10.1007/BF02761855
https://doi.org/10.1112/blms/27.5.417
https://doi.org/10.1145/3299869.3319894
https://doi.org/10.1016/0097-3165(86)90019-1
https://doi.org/10.4230/LIPICS.ICDT.2023.8
https://doi.org/10.1145/3588907
https://doi.org/10.2307/4145187
https://doi.org/10.2307/4145187
https://doi.org/10.1007/BF02780332
https://doi.org/10.4230/LIPIcs.ICDT.2017.15
https://doi.org/10.4230/LIPIcs.ICDT.2017.15
https://doi.org/10.1145/2220357.2220363
https://doi.org/10.1145/2636918
https://doi.org/10.1145/3712311.3712313
https://doi.org/10.1145/3651597
https://doi.org/10.48550/ARXIV.2402.02001
https://arxiv.org/abs/2402.02001
https://doi.org/10.1017/CBO9781139177801.004
https://doi.org/10.14778/2850583.2850594

96:20 Sungjin Im, Benjamin Moseley, Hung Q. Ngo, and Kirk Pruhs

[22] Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper, and Thomas Neumann.
2018. Query optimization through the looking glass, and what we found running the Join Order Benchmark. VLDB j.
27,5 (2018), 643-668. https://doi.org/10.1007/s00778-017-0480-7

[23] G.Lohman. 2014. Is Query Optimization a Solved Problem? http://wp.sigmod.org/?p=1075.

[24] L. H. Loomis and H. Whitney. 1949. An inequality related to the isoperimetric inequality. Bull. Amer. Math. Soc 55
(1949), 961-962.

[25] Hung Q. Ngo. 2018. Worst-Case Optimal Join Algorithms: Techniques, Results, and Open Problems. In Proceedings of
the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, Houston, TX, USA, June 10-15,
2018, Jan Van den Bussche and Marcelo Arenas (Eds.). ACM, 111-124. https://doi.org/10.1145/3196959.3196990

[26] Hung Q. Ngo. 2022. On an Information Theoretic Approach to Cardinality Estimation (Invited Talk). In 25th International
Conference on Database Theory, ICDT 2022, March 29 to April 1, 2022, Edinburgh, UK (Virtual Conference) (LIPIcs,
Vol. 220), Dan Olteanu and Nils Vortmeier (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 1:1-1:21. https:
//doi.org/10.4230/LIPIcs.ICDT.2022.1

[27] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2012. Worst-case optimal join algorithms: [extended abstract].
In PODS. 37-48.

[28] Hung Q. Ngo, Christopher Ré, and Atri Rudra. 2013. Skew strikes back: new developments in the theory of join
algorithms. SIGMOD Record 42, 4 (2013), 5-16. https://doi.org/10.1145/2590989.2590991

[29] Dan Suciu. 2023. Applications of Information Inequalities to Database Theory Problems. arXiv:2304.11996 [cs.DB]

[30] Todd L. Veldhuizen. 2014. Triejoin: A Simple, Worst-Case Optimal Join Algorithm. In Proc. 17th International Conference
on Database Theory (ICDT), Athens, Greece, March 24-28, 2014., Nicole Schweikardt, Vassilis Christophides, and Vincent
Leroy (Eds.). OpenProceedings.org, 96-106. https://doi.org/10.5441/002/icdt.2014.13

[31] Haozhe Zhang, Christoph Mayer, Mahmoud Abo Khamis, Dan Olteanu, and Dan Suciu. 2025. LpBound: Pessimistic
Cardinality Estimation using £p-Norms of Degree Sequences. SIGMOD (2025).

A Proof of Theorem 1.3

We provide the full proof of Lemma 5.1 and Lemma 5.2. The proof of Lemma 5.3 is similar to (and
much simpler than) that of Lemma 5.2 and is omitted. This will complete the proof of Theorem 1.3.

A.1 Union of acyclic and simple constraints is still hard

Proor oF LEMMA 5.1. We first describe the reduction. Suppose we are given an arbitrary instance
I consisting of the universe U := [n] and a set of degree constraints, DC. The new instance I’ has
U’ := Uie[n){xi, yi} as universe where x; and y; are distinct copies of i and the following set DC’
of constraints. For each i € [n], we first add the following simple functional dependencies to DC’:

({xi} {xi,4:}, 0) Hyi} Axi, yi}, 0)

Then for each constraint (A, B, c¢) € DC, we create a new constraint (A’, B/, ¢) by replacing each
i € A with x; and each j € B with y;, and add it to DC’. By construction these degree constraints
are from {x,x3, -, %} to {y1, Y2, - - - , yn} and therefore are acyclic.

The following simple observation states that x; and y; are indistinguishable in computing the
polymatroid bound for I’.

Claim 3. Let g be a submodular function that satisfies DC’ of I’. For any i € [n] and any B C U’
such that x;, y; ¢ B, we have g(B U {x;}) = g(BU {y;}) = g(BU {x;,y;}).

By monotonicity and submodularity of g, and an FD in DC’ involving x;, y;, we have:

0<g(BU{x;,y:}) —g(BU {xi}) < g({xi, yi}) —g({x:}) < 0.

This proves g(B U {x;,y;}) = g(B U {x;}). The other equality g(B U {x;,y;}) = g(B U {y;}) is
established analogously.
Henceforth, we will show the following to complete the proof of Lemma 5.1:

= Given a monotone submodular function f achieving the optimum polymatroid bound for I,
we can create a monotone submodular function g for I’ such that f(U) = g(U’).

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 96. Publication date: May 2025.

https://doi.org/10.1007/s00778-017-0480-7
http://wp.sigmod.org/?p=1075
https://doi.org/10.1145/3196959.3196990
https://doi.org/10.4230/LIPIcs.ICDT.2022.1
https://doi.org/10.4230/LIPIcs.ICDT.2022.1
https://doi.org/10.1145/2590989.2590991
https://arxiv.org/abs/2304.11996
https://doi.org/10.5441/002/icdt.2014.13

Efficient Cardinality Estimation with Simple Degree Constraints 96:21

& Conversely, given a monotone submodular function g achieving the optimum polymatroid
bound for I’, we can create a monotone submodular function f for I such that f(U) = g(U”).

We start with the forward direction. Define h : 2V" — 2V as follows: for any B C U’, we have
h(B) :=={i € [n] | x; € Bory; € B}.
and set g(B) = f(h(B)).
Claim 4. For any A,B C U’, h(A) U h(B) = h(A U B) and h(A) N h(B) 2 h(A N B).

The first statement follows because if x; or y; is in any of A and B, it is also in A U B. The second
statement follows because if i € h(A N B), we have x; € AN Bory; € AN B and in both cases, we
have i € h(A) N h(B).

At the universe U and U’: by definition we have g(U’) = f(h(U’)) = f(U). Therefore, we only
need to show g is monotone and submodular. Showing monotonicity is trivial and is left as an easy
exercise. We can show that g is submodular as follows. For any A, B € U’, we have,

9(A) +9(B) = f(h(A)) + f(h(B)) = f(h(A) U h(B)) + f(h(A) N h(B))
> f(h(AUB)) + f(h(AN B)) = g(AUB) +g(AN B),

where the first inequality follows from f’s submodularity and the second from f’s monotonicity
and Claim 4. Thus we have shown the first direction.
To show the backward direction, define

f(A) =g({xi | i€ A})
By definition, we have f(U) = g({x1,x2,- - ,%n}). Further, by repeatedly applying Claim 3, we
have g({x1,x2,- -+ ,x,}) = g(U’). Thus we have shown f(U) = g(U’). Further, f is essentially

identical to g restricted to {x1, x2, ..., %, }. Thus, f inherits g’s monotonicity and sumodularity.
This completes the proof of Lemma 5.1. O

A.2 Restriction to degree constraints (X, Y, c) with |X| < 2 does not help

Proor oF LEMMA 5.2. The high-level idea is to repeatedly replace two variables with a new
variable in a degree constraint. We first discuss how to choose two variables to combine. Assume
there is a degree constraint (X, Y, ¢) where |X| > 2. Then we combine an arbitrary pair of elements
in X. If |X| < 2 for all degree constraints, and there is a degree constraint where |Y| > 3, we
combine arbitrary two variables in Y \ X. If there is a degree constraint (X, Y, ¢) where |X| = 2,
|Y| = 3 and ¢ > 0, we combine the two variables in X. It is important to note that we make this
replacement in only one degree constraint in each iteration.

Assume that we are to combine variables x,y € [n] into a new variable z ¢ [n] (say z =n+1) in
a degree constraint (X, Y, c) € DC. Then, we create (X', Y’, ¢) and add it to DC’ where

(X\ (64} U{zh Y\ fogh U fzhe) if oyl cX Y
(X, Y\ {x,y} U{z},0) if {x,y} CY\X

Further, we add functional dependencies ({x, y}, {z, x, y},0), ({z}, {2z x},0) and ({z}, {z,y},0) to
DC’, which we call consistency constraints. Intuitively, consistency constraints is to enforce the
fact that variable z and the tuple of variables (x, y) are equivalent. The other constraints are called
non-trivial constraints.

We show that the reduction process terminates by showing that each iteration reduces a potential.
Define m(X, Y, c) := |X| + |Y| for a non-trivial constraint (X, Y, ¢). The potential is defined as the
sum of m(X, Y, c¢) over all non-trivial constraints. Observe that in each iteration, either m(X, Y,¢) >
m(X’,Y',c),or |X’| = 1and |Y’| = 2. In the latter case, the resulting non-trivial constraint (X', Y’, c)

(X', Y, c) = {

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 96. Publication date: May 2025.

96:22 Sungjin Im, Benjamin Moseley, Hung Q. Ngo, and Kirk Pruhs

doesn’t change in the subsequent iterations. In the former case the potential decreases. Further,
initially the potential is at most 2n|DC| and the number of non-trivial constraints never increases,
where DC is the set of degree constraints initially given. Therefore, the reduction terminates in a
polynomial number of iterations. It is straightforward to see that we only have degree constraints
of the forms that are stated in Lemma 5.2 at the end of the reduction.

Next, we prove that the reduction preserves the polymatroid bound. We consider one iteration
where a non-trivial constraint (X, Y, ¢) is replaced according to the reduction described above. Let
opt and opt’ be the polymatroid bounds before and after performing the iteration respectively. Let
DC and DC’ be the sets of the degree constraints before and after the iteration respectively.

We first show opt > opt’. Let g : {z} U [n] — [0, o) be a polymatroid function that achieves
opt’ subject to DC’. Define f : [n] — [0, co) such that f(A) = g(A) for all A C [n]. It is immediate
that f is a polymatroid because it is a restriction of f onto [n]. We show below that it satisfies the
degree constraints in DC and that f([n]) = g([n] U {z}) = opt’. We start with a claim.

Claim 5. For any set Z, g(Z U {z}) = g(Z U{z,x,y}) = g(Z U {x, y}).

From the consistency constraint ({x,y},{z, x,y},0) and the monotonicity of g, we have
0 < g({z,x,y}) — g({x,y}) < 0, which means g({x,y,z}) = g({x,y}). Similarly, from the
consistency constraints ({z}, {z,x},0) and ({z},{z, y},0) and the monotonicity of g, we have
9g({z}) = g({z, x}) = g({z,y}). Then, from g’s submodularity and monotonicity, we have

9({x.y.2}) < 9g({z.x}) + 9({z. y}) — g({z}) = g({z}) < g({x.y,2}),

This implies g({z}) = g({x,y, z}).
Now, given two sets A, B such that g(A) = g(A U B), then for any set Z we have
g(ZUAUB) < g(ZUA)+g(AUB)—g(AU(ZNB)) < g(ZUA)+g(AUB)—g(A) = g(ZUA) < g(ZUAUB).

Therefore, g(Z U A) = g(Z U A U B). Applying this fact with A = {z} and B = {x, y, z}, we have
g(Z U {z}) = 9g(Z U{x,y,z}). Similarly, g(Z U {x,y}) = g(Z U {x,y, z}). Claim 5 is thus proved.

We now check if f satisfies DC. Because we only replaced (X, Y, ¢) € DC, we only need to show
that f satisfies it. Note that, if {x,y} C Z, then from Claim 5, we have

f(2)=9(2) =g(Z VU {x,y}) =g(Z U {z}) =g9((Z \ {x,y}) U{x,y,2z}) = g((Z \ {x.y}) U {z})
We need to consider two case:
e When {x,y} C X C Y. Then,

f) = fX) =9(Y U{z} \{x,y}) —g(X U{z} \ {x,y}) = g(Y) —g(X") < ¢
The second inequality follows from the fact that g satisfies DC'.
e When {x,y} C Y\ X.In this case, X’ = X and Y’ = Y U {z} \ {x, y}; thus
fY) = fX) =9(YU{z}\ {x,y}) —g(X) =g9(Y) —g(X') < c

Finally, f([n]) = g([n]) = g([n] U {z}) = opt’ due to Claim 5. Since we have shown f is a
feasible solution for DC, we have opt > f([n]). Thus, we have opt > opt’ as desired.

We now show opt < opt’. Given f that achieves opt subject to DC, we construct g : {z} U [n] —
[0, o) as follows:

J(A) = { f(A) ifz¢ A 5)

f(A\{z} U {x,y}) otherwise

We first verify that g is monotone. Consider A C BC {z} U [n].Ifz¢ Aandz ¢ B,orz € Aand
z € B, it is easy to see that is the case. So, assume z ¢ A but z € B. By definition of g, it suffices

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 96. Publication date: May 2025.

Efficient Cardinality Estimation with Simple Degree Constraints 96:23

show f(A) < f(B\{z} U{x,y}), which follows from f’s monotonicity: Since z ¢ A and A C B, we
have A € B\ {z} U {x, y}.

Secondly we show that g is submodular. So, we want to show that g(A)+¢g(B) > g(AUB)+g(ANB)
forall A,B C {z} U [n].

e When z ¢ A and z ¢ B. This case is trivial as g will have the same value as f for all subsets
we’re considering.

e When z € A and z € B. We need to check if f(A\ {z} U {x,y}) + f(B\ {z} U {x,y}) >
FAUB\ {z} U{x,y})+ f(ANB\ {z} U {x,y}), which follows from f’s submodularity. More
concretely, we set A’ = A\ {z} U {x,y} and B’ = B\ {z} U {x,y} and use f(A") + f(B’) >
f(A"UB) + f(A"NB).

e When z € A and z ¢ B (this is symmetric to z ¢ A and z € B). We have

9(A) +g(B) = f(A\ {z} U {x,y}) + f(B)
(submodularity of f) > f((A\ {z} U {x,y}) UB) + f((A\ {z} U{x,y}) N B)
=f(((AUB) \{z}) U{x,y}) + f((A\{z} U{x,y}) N B)
= g(AUB)+ f((AU {x.4}) N B)
(monotonicity of f) > g(AU B) + f(AN B)
=g(AUB)+g(ANB)

Thirdly, we show that g satisfies DC’. Suppose we replaced a non-trivial constraint (X, Y, ¢) with
(X", Y',c). We show g(Y’') — g(X’) < ¢ by showing f(Y) = g(Y’) and f(X) = g(X’). Both cases
are symmetric, so we only show f(X’) = g(X).If z ¢ X’, then clearly we have g(X’) = f(X) since
X’ =X.1f z € X’, then it must be the case that X’ = X \ {x,y} U {z}. By definition of g, we have
9(X') = f(X"\{z} U {x,y}) = f(X) since X"\ {z} U {x,y} = X.

Now we also need to check g satisfies the consistency constraints we created. So we show

o g({z,x,y}) < g({z}). Note g({z,x,y}) = f({x,y}) = g({z}) by definition of g. Due to g’s
monotonicity we have already shown, we have g({z,x}) < g({z}) and g({z, y}) < g({z}).
e g({z,x,y}) < g({x,y}). Both sides are equal to f({x,y}) by definition of g.

Finally, we have g({z} U [n]) = f([n]). Since g is a monotone submodular function satisfying
DC, we have opt’ > opt as desired.
This completes the proof of Lemma 5.2. O

B Proof of Theorem 1.4

Recall that Normal functions [1, 2] (also called weighted coverage functions, or entropic functions
with non-negative mutual information), are defined as follows. For every V C [n], a step function
sy : 2[M1 5 R, is defined by

x) 0 XCV (19)
s =
v 1 otherwise

A function is normal if it is a non-negative linear combination of step functions. Let N,, denote the
set of normal functions on [n].

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 96. Publication date: May 2025.

96:24 Sungjin Im, Benjamin Moseley, Hung Q. Ngo, and Kirk Pruhs

To show the hardness result, we consider the dual linear programming formulation, which is

exactly DSlmple For easy reference we reproduce the LP below.
min Z Ci- 5,’
i€lk]
s.t. Z 6 >1 YV ¢ [n]

ie[k]: X;CV.Y;¢V

Let A(DC) denote the convex region over § defined by the constraints in DC. We first show the
separation problem is hard.

LeEmMA B.1. Given a degree constraint set DC and a vector e R>0 , checkmg lf5 ¢ A(DC) is

NP-complete. Further, this remains the case under the extra condition that A6 € A(DC) for some A > 1.

We prove this theorem using a reduction from the Hitting Set problem, which is well-known
to be NP-complete. In the Hitting Set problem, the input is a set of n elements E = {ey,...,e,}, a
collection § = {Sy,...,Sm} of m subsets of E, and an integer k > 0. The answer is true iff there
exists a subset L of k elements such that for every set S; € S is ‘hit’ by the set L chosen, i.e.,
LNS; #0forallie [m].

Consider an arbitrary instance H to the Hitting Set. To reduce the problem to the membership
problem w.r.t. A(DC), we create an instance for computing the normal bound that has E’ = EU {e*}
as variables and the following set DC of degree constraints and 5 (here we do not specify the value
of ¢ associated with each degree constraint (X, Y) as it can be arbitrary and we’re concerned with
the hardness of the membership test).

(1) (0, {e;}) for all ¢; € E with 8¢, (o, = 1/(k +1).
(2) (S;,E’) forall S; € S with 85, =m
(3) ({e*}, E') with § (o1 = m
Notably, to keep the notation transparent, we used SX,y to denote the value of § associated with

(X,Y).Let DCy, DCy, and DC3 denote the degree constraints defined above in each line respectively,
and let DC := DC; U DC; U DC;3. To establish the reduction we aim to show the following lemma.

LEmMMA B.2. There exists a hitting set of size k in the original instance H if and only sz ¢ A(DC).

Proor. Let L(V) := X (xy)enc:xcvyveyOyix- Let Lyin = minycp L(V) and Vign =
arg miny g L(V). To put the lemma in other words, we want to show that H admits a hitting set
of size k if and only if L, < 1.

Let 5(DC) = 2 (X,Y)eDCr 5Xy Note that Ly, < L(0) = 5(DC1) = 715 Therefore, we can have
the following conclusions about Wyyy,.

e ¢* ¢ Vi since otherwise Ly, > 5 (DC) =
e Forall S; € S, S; € Viin since otherwise me > 5({(5,,E)}) =

Thus, we have shown that only the degree constraints in DC; can contribute to Ly,. As a result,

Lmin = L(Vinin) = 8({(0, {&;}) € DC; : {e;} & Vinin}) = 7 /E \ Vaninl-

As observed above, for all S; € S, S; € Vinin, which means (E \ Vmin) N S,~ # (. This immediately
implies that E \ Vi, is a hitting set.

To recap, if 5¢ A(DC), we have ﬁ |E \ Viin| < 1 and therefore the original instance H admits a
hitting set E \ Viin of size at most k.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 96. Publication date: May 2025.

Efficient Cardinality Estimation with Simple Degree Constraints 96:25

Conversely, if the instance H admits a hitting set E’ of size k, we can show that L(E \ E’) =
6({(0,{e;}) e DC; | e; € E'}) = % < 1, which means § ¢ A(DC). This direction is essentially
identical and thus is omitted.)

The above lemma shows checking 5¢ A(DC) is NP-hard. Further, a violated constraint can be
compactly represented by V; thus the problem is in NP. Finally, if we scale up 5 by a factor of
A =k + 1, we show A§ € A(DC). We consider two cases. If E ¢ V, we have L(V) > 5({1' € [n] :
e, ¢V} = ﬁ/l = 1.If E C V, it must be the case that E = V since V # E’ and E’ = EU {e*}. In
this case L(E) = S(DCZ) > mA > 1. Thus, for all V C E’, we have L(V) > 1, meaning A8 € A(DC).
This completes the proof of Theorem 6.1.

Using this theorem, we want to show that we can’t solve D’ in polynomial time unless P = NP.
While there exist relationship among the optimization problem, membership problem and their
variants [16], in general hardness of the membership problem doesn’t necessarily imply hardness of
the optimization problem. However, using the special structure of the convex body in consideration,
we can show such an implication in our setting. The following theorem would immediately imply
Theorem 1.4.

LEmMMA B.3. We cannot solve D’ in polynomial time unless P = NP.

Proor. Consider an instance to the membership problem consisting of DC and 5. By Theorem 6.1,
we know checking 5¢ A(DC) is NP-complete, even when A8 € A(DC) for some A > 1. For the sake
of contradiction, suppose we can solve Dg in polynomial time for any w > 0 over the constraints
defined by the same A(DC). We will draw a contradiction by showing how to exploit it to check
5 ¢ A(DC) in polynomial time.

Define R := {w | w-(5— 5) >0 Vo € A(G)}. It is straightforward to see that R is convex.

We claim that § ¢ A(DC) iff R # 0. To show the claim suppose § ¢ A(DC). Recall from
Theorem 6.1 that there exists A > 1 such that 15 € A(DC). Let A’ > 0 be the smallest A”” such
that 1’5 € A(DC). Observe that A’ > 1 and 1’5 lies on a facet of A(DC), which corresponds to
a hyperplane };c(x.x,cv,vey, 6 = 1 for some V C [n]. Let w be the orthogonal binary vector of
the hyperplane; so we have w - ’6 = 1. Then, w - (§ — 2’8) > 0 for all § € A(DC). Thus, for any
6 € A(DC) we have w - (§ — 5) >V -1Dw- 5= %w A6 > % > 0. The other direction is
trivial to show: If § € A(DC), no w satisfies w - (6 — S) > 0 when § = 6.

Thanks to the claim, we can draw a contradiction if we can test if R =) in polynomial time.
However, R is defined on an open set which is difficult to handle. Technically, R is defined by
infinitely many constraints but it is easy to see that we only need to consider constraints for § that
are vertices of A(DC). Further, A(DC) is defined by a finite number of (more exactly at most 2")
constraints (one for each W). This implies that the following LP,

max €

w-(5—-8)>e Ve ADC)
w >0

has a strictly positive optimum value iff R # (. We solve this using the ellipsoid method. Here,
the separation oracle is, given w > 0 and ¢, to determine if w - (§ — 5) > € for all § € A(DC);
otherwise it should find a § € A(DC) such that w - (6 — 5) < €. In other words, we want to know
mingeamnc) W+ (6 — 3) If the value is no smaller than ¢, all constraints are satisfied, otherwise, we
can find a violated constraint, which is given by the § minimizing the value. But, because the oracle
assumes w - § is fixed, so this optimization is essentially the same as solving D’, which can be solved

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 96. Publication date: May 2025.

96:26 Sungjin Im, Benjamin Moseley, Hung Q. Ngo, and Kirk Pruhs

by the hypothetical polynomial time algorithm we assumed to have for the sake of contradiction.
Thus, we have shown that we can decide in poly time if R is empty or not. O

C Proof of Theorem 1.5

Proor oF THEOREM 1.5. For part (a), To show that DC[I},] < flow-bound(DC, r) it is sufficient
to show that a solution to the linear program for flow-bound, (DC) can be extended to a feasible
flow for linear program D as we did for simple degree constraints in section 3.2. The only difference
here is that some flow can be directly pushed to a sink t on nonsimple edges in DC;. The fact that
the flow bound is smaller than the chain bound follows immediately from the fact that the degree
constraints used in the chain bound are a subset of the degree constraints used in the flow bound.

Statement () follows because for simple instances the linear program for flow-bound, and Dg
are identical, and for acyclic instances the polymatroid bound equals the chain bound [25].

Finally, we prove part (c), stating the chain bound can be arbitrarily larger than the flow bound
follows from the following instance. Consider an instance consisting of two elements 1 and 2 and
let the permutation 7 follow this order. There is a cardinality constraint (0, {2}, 1) and simple
degree constraint ({2}, {1, 2}, 1). The chain bound is unbounded because it cannot use the simple
degree constraint that does not agree with 7. Alternatively, the flow bound is bounded by using
both degree constraints. O

Received December 2024; revised February 2025; accepted March 2025

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 96. Publication date: May 2025.

	Abstract
	1 Introduction
	1.1 Motivations
	1.2 Our Contributions

	2 Background
	2.1 Classes of set functions
	2.2 Shannon-flow inequalities and proof sequences
	2.3 Comparison of polymatroid bound to other bounds

	3 Computing the polymatroid bound in polynomial time
	3.1 Review of the linear programming formulation
	3.2 Polynomial sized linear programming formulation (proof of Theorem 1.1)
	3.3 Simple degree constraints and the normal bound

	4 Computing a polynomial sized proof-sequence for simple instances
	5 Lower bounds
	6 Hardness of computing normal bounds
	7 The flow bound
	8 Concluding Remarks
	Acknowledgments
	References
	A Proof of Theorem 1.3
	A.1 Union of acyclic and simple constraints is still hard
	A.2 Restriction to degree constraints (X, Y, c) with |X|2 does not help

	B Proof of Theorem 1.4
	C Proof of Theorem 1.5

