POSITROID VARIETIES AND CLUSTER ALGEBRAS
VARIETES POSITROIDES ET ALGEBRES AMASSEES

PAVEL GALASHIN AND THOMAS LAM

ABSTRACT. We show that the coordinate ring of an open positroid variety coincides with the
cluster algebra associated to a Postnikov diagram. This confirms conjectures of Postnikov,
Muller—Speyer, and Leclerc, and generalizes results of Scott and Serhiyenko—Sherman-
Bennett—Williams.

RESUME. On montre que I’anneau des fonctions régulieres sur une variété positroide coincide
avec l'algebre amassée associée a un diagramme de Postnikov. Cela confirme des conjec-
tures de Postnikov, Muller-Speyer, et Leclerc, et généralize des résultats de Scott et de
Serhiyenko—Sherman-Bennett—Williams.

Positroid varieties are subvarieties of the Grassmannian that first appeared in the study
of total positivity and Poisson geometry [Lus98, Pos06, BGY06, KL.S13]. In this paper we
establish the following result; see Theorem 3.5.

Theorem. The coordinate ring C[ﬁ%w] of an open positroid variety flmw 15 a cluster algebra.

For the top-dimensional open positroid variety, this is due to Scott [Sco06], a result
that motivated much of the subsequent work. Combinatorially, positroid varieties are
parametrized by Postnikov diagrams, and each such diagram gives rise to a quiver whose
vertices are labeled by Pliicker coordinates on the Grassmannian; see [Pos06, Sco06]. This
data gives rise to a cluster algebra of [FZ02] whose cluster variables are rational functions on
the Grassmannian, and since the work of Scott, it has been expected that this cluster alge-

bra coincides with the coordinate ring of lglv,w. This conjecture was made explicit by Muller
and Speyer [MS17, Remark 4.6], and was established recently in the special case of Schubert
varieties by Serhiyenko—Sherman-Bennett—Williams [SSBW19]. Another closely related con-

jecture was given by Leclerc [Lec16], who constructed a cluster subalgebra of (C[lglv,w] using
representations of preprojective algebras. We show (Corollary 3.7(i)) that these two cluster
structures coincide. These cluster structures have also been compared in [SSBW19]; our
work differs from theirs by switching from a left-sided to a right-sided quotient for the flag
variety, i.e., from B_\G to G/B_; see Remark 3.2.

Leclerc’s conjectures and results apply in the more general setting of open Richardson
varieties. We hope to return to cluster structures of open Richardson varieties in the future.
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Some other closely related cluster structures include double Bruhat cells [BFZ05, GY20],
partial flag varieties [GLSO08], and unipotent groups [GLS07].

Combining our main result with the well-developed machinery of cluster algebras has
many consequences for the structure of open positroid varieties; see e.g. the introduction
of [SSBW19]. For instance, the existence of a green-to-red sequence [FS18], together with

the constructions of [GHKK18] endow (C[IOIUM] with a basis of theta functions with positive

structure constants. Additionally, the results of [LS16] imply that H *(lglv,w, C) satisfies the
curious Lefschetz property, which has implications for extension groups of certain Verma
modules that we aim to explore in future work.

Finally, we show that the totally nonnegative part I1.0 of TOIWLU (as defined by [Lus98,

Pos06]) is precisely the subset of IOLW where all cluster variables take positive real values;
see Corollary 4.4.

Acknowledgements. We are grateful to Khrystyna Serhiyenko, Melissa Sherman-Bennett,
and Lauren Williams for their comments on an earlier version of this manuscript and for
conversations regarding the results of [SSBW19]. These conversations motivated the start
of this project and inspired the results in Section 2. In addition, we thank Melissa Sherman-
Bennett for pointing out a sign issue in Lemma 3.6. The second author thanks David Speyer
for discussions that led to Proposition 4.9. Finally, we are grateful to the anonymous referee
for their careful reading of the text.

Outline. We discuss the combinatorics of Le-diagrams in Section 1. The cluster algebra
A(Qp) coming from a Le-diagram D consists of some rational functions on the Grassman-
nian. As we discuss in Section 3.4, in order to prove our main result, one needs to show two
inclusions: A(Qp) € C[I1,,] and A(Qp) 2 C[I1,,]. For the first inclusion, we rely on the
results of Leclerc [Lecl6]. In particular, following ideas of [SSBW19], we show in Section 2
that the cluster algebra of [Lecl6] is isomorphic to A(Qp) (i.e., they have isomorphic quiv-

ers). We then prove the first inclusion A(Qp) C (C[folv,w] in Section 3; see Corollary 3.7(ii).

We show the second inclusion A(Qp) 2 C[ﬁv,w] in Section 4, using the results of Muller—
Speyer [MS17, MS16b], of Muller [Mull3], and of Berenstein—Fomin-Zelevinsky [BFZ05].

Throughout the paper, we fix a positive integer n, and an integer k € [n] :={1,2,...,n}.
For a,b € Z, we let [a,b] := {a,a+1,...,b} if a < b, and [a, b] := () otherwise.

1. LE-DIAGRAM CLUSTER ALGEBRA

Let W = S, be the symmetric group on n letters. For i € [n — 1], let s; € W denote the
simple transposition of ¢ and ¢ 4+ 1. Every permutation w € W can be written as a reduced
word w = s;, ---s; (where m = f(w) is the length of w). In this case, w := (i1,...,in)
is called a reduced expression for w. We multiply permutations right-to-left; in particular,
for j € [n] and w = s, -+ s;,,, we let w(j) := s;,(...(s;,(4))...). For A C [n], we denote
wA :={w(a) | a € A}.

Let J = [n] \ {k}, and denote by W+“ C W the set of k-Grassmannian permutations, i.e.,
permutations w € W satisfying w(l) < --- < w(k) and w(k + 1) < -+ < w(n). In other
words, we have w € W if and only if w = 1 or each reduced word for w ends with s.

Let Q7 denote the set of pairs (v, w) where w € W7 and v < w in the Bruhat order on
W. The elements of Q7 label positroid varieties; see Section 3.1. By [MR04, Lemma 3.5],
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FIGURE 1. The Young diagram A, Le-diagram D, and graph G(D) corre-
sponding to (v, w) = (sg, $251545352).

every reduced expression w = (iy,...,4,) for w contains a unique “rightmost” reduced
subexpression v for v, called the positive distinguished subexpression. We let Jo C [m)]
denote the set of indices not used in v.

1.1. Le-diagrams and subexpressions. We use English notation for Young diagrams and
label their boxes in matrix notation. A Le-diagram D is a Young diagram A, contained in
a k x (n — k) rectangle, together with a filling of some of its boxes with dots, satisfying the
following condition: if a box b is both below a dot and to the right of a dot, then b must
contain a dot.

We describe a well-known bijection [Pos06, Section 20] between elements of Q7 and Le-
diagrams. First, Grassmannian permutations w € W+ are in bijection with Young diagrams
A C k x (n—k): placing sj4;_; into the box (7, 7) of A, a reduced word for w is obtained
by reading the boxes from right to left along each row, starting from the lowest row. The
southeastern boundary edges of A are labeled 1,2, ..., n from bottom-left to top-right. Thus
the southern boundary edges are labeled by the elements of w[k + 1, n].

Given v < w, we mark the letters not used by the positive distinguished subexpression
for v with a dot, and this gives a Le-diagram denoted D(v,w). For example, if (v,w) =
(89, S251848382), we have the Young diagram A = (3,2) and the Le-diagram D(v,w) in
Figure 1(left and middle). Note that w[k +1,n] = w{3,4,5} = {1,2,4} are the labels of the
southern boundary edges.

Throughout the paper, we assume (v,w) € Q@ and denote D := D(v,w). We also fix a
choice of w = (iy,...,i,), v, and J as above.

1.2. The graph G(D). To a Le-diagram D we associate a planar graph G(D) embedded into
the disk. The boundary of A is taken to be the boundary of the disk, and boundary vertices
are placed at the east and south boundary steps of A, labeled 1,2,... in counterclockwise
order, starting from the southwest corner of A\. From each dot in D, we draw a hook: one
line going eastward, and one line going southward, until they hit the boundary. The interior
vertices of G(D) correspond to the dots of D. Each dot of D corresponds to an element
r € J2, and we label the associated vertex of G(D) by t,. The edges of G(D) are horizontal
or vertical line segments connecting two dots. See Figure 1(right).

1.3. Quiver. A quiver () is a directed graph without directed cycles of length 1 or 2. An
ice quiver is a quiver () such that each vertex of () is declared to be either frozen or mutable.
We always assume that an ice quiver contains no arrows between frozen vertices. In this
section, we explain how to associate an ice quiver Qp to a Le-diagram D = D(v, w).

For each r € Jg, the vertex of G(D) labeled by ¢, is the northwestern corner of some face
of G(D), and we label this face by F,.. Label the remaining face of G(D) (the one adjacent
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FIGURE 2. The neighborhood of a vertex in G(D). The dashed lines may or
may not be present, and F,, F}, F,. are the labels of the corresponding faces.
Thus some of them may coincide: we may have either ¢ = a, or ¢ = b, or both.
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FiGURE 4. Constructing a quiver (Jp from a Le-diagram D. See Example 1.1.

to the northwestern boundary of A) by Fy. Thus the neighborhood of any vertex of G(D)
looks as in Figure 2.

Construct a quiver ()p whose vertices are {F, },c e, i.e., the faces of G(D) excluding Fj.

For each r € J2, depending on the local structure of G(D) near the vertex labeled ¢, (cf.
Figure 2), Qp contains the arrows shown in Figure 3.
The boundary (resp., interior) faces of G(D) are designated as frozen (resp., mutable) ver-
tices of Qp. We let 9J7 C JJ be the set of r € Jg such that F, labels a boundary face of
G(D), i.e., is a frozen vertex of Qp. Some of the arrows in Figure 3 could connect frozen
vertices, in which case we omit those arrows from Qp.

Example 1.1. Let £k = 3, n = 6, and (v, w) = (S254, $251545352555453). The graph G(D) is
shown in Figure 4(left), and the quiver @p is shown in Figure 4(right). The only mutable
vertex of (Qp is Fg, the vertices Fi, Fy, F3, Fy, Fg are frozen. Dashed arrows connect frozen
vertices and therefore are not present in ()p.

1.4. Cluster algebra. Let () be an ice quiver with vertex set V' partitioned as V' = V;UV,,,
where Vy (resp., V;,) denotes the set of frozen (resp., mutable) vertices. For each vertex
r € V, introduce a formal variable x,, and let x := {z,},ev. The cluster algebra A(Q)
associated to @) is a certain C-subalgebra of the ring C(x) of rational functions in the
variables x. Explicitly, A(Q) is the subalgebra generated (as a ring) by all cluster variables
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together with {z ! | r € V;}, where the set of (in general infinitely many) cluster variables
is constructed from the data (@, x) using combinatorial operations called mutations. Given
a mutable vertex r € V,,, a mutation at r changes the quiver @) in a certain way, and also
replaces x, with

(11) Q?l — Hi—)r T+ Hr—)j T

T )
Ty

where the products are taken over arrows in @) incident to r. We refer the reader to [FZ02]
for further background on cluster algebras.

2. LECLERC’S CLUSTER ALGEBRA

For any v < w, Leclerc [Lec16] introduced another cluster algebra using representations
of preprojective algebras. In this section, we recast his construction in elementary terms
when (v,w) € @7 and show that in this case, his cluster algebra coincides with the one
from Section 1. The calculations in this section are very similar to those in [SSBW19,
Section 5|, to which we refer the reader for an accessible introduction to preprojective algebra
representations in type A.

2.1. Preprojective algebra representations from Young diagrams. Let A, ; be the
quiver with vertex set [n — 1] and a pair of opposite arrows between ¢ and i + 1 for all
i € [n—2|. Recall that a representation of A, _; is a collection E, ..., E, 1 of vector spaces
over C together with linear maps @/71 B, — FEig, :ﬂiﬂ :Eiyy — E;jforallie[n—2]. A
Young diagram A that fits inside a k X (n— k) rectangle gives rise to a representation of A,,_1:
for each box (i,7) of A, let c(4,7) := k + j — ¢ (thus (¢, j) is labeled by s ;) in Figure 1).
Then for all ¢ € [n — 1], E, has a basis {e;; | (¢,j) € A :c(i,j) = c¢}. Additionally, for each

box (i, j), the values of the maps 1.(; j) and V(i j) ON €5 are given by

,3)
1; (o) = eijt1, if (4,7+1) €A, @ ens) = eiv1y, if (i+1,7) € A
o) g 0, otherwise; o)\ 0, otherwise.

Leclerc works not just with representations of A,,_;, but with representations of the asso-
ciated preprojective algebra A. It is easy to see that each Young diagram A contained inside
a k x (n — k) rectangle yields a representation Uy of A.

2.2. Leclerc’s representations. Recall that we have fixed (v, w) € Q7. Leclerc associates
a representation U, of A to each r € JJ. Our goal is to define a family {v()},cse of Young
diagrams such that each of them fits inside a k x (n — k) rectangle, and such that U, = U,
for all r € J§.

For r € [m], we set

s;, ird¢Je

W(py 1= Siy =" Siys V() = S;’l NN SZJ where S;,r — ) ) " ¢ JZ’

, redJdy;

(T) = -1 . — G: .8 (T‘) [ | . N A 4
w'" = w W(r) = Sipy " " Sipgrs and o\ = Uiy = Sy M

For a € [n — 1], let w, :={1,2,...,a}. For u € W and a € [n — 1], the subset uw, can be
identified with a Young diagram p(u,a) fitting inside an (n — a) X a rectangle, such that if
one places s,1;—; inside each box (4, j) € p(u, a) and takes the product as in Section 1.1, the
resulting element @ satisfies tiw, = uw,. That is, @ is the unique element of W’e satisfying
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FIGURE 5. Constructing Young diagrams v,y from a Le-diagram (cf. Exam-
ple 2.1).

Uw, = uwg, where J, = [n — 1]\ {a}, and p(u,a) is the Young diagram associated to .
Clearly, if ' < w, then p(v',a) C u(u,a).

Since w € W, we see that (w™~)~' € W so u(w 4,) is a rectangle for any  whose
top left (resp., bottom right) box is labeled by s, (resp., by si). Thus the 180° rotation
of the skew shape p(w Y 4,)/u(v" Y 4,) is a Young diagram which we denote V(. We
emphasize that v, is defined for all r € [m].

Example 2.1. Let £k = 6, n = 12. Consider a Le-diagram in Figure 5(left). We have
Jo ={a,b,c,d}, and the diagrams v, for r € JJ are shown in Figure 5(right). For instance,
i = 7, w(bfl)wib = S¢S758S59S55657585455S86S7wr, and thus u(w(bfl),ib) is a 3 x 4 rectangle.
Similarly, v®=Y = s75359555657585456wr = S758558¢57wr. The shape p(v®=Y 4,) = (3,2),
rotated by 180°, consists of red and yellow squares (see Figure 5) labeled by sz, ss, ss, Sg, S7,
and is the complement of v, inside a 3 x 4 rectangle. Thus vy = (4,2,1).

The next result follows from the definitions; see [Lecl6, Proposition 4.3] and [SSBW19,
Section 5].

Proposition 2.2. Forr € Jg, Leclerc’s representation U, of A coincides with the represen-
tation U,,<T> constructed from vy in Section 2.1. O

We give an alternative description of the Young diagram v(,) using the combinatorics of
Le-diagrams.

For integers a,b > 1, denote by H(a,b) = (a,1°7!) the hook Young diagram whose first
row contains a boxes and whose first column contains b boxes. We consider “Frobenius
coordinates” for Young diagrams: we write p = [(a1,b1), ..., (aq,bq)] if p={(l+i—1,1+
j—1) |l e[d],i€ |a],j € [bi]}. Thus the first row of u has a; boxes, the first column of p
has b; boxes, etc.

For each box (i,7) € A, let NW(i,5) € AU {(0,0)} be the box closest to (i,7) in the
strictly northwest direction that is either (0,0) or contains a dot. Observe that NW(i, ) is
well defined because of the Le-diagram condition in Section 1.1.

Recall from Section 1.1 that the boxes of A correspond to the terms in the reduced word
w = s; -8, for w, i.e., to the elements of [m]. For r € [m], we denote by (i, ;") € X
the corresponding box of \ (thus i, = k + ;) — ("),

Proposition 2.3. Forr € Jg, the Frobenius coordinates of v(,y are given by

Vi) = [(@'(H)j(ﬂ)) Nw(i(r),j(’")), o ’NWZ?(,L'(T)’j(r))} ’
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where p > 0 is such that NWPT(i() () = (0,0).

Proof. For a box (i,7) € A, let NW(i, j) be the box closest to (4, 7) in the weakly northwest
direction that is either (0,0) or contains a dot. Thus (7, ) contains a dot if and only if
NW(i, j) = (i,5). Recall that v, is defined for all r € [m], not just for r € J2. We will
show more generally that for r € [ ], we have

vy = [NW(E, 50, NWEW (), 50, NWP(NW (), j0)]

where p > 0 satisfies NWPTH(NW(i("), i) = (0,0). If (i), ) = (1,1) then the result is
clear. Otherwise assume that we have shown the result for all boxes weakly northwest of
(i, 70 other than (i, (™).

Suppose first that r ¢ J2, thus (i), ) does not contain a dot. Let r. € [m ] an
r+ € [m] be such that (i) j<)) = (07§ — 1) and (D, j00) = (i — 1, 50).
the Le-diagram condition, either all boxes above or all boxes to the left of (i, ](’“)) 0 not
contain a dot. In the former case, we have v,y = v(,_ and NW( ) NW(Z( , 77,
and in the latter case, we have v,y = v, and NW( M §0) = NW( ), ). The result
follows by induction.

Suppose now that r € J¢ and let 7' € [m] be such that (i), ;0)) = (i) — 1,50 —1).
If » ¢ J2, then clearly p(v"=Y i,) is a disjoint union of H(i (T),j(”)) and p(v™ Y 4.), so
Vi) = V. IE 7 € J2, then p(vY,i,) = p(w™ i), so v,y is a disjoint union of
H(i™, j) and v. O

Example 2.4. Continuing Example 2.1, the Frobenius coordinates of v,y for r € J; are
given as follows:

Yy = [(17 1)]7 Viey = [(27 3), (1, 1)]7 V) = [(47 3), (1, 1)]7 V() = [(47 5), (27 3), (1, 1)]

We see that v, is a union of H(i(®, j(®) = H(4, 5) and v, which is a union of H(i®), (/) =
H(2,3) and v(4 = H(1,1). Similarly, v is a union of H(®,j®)) = H(4,3) and v (d)

2.3. Leclerc’s quiver. Now that we have constructed Young diagrams vy for r € Jg,
we can analyze the quiver Q that Leclerc associates to (v,w) € Q7. The Vertex set! of
Q is Just J,. T he frozen vertices of @) correspond to the Young diagrams obtained from
p(w™ @a)/,u( ~1i,) (for a € [n — 1]) by a 180° rotation. It is easy to see that these are
precisely the Young diagrams v,y such that F, is a boundary face of G(D) that contains the
part of the boundary of A\ between boundary vertices a and a+1. Thus the map r — F}. sends
the vertices of Q bijectively to the vertices of the quiver Qp from Section 1.3, preserving the
partition into frozen and mutable vertices.

The arrows of Q can be described in terms of morphisms of Young diagrams. Given a skew
shape A\/p for u C A, we say that their set-theoretic difference \/u is an order ideal of \. For
a Young diagram A and an integer p > 0, we denote shift?(\) := {(i +p,j +p) | (i,7) € A}
For another Young diagram p, we write A 2 1 if the set shift?(\) N is an order ideal of

p. In this case, we say that A 2> p is a morphism from X to p. The morphism A RSN
is considered trivial, and a morphism A\ £ y is the zero morphism if shift?(\) N p = 0.

IMore precisely, the vertex set of Q consists of irreducible factors of functions {fr}rese defined in (3.2).
However, when (v,w) € Q”, each f, is irreducible by Corollary 3.4 below, thus we may label the vertices of
@ by elements of JJ.
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Morphisms can be composed: if A % p and g < v then A M, ). For r,r’ € Jo, a nonzero
and nontrivial morphism v/, TN vy is irreducible if it is not a composition of non-trivial

/1

morphisms v/, r, Yy r,y vy for some r” € J;. Leclerc’s quiver () contains an arrow
r — r' for r # 1’ € JJ if and only if at least one of r, 7" is mutable and there is an irreducible
morphism v/, =N vy for some p > 0.

Remark 2.5. We explain the relation between our morphisms of Young diagrams and the
morphisms of representations of A from the original definition [Lec16] of Q. Let Uy and U, be
the two (indecomposable) A-modules associated to Young diagrams A and p as in Section 2.1.
Since U, is generated (as a A-module) by the vector e; 1, a morphism f : Uy — U, is uniquely
determined by f(e11) € U,, which must be a linear combination of e;1,e22,...,€44 € Uy,
where d is the length of i in Frobenius coordinates.

Associated to each morphism A\ %> p of Young diagrams is the elementary morphism
Uy 2 U, of A-modules sending e, ; to e,,. (The condition that shift?(\) N is an order ideal
of 11 corresponds exactly to the condition that e; ; — ¢e,, defines a morphism of A-modules;
see [SSBW19, Remark 5.15].) Any morphism f : Uy — U, is thus a linear combination of

the elementary morphisms Uy 2 U , of Young diagrams.
A morphism f : U, — U,,W) is irreducible if it is nonzero, not an isomorphism, and
cannot be factored nontrivially within the category add(U) whose objects are isomorphic

to direct sums of the U, for s € Jg. Leclerc’s quiver @ has no loops, i.e., arrows from

r to r; see [Lecl6, Definition 3.9(d)]. For r # 7/, the number of arrows in @ from r
to r’ is equal to the dimension of the space of irreducible morphisms from Uy,, to UZ,(T,).
This dimension is defined [BIRS09, Sch14] to be equal to the dimension of the space of all

morphisms U, . — U,

ll(’r‘) I/(Tl)
is a morphism, then (see the proof of Proposition 2.6) A N 1 is a reducible morphism for
all ¢ > p. Thus any morphism f : U, . — U, , is equal modulo reducible morphisms to

I/(T) l/(,,,/)

modulo the subspace consisting of reducible morphisms. If A 2 1

a scalar multiple of some elementary morphism U, 2 U,. It follows that the dimension
of the space of irreducible morphisms from U, to Uvm is equal to 1 or 0, depending on

whether there is an elementary morphism Uy, TN va) that is irreducible as a morphism
of A-modules. Furthermore, when considering the irreducibility of an elementary morphism

U, RN Ul,(r,)7 we only need to check if it factors nontrivially as a product of elementary
= Uy,

the notion of irreducibility we defined for a morphism v, RN vy of Young diagrams.

morphisms. Thus the irreducibility of U, in the sense of A-modules agrees with

V(r) 'r’)

Proposition 2.6. The map r — F, gives a quiver isomorphism between Leclerc’s quiver Q
and the Le-diagram quiver Qp.

Proof. 1f the Frobenius coordinates of a Young diagram A are given by A = [(ay,b1), .. ., (a4, ba)],
we set A = (ag,b1),..., 2 == (ag,bg), and N1 = \+2 = ... = (0,0). Let us write
(a,b) > (a/,b')if a>a and b > V.

Let A 2 1 be a morphism. Since its image is an order ideal of p, a morphism A 2 u
exists if and only if A\! > pP™t A2 > pP*2, etc. Moreover, if p < ¢ and we have a morphism
A & 4 then the morphism A % 4 is not irreducible: it factors through A 2 =5 u. Also
note that A — p if and only if p C A. We write A L p if the morphism A % 4 exists
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and is injective (i.e., shift’(\) C p is an order ideal of ). This is equivalent to \! = pP*!,
A2 = pP*2 ) ete
By Proposition 2.3, for each r € Jg, we have 1/( ) = = (i (’”), 4). Thus all Young diagrams

{v(r) }rese are different. Observe that the morphism A & i exists if and only if A = y, in
which case it is a trivial morphism.
Let r € J and suppose that the neighboring faces F,, [}, F.., F,. of t, in G(D) are labeled as

in Figure 2. It follows from Proposition 2.3 that we have morphisms v, RN V() V(r) RN V(b),
1
Viey = V().
We first show that for r,r’ € J¢, if there is no arrow F, — F, in (Jp then there is no
arrow 7 — 1’ in Q). Indeed, let v := v,y and ' := vy, and suppose that there is no arrow

F. — F. in Qp but we have a morphism v 2 v/ for some p > 0. Assume that the regions
around t,» in G(D) are labeled by F,, Fy, F., F. as in Figure 2. If p > 1, then v v

factors through v LN V() L V. Therefore such a morphism is not irreducible unless p = 1

and the morphism v ol V(e is trivial, ie., r = ¢/. Since there is no arrow F, — F, in
(Qp, we must have either ¢ = d/, or ¢ =¥/, or both. Without loss of generality, assume that
¢ = d/(=r). If both r and 7" are frozen then ) contains no arrow between them. Thus
at least one of them must be mutable, so the horizontal edge of G(D) between r and 7’
must have another vertex to the right of ¢,,. Let that vertex be labeled by t,, then we have

morphisms v N Y(q) RN . thus we see that indeed our morphism v 2 v/ is not irreducible
when p > 1.

Assume now that p = 0, which implies that (i®), ;) > () )Y and (i), ;) #
(i7", j0")). From the definition of the Le-diagram quiver @ p, we see that there exists a path
from F, to F, that consists of arrows all going up, left, or up-left. The composition of the

corresponding morphisms gives the morphism v RNy , which shows that it is not irreducible
if there is no arrow F, — F,. in (Jp.
It remains to show that if we have an arrow F, — F,. in (Jp then the morphism v —

V' is irreducible. Let the regions around ¢, (resp., t,») be labeled by Fy, F}, F,, F, (resp.,
. . . . . 1

F,, Fy, Fu, F./) as above. First, suppose that » = ¢, in which case our morphism is v < v/

1

If it factors as v = 1 % 1/ then the injectivity of v < v/ forces v 2> v to be injective,
1

and thus we must have v — v % /. But then v is obtained from " by removing a hook,

.. 1 . . .
so by Proposition 2.3, v < v’ must be one of the down-right arrows in @Jp. In this case,
the hooks (¢”)! and ()! have to be incomparable, contradicting v RN Next, suppose

that r’ equals to @ or b. Then we have a morphism v 2 /. Tt is clear from the definition
of Qp that if F,, — F,, is an arrow of Q)p then ()p contains no directed path from F;. to F}.

of length more than 1. If the morphism v 0 V' is not irreducible then there must be such a
directed path from r to r/ 1n Q. But we have already shown that each arrow of () appears

as an arrow in (Jp, thus v 9 o/ must be irreducible. 0
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3. CLUSTERS AND POSITROID VARIETIES

Proposition 2.6 shows that the two (abstract) cluster algebras A(Qp) and A(Q) are iso-
morphic. In this section, we further connect them by showing that the conjectural cluster

structures they define on C[ﬁv,w] coincide.

3.1. Background on positroid varieties. Let G = SL,(C) and B, B_, N, N_ denote the
upper- and lower-triangular Borel subgroups, and their unipotent parts. For ¢ € [n — 1],
denote by $; € G a (signed) permutation matrix representing s; € W that has a 2 x 2 block

in rows and columns 7,72 + 1. Given a reduced word w = s;, - --s;,, for

m

0 1
equal to 10
w e W, we let w € G denote the (signed) permutation matrix given by w :=§;, ---§;, . For
v < w, we define the open Richardson variety }O%UM to be the image of BvB_ N B_wB_ in
G/B_. Thus ]?Bv,w is a smooth affine subvariety of G/B_.

Recall that J = [n] \ {k}. Let P7 D B_ denote the J-parabolic subgroup such that the
projection 7y : G — G /P’ ~ Gr(n—k,n) is given by sending a n x n matrix ¢ to the column
span of its last n — k columns. We sometimes denote 7;(g) by gP’. For an (n — k)-element,
subset I of [n], we denote by A; the corresponding Plicker coordinate on Gr(n — k,n), i.e.,
the maximal (n — k) X (n — k) minor of g with row set I and column set [k + 1,n].

For (v,w) € Q7, the open positroid variety is the image ﬁv,w = Wj(é,u’w) C Gr(n —k,n);
see [Lus98, KLS13]. It is isomorphic to }O%vyw, and is a smooth affine subvariety of Gr(n—k,n).
For other descriptions of IEIM,, see [Pos06, BGY06].

3.2. Leclerc’s functions. Fix v < w. Following [Lecl6, Section 2], denote N'(v) = N N
(0"'N9) C N and N,,, := N'(v) N9~ 'B_wB_. We will be interested in the variety

(3.1) Ny = 0N N NN B_iB_.

Lemma 3.1 ([BGY06, Theorem 2.3|, [Lec16, Lemma 2.2]). The map vN,, ., — G/B_ given
by g — gB_ gives an isomorphism 0N, ., — Ry ..

Remark 3.2. Both [Lecl6] and [SSBW19] work with the left-sided flag variety B_\G. In
particular, Leclerc shows that the map g — B_g gives an isomorphism N, ,, — B_\(B_9BN
B_wB_). Lemma 3.1 follows from this statement by replacing g,v,w with their inverses.
However, since in either case one works with rightmost positive distinguished subexpressions,
switching from B_\G to G/B_ has a drastic effect on the combinatorics of Leclerc’s quivers,
as one can see by comparing Section 2 with [Lecl6, Section 7] or [SSBW19]. In fact, when
working with B_\G, Leclerc’s cluster structure does not in general coincide with (either

source or target labeled versions of) the cluster structure coming from Postnikov diagrams;
see [SSBW19, Appendix B].

Foru € W and a € [n—1], let w, and p(u, a) be as in Section 2.2. Leclerc [Lec16] considers
a family of functions on the unipotent group N: for each r € Jg, the corresponding function is

(3.2) fr = Av(r—l)wi‘mw(r—l)wir N —=C

where A4 p is the minor whose rows and columns are indexed by A and B respectively. The
functions f, restrict to functions on N, ,,. Leclerc proves that the irreducible (as elements
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of C[N]) factors of {f, | r € JJ} form the initial cluster variables of a cluster subalgebra of
C[Nyw)-

Lemma 3.3. Foru' <wu e W, if the skew shape p(u,a)/ (v, a) is connected then the minor
Aoy uwa 15 an irreducible element of C[N].

Proof. The polynomial Ay, uw,(g) is homogeneous with deg(g; ;) = j — 4. Restricting to
the subspace of N consisting of matrices constant along diagonals, we see that the result is
implied by the Jacobi-Trudi formula combined with the irreducibility [BRvW09, Theorem 1]
of skew Schur functions indexed by connected skew shapes. O

Suppose now that (v,w) € Q7. As we have established in Section 2.2, for all r € J2,
the skew shape p(wY,4,) /(v 4,) is a 180° rotation of a Young diagram V(r), thus we
have shown the following.

Corollary 3.4. For (v,w) € Q7 and all v € J2, the function f, defined in (3.2) is an
irreducible element of C[N].

3.3. Face labels. So far the faces of G(D) have been labeled by an abstract set { F}. },ce1i10}-
We now identify each face F, with an (n—k)-element subset of [n], so that it would correspond
to a Pliicker coordinate on Gr(n — k, n).

The graph G(D) has n distinguished paths py, ps, ..., p, connecting boundary vertices,
called strands. For a € [n], the strand p, starts? at the boundary vertex labeled a, and then

travels along the edges of G(D), making turns at each vertex ¢, according to the following
“rules of the road” (cf. [Pos06, Figure 20.2]):

SNl ol

In other words, the strand p, zig-zags in the northwest direction until it hits the north or
west boundary, after which it goes straight southward or straight eastward until it arrives
at the boundary again. If there is no edge of G(D) incident to the boundary vertex a then
Pq is taken to be a small clockwise or counterclockwise loop depending on whether a is on a
vertical or horizontal edge of A. Every face F,. of G(D) is labeled by an (n—k)-element subset
of [n], consisting of those a such that F, lies to the right of p,. See Figure 6 for the labeling
of the Le-diagram from Example 1.1. From now on, we identify F). with the corresponding
subset, and write Ag. for the corresponding Pliicker coordinate on Gr(n — k,n).

It is known (see [KLS13, Section 5.2]) that Fj coincides with the lexicographically maximal

(n — k)-element subset S C [n] such that Ag is not identically zero on II,,,. Moreover, we

have Ag (z) # 0 for any = € lglv,w and any r € 0J¢ LU {0}. Since the image of the Pliicker
embedding lies in the projective space, we always assume that the Pliicker coordinates are

rescaled (“gauge fixed”) so that Ap,(x) =1 for all x € TOIWU.

2This is called the source-labeling of strands. For the other convention, called target-labeling, the path p,
ends at vertex a.
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3.4. Main result. Recall from Section 1.4 that the cluster algebra A(Qp) is a subring of
the field of rational functions in the variables {xp, },css. The following result is explicitly
conjectured in [MS17, Remark 4.6]; the statement may be considered implicitly conjectured
in [Pos06, Sco06].

Theorem 3.5. For all (v,w) € Q7, the map sending xr, — Apr, for each r € J2 induces a
ring isomorphism 1 : A(Qp) — C[IL, ] (with Ag, =1 on 1l,,,).

When v = 1 and w is the maximal element of W (i.e., when D(v,w) is a k X (n — k)

rectangle filled with dots), ﬁv,w is the top-dimensional positroid variety in Gr(n — k,n), in
which case Theorem 3.5 was shown by Scott [Sco06].

Recall that 0J; C Jg is the set of r € JJ such that F, labels a boundary face of G(D).
Theorem 3.5 is equivalent to the following two explicit statements for Pliicker coordinates

o
on Il -

(1) We have n(A(Qp)) C C[ﬁuw], that is, the image n(z) of every cluster variable
r € A(Qp) is a regular function on 12[1,@. Equivalently, n(z) can be written as a
polynomial in the Pliicker coordinates divided by a monomial in {Ag, },cae.

(2) We have n(A(Qp)) 2 C[loluvw], that is, the images of cluster variables generate (C[lg[,,,w]
as a ring.

In general, both of these statements are non-obvious. We will deduce (1) from Leclerc’s
results in the next subsection. The non-trivial part of (2) is that unlike in the case of the
top-dimensional positroid variety [Sco06], not every Pliicker coordinate is the image of a
cluster variable. But Theorem 3.5 implies that every Pliicker coordinate can be written as
a polynomial in the images of cluster variables divided by a monomial in {Ap, },ca7:. We
will prove this in Section 4.

3.5. Converting Leclerc’s functions into Pliicker coordinates. Let v - f, € C[0N, ]
denote the image of f, under the isomorphism C[N,,] ~ C[0N,,]. Explicitly, we have

v fy = Av(r)wir;w(rfl)wir. Recall that the map g — gB_ gives an isomorphism 0N, ., — Ry,
while the map 77 : G/B_ — G /P’ restricts to an isomorphism ]%uw = lglv,w. For a function

v- f € Cl[oN, ], denote by v - f € C[ﬁv,w] the image of v - f under the composition of these
isomorphisms.

Lemma 3.6. Let (v,w) € Q7 and gauge-fix Ap, = 1 on ﬁv7w. Then for all v € Jg, the

o

regular functions v - f,., Ar, € C[IL, ] agree on lglviw. FEquivalently, we have

_ Ap (igP?)
__Zbe(@g]?{>

(3.4) f-(9) forallg € Ny, andr € Jg.
Proof. We will prove (3.4) more generally for all ¢ € N. Observe that Fy = v[k + 1,n)]
(see [GKL19, Example 9.5]). Therefore for any ¢ € N, the submatrix of g with row set
v Fy = [k+1,n] and column set [k+1,n] is an (n —k) x (n — k) upper-triangular unipotent
matrix, thus Ag (vg) = 1. It remains to show that f,.(g) = Ag, (0g) for all r € J;.

Fix r € J;. We have f, = Ay, p,, where

r—1 v v r—1
(3.5) A, =0V, = sy -5, w;, and B, = wrHw; =5 8w



POSITROID VARIETIES AND CLUSTER ALGEBRAS 13

246 245

236 | 234

146 126

F1GURE 6. Labeling the faces of a Le-diagram by subsets. The strand p; is
shown in red and ps is shown in blue. Here we abbreviate {a, b, c} as abe.

Recall from Section 2.2 that we have two Young diagrams (v =Y i,) C u(w™Y,4,) that fit
inside an (n —4,) x i, rectangle, and moreover, u(w" =Y, i,) is itself a rectangle. Thus there
exist integers a, € [0, k] and b, € [k, n] such that B, = [1, a,]U[k+1,b,], so a,+b,—k = |B,| =
ir. And because p(v" Y 4,) C pu(wY, 4,), we find that [1,a,] C A, and A, N[b,+1,n] = 0.
Let us define C,. := (A, \ [1,a,]) U [b, + 1,n], and thus |C,.| = n — k. (See Figure 7(b) for an
example.) It is clear that the functions f. = Ay, g, and A¢, k41, agree on N. Our next
goal is to show

(3.6) F, =vC,.

Let us first give a pictorial description of A, and B, using wiring diagrams. It is analogous
to [MRO4, Section 9]. Draw a wiring diagram WD(w) for w, and for each r € J¢, place a
dot labeled ¢, at the crossing that corresponds to s;.. Denote this dotted wiring diagram
by WD*(v, w), cf. Figure 7(a). A wiring diagram WD(v) for v is obtained from WD*(v, w)
by “uncrossing” each dot, i.e., replacing each crossing of WD*(v,w) that has a dot by a
pair of parallel wires. Label each wire in WD(w) and WD(v) by its right endpoint (the
right endpoints are labeled 1,...,n from bottom to top). To each chamber R of WD(w)
we associate a set Br of wires that are below R in WD(w). Similarly, we introduce a set
Ap of wires that are below each chamber R’ of WD(v). Any chamber R of WD(w) is
contained inside a unique chamber R’ of WD(v), so we label the corresponding chamber R
of WD*(v,w) by the pair (Ag, Br), where Ag := Ap/; see Figure 7(a). For each r € J2, let
R, be the chamber of WD*(v, w) that is immediately to the left of the dot labeled by t,. It
is straightforward to check (see also [MRO04, Section 9]) that

(3.7) A, =Agr, and B, =By, forallreJ,

where A,, B, are as in (3.5).

Let us now introduce a certain planar graph WD*(v,w) drawn in a disk, with boundary
vertices labeled by 1,...,n and interior vertices labeled by ¢, for r € J;. The same con-
struction appears in [Karl6, Figure 5]. The graph WD*®(v, w) is obtained from WD*® (v, w)
by removing the redundant part of each wire, that is, the part to the right of the rightmost
dot that is placed on an intersection involving this wire; see Figure 7(c). (The redundant
part of each wire is common to WD(v) and WD(w).)
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A, B, Cy
13 45 136
1 4 156

1235, 1456 (73
1235 | 1456 | 235
123|145 | 236

123,145 (i) 123,124 (fz) 123,123
12,12 12345 | 12456 | 345

13,45 (69 13,14
1,405 11 123 124 | 356
1 1

(a) Labeling the regions of WD*(v, w) by (4, B,). (b) A,, B,,C, for r € J3.

12345,12345

12345, 12456 ()
1235, 1245

1234,1234

N W s~ ot O
N W s Ot O

CO| O | W DN | =3

(¢) The graph WD* (v, w). (d) Strands p, (red) and p, (blue) in WD*(v, w).

FIGURE 7. Constructing the graphs WD*(v,w) and WD*(v,w) from the
proof of Lemma 3.6. Here k = 3, n = 6, and (v, w) is as in Example 1.1.

Observe that there is a simple isomorphism between the graphs G(D) and WD*(v, w)
that preserves the labels of the vertices (i.e., 1,...,n for boundary vertices and {¢,},cse
for interior vertices). This isomorphism can be obtained by reflecting G(D) along the line

= 2z in the zy-plane. For example, compare Figure 7(c) with Figure 4(left).

For each a € [n], we introduce a path p, in WD®(v,w) that starts at v=!(a) on the left
and ends at w!(a) on the left. First, consider a path p], in WD*(v, w) that starts at v='(a)
on the left, goes right following the strands of WD(v) (i.e., ignores all intersections that have
dots on them) until it reaches a on the right, and then goes left following the strands of
WD (w) until it reaches w™!(a) on the left. The path P}, in WD*(v, w) travels right and then
left along the redundant part of the wire whose right endpoint is a. We define p, to be the
path in WD®(v, w) obtained from 7, by removing this redundant part. See Figure 7(d) for
an example. Comparing the “rules of the road” (3.3) with the definition of the paths p, in
WD*(v,w), we find that for each a € [n], our graph isomorphism G(D) = WD® (v, w) sends
the path p, in G(D) to the path p,,) in WD*(v,w). For example, compare Figure 7(d) with
Figure 6.

Note that for each r € Jg, the chamber R, of WD*(v,w) is contained inside a unique
chamber (also denoted R,) of WD*(v,w). We claim that for each a € [n] and r € J°,

(3.8) a belongs to C, if and only if the chamber R, is to the left of the path p,,.
To show this, suppose first that a < k. Then
acC,<—=acA\[la] <= ac A \B, (for a < k).
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On the other hand, a < k implies v~!(a) < w™!(a), so a belongs to A, \ B, if and only if the
wire labeled a in WD(v) (resp., in WD(w)) is below (resp., above) the chamber R,, which
is equivalent to R, being to the left of the path p,,.

Suppose now that a > k + 1. Then

acC, <= acA Ub +1,n<=ac (A NB,)ora¢ (A UB,) (fora >k +1).

On the other hand, a > k + 1 implies v™'(a) > w™'(a), so a belongs to A, N B, if and
only if the chamber R, is above both wires of 7, in which case R, is to the left of p,. The
only other case when R, is to the left of p, is when R, is below both wires of p/,, and this
corresponds precisely to a ¢ (A, U B,). This shows (3.8). Combining (3.8) with the rule for
face labels in Section 3.3, we obtain a proof of (3.6).

We now deduce (3.4) from (3.6). For g € N,,, the right hand side of (3.4) is given by
Aye, k41,7 (0g), which clearly equals f.(9) = Ac, jk+1,2(9) up to sign. To see that the sign
is correct, observe that since C, is a face label of a Le-diagram (as we have shown above),
it satisfies the following property:

(3.9) for all ¢ < j such that v(i) > v(j) and j € C,, we have i € C,.

If (3.9) holds for v, it also holds for (v(")~! = sy ., sy foreach 0 <r <m—1. The desired
statement Ayc, (o410 (09) = Ac, k41,1, (¢) now follows by induction on r = m—1,m-2,...,0
in a straightforward fashion. 0

In view of Corollary 3.4, Leclerc’s result [Lec16, Theorem 4.5] implies in the case (v, w) €
@’ that the map z, — v - f, extends to an injective ring homomorphism A(Q) < C[fluw].
He conjectured that this map is actually an isomorphism. Thus Theorem 3.5 confirms his
conjecture in the case (v,w) € Q7.

Combining Proposition 2.6 and Lemma 3.6, we have the following result.

Corollary 3.7. Let (v,w) € Q7 and assume Ap, =1 on IELMU.
(i) The cluster structure of [Lecl6] coincides with that of Theorem 3.5.
(ii) We have an injection n : A(Qp) — C|IL, | sending xp, to Ag, for allr € J3.

4. SURJECTIVITY

In view of Corollary 3.7(ii), in order to complete the proof of Theorem 3.5, it suffices to
show that the map n : A(Qp) — CI[IL, ] is surjective.

4.1. Paths in Le-diagrams. The space éuw contains a distinguished torus of the same
dimension, called the open Deodhar stratum. We describe a parametrization of this torus
following [MRO04].

For t = (t,),ese € (C*)I¥I, define an element

S, if r ¢ Je,

4.1 vwt) =091 gn € NONB_wB_ here .= ]
(4.1) gvw(t) =919 v v wher g {miT(tr) itre Jg.

The map (C*)~V — é%w given by t — gy w(t)B_ is an isomorphism onto its image, the open
Deodhar stratum in év,w'

Let Xv = (B_wB_)/B_ be a Schubert cell inside G/B_-. We have an isomorphism
N_wnNwN 5 X sending g — gB_. Let ¢y, : X% — N_1NwN denote the inverse of this
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isomorphism. Since ]%U,w C Xv, foreach t € (C*)’, we have a unique h := ¢, (gy.w(t)B_) €
N_w N wN satisfying hB_ = g, w(t)B_. When (v,w) € @7, computing the matrix h
amounts to computing the column-echelon form of gy w(t)P’ € Gr(n — k,n). Our goal is to
describe the entries of h in terms of the variables t. The answer essentially coincides with
the boundary measurement map of [Pos06, Definition 4.7].

Let G (D) be obtained from G/(D) by orienting every vertical edge down and every horizon-
tal edge left. Suppose that i € w[k+1,n| (resp., j € w[k|) labels a horizontal (resp., vertical)
boundary edge of A\. For r € JJ and a directed path P in é(D), we write r € P if P passes
through the vertex labeled t,, and let wtp(t) := [[,cpt,'. Denote Meas; ;(t) := >~ , wtp(t),

where the sum is taken over all directed paths in é(D) connecting ¢ to j. Finally, for
i,j € [n], set inv,; ; = #{j’ > j : w(j’) < i}, so that when i = w(j), the (4, j)-th entry of
w equals (—1)™%i. The following result can be deduced from [TW13, Theorem 5.10]. We
include a proof here for completeness.

Proposition 4.1. Let h = ¢, (gvw(t)B-), where gy w(t) is as in (4.1). For i € wlk] and
j € lk+1,n], the (i,7)-th entry of h equals (—1)™ Meas; ,,(;)(t).

Proof. Because w € W7 and h € N_w N wN, the left k columns of h coincide with the left
k columns of w, so we are interested in the right n — k columns of h, which contain the
identity submatrix with row set w[k + 1,n]. Let us denote by |h] the submatrix of h with
column set [k + 1,n].

We proceed by induction on the length m = ¢(w) of w. The case m = 0 is clear: the
matrix |h] has 0-s in all entries except for the identity matrix in the rows k+ 1,k +2,... n.
Suppose the result is known for (v, w’), where v’ = s;w < w, v/ = s¥v < v, and i = ;.
Then D = D(v,w) is obtained from D’ := D(v',w’) by adding a box (which may or may
not contain a dot), whose horizontal and vertical boundary edges are labeled by i and i + 1.
Let g4 w/(t) = gags -~ gm and I’ := ¢u (81, (t) B-).

Suppose that g, = $;. Then v' = s;v < v, gy w(t) = 38,/ o (t), h = &', and the extra
box of D does not contain a dot. The definition of a Le-diagram implies that either there are
no paths involving ¢ or no paths involving 7 + 1 in D’. The paths in D are thus in bijection
with the paths in D’ with the roles of i and i + 1 swapped. This agrees with h = $;h’, and
the signs of the entries change in accordance with (—1)mvis.

Suppose that g1 = z;(t1). Then v = v, gy w(t) = 7i(t1)g,  (t), and we have |h] =
x;(t1)|W]dy, where d = diag(dgs1,...,d,) is an (n — k) x (n — k) diagonal matrix and
Y = (Yab)k+1<ab<n 18 an (n — k) x (n — k) lower-triangular unipotent matrix given by

—hi, ifa=w'(i)and k+1<b <a,

1/t;, ifa=w'(
da:{ /17 I a w (2)7 Yab = 1 ifa:b,

1, otherwise; .
0 otherwise.

Since dy is lower-triangular, we have hB_ = gy (t)B_. Multiplying by dy on the right “kills
oftf” all nonzero entries corresponding to non-inversions of w and yields h € N_wNwN, thus
h = ¢u(8v.w(t)). Note also that the extra box of D contains a dot labeled by ¢;. Thus the
matrix entries of h correspond again exactly to paths in G(D), and the sign of each entry
agrees with (—1)"vii, O
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Example 4.2. Let (v/,w') = (s2, S251545382). We find

00 1 0 0
é 2 3 0 8 00 0 1 0
/ . —t2 1 tat5 ’ 10 —-1 1 0
t) = To(ta)xy t3 Ta(ts T3 t5 So=|[0-10 ts O h' = tat3 t2
/ / 5
o (8) = ()0t )at0) s (15)82 = |91 0500 | oo
00 001 0-! it ~hus i

The matrices g, ,.(t) and h' = ¢,y (gi,/7wx (t)P’) represent the same element of G/B_,
which can be checked by comparing their right-justified flag minors: for each j € [n], the
linear span of the last j columns of g/, .. (t) equals that of A'".

Let now v = v/, and w = ssw’. Thus G(D') and G(D) are given by

e s B—05
(4.2) é(D’): @ I I é(D)I ® 4.

1 2 1 2 3

S
S

We see that the entries of A’ are indeed expressed as sums over paths in é(D’ ). Next,

. . . e . / . . 1 o 1
temporarily denoting the non-trivial entries of A’ by a, b, ¢, d, e (with a := Ty 1€ = Z)’
the calculation of h = ¢, (xg(tl)gi,, ! (t)P;’) in the proof of Proposition 4.1 proceeds as
follows:
1
b0 b 93 N
—a b 1
Wl=1]-abo za(t)W ] = | —a b @ x3(t) | ]d = . 1
W= wrol. mewl=|w bl meWd= | L]
c —de c —d e ¢ —d &
4
1 0 0 1 0 0
0 0 9 0 b |
— ! — a b — 1 1 1
W] = a3(t)|W]dy = | = -2 L|= Tiats “n o
ae _ be) e 1 1 _ 1 1 1
ety (d+t1) 31 tatgztgts  titotgty (t2t4t5+t1t2t4> t1tg

We indeed see that the entries of h are given by sums over directed paths in G (D).

4.2. Muller—Speyer twist. Fix (v,w) € Q7. Extending a construction of Marsh and
Scott [MS16a] for the top-dimensional positroid variety, Muller and Speyer [MS17, Sec-

tion 1.8] have defined a right twist isomorphism 7 : II, , = IL, ,,. We shall not recall the

definition here, however; see Example 4.6 below. For r € J, we let ¢, :== Ap o7 € C[f[v,w]
denote the twisted minor indexed by the corresponding face label of G(D).

Proposition 4.3. Let r € J2, and suppose that the faces of G(D) adjacent to t, are labeled
by F,, Fy, F., F, as in Figure 2. Let x := gy .w(t) be given by (4.1). Then with Ap, =1,

_ L@a(@) RO o
- Tere I | o

where the product is taken over allr’ € JJ such that the vertex of G(D) labeled t,s is northwest
of F,.

Proof. We associate to the vertex-labeled graph G(D) a planar, bipartite, edge-weighted
graph N (t) via the following local substitution at each vertex t, of G(D):
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Here the horizontal (resp., vertical) dashed edge is present in N (t) if and only if it is present
in G(D), and the weights of all horizontal and vertical edges in N(t) are set to 1. We make
the following observations concerning N (t):
(a) N(t)is a reduced plabic graph in the language of [Pos06]. It satisfies the assumptions
of [MS17, Section 3.1].
(b) The strands from [Pos06, MS17] agree with the strands described in Section 3.3.
(c) The point gy w(t) P’ € Gr(n—k, n) is equal to the image of N (t) in Gr(n—Fk, n) under
the boundary measurement map (denoted I in [MS17]). This has been verified in
e.g. [TW13] or [Karl6], or can be easily checked using Le-diagram induction directly
from the setup of [MS17].
(d) The downstream wedge ([MS17, Section 5]) of an edge of weight ¢, in N(t) consists
precisely of the faces F,/ to the southeast of the vertex labeled ¢, in G(D).

The formula for ¢.(z) in (4.3) follows from (d) and [MS17, Proposition 5.5 and Theorem 7.1]:

they denote this monomial transformation by M. The formula for t. in (4.3) is then ob-
tained by expressing the values ¢,(x), ¢ (z), ¢.(z), ¢.(x) in t using the above monomial
transformation. O

We have the following relationship between the cluster structure and the totally nonneg-
ative Grassmannian studied in [Lus98, Pos06].

Corollary 4.4. Assume A, =1 on IELW. Then the following subsets of IEIM, cotncide:

(1) the positroid cell II79 := {x € TOIWU | Af(z) € Rsq for all I C [n] of size n — k:};

(2) the subset of TOIWU where all cluster variables of A(Qp) take positive real values.
Proof. Since {AFp, },e e is the image (under 1) of a single cluster of A(Qp), and since the mu-
tation rule (1.1) is subtraction-free, the subset in (2) equals {x € IOL,w | Ap, (x) € Rag Vr € Jﬁ}.

But then applying the twist of [MS17], we see that this set coincides with the image of the

boundary measurement map I applied to the graph N(t) when t takes values in ]Ri%, and
this set coincides with II79, by either [Pos06] or [MR04, Section 12]. O

o ~

Remark 4.5. For arbitrary v < w € W, there exists a simple automorphism 7, : I, ,, —

}E;Zv,w which gives a common generalization of the twist maps of [BFZ05] (when v = 1)
and [MS17] (when (v,w) € @Q7), and shares many properties with them. For example,

Tow Preserves the positive part RO of }O%Mw and satisfies a generalization of the chamber

v,W

ansatz (4.3). The map 7,,, will be studied in a separate paper.

Example 4.6. Let (v/,w') = (82, 5251548352) and @ := g, ,,(t) be as in Example 4.2. Then
x and its twist 7(x) are represented by the following n x (n — k) matrices:

S S S
tot3ts tat3tyls
0

1
i
4.4 i 1
( ) 0 5 tats
0 1 0
0 0 1

T~

8
Il
| —— |
=S
-
)
ot
[ NN
| I |
¥
—~~
8
S—
=
I
-
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For each i € [n], the i-th row of |7(x)] is orthogonal to the (i 4+ 1)-th row of |z], and has
scalar product 1 with the i-th row of |z], in agreement with [MS17, Section 1.8]. For G(D’)
as in (4.2), we have Fy = {2,4,5}, and we see that the matrix |7(z)] above is gauge-fixed to
have Ag, = 1. The values of ¢.(z) = Ag.(7(x)) for r € J2 U {0} are given by:

r oo | o2 | 3 | 4 | 5
(4.5) F, [{2.4,5}] {1, 2 5} | {1,4,5} | {2,3,4} | {2,3,5}
C]r(ﬁ) ‘ 1 t2t3t5 ‘ % ﬁ ‘ %

This agrees with (4.3).

4.3. Proof of Theorem 3.5. Our approach is similar to that of [BFZ05]|, who gave an
upper cluster algebra structure on double Bruhat cells.

Fix (v,w) € Q7. Let n™ : A(Qp) — (C[ ) be obtamed by composing the map 7 from
Corollary 3.7(ii) with the twist 1som0rphlsm T HM, = va Explicitly, for r € JS, (™

sends z, € A(Qp) to the element ¢, € (C[ vw) from Section 4.2.

By Proposition 4.3, this injection is induced by the invertible monomial transforma-
tion (4.3) between t := {t,},cse and q := {¢ }rese. By Section 3.1, we have an injection
(C*)» < R, ,, sending t — g, (t)B_, whose image is an open Zariski dense subset of R, ,,.
This gives rise to an injection

(4.6) C[L,,] <= Ct*") =Clg™], where = {t"},c0 and o' :={g"}e.
For r € Jg, let ¢ := ") (z]) (where z is given in (1.1)), and let q := {ga }aesor ¢y U {d.}-

T

Lemma 4.7. For each r € J, we have an injection C[ﬁvﬁw] — C[(d\)*!]. In other words,

every element of C[lg[ww] can be written as a Laurent polynomial in the variables q..

Proof. Let T := Spec(C[(q)*']) denote the initial cluster torus, and let T’ := Spec(C[(q)*'])
denote the mutated cluster torus in the r-th direction. The intersection 7°N T, is Zariski

dense in 7}, thus the map (4 6) gives a rational map 71 --» IOTM,. (This is also the map
induced by the inclusion 7™ : A(Qp) — C[ w].) The required statement is equivalent to
showing that this rational map TTf -3 IEIMU is in fact an inclusion 7] — lglv,w. Each ¢; and ¢/,
is a regular function on ﬁv,w and hence we have a regular map ﬁv,w — Spec(C[q.]) ~ Cv.
It thus suffices to show that the rational map 7, --» IEIM, is a regular map on the torus
T!. (Indeed, in this case, the composition 7/ — lglv,w — Spec(Cl[q.]) is a regular map whose
restriction to the open dense subset 7 NT agrees with the inclusion map 7 < Spec(C|q.]).
Therefore this composition coincides with the identity map on 7, and in particular the map
T — IEIM, is automatically injective.)

We begin by showing that the map TNT" < Gr(n—k,n) given by t > gy w(t) P’ extends
to a regular map 6, : T — Gr(n — k,n). It suffices to write each matrix entry of |h| (where
h = ¢u(gvw(t)B_) as in Section 4.1) as an element of C[(q.)*!]. By Proposition 4.1, each

such matrix entry is a sum of wtp(t) over paths P in G(D). We may restrict our attention
to paths P such that the monomial wtp(t) contains ¢, in the denominator. Let ry (resp.,
r9) be the bottom-left (resp., top-right) vertex of the face of G(D) labeled by F,. Then
wtp(t) contains ¢, in the denominator precisely when P passes through both r; and 79, and
either contains the top-left or the bottom-right boundary of the face F,.. We may group such
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paths into pairs (P, P») where P; contains the top-left boundary of F,, while P, contains
the bottom-right boundary of F)., and otherwise P, and P, agree. By Proposition 4.1, the
contribution of such a pair is

M [ q o\ M !
WtP1<t>+th2(t):—.<q X Fr—=Fyij7ab J):_.< 4rqy >7

@& \da®  Ilporize @ G\ 4t 1 spive @

where I, F},, F,, I, are the labels of the faces adjacent to t, as in Figure 2, M is a monomial
in {¢a}acsso\{r}, and the products in the second term are taken over the arrows of the quiver
@ p not involving F, F, F.. The common factor ¢, cancels, and we have constructed our
desired map 6, : T} — Gr(n — k,n).

The intersection TNT) is dense in 7, and 0,.(T'NT) C IOL,w, so we must have 6,.(7)) C I, ,,
where II,,, is the Zariski closure of f[v,w. By [MS17, Equation (9)], we have Ap, = q% for
all » € 0J; L {0}. (For example, compare the minors Ag (z) and Ag (7(x)) for z,7(x)
from (4.4) and F, from (4.5).) Thus Ap, is nonzero on 6,(71)) for any r € 0J; U {0}. By
[KLS13, Section 5], ﬁv,w is exactly the locus in II,,, where the Pliicker variables indexed
by the Grassmann necklace are nonvanishing, and this Grassmann necklace is precisely the
collection {F, },cassiiq0y; see [Pos06] and [MS17, Proposition 4.3]. We conclude that we have

a regular map 6, : T — ﬁuw. O

Example 4.8. Let k =3, n =6, (v,w) = (S284, $251545352555483) as in Example 1.1. Using
Figure 4 and Proposition 4.3, we find

1

Y

as 6 Q’  Ggs’ ¢’ g’

and the mutation rule (1.1) gives g§ = m‘*"(‘;#. We now express h = ¢,,(gvw(t)B_) both

in terms of t and in terms of q using Proposition 4.1 and Equation (4.7):

1 0 0 1 0 0

0 1 0 0 1 0

1 L 0 _a 9198 0

t1tg t a4 4244

|h] = 0 0 1 | = 0 1
1 __1 1 q1493 919398 49348
t1tatzty t1t3ty t3 9446 429496 9496

titgtgttg 1 1 929496+t9193 _ 9193 93
titatztatety  t1t3tale t3te 9448 9294 94

Thus the only entry of h that has gg in the denominator is
bitsla +ts  @2qads + 1G5 _ G§

titotstitets q44s qa

In particular, all matrix entries of A can be written as Laurent polynomials in the cluster
ds = {q1, 42+ G341, g6, G5 }, in agreement with Lemma 4.7.

Before we finish the proof, we need one more technical statement. Given an ice quiver
Q@ with vertex set V' =V, U V,, partitioned as in Section 1.4, the extended exchange matriz
B(Q) = (by 17 )reviev,, of @ has rows indexed by the vertices of () and columns indexed by
the mutable vertices of ). We have b,,» € {1,—1,0}, depending on whether there is an
arrow r — 1/, or an arrow r’ — r, or no arrows between r and r’ (assuming no two vertices
of @ are connected by more than one arrow).

Proposition 4.9. The extended exchange matrizc B(Qp) is of full rank (i.e., has rank |V,,|).
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Proof. We proceed by induction on the size of the Young diagram X of D, the case |A\| =0
being trivial. Suppose |A| > 0. Let D’ be obtained from D by removing a box (i, j) adjacent
to the boundary of A. If D does not contain a dot inside the box (4, j) then B(Qp) = B(Qp)
so the result holds by induction. Thus assume that D contains a dot labeled ¢, inside the
box (i,7). Then F, is a boundary face. If either the row or the column of (7,j) contains
no other dots, then B(Qp) is obtained from B(Qp/) by removing the row indexed by F,,
and this row is 0; the result holds by induction. Finally, suppose that both the row and the
column of (i,7) contains another dot. Let F,, F}, F., F,. be the labels of faces adjacent to
t, as in Figure 2. Thus F, and F;, are boundary faces. If F, is also a boundary face, then
again B(Qp) and B(Qp/) differ by a 0 row. So assume that F, is an interior face, then F,
becomes a boundary face in G(D’). The matrix B(Qp) satisfies b, g, = —1, and this is the
only nonzero entry in the row indexed by F,.. The matrix B(Qp) is obtained from B(Qp)
by deleting the row of F, and the column of F.. It is clear that B(Qp) has full rank if and
only if B (Qpr) has full rank, so the result again holds by induction. ([l

Proof of Theorem 3.5. By Proposition 4.9 and [BFZ05, Corollary 1.9], the intersection of
Laurent polynomial rings (called the upper bound in [BFZ05])

Clla)*'] N (ﬂ C[(qi)ﬂ]>

is equal to the upper cluster algebra A(Qp), defined to be the intersection of Laurent poly-

nomial rings for all clusters of A(Qp). By Lemma 4.7, we have (C[IOL,,w] C M (A(Qp)). By
[MS16b], A(Qp) is a locally acyclic cluster algebra, and by [Mull3, Theorem 4.1], we have

A(Qp) = A(Qp). Recall that 7 : TOIU’w — TOIM, is an isomorphism and 5™ = 7 on. By
Corollary 3.7(ii), we have n(”(A(Qp)) C C[I1,,,], and therefore 7 (A(Qp)) = C[IL,,,]. We
conclude that n(A(Qp)) = C[IL, ], completing the proof. O
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