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MOVE-REDUCED GRAPHS ON A TORUS

PAVEL GALASHIN AND TERRENCE GEORGE

ABSTRACT. We determine which bipartite graphs embedded in a torus are
move-reduced. In addition, we classify equivalence classes of such move-
reduced graphs under square/spider moves. This extends the class of minimal
graphs on a torus studied by Goncharov—Kenyon, and gives a toric analog of
Postnikov’s and Thurston’s results on a disk.

INTRODUCTION

Let T = R?/Z? be a torus, and let I' be a bipartite graph embedded in T. We
say that two such graphs I', I are move-equivalent if they are related by the moves
(M1)—(M2) shown in Figure 1. We say that I is move-reduced if there does not exist
a graph IV move-equivalent to I' to which we can apply one of the reduction moves
(R1)—(R3) shown in Figure 2. The goal of this paper is to describe which graphs I’
are move-reduced, and which pairs of move-reduced graphs are move-equivalent. A
similar problem has been considered in [GK13] for the class of minimal graphs. Each
minimal graph is move-reduced, however, the converse is not true; see Figure 3.
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(M1) The spider move (M2) The contraction-
uncontraction move

FIGURE 1. Equivalence moves for bipartite graphs in T. One can
also apply these moves with the roles of white and black swapped.
For (M1), the vertices of the square are assumed to have degree
at least three. For (M2), the two white vertices are assumed to be
distinct and have degree at least two. The shaded area denotes a
small open disk inside T.

We briefly summarize our main results; see Section 1 for more details. It was
shown in [GK13] that move-equivalence classes of minimal graphs are classified by
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FIGURE 2. Reduction moves for bipartite graphs. (R1) removes
one of two parallel edges, (R2) removes a leaf together with its
single neighbor, and (R3) removes an isolated edge.

their Newton polygons N. The sides of N are obtained by taking the homology
classes of strands in I'. Here, a strand is a path making a sharp right (resp.,
left) turn at each black (resp., white) vertex. A strand of a move-reduced (as
opposed to minimal) graph I" may intersect itself, and this induces a weak decoration
A = (A)ecpn) of N, labeling each side e = (i,j) of N by a partition A® of
ged (4, 7). Our first main result (Theorem 1.5) gives a characterization of move-
reduced graphs in terms of weakly decorated Newton polygons that parallels the
results of [GK13,Pos06].

Our second main result concerns move-equivalence classes of move-reduced
graphs. The solution to this problem turns out to be more subtle than its coun-
terparts in [GK13,Pos06]. First, we show that in a move-reduced graph, different
strands corresponding to the same side of N never cross each other. This induces
a strong decoration o = (ae)eeE(N) of N, labeling each side e = (4,j) of N with a
cyclic composition af of ged(i, 7). We associate a rotation number d(a) to e, and
our second main result (Theorem 1.13) is that the set of all move-reduced graphs
with strongly decorated Newton polygon (IV, ) is a union of d(ar) move-equivalence
classes. The classes are distinguished by the value of an explicit modular invariant
w(T) € Z/ d(a)Z associated to each move-reduced graph T'.

Our motivation to study move-reduced graphs arises from the dimer model on I’
and the associated spectral transform of [KOS06, KOO06]. Each weighted bipartite
graph (T', wt) with positive real edge weights embedded in T determines a simple
Harnack curve with a distinguished line bundle. It is thus natural to study which
limiting objects appear when one sends some edge weights to zero. This corresponds
to deleting edges from I' and then applying reduction moves. Note in particular
that the move-reduced graph T's in Figure 3(b) is obtained from the minimal graph
I’y in Figure 3(a) by removing a single edge, which demonstrates that the class of
move-reduced graphs is more naturally suited for this problem.

For the case of planar bipartite graphs in a disk, the role of the spectral transform
is played by Postnikov’s boundary measurement map [Pos06]. This map associates
to each weighted planar bipartite graph in a disk a point inside the totally nonneg-
ative Grassmannian. The boundary measurement map is continuous with respect
to sending some edge weights to zero. Our motivating problem is to find a suitable
compactification of the space of Harnack curves with line bundles such that the
spectral transform would have similar continuity properties.

As an important step towards Postnikov’s results, he characterized move-reduced
graphs on a disk and showed that their move-equivalence classes are in bijection
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FIGURE 3. The graphs I'y and I's are minimal in the sense
of [GK13] and therefore are move-reduced. The graph T's is not
minimal but is move-reduced. See Section 1.3 for a definition of
strands and N ().

with positroids. The present manuscript is the first in a series of papers aimed at
studying the toric analog of the totally nonnegative Grassmannian and its positroid
stratification.

1. MAIN RESULTS

In Section 1.1, we introduce the notions of weakly and strongly decorated polygons.
In Section 1.3, we will associate a weakly decorated polygon with any bipartite
graph embedded in the torus, and we will use it to characterize move-reduced
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4058 PAVEL GALASHIN AND TERRENCE GEORGE

graphs. In Section 1.4, we will associate a strongly decorated polygon to any move-
reduced graph I', and will use it to characterize which graphs are move-equivalent
to I

1.1. Decorated polygons. A convex polygon N in the plane R? is called integral
if its vertices are contained in Z? C R2. We denote the set of edges of N by E(N),
and orient them counterclockwise around the boundary of NV so that each edge is a
vector in Z2. For an edge e = (a,b) of N, let |e|z := ged(a, b) be its integer length.
For vectors e, e’ € Z2, let det(e,e’) be the determinant of the 2 x 2 matrix with
columns e, €’

A partition of n with k parts is a tuple A = (A > Ao > -+ > A\p > 0) such
that |A| :== A1 + A2 + -+ + A\ = n. A composition of n with k parts is a tuple
a= (a1, a,...,ar) € ZE such that || := ay +---+ax = n. A cyclic composition
of n with k parts is an equivalence class of compositions of n with k parts under
cyclic shifts (aq,a9,...,ar) ~ (ag,...,ar,a1). Thus, forgetting the order of the
parts of a (cyclic) composition yields a partition.

Definition 1.1.

o A weakly decorated polygon is a pair N = (N, ), where N is a convex
integral polygon, and A = (\°).cp(n), where A° is a partition of |e|z.

o A strongly decorated polygon is a pair N = (N, ), where N is a convex
integral polygon, and a = (a®).ecp(n), Where a® is a cyclic composition of
lelz.

1.2. Minimal graphs. Recall that a strand or a zig-zag path S is a walk in I" that
turns maximally right at the black vertices and maximally left at the white vertices
of T. The set of strands of I' is denoted by S(I'). Since I' is finite, a strand S
is a (not necessarily simple) closed walk, and we let [S] € Z* = H;(T,Z) denote
its homology. Since each edge of I' is contained in two strands that traverse it
in opposite directions, the sum ZSes(F) [S] is zero, so we can associate to I' an
integral polygon N(T'), called the Newton polygon of T, as follows. We let N(T')
be the convex integral polygon N (possibly degenerate, i.e., having 0 area), unique
up to translation, whose counterclockwise-oriented boundary consists of the vectors
([S])ses(r) in some order.

A face of T is a connected component of T\ I'. Thus, a face of I' is contractible
if and only if it is homeomorphic to an open disk.

Let 7 : R? = T denote the universal covering map. Let I := 7—!(I") denote the
corresponding biperiodic graph in R2. Following Goncharov—Kenyon [GK13], we
say that ' is minimal if every face of I" is contractible, there is no strand with zero
homology, there is no strand with a lift in I’ with a self-intersection, and there are
no parallel bigons in I, ie., pairs of lifts of strands in I that pass through edges
e1 # ey of [ with both lifts oriented from e; to es. The class of minimal graphs is
preserved by move-equivalence, and minimal graphs are move-reduced. Therefore,
move-equivalence classes of minimal graphs are a subset of move-equivalence classes
of move-reduced graphs. We will extend the following two results about minimal
graphs to move-reduced graphs.

Lemma 1.2 ([GK13, Lemma 3.14]). Let ' be a minimal bipartite graph embedded
in T with Newton polygon N(I') = N. Then I’ has 2 Area(N) contractible faces.

We generalize Lemma 1.2 and prove the converse in Theorem 1.5.
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MOVE-REDUCED GRAPHS ON A TORUS 4059

Theorem 1.3 ([GK13, Theorem 2.5 and Lemma 3.11]). For any convez integral
polygon N, there exists a minimal bipartite graph I' that admits a perfect matching
and satisfies N(T') = N. Two minimal graphs T',T' are move-equivalent if and only
if N(T') = N(I).

Theorem 1.3 is generalized in Proposition 1.11 and Theorem 1.13; see Remark 1.14.

1.3. Move-reduced graphs. We say that two strands S, 5" € S(T') are parallel if
[S],[S"] # 0 and [S] € Rs¢[S’]. For each edge e € E(N), we let
Sé(T):={S e ST |[5] € Rsope}

denote the corresponding set of parallel strands. Thus, we have e = ) g g S [S],
and we let \® := (|[S]|z)sese) be the corresponding partition of |e[z. We call
N (T") the weakly decorated Newton polygon of T'. The weakly decorated Newton
polygon is invariant under (M1)—(M2) but not under (R1)—-(R3).

In Proposition 1.11, we will see that for any weakly decorated polygon N, there
exists a move-reduced graph I' satisfying N(I') = N. On the other hand, it is clear

that any graph I' can be transformed into a move-reduced graph using the moves
(M1)-(M2) and (R1)—(R3).

Definition 1.4. For a partition A = (A; > Ay > --- > A\ > 0) of n with k parts,
the excess of A is defined by exc(\) :=n — k = Zf;l()\i —1). A= (A)ecp is a
collection of partitions, we denote exc(A) := " . exc(A®).

We are ready to state our first main result.

Theorem 1.5. Let I' be a bipartite graph embedded in T with weakly decorated
Newton polygon N(I') = (N,X). Assume that T has a perfect matching. The
following conditions are equivalent.

(1) T is move-reduced.
(2) T has 2 Area(N)+exc(X) contractible faces, no contractible connected com-
ponents, and no leaf vertices.

Remark 1.6. If T' is minimal, then A® = (1,1,...,1) for each edge e € E(N), so
exc(A) = 0. Moreover, I' has no contractible connected components since we would
have a zero-homology strand and no leaf vertices since we would have a strand whose
lift in T has a self-intersection. Therefore, Theorem 1.5 generalizes Lemma 1.2 and
also shows the converse.

Remark 1.7. The assumption that I' has a perfect matching is essential; for example,
Theorem 1.5 fails for the graph I' in Figure 6. This graph is move-reduced and
does not have any perfect matchings. Thus, T" satisfies condition (1) but does not
satisfy condition (2) of Theorem 1.5. Alternatively, if I' has no isolated vertices,
the assumption that I has a perfect matching can be replaced with either one of
the following assumptions:

e the Newton polygon of I' is not a single point, or
e the number of black and white vertices in I' is the same;

see part (i) of Theorem 1.16.
Remark 1.8. The condition that I' has 2 Area(IN) 4+ exc(A) contractible faces in (2)

is equivalent to a statement that I' has the minimal possible number of contractible
faces among all graphs with weakly decorated Newton polygon N(T').
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Example 1.9. For the graphs I';,I'5,I's shown in Figure 3, the weakly decorated
Newton polygons N (T'y), N(I's) are computed in Figure 3(e-f). In particular, let-
ting N(T'z) = (N, A) and N(T'3) = (N, X), we see that Area(N) = 1, exc(\) = 1,
and exc(X') = 0. This is consistent with Theorem 1.5 since I'y has 3 faces, while
I's has 2 faces, all of which are contractible.

1.4. Move-equivalence classes of move-reduced graphs. In this section, each
graph is assumed to be bipartite and to have a perfect matching. We view graphs
embedded in the torus up to isotopies. Let w : R? — T denote the universal covering
map.

Proposition 1.10. Let I" be a move-reduced graph with Newton polygon N .

(1) There are no zero-homology strands and any lift S of a strand S € S(I)
under m does not intersect itself;

(2) Any strand S € S(I') intersects itself |[S]|z — 1 times;

(3) Any two distinct parallel strands S,S’ € S(I') do not share any vertices or
edges of T.

Let I’ be a move-reduced graph with Newton polygon N. By part (2) of Propo-
sition 1.10, for e € E(N), any two strands S # S in S¢(I") do not share vertices or
edges. Thus, we have a natural cyclic ordering on S¢(I') given by the direction of
the normal vector to e that points into the interior of N. Let a® = (|[S]|z)sese(r)
be the corresponding cyclic composition of |e|z. We set & = (a®).cp(n), and we re-

fer to N(T') := (N, ) as the strongly decorated Newton polygon of T'. The following
result is shown in Section 6.5.

Proposition 1.11. For any strongly decorated polygon N, there exists a move-
reduced graph I' that admits a perfect matching and satisfies N(I') = N.

The moves (M1)—(M2) never change the homology of the strands and preserve
the class of move-reduced graphs. Thus, if two move-reduced graphs I',I" are
move-equivalent then we have N(I') = N(I"). One is tempted to conjecture that
the converse is also true, but that is not the case; for instance, the two graphs in
Figure 4 have the same strongly decorated Newton polygons, but they are not move-
equivalent, since one graph is connected and the other one is not. See Figure 21

for a more subtle example. To remedy this issue, we make Definition 1.12.

Definition 1.12. Let a = (a1, @9,...,ay,) be a cyclic composition of n = a3 +
ag + -+ + . Consider a partition I(a) = {I1,Is,...,I} of Z/nZ into cyclic
intervals of size |I;| = a; given by I1 = [1,a1], I2 = [oq + 1,01 + ), etc. The
rotation number rot(a) is the smallest integer r € [n] := {1,2,...,n} such that
o"(I(a)) = I(e), where o : Z/nZ — Z/nZ is the map sending ¢ — i + 1 (mod n)
for all i, and o(I(a)) :={o(l1),0(12),...,0(Im)}.

For example, rot((1,1,1,1,1,1)) = 1, rot((2,1,2,1)) = 3, and rot((2,2,1,1)) =
6. We have rot((n)) = n because by convention, we distinguish between cyclic
intervals [j,7 +n — 1] in Z/nZ for different j € [n].

The rotation number of a collection & = (a®).cp of cyclic compositions is given
by
(1.1) d(a) := ged{rot(a®) | e € E}.

The following is our second main result.

Licensed to Univ of Calif, Los Angeles. Prepared on Sun Jul 13 22:57:45 EDT 2025 for download from IP 131.179.158.13.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MOVE-REDUCED GRAPHS ON A TORUS 4061

| | | |

| | S P

I | ¢ N

| [ I ]
| 1 [ ]
| | [ |
L Y " 4 |

| % | 14 v “

| | | | | |
| | | | | |
| [ |

| O D 4 C

| (. I |
| | | | | |
| | | | | |
‘ S " P

[ ~ [ 4 h | ]
| [ |

(a) Graph I'q (b) Graph I's (c) Strands in I'y

- _——— o

CA®PT 1N A '

F S g o B P
o=
g
Y

_____________

(d) Strands in I'y (e) N(I'1) = N(T'2)

FIGURE 4. Two move-reduced graphs that are not move-
equivalent but have the same strongly decorated Newton polygons.
The graph I's has vertices of degree 2 at the vertical boundaries of
the rectangle.

Theorem 1.13. Let N = (N, @) be a strongly decorated polygon. The set of move-
reduced graphs T satisfying N(I') = N is a union of d(a) move-equivalence classes.
Explicitly, two move-reduced graphs I',T' are move-equivalent if and only if

(N(I), w(T)) = (N(I), u(T")),
where u(I') € Z/ d(a)Z is the modular invariant defined in Section 1.5. Moreover,
for any p € Z/d(a)Z, there exists a move-reduced graph T that admits a perfect
matching and satisfies (N (), u(T)) = (N, ).

Remark 1.14. Suppose N is a convex integral polygon and a¢ = (1,1,...,1) for
each edge e € F(N). Then d(a) = 1 so there is a unique move-equivalence class
of graphs T’ with N(I') = (N, ). Since minimal graphs with Newton polygon N
have strongly decorated Newton polygon (N, at), this is the move-equivalence class
of minimal graphs with Newton polygon N. Thus, Theorem 1.13 specializes to
Theorem 1.3 in this case.
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1.5. Modular invariant. We explain the construction of the modular invariant
w(T). Let T' be move-reduced and let N(I') = (N,a) be its strongly decorated
Newton polygon. Let e € E(N) and set r := rot(a®), n := |a°| = |e|z. Thus, r
divides n. Let F be the set of connected components of T\ Jg¢ge r S, which we
call e-regions. Construct a labeling v¢ : F¢ — Z/nZ so that for any segment of a
strand S € S¢(I") adjacent to e-regions F_ (resp., Fly) to the right (resp., left) of
S, the labels v¢(F_),~v¢(F4) € Z/nZ satisty v¢(Fy) =~+°(F-) + 1 (mod n).

Since the above conditions only involve differences of v¢, there are n ways to
construct such a labeling v¢ that differ by adding elements of Z/nZ. We shall
choose a particular one as follows. The labeling ¢ induces a partition I(~¢) of
Z/nZ into cyclic intervals so that for each strand S € S¢(I"), the associated cyclic
interval contains y¢(F) for all F € F° appearing immediately to the right of S;
see Figure 5 and Example 1.15. Now, recall that a° is a cyclic composition. Of all
the cyclic shifts of a®, let a® = (af,a§, ..., as,) be the lexicographically maximal
one, and let I(a®) be the associated partition of Z/nZ into cyclic intervals from
Definition 1.12. We say that the labeling 7¢ is lex-mazimal if I(v¢) = I(a®). Since
o"(I(a®)) = I(a®), we see that there are n/r lex-maximal labelings v¢. Fix one
such labeling and let 4¢ : F'¢ — Z/rZ be obtained by taking the values of v¢ modulo
r. Thus, 4° does not depend on the choice of v¢, and is an invariant of I'.

Repeat the above procedure for all e € E(N). Let F(I') be the set of faces of
. We will construct a labeling v : F(T') — Z/dZ, where d := d(a). For each
face ' € F(I), we set v(F) := > cpn)Y°(F) (mod d). This is a well-defined
element of Z/dZ in view of (1.1). Moreover, any two adjacent faces F, F’ of T are
separated by two strands going in opposite directions, so y(F) = v(F’). In other
words, the labeling ~ is constant. By definition, its value is the modular invariant
w(T) € Z/dZ.

The moves (M1)-(M2) induce bijections between e-regions. Since all the faces
involved in (M1)—(M2) except the middle face in (M1) are in the same e-regions,
() is invariant under move-equivalence.

Example 1.15. Consider the graphs I'y and I's from Figure 4. Let N = (N, @) be
their strongly decorated Newton polygon shown in Figure 4(e). Thus, N is a line
segment of length 4, and let ¢ = (4,0) and ¢’ = (—4,0) be the two edges of N. We
have o := af = a¢ = (2,2), and rot(e) = 2. Examples of lex-maximal labelings
~¢ and 4¢ for T'; and I’y are shown in Figure 5(a-b, d—e). The labeling ~ for I'y
and Iy is obtained by taking the labeling v +~v¢ shown in Figure 5(c, f) modulo
d(a) = 2. We see that in fact v(Fy) = 0 € Z/2Z is even for each face Fy of T'y,
while y(F2) = 1 € Z/2Z is odd for each face Fy of I'y. Therefore, u(I'y) =0 € Z/2Z
and wu(T'2) =1 € Z/2Z, which is consistent with Theorem 1.13 since the graphs I'y
and I's are not move-equivalent.

1.6. Overview of the proof. We shall proceed by relating bipartite graphs em-
bedded in T to elements of the double affine symmetric group, i.e., pairs of affine
permutations. In Sections 4 and 5, we show the following result.

Theorem 1.16. For any move-reduced graph T' without isolated vertices, exactly
one of the following holds:
(i) T has a single strand that is a simple zero-homology loop. In this case,
T" has no perfect matchings and has a different number of black and white
vertices.
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FIGURE 5. Computing the modular invariants (Section 1.5) of
graphs I'; and I's from Figure 4. See Example 1.15.

(ii) T is move-equivalent to a graph T' such that, for a suitable choice of the
fundamental domain, each strand S € S(I') with [S] = (i,7) intersects the
vertical line x = 0 minimally, i.e., exactly |i| times.

In part (i), a zero-homology loop is a strand S satisfying [S] = 0, and a zero-
homology loop S is called simple if the lift of S to R? under the covering map
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4064 PAVEL GALASHIN AND TERRENCE GEORGE

R? — T is a simple (i.e., non self-intersecting) closed curve; see e.g. Figure 6(a).
In part (ii), choosing a fundamental domain corresponds to the standard SLo(Z)-
action on the Newton polygon of T'.

FIGURE 6. A move-reduced graph with no perfect matchings and
whose Newton polygon is a single point.

In Section 6.2, we show that if (ii) holds, then I can be put into a particular
form called an affine plabic fence. Such graphs correspond to shuffles of reduced
words of two affine permutations on commuting sets of indices (see Section 6).
In Sections 2 and 3, we study the associated conjugation problem for the affine
symmetric group, relying on the results of [HN14, Mar20]. Finally, we complete the
proof in Sections 6.5-6.6.

1.7. Previous results. The idea of relating bipartite graphs embedded in T to
conjugation of double affine permutations is not new and appears in [LP13, FM16,
GSZ21]. A discussion of graphs that are move-reduced but not minimal in the
sense of [GK13], and in particular the graph T's in Figure 3(b), appears in [FM16,
Section 8.3]. Graphs that are move-reduced but not minimal also appear in the
context of open Toda chains [GSV11, Will6].

In [GSZ21, Section 4.4], the authors also consider the problem of classifying
move-reduced graphs and their move-equivalence classes. They associate a weakly
decorated Newton polygon to each graph and prove a lemma classifying conjugacy
classes in the double affine symmetric group. However, this classification does not
imply a classification of move-reduced bipartite graphs and their move-equivalence
classes. The reason is that the moves (M1)—(M2) correspond only to particular
kinds of conjugation in the affine symmetric group (see Definition 2.2), not to
arbitrary conjugation. This discrepancy leads us to studying strongly decorated
Newton polygons and modular invariants.

We also note that in [GSZ21, Section 4.4], the authors rely on Theorem 1.16 and
refer to [FM16] for its proof. However, the argument in [FM16, Section 4.1] only
applies to graphs whose strands go monotonously from left to right, that is, have
strictly increasing horizontal coordinate. With that assumption, the conclusion
of Theorem 1.16 (that each strand intersects the line = 0 minimally) becomes
vacuously true.

2. AFFINE PERMUTATIONS, CYCLES, AND SLOPES

As we will explain in Section 6.2, Theorem 1.16 allows one to recast bipartite
graphs embedded in T and their moves into certain conjugation moves on pairs
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of affine permutations. In this and the next section, we develop the properties of
affine permutations needed to complete the proofs of our main results.

Our proof strategy is inspired by that of [Mar20]. The reader familiar with the
theory of affine Coxeter groups and their reflection representations is encouraged
to consult Remarks 2.15 and 3.3.

2.1. Background and notation. Let n > 1 and recall that [n] := {1,2,...,n}.
An affine permutation is a bijection f : Z — Z satisfying f(i+n) = f(i) + n for all
1 € Z. The group of affine permutations is denoted §n (where the group operation
is given by composition of maps Z — Z). For f € gn, set

w(f)i=n k()= - S0 i), and d(f) = ged(k(F),n(f))

i€[n]

It is known (see Remark 2.1) that k(f) is always an integer. We have S, =
Lkez S%) | where S = {f €S, |k(f) =k} For feS,, let feS, be the
unique permutation (i.e., bijection [n] — [n]) satisfying f(i) = f(i) (mod n) for
all i € [n]. For k € Z, we denote by fr, € §7(Ik) the affine permutation sending
i+ i+ k for all ¢ € Z. The affine permutation f can be written in window notation
as [f(1), f(2),..., f(n)], which completely determines f(i) for all i € Z.

The group SY is a Coxeter group with generators II := {si | i € [n]}, where the
affine permutation s; : Z — Z sends i — i+ 1 and i+ 1 — 4 (and therefore it swaps
i+dn withi+14dn for all d € Z), and j — j for j Z4,i+ 1 (mod n). For i € Z,
we let s; := s; where ¢ € [n] satisfies ¢ = i (mod n).

The group gy(lo) is also known as the affine Weyl group of type gn,l. Let A :=
fin € S Thus, S, = SO 5 (A). We will also be interested in the quotient
group §n = §n/<A” =1id), known as the extended affine Weyl group of type Avn—l-
The group ‘;577(10) is a subgroup of both §,L and §n We denote by o : §n — §,L the
rotation operator given by o(f) := AfA~"L.

Let f € S,,. Define

Inv(f) :={(,j) € Zx Z|i <jand f(i) > f(j)},

() = (0. ) € Z X Z|§ < J. S) > (), and i € ).
The standard arrow diagram of f is obtained by drawing an arrow (i/n,1) —
(f(@)/n,0) for all i € Z; see Figure 7(a) for an example when f = [7,-1,2,5,8,3,11]
in window notation. The set Inv(f) consists of pairs of crossing arrows, and £(f)
counts the number of crossing arrows modulo the equivalence relation generated
by (i,7) ~ (i+n,j+n) for all i,j € Z. Alternatively, £(f) is the minimal integer
[ such that f can be written as a product f = s;,s;,--s;, A for some indices
i1,49,...,1;, k; in this case, s;, i, - - s;, A¥ is called a reduced expression for f. For
the example in Figure 7(a), we have

k(f) =1, £(f)=11, and [ = s354565752555651545352\.

Remark 2.1. In general, the integer k(f) is equal to the signed number of intersec-
tions of the arrows with one of the dashed vertical lines.

Following [GP93, GKP00, He07, Hel0, HN14, Mar20], for f, f' € S,, we write
f 2 frif ff = sifs; and £(f) < €(f). We write f — f’ if there exists a sequence
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(a) Standard arrow diagram of f (b) Arrow diagram D (x)

FIGURE 7. Arrow diagrams of affine permutations; see Sections 2.1
and 2.3.

i 1+ 1 c d i 141 c d

FiGURE 8. The two affine permutations on the left are c-
equivalent. The affine permutations f, f’ on the right satisfy
f 25 f but are not c-equivalent. See Definition 2.2. Figure repro-
duced from [GL21, Figure 5].

f=1rfo,f1, -, fm = [ of affine permutations such that for each j € [m], we have
fic1 2 f; for some i € [n].
Definition 2.2. We say that f, /' € S, are c-equivalent if f — f' and f' — f. In
this case, we write f ~ f’.

This terminology is borrowed from [GL21]. See Figure 8.

When talking about conjugacy classes, we always mean géo)—conjugacy classes,
which we will usually denote by O. Given a conjugacy class O, let Op,;, be the set
of elements of O of minimal length. We have the following important result.

Theorem 2.3 ([HN14, Theorem 2.9]). Let f € S, and let O be the gﬁto)-conjugacy
class containing f. Then there exists f' € Omin such that f — f'.

Definition 2.4. We say that f € S, is c-reduced if for all f’ € S,, such that f — f/,
we have £(f) = £(f') (or equivalently, f" — f).

The following result follows immediately from Theorem 2.3.

Corollary 2.5. An affine permutation f € S, is c-reduced if and only if it has
minimal length in its conjugacy class O (i.e., f € Omin).
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It is clear that ~ yields an equivalence relation on the set of c-reduced elements
in S,,. The goal of Sections 2 and 3 is to give a solution to Problem 2.6.

Problem 2.6. Determine the structure of c-equivalence classes of c-reduced ele-
ments in .S,,.

2.2. Cycles and slopes. A set C C Z is called n-periodic if for all i € Z, we have
1€ Cifand only ifi+n e C.

Definition 2.7. Let f € §,L. A set C C Z is called f-closed if it is nonempty,
n-periodic, and for all ¢ € Z, we have ¢ € C if and only if f(i) € C.

Definition 2.8. Let C be an f-closed set. Because it is n-periodic, the set C'N[n]
is nonempty. Let ny(C) := #(C N [n]). There exists a unique order-preserving
bijection r¢ : C' — Z sending min(C N [n]) to 1 € Z. The restriction f|c € Sy, ()
is an affine permutation defined by

(2.1) flo = rcoforal.

Given an f-closed set C', we let

ky(C
2(0) =nlfle). k(€)= k(fle). ds(C)i=d(flo). mnd wy(C)i= L.
The rational number v;(C) is called the slope of C. Thus, we have f|c € gfﬁ/) for
n’ =ny(C) and k' =k (C).

Definition 2.9. A cycle of f is a minimal by inclusion f-closed set C'. The set of
cycles of f is denoted C.

Thus, the cycles of f are in bijection with the cycles of f, and a nonempty subset
of Z is f-closed if and only if it is a disjoint union of cycles of f. For i € Z, we
write v (i) := v#(C), where C is the cycle of f containing i.

Example 2.10. Let f =[7,—1,2,5,8,3,11] in window notation be the affine per-
mutation in Figure 7(a). Then f has two cycles: C' (resp., C’) consists of all i € Z
congruent to 1,4,5,7 (resp., to 2,3,6) modulo n = 7. We have

ns(C) =4, kp(C) =2, dp(C) =2, ve(C) =1/2,
ny(C") =3, ke (C') = —1, ds(C") =1, vi(C') = —1/3.
Given f € §n and v € Q, we set
Civ)={CeCrlv(C)=v}, Cr.:= |] €
CeCr(v)
nyw)i= > ng(0), k)= > kp(O), df(w):= > ds(O).
CcecC;(v) Ccecy(v) CceCy(v)
For f € §n, we set
vi:={vreQ| Cy, is nonempty}; therefore, |_| Cy, =17.
vevy
For v € vy, we have v =k¢(v)/ny(v) and ged(ky(v),nf(v)) = ds(v).

Definition 2.11. Let A/ := (M) yew,, where A is the integer partition of dy(v)
induced by (df(c))cecf(u)'
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2.3. Arrow diagrams. Let
L, ={2:Z—R|xipy, =2, +1foralliecZ}.

We may identify £, with R™ via a map z + (z1,...,%,). Let £, be the quotient
of the vector space L/, = R™ by the linear span of the vector (1,1,...,1) € R™.
Thus, two elements x,y € L] represent the same element of £,, if and only if there
is a constant ¢ such that z; —y; = c for all i € Z.

For any g € Sy, we have a point -g € L, sending i %g(z) To a point
x € L,, we associate a labeled point configuration D(x), that is, a collection of
labeled points on the real line: a point labeled i € Z is located at coordinate x;.
We denote Im(x) :={z; |i € Z} CR.

Recall the notion of a standard arrow diagram from Section 2.1. More generally,
to each f € S, and z € L, one can associate an arrow diagram Dj(x) obtained
by drawing an arrow (x;, 1) = (2(;),0) for each i € Z. For example, the standard
arrow diagram of f is just Dy(z) for x = %id, where id € SY) is the identity map.

We say that z € L,, is generic if x; # x; for all i # j € Z. We denote by L;, the
set of generic elements of £,,. The cutoff point for x € LY is the midpoint of the
interval of all ¢ € R \ Im(z) such that

(2.2) #{i<O0|a;>ct=#{i>1]x; <c}.

For x € L2, we let g, be the affine permutation in §,(10) such that for all 4,5 € Z,
92(1) < g2(j) if and only if z; < x;. Explicitly, if ¢ € R is the cutoff point for
and ¢1,%9,...,4, € Z are such that ¢ < x;, < x;, <--- <x;, <c+ 1 then we have
gz = [i1,42,...,i,) in window notation; cf. Example 2.12.

For f € S, and = € Le, the arrow diagram Dj(x) is topologically equivalent
to the standard arrow diagram of g, fg,;!. That is, we have an order-preserving
bijection ¢, := x o g, ! : Z — Im(x) such that (i,5) € Inv(g,fg; ') if and only if
the arrows starting at (¢, (),1) and (¢5(j),1) cross in Ds(x).

Example 2.12. Let f = [7,—1,2,5,8,3,11] be the affine permutation shown in
Figure 7(a). An example of the arrow diagram Dy (z) for some = € L is shown
in Figure 7(b) and also in Figure 9(a). We have g;! = [2,3,1,4,6,5,7] in window
notation, which is obtained by reading off the labels between the two vertical dashed
lines. These dashed lines are located at positions ¢ and ¢ + 1, where ¢ is the cutoff
point of . We find g, = s5s251 € 57(10)7 and thus g, fg; ! = [-2,1,7,6,2,10,11] in
window notation. The standard arrow diagram of g, fg, ! is shown in Figure 9(b).

9 10 8 11

5719 10811 —2-10+1 2 3 4 5 6 7

a) Arrow diagram D¢ (z b) Standard arrow dia-
f
gram of ngg;1

FIGURE 9. The arrow diagram Dy(x) is topologically equivalent
to the standard arrow diagram of g, fg, '; see Example 2.12.
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Comparing it with Df(z) shown in Figure 9(a), we see that indeed the two arrow
diagrams are topologically equivalent (modulo a relabeling of the points given by
the map ¢,).

We think of an arrow diagram D (z) for (f,x) € S, X LS as a “geometric realiza-
tion” of the affine permutation g, fg; !, and extend our definitions and notation to
this case. For example, we denote by £;(z) := £(g, fg, ') the number of crossings in
Dy(z) modulo the shift 1 (i, j) — L (i+n,j+mn). For f € S, and z, 2’ € LS, write
Dy(x) = Dy(a') if gofg; " — 9o fg,', and Dy(x) ~ Dy(a’) if g2 fg; " ~ g fg,
We say that Dy (z) is c-reduced if so is g, fg; '.

We say that x is almost generic if there exist (ig,jo) € Z? such that for all
i # j, we have z; # x; unless {i,j} = {ip + dn, jo + dn} for some d € Z. Thus,
Dy(xz) = Dyg(a’) if there exists a continuous curve z(t) € L,, t € [0,1], such that
x(0) =z, (1) = 2/, z(t) is almost generic for ¢ in some finite set B and generic for
t €10,1]\ B, and ¢;(x(t)) is a weakly decreasing function on [0,1] \ B.

2.4. e-Straight arrow diagrams. Fix f € S,.. Recall that for C € CyandicC,

we write v(i) := v;(C). For ¢ > 0 and x € L,,, we say that the arrow diagram

Dy(x) is e-straight if for all i € Z, xy(;) is e-close to x; + v¢(i). For example, the

arrow diagram Dy (z) shown in Figure 7(b) is e-straight for some 0 < € < 0.15.
Denote by Str.(f) the set of e-straight elements in £,,:

Stre(f) == {x € Ly : [1pi) — (2 +vp(4))| < e for all i € Z}.

We set Strg(f) := Str(f) N LS.

The following result is an analog of [Mar20, Lemma 6.8(1)]; see also [Marl8,
Lemma 5.4] and [Marl4, Proposition 3.4]. See Remark 2.15 for the relation between
our results and those of Marquis.

Proposition 2.13. For any f € §n, x € LS, and € > 0, there exists y € Stro(f)
such that Dy(xz) — Dy (y).

Example 2.14. The diagram in Figure 7(a) can be continuously deformed into
the diagram in Figure 7(b). During the deformation, the point labeled 1 passes
to the right through the points labeled 2,3 while the point labeled 5 passes to the
right through the point labeled 6. The resulting sequence of swaps is recorded in
the reduced word for g, = s5sos1; cf. Example 2.12.

Proof. We will find a smooth curve z(t),t € R>g in £,, such that 2(0) = z and such
that we can take y := z(t) for ¢ sufficiently large. The curve will be defined via the
following linear system of first order ordinary differential equations (ODEs):

(2.3) 0w:(1) /0t = 3 (1) (t) — 24(t), for all i € Z.

Rewriting each x;(t) in terms of (;(t));e[n], we obtain an n x n inhomogeneous
linear system of ODEs. It splits into independent systems for each cycle of f.

Fix a single cycle C of f, and let m := ny(C). We have an m x m system
of ODEs of the form 0z(t)/0t = Az(t) + b, for a constant m x m matrix A and
a constant vector b € R™. Let w := f|c € S,, be the permutation obtained by
taking f|¢ modulo m. The permutation matrix P, of w has eigenvalues e2™"/™
for r =0,1,...,m — 1. We have A = P, — I,,, where I,,, is an m x m identity
matrix. Thus, the eigenvalues of A are )\, := e*™/™ — 1 for r = 0,1,...,m — 1.
(In particular, they are all distinct and have nonpositive real part.) A general
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solution to the homogeneous system 0z(t)/0t = Az(t) is then a linear combination
of vector-valued functions of the form exp(\,t)z,, where z, is the eigenvector of A
corresponding to A,.

One eigenvalue of A is \g = 0, and the corresponding eigenvector is zy :=
(1,1,...,1)T. The vector b is a 0, 1-vector with 1’s in positions corresponding to
i € [n) N C such that f(:) > n. In particular, the sum of coordinates of b is k(C),
and thus v¢(C)z — b belongs to the image of A. Letting Zy be one of its preimages
under A, we see that z(t) = vs(C)tzg — Zp is a solution to the inhomogeneous
system 0z(t)/0t = Az(t) +b. Thus, an arbitrary solution differs from it by a linear
combination of the functions exp(\,t)z,, each of which is constant (for r = 0) or
decays exponentially (for r # 0).

It follows that for ¢ large enough and i € Z, we have z;(t) = v¢(i)t + o(t), and
0z;(t)/0t = vs (1) + o(1). By (2.3), we get x(t) € Stre(f) for all ¢ sufficiently large.
It is also clear that for ¢ outside a discrete set, we have x(t) € Str(f).

Since z = x(0) was generic, we can change it slightly so that each point z(¢) is
almost generic for ¢ in some discrete set B and generic for ¢t € [0,00) \ B. We claim
that £ (xz(t)) is weakly decreasing for ¢ € [0, 00) \ B. Indeed, let ¢y € B be such that
zi(to) = x;(to) for some i, j € Z. Since x(tg) is almost generic, we have x¢;(to) #
xp(j)(to).t Thus, Ox;(t)/0t # Ox;(t)/0t at t = to. Suppose that dz;(t)/dt >
Oxj(t) /0t at t = to, s0 Ty(;)(to) > Tg(j)(to). Then z;(t7) < x;(t~) and x;(t) >
x;(tT) for some ¢t~ < tg < tT very close to to. We still have ;) (t7) > x5y (t7).
Thus, the arrows starting at z;(¢t~) and z,;(¢~) form a crossing in D (x(¢™)) but do
not form a crossing in D¢(z(¢")). Therefore £;(z(t7)) > £(x(t")). Note that the
arrows starting at -1 (t*) and .Tf—l(j)(t:t) may or may not form a crossing in
Dy(x(t*)). Depending on that, the difference £;(z(t~)) — ¢f(x(tT)) is either zero
or one. O

Remark 2.15. Our constructions can be translated into the well-studied geometric
setup as we now explain. The group §7(10) acts simply transitively on the set 3 of
chambers of an infinite hyperplane arrangement {z; = z; + k | it # j € [n|,k € Z}
in R"/((1,1,...,1)). Choosing a distinguished fundamental chamber Cj, the map
g — gCo vields a bijection S =5 ¥. Identifying £, = R"/{(1,1,...,1)) by a
linear isomorphism sending = — (x1,...,2,), the S,-action on £, coincides with
its action on R™/((1,1,...,1)). For g € §,(L0), the point %g gets mapped to the
barycenter of the corresponding (simplicial) chamber gCy. An element x € £, is
generic if and only if it belongs to the interior of a chamber, and almost generic if
and only if it belongs to the interior of a facet of a chamber. The set Str.(f) for
e = 0 equals the set denoted Min(f) in [Mar20]. The map sending f to the tuple
(flv)vew, of its restrictions is the map denoted 7sx in [Mar20] (whose image is an
element of finite order; cf. Lemma 3.6). Our proof strategy may be considered
an adaptation of [Mar20, Proof of Proposition 6.20]: given an arbitrary chamber
C, construct a walk from C to a chamber intersecting Min(f), and then use the
projection msm to obtain an element of finite order. The notion of a modular
invariant was inspired by [Mar20, Part (AEl)) of Theorem 10.12].

IThis statement is true unless f(i) = i 4+ kn and f(j) = j + kn for some k. But in that case,
we have x; # x; (because x was generic) and x;(t') = i + kt’, z;(t') = j + kt’ for all t’ > 0, so

xi(t’) #* Tj (t/).
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Remark 2.16. One key point that allows for a significant simplification in our ap-
proach in type A (compared to the approach of [Mar20] for arbitrary Coxeter
groups) is a new proof of Proposition 2.13 using ODEs. We hope that this ar-
gument can be of independent interest. It appears to generalize to affine Weyl
groups but not to arbitrary Coxeter groups.

2.5. Vector conﬁguratlons and conjugacy. We return to Problem 2.6. Our
first goal is to describe Sy, S -conjugacy classes in S,.
Let f € S,,. For v € vy and C € Cy, set

ej(v) = (n;(¥),kp(v)) and e;(C):= (0;(C), ks (C)).
Clearly, es(v) = Ececf(u) er(C) is a sum of colinear vectors, and their inte-
ger lengths are given by |ef(C)|z = df(C), so |ef(v)|z = df(v). We let Ef =
(ef(v))vew, be the wvector configuration associated to f. By analogy with Defini-
tion 1.1, we call Ef = (Ey, )\f) the weakly decorated vector configuration associated
to f, where A/ was introduced in Definition 2.11.

Proposition 2.17. Let f, f' € S,. Then f is gﬁto)—conjugate to f' if and only if
Ey=FEyp.

Proof. Since E'f depends only on the cycles of f and their slopes, it is clearly
invariant under conjugation, which shows the “only if” direction. Suppose now
that f,f’ € S, are such that E; = Ep. Because the permutations f, f' € S,
have the same cycle type, they are conjugate in S,,. We may therefore apply S,-
conjugation to f’ (permuting the cycles along the way) to obtain an element f”
such that f = f” (in particular, f and f” have the same sets of cycles), and such
that for each cycle C of f, we have ng(C) = ny(C) and ks(C) = ky(C). Let

te, € S,, be the affine permutation sending i — i +n and j ~ j for j # i (mod n),

called a translation element. Thus, te, ., = teitgjl belongs to §,(LO), and we see
that f can be obtained from f” via conjugations by such elements t., ., for 4,
belonging to the same cycle of f. O

2.6. A characterization of minimal-length elements. Our next goal is to give
an explicit characterization of c-reduced affine permutations; see Corollary 2.20.

Given two subsets A, B C R?, define their Minkowski sum by A+ B:={a+b |
a € A, b € B}. Given a vector configuration E = {ej,ea,...,e,} C Z2, the
associated zonotope Z(E) is the convex polygon in R? obtained as the Minkowski
sum of line segments

Z(E):=[0,e1] + [0,e2] + -+ + [0, €).

For e, ey € R2, recall that det(eq, e2) is the determinant of the 2 x 2 matrix with
columns ey, ez. The following formula for the area of Z(FE) is well known [McM84]:

Area(Z(E)) = > |det(e;e)l.

1<i<j<m
Recall the notion of exc(A) from Definition 1.4.
Lemma 2.18. Let f € S,. Then f is c-reduced if and only if
(2.4) ((f) = Area(Z(E)) + exc(X), where By = (E, ).
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In the proof of Lemma 2.18, we will count inversions (7, ;') € Inv(f) according
to the cycles containing 7 and j'.

Definition 2.19. Given two cycles C,C’ € CYy, their ordered crossing number is
defined as

xing(C, C") i= #{(j. /') € Tov(f) | € [1]] 1 C and j' € C'}.
Thus, we have 3¢ e, xing(C, C") = ((f).

Proof of Lemma 2.18. Denote the right-hand side of (2.4) by £(F}). First, we show
that for any f € S,, we have 0f) > E(E’f). Observe that if g € S has a single
cycle then £(g) > d(g) — 1 (where d(g) = ged(k,n)), because the map fi, = A*
has ged(k, n) cycles, and for each i € [n], s;g has either one more or one less cycle
than g. Thus, each cycle C of f contributes at least dy(C) — 1 to £(f):
(2.5) xing(C,C) > ds(C) — 1.
It follows that for each v € vy, we have
> xing(C,C) > exc(M").

CeCy(v)

To each cycle C' we can associate a piecewise-linear curve P)(C) in R? ob-
tained by choosing some i € C' and joining the points pg = (d, %fd(z)) for
d =0,1,...,n¢(C); cf. [GL21, Section 4]. We have py = (0,%) and p, (o) =
(np(C), £ +ks(C)), thus PU)(C) gives rise to a closed curve on T = R?/Z? with
homology ef(C) = (ny(C),ks(C)). It is well known that given integers n’, k', n”, k"
with k¥ /n/ > k" /n”, a curve in T with homology (n’, k') intersects a curve with

n K
det (n” >‘ times. Thus, given cycles

homology (n”, k") from below at least o

C # C’, we have

0, if I/f(C) < I/f(C/);

(2.6) xing(C, C") > {|det(ef(0),€f(0/))|a otherwise.

We have shown that £(f) > £(E).

Conversely, consider a weakly decorated vector configuration £ = (E,\). By
Proposition 2.17, O := {f € S, | Ef = E}is an 57(10)—conjugacy class. By Corol-
lary 2.5, f € O is c-reduced if and only if f € Op;,. We have shown above that
for any f € O, ¢(f) > ¢(E). It remains to construct g € O such that £(g) = ((E).
Such an affine permutation will be constructed in Section 3.2. |

Corollary 2.20. Let f € S,. Then f is c-reduced if and only if all of the following
conditions are satisfied.

(1) For each C € Cy, xing(C,C) =d;s(C) — 1.

(2) For each C # C' in Cy, we have

0, if v (C) <vp(C);
|det(er(C),er(C))|, otherwise.

Proof. We have lower bounds on xing(C, C) and xing(C, C") given by (2.5)—(2.6).
Moreover, we showed in Lemma 2.18 that f is c-reduced if and only if all of these
inequalities are equalities. ([l

xing(C,C") = {
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Remark 2.21. Corollary 2.20 was obtained jointly with Thomas Lam during the
development of [GL21].

Corollary 2.22. If f € S, is c-reduced and C C Z is f-closed then f|c is c-reduced.

3. THE STRUCTURE OF C-EQUIVALENCE CLASSES

The goal of this section is to give a complete description of c-equivalence classes
of c-reduced affine permutations; see Theorem 3.2.

3.1. Cyclic compositions. Let f € §n be c-reduced. Fix a slope v € vy. By
Corollary 2.20, we have xing(C,C’) = 0 for all C' # C”" in C¢(v). We thus get a
natural cyclic order on the set C¢(v) induced by the cyclic order on [n| = Z/nZ.
Recall that } ccc,(,) df(C) = dg(v). In other words, the cyclic order on C(v)
yields a cyclic composition o/ of d;(v). Letting oy := (af’”)ue;/f, we consider
the strongly decorated vector configuration E’f = (Ey, o).

Lemma 3.1. Let f, ' € S, be c-reduced. If f ~ f' then E; = FEy.

Proof. By assumption, £(f) = £(f'). It suffices to consider the case f' = s;fs;
for some i € [n]. By Proposition 2.17, we have E’f = E’f/. Thus, we only need
to check that the relative order on Cy(v) is preserved for each slope v € wvy.
Let C;, Ci41 be the cycles passing through ¢,7 + 1, respectively, and suppose that
vi(C;) = v#(Cit1) = v. In order to apply a c-equivalence f — f’, there must be a
crossing between the arrows i — g(i) and i+1 — g(i+1) for either g = f or g = f;
see Figure 8. But because f, f" are c-reduced, by Corollary 2.20, they cannot have
crossings between different cycles of the same slope. Thus we must have C; = C; 41,
so the relative order on C(v) is preserved. O

To give the converse to Lemma 3.1, we need to consider modular invariants
discussed in Section 1.5. Recall from Definition 1.12 that for a cyclic composition
«, we have the rotation number rot(«), and for a family « of cyclic compositions,
d(a) is the greatest common divisor of their rotation numbers.

Given a conjugacy class O and a strongly decorated vector configuration E, let

Omin[E] = {f € Omin | Ef - E}
The goal of this section is to prove the following result.

Theorem 3.2. Let f € gn be c-reduced. Let O be the §7(L0)—60njugacy class of f.
Then Omin[Ey] is a union of d(os)-many c-equivalence classes. Moreover, for any
two c-reduced f, f' € Onin, we have

(3.1) fRF = (Epuh) = (Epu(f),
where p(f) € Z/ d(oy)Z is the modular invariant defined in (3.2).

Remark 3.3. Alternatively, Theorem 3.2 may be deduced from the recently updated
version of [Mar20, Theorem B].
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3.2. Constructing e-straight diagrams explicitly. Let E= (F, ) be a strongly
decorated vector configuration and fix a small € > 0. Our goal is to construct an

e-straight arrow diagram D(E) = D, (x) for some z € £, and c-reduced g € S, with
E, = E. We start with an example and then proceed with a formal description.

Example 3.4. Let E= (E, &) denote the strongly decorated vector configuration
shown in Figure 10(a). Thus, the vectors in E are e; = (2,0), e2 = (2,2), and
a® = a® = (2). An estraight arrow diagram D(E) is shown in Figure 10(b).
On the other hand, if £ = (E, o) is the strongly decorated vector configuration
shown in Figure 10(c), then E consists of a single vector e = (18,12) decorated by

a cyclic composition a® = (2,1,3). The associated e-straight arrow diagram D(FE)
is constructed in Figure 10(d).

910111213 14

(c) E (d) D(E)

FIGURE 10. A strongly decorated vector configuration (left) and
an e-straight arrow diagram (right); see Section 3.2.

For a vector e = (a,b) € Z?, we denote n(e) := a and k(e) := b. For e € E,
let v(e) = k(e)/n(e) denote its slope. Assume that n(e) > 0 for all e € E. Let
a = (a%)cer and a® = (af,...,a;, ). Consider the circle R/Z and choose a
collection of starting points p = (p§)ecE,icim.], Where p§ € R/Z. Let Pe = {ps +
rv(e) | r € Z} C R/Z be the set containing p§ and consisting of n(e)/|e|z equally
spaced points on a circle. We choose p so that we additionally have:

(1) distR/Z(Pf,Pf,/) > e for all (e, i) # (¢/,4'); and

(2) the points (pf,ps, ..., D, ) are cyclically ordered in R/Z.
Now, for each fixed e € F and i € [m.], we construct an arrow diagram Df. Let
P¢£ C R be the preimage of P¢ under the projection R — R/Z, and choose p’ € Pf.
Set d := «f. For each r € [d], set p|. := p’ + . We refer to the points (p}.),¢[q)
as the block associated to p’, and denote by P!, := Pf + §[d] the set of points in
all such blocks. Let p’ € Pf be the image of p’ in R/Z. If p’ # p¢ (mod Z) then
we draw an arrow (pl.,1) — (p,. + v(e),0) for each r € [d]. Otherwise, we draw an
arrow (p;., 1) = (pg(,) + v(e),0) for each r € [d], where 0 = (12...d) € S5 is a
d-cycle. The resulting arrow diagram is denoted D5 .
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Let P :=|l.cp cpm. P!, C R be the resulting set of points, and let D(E) :=
Ule[m ]D be the correspondmg arrow diagram. Let x : Z — P be an order-

preserving map. Then there exists a unique affine permutation g € S’ such that
D(E) = Dy(x). By construction, £, = E and £(g) = £(E), which completes the
proof of Lemma 2.18. By Lemma 2.18, g is c-reduced.

3.3. Affine permutations of constant slope.

Definition 3.5. Let f € S, and v € Q. We say that f is of constant slope v if
vy = {v}. (That is, if all cycles of f are of the same slope v.)

It is clear that if f € S’( is of constant slope v then we must have v = k/n
Recall that Sn is a quotient of S, by A™. We denote the quotient map S, — S’
by f+— f

Lemma 3.6. Let f € S,. Then f € §n has finite order if and only if f is of
constant slope.

Proof. Let N be the least common multiple of ny(C) for all C € Cy. Then fV is
a translation element; that is, f~ (i) = i + d;n for all i € Z, where (d;);cz is some
sequence of integers. Explicitly, if ¢ € C then d; = Nvy(C) € Z. This implies the
result. (]

Let f € @(Lk) be c-reduced and of constant slope, and set d := ged(k,n). By
Corollary 2.20, the arrows between different cycles of f do not cross. Therefore, for
each cycle C € Cy, we have C = C + d as subsets of Z. Denoting by Ic C Z/dZ
the image of C' under the map Z — Z/dZ, we get a partition I(f) = {Ic | C' € Cy}
of Z/dZ into cyclic intervals.? It is clear that I(f) is invariant under c-equivalence.

Proposition 3.7 ([Mar20, Proposition A]). Let f, f’ € S be c-reduced and of
constant slope. Then

f~ " if and only if I(f)=I(f").

We say that a cyclic composition a = (a1, aa, . .., qy) is written in normal form
if the sequence (aq, s, ..., Q) is lexicographically maximal out of all sequences
obtained by rotating «, i.e., (@, Qpi1,-.., Qm,Q1,...,0p—1) for r € [m]. As in

Definition 1.12, we associate to « a partition I(«) = (I1, I2, ..., I,,) of Z/dZ (where
d = aj+as+- - +a,,) into cyclic intervals given by I1 = [1, aq], I = [e1+1, a1 +as],
etc.

Note that if o = o/ then we have d = a1 + as + - -+ + a,, = ged(k,n), and
therefore we have two partitions I'(«) and I(f) of Z/dZ into cyclic intervals. These
partitions are related by a rotation o of Z/dZ for some r; however, this rotation is
only defined up to a symmetry of I(a), i.e., up to "%, (Here, rot(a) divides d.)

Definition 3.8. Let f € §,(1k) be c-reduced of constant slope v = k/n, and let
a := ol be written in normal form. The modular invariant u(f) € Z/ rot(a)Z is
the unique element such that o#)(I(a)) = I(f).

2The case where f is a single cycle requires special care. As mentioned after Definition 1.12,
we distinguish between different cyclic intervals [j, j + d — 1] of Z/dZ. Topologically, the standard
arrow diagram of f (viewed as a union of arrows) will be disconnected, and we choose I(f) :=
{[4,7 +d—1]} for j € Z/dZ such that the points (j,1) and (j — 1, 1) belong to different connected
components.
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Corollary 3.9. Let f, f' € §7(lk) be c-reduced and of constant slope v = k/n. Then
FAF i and only if (oY, u(f)) = (7, u(f")).

Proof. The = direction is clear since both a/** and p(f) are invariant under c-
equivalence. Conversely, having o/ = o/ implies that I (f) and I(f’) coincide
up to cyclic shift, and p(f) = p(f’) guarantees that I(f) = I(f’). The result then
follows from Proposition 3.7. O

3.4. Finishing the proof. For f € S, and v € vy, let fl, == flc,,. Thus, fl,
has constant slope v. If in addition f is c-reduced then by Corollary 2.22; so is
flv- In this case, recall from Definition 3.8 that the modular invariant u(f|,) is
an element of Z/rot(a*)Z. By (1.1), d(cyy) is defined as the greatest common
divisor of the numbers d(a/*") over all v € v;.

Definition 3.10. For c-reduced f € §n, define the modular invariant u(f) €
Z] d(ag)Z by

(3.2) p(f) = u(fl,) mod d(ay).

VeV

Lemma 3.11. Let f, f' € S, be c-reduced. If f ~ f' then w(f) = u(f).

Proof. Suppose that f =% f’ for some i € [n]. If v4(i) = vy(i + 1) = v then we
have f|, 2% f'|,, so f|, and f’|, are c-equivalent and thus by Corollary 3.9, we
have p(fl,) = p(f'|v). Suppose now that vy(i) # vp(i +1). If 0 < i < n then we
have f, = f'l, and thus (fl,) = u(7']).

It remains to consider the case ¢ = n and v;(0) # v¢(1). Let vy := v¢(0), vy :=
vs(1). Since vy # v, by the definition of f|,, in (2.1), we see that f’|,, = o(fl.,)
and f'|,, = o~ Y(f|,,). Here, o(g) = AgA~! is the rotation operator introduced in
Section 2.1. Thus, u(f'|v,) = pu(flw,) + 1 and pu(f'],) = 1(fls,) — 1, and the sum
in (3.2) remains the same. O

We will need one more tool for working with e-straight diagrams from Section 2.4.
Fix c-reduced f € S, and small e > 0. For 2 € Str®(f) such that Dy (z) is c-reduced,
recall from Corollary 2.20 that D(z) contains no crossings between distinct cycles
of the same slope.

Definition 3.12. Let = € Str;(f) be c-reduced and let a := (ac)cec, be a family
of real numbers associated to the cycles of f. Consider a curve z(t), t > 0, given
for each ¢ € Z by x;(t) = z; + tac, where C' is the cycle containing i. Let 7' > 0 be
such that for ¢ € [0,T], z;(t) # x;(t) for any i # j such that v¢(i) = v¢(j). In this
case, we say that «/ := z(T') is obtained from x = (0) by block-shifting.

In other words, block-shifting allows us to move the collections of points (x;);cc
independently for each cycle C, subject to the condition that two cycles of the
same slope never collide. It is clear that for e sufficiently small, if x € StrZ(f) is
c-reduced and z’ € Stry(f) is obtained from z by block-shifting then 2’ is c-reduced
and D¢ (z) = Dy(a').

Proof of Theorem 3.2. The = direction follows from Lemmas 3.1 and 3.11.

For the <= direction, let f, f' € Opin. Thus, f' = foff(;1 for some fy € §7(10).
Let x, 2’ € Stro(f) be obtained from %id, %fo € L2 via Proposition 2.13 so that
Dj (5 id) — Dy(x) and Dy/(5id) = Dy (5 fo) = Dy(2').
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Set h:= g,fg, ' and b’ := gz/fgg,l, where g, was defined after (2.2). We have
f~hand f ~ K. Since f, f' are c-reduced, so are Ds(z),Ds(z’) and h,h'. Since
E; = E, and thus E), = Ej/, we see that the partitions I(h[,) and I(h'],) of
Z/ ds(v)Z into cyclic intervals differ by rotation for all v € vy. Our goal is to apply
block-shifting to « with the aim of achieving I(h|,) = I(h'|,) for all v € v¢. To do
so, consider the following operation on the partitions (I(hl,))vey,:

(3.3)
for some v # v/ in vy, replace I(h|,) — o(I(h|,)) and I(h|,/) = o (I(h|,")).

We first explain how to obtain (3.3) via block-shifting.

Applying block-shifting to Djy(z) corresponds to applying a sequence
B2 hy TNy c-equivalences. In order to control how each restric-
tion h|, changes under such operations, we need to distinguish between the cases
i; =n and i; # n as we did in the proof of Lemma 3.11.

Recall the notion of the cutoff point from (2.2). Suppose that applying block-
shifting to = switches the positions of adjacent points z; and z;, for some j, k. If the
cutoff point of x is between x; +d and x, +d for some d € Z then the corresponding
c-equivalence corresponds to s,, otherwise it corresponds to s; for i € [n — 1].

Consider slopes v # /' in vy. We may apply block-shifting to move Cy,, (resp.,
Cf,./) to the right (resp., left) so that no point in Im(z) passes through the cutoff
point ¢ of x, until ¢ is located in an interval of R\ Im(z) between a point of C;
and a point of Cf,,. We may then shift C, (resp., Cy,,+) further to the right
(resp., left) until these two points swap places. This corresponds to replacing hl,
with o(h|,) and h|,» with o~1(h|,/), which results in applying (3.3) to I(h|,) and
I(h|u’)‘

Recall that for v € vy, by the definition of rot(a/+*), we have Umt(o‘f’y)(I(hL,)) =
I(h|,). Let d :=d(ay) = ged{a/" | v € v;}. Write d = 5
some integers a,s. Then, for each fixed v € vy, we have (a,rot(a/") — d) +
Dty O rot(a/*') = 0. Consider a vector ¢ € Z*/ with coordinates ¢, =

’
vew, W rot(afV") for

ay rot(al”) —d and ¢, := a, rot(al?') for v/ # v. Since the coordinates of ¢
sum up to zero, ¢ may be written as a Z-linear combination of vectors of the form
€y, — €,,, where (€,/),¢,; is the standard basis of Z*7. We can therefore use (3.3)
to rotate each I(h|,/), v € vy, by the corresponding coefficient ¢,.. The result of
this operation is

(3.4) replace I(h|,) + o~ %(I(h],)) and preserve I(h|,) for all v/ # v.

Fix v € vy. Applying (3.3), we can achieve I(h|,/) = I(h'|,/) for all v/ # v.
Recall that Ej, = Ej, and thus u(h) = u(h'). We see that I(h|,) and I(R’|,) differ
by rotation by a multiple of d, so applying (3.4), we achieve I(h|,) = I(F],).

By definition, we have h = g,fg, ' and h' = gx/fg;,l. Thus, for r € Z, we
have 0" (h) = gzonr0" (f)gpurr and 0" (k') = guronra” (f)gy i ar- As labeled point
configurations, z and z o A" differ by adding r to all labels. Thus, the cutoff point
of z o A" is to the left of the cutoff point of z, and there are precisely r points of
Im(z) = Im(z o A") between them. Assuming € is small enough, we can choose
r such that the cutoff points of z o A" and x’ o A™ are not e-close to any point in
Im(zoA")UIm(z'oA™). We then replace h, h', x, 2’ with o"(h),o"(h'),zo A", 2’0 A",

respectively. Clearly, showing h ~ A’ is equivalent to showing o”(h) ~ o” (h').
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Applying block-shifting to = so that all points in Im(z) are far away from the
cutoff point of x results in a sequence of c-equivalences of the form h — s;hs; for
1 not equal to 0 modulo n. Therefore such block-shifting preserves the condition
that I(h|,) = I(h'|,). We apply such block-shifting to both = and z’ so that for
v # v/, no point in Cy,, is e-close to a point in Cy ..

By Proposition 3.7, we have h|, ~ h'|, for all v € vy. Since h|, and h'|, are c-
reduced, they have no crossings between different cycles. Thus, each c-equivalence
in hl, ~ K|, swaps points z; and x; from the same cycle. Such points are e-close
together in x because the arrows incident to them form a crossing and have slopes
e-close to v. Thus, the interval between x; and z; contains neither the cutoff point
of x nor any point of C, for v’ # v. It cannot contain any point of C'y,, because

z; and x; are adjacent in h|,. We can therefore lift the c-equivalence hl, ~ h'[, to
h and assume that h|, = h'|, for all v € vy. Thus, the only difference between h
and ' is the relative ordering of the blocks of e-close points in x,z’ corresponding
to the different slopes. Applying further block-shifting, we can permute such blocks

until their orders coincide, which gives the desired c-equivalence h ~ h/'. ([l

4. PLABIC GRAPHS AND TRIPLE-CROSSING DIAGRAMS

We discuss the properties of bipartite graphs embedded in T and explain how to
recast them in the equivalent languages of plabic graphs [Pos06] and triple-crossing
diagrams [Thul7].

4.1. Triple-crossing diagrams in the disk. The results of this section were
independently discovered by [Pos06] and [Thul7]. We state the results in terms of
Thurston’s notion of triple-crossing diagrams.

Definition 4.1. A triple-crossing diagram D in the disk D := [0, 1]? is a smooth
immersion of a disjoint union of oriented circles and closed intervals into D, defined
up to isotopy. The image of a connected component is called a strand. The image
of a circle is called a loop and the image of a closed interval is called an arc. The
immersion is required to satisfy the following conditions:

(1) Three strands cross at each intersection point. We call these intersection
points triple crossings.

(2) The endpoints of the arcs are distinct points on the boundary of D, and
there are no other points of D on the boundary of D.

(3) The orientations of the strands induce consistent orientations on the bound-
aries of the faces of D.

Here, a face of D is a connected component of D\ D. Property (3) implies that
around every triple crossing, the orientations of strands alternate in and out, and
that the orientations of the end points alternate in and out along the boundary of
D. If D has n arcs, then it has 2n boundary points, and the connectivity of the
arcs induces a matching of the in-boundary points with the out-boundary points,
called the trip permutation in [Pos06].

Definition 4.2. A triple-crossing diagram D in the disk D is said to be reduced if
it has the fewest number of triple crossings among all triple-crossing diagrams with
the same trip permutation.
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Definition 4.3. Two triple-crossing diagrams are said to be move-equivalent if
they are related by move (M1)’ in Figure 11. A triple-crossing diagram D is called
move-reduced if it is not move-equivalent to a triple-crossing diagram D’ to which
one of the reduction moves (R1)’—(R2)’ can be applied.

L= -1l ©-

(M1’ (R1)’ (R2)’

FiGure 11. Equivalence move (M1)’ and reduction moves
(R1)'—(R2)’ for triple-crossing diagrams. Each move has two pos-
sible strand orientations. (R2)" removes a strand that is a simple
loop.

Remark 4.4. Postnikov’s reduction move (R1)’ in Figure 11 differs from Thurston’s
1—0 move (see Figure 12). Postnikov’s move will be more important for our eventual
goal of understanding the behavior of the dimer model under taking limits, since
it preserves dimer partition functions (cf. [Pos06, Theorem 12.1]). On the other
hand, Thurston’s move preserves the trip permutation which allows for inductive
arguments; e.g., in the proof of Theorem 1.5. It also appears naturally in connection
with double affine permutations (see Section 6.2 and Remark 6.2).

S~———
ot
—
FiGURE 12. (R1)” Thurston’s 1 — 0 move.

A monogon in D is a strand with a self-intersection. A parallel bigon in D is a
pair of strands with two intersection points x # y, with both strands oriented from
T to y.

Theorem 4.5 ([Pos06, Theorem 13.2 and Lemma 13.6] and [Thul?7, Theorem 7]).
Let D be a triple-crossing diagram in . The following are equivalent.

(1) D is move-reduced;
(2) D is reduced;
(3) D contains no loops, monogons, or parallel bigons.

Theorem 4.6 ([Pos06, Corollary 14.7] and [Thul7, Theorem 3]). All n! matchings
of in- and out-boundary points are realizable as trip permutations of move-reduced
triple-crossing diagrams.

Theorem 4.7 ([Pos06, Theorem 13.4] and [Thul?7, Theorem 5]). Any two move-
reduced triple-crossing diagrams with the same trip permutation are move-equivalent.
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Each pair of in- and out-endpoints in the matching divides the boundary of D into
two intervals. Suppose that I is a minimal such interval with respect to inclusion.
We say that a strand S whose endpoints are the endpoints of I is boundary-parallel
if there are no triple crossings within the region between S and I.

Proposition 4.8 ([Pos06, Proof of Theorem 13.4 and Figure 13.4] and [Thul?,
Lemma 12]). Suppose I is an inclusion-minimal interval of the boundary matching
of a move-reduced triple-crossing diagram D, and let S be the strand in D whose
endpoints are the endpoints of I. Then, D is move-equivalent to a triple-crossing
diagram D' in which S is boundary-parallel.

4.2. Plabic graphs and triple-crossing diagrams on the torus. A plabic
graph T'= (BUW, E) on a torus T is a (finite) graph embedded in T such that:

(1) The vertices of " are colored black or white. The set of black vertices (resp.,
white vertices) is denoted by B (resp., W).

(2) The set of edges of I" is denoted by E. Each edge is incident to two vertices
of opposite colors or incident to two white vertices.

(3) The black vertices are trivalent.

We identify plabic graphs that are related by contracting an edge incident to two
distinct white vertices into a single white vertex. Therefore, we can assume that
each white-white edge is a loop based at a white vertex.

Remark 4.9. The term plabic graph was originally introduced to denote planar
bicolored graphs [Pos06]. We still use it for graphs embedded on a torus, with the
main emphasis on the properties that such graphs (i) are drawn on T without self-
intersections, and (ii) are bicolored but not necessarily bipartite. Our definition of
a plabic graph is more restrictive than that of [Pos06]. Such plabic graphs were
previously studied under the name white-partite [GPW22, Definition 7.14] or black-
trivalent [Gal23, Definition 8.1, Remark 8.2].

Definition 4.10. A triple-crossing diagram D on the torus T is a smooth immer-
sion of a disjoint union of oriented circles into T. The image of a circle is called a
strand, and the set of strands of D is denoted S(D). The immersion is required to
satisfy the following conditions:
(1) Three strands cross at each intersection point. We call these intersection
points triple crossings.
(2) The orientations of the strands induce consistent orientations on the bound-
aries of the faces of D.

Similarly to Definition 4.1, a face of D is a connected component of T \ D.
The property (2) implies that around every triple crossing, the orientations of the
strands alternate in and out. (However, the converse need not hold if D has a
non-contractible face.) Each strand S in D determines a homology class [S] €
H(T,7Z) = 72

Lemma 4.11. The sum of the homology classes of all strands is 0 in H1(T,Z).

Proof. Let R, (resp., R_) denote the union of the faces of D such that the induced
orientation is counterclockwise (resp., clockwise). Then, by property (2), we have
that ESeS(D) S=0R, =—0R_ as l-cycles in T, and Ry U R_ = T. Therefore,

2 Z = [OR,] — [OR_] = [dT] = 0. 0
SeS(D
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Remark 4.12. A triple-crossing diagram can be converted into a plabic graph and
vice versa using the local procedure shown in Figure 13. When converting a triple-
crossing diagram into a plabic graph, the ambiguity in the third case in Figure 13(b)
is irrelevant since we identify plabic graphs related by contracting white-white
edges incident to distinct white vertices. The notions of move-reduced and move-
equivalent plabic graphs are given by Definition 4.3.

¥ 0o =4

(a) Black vertex (b) White ver-
(degree-three) tex  (arbitrary
degree)

FiGURE 13. The procedure to convert plabic graphs into triple-
crossing diagrams and vice versa

Remark 4.13. If T is a bipartite graph in T with all black vertices of degree at
least three, one can convert I' into a plabic graph by applying a sequence of black
uncontraction moves (M2). When T has black vertices of degree zero, one, or two,3
extra care needs to be taken; see Appendix A. Conversely, any plabic graph can
be converted into a bipartite graph by placing a black vertex of degree two in the
middle of each white-white edge.

The notions of weakly/strongly decorated Newton polygons and modular invari-
ants introduced in Section 1.3 for bipartite graphs extend to plabic graphs in an
obvious way. Using Remark 4.12, we can transfer them to triple-crossing diagrams.

In what follows, we will prove the versions of our main results translated into
the language of triple-crossing diagrams and plabic graphs. The proof for bipartite
graphs follows from the results in Appendix A. For instance, in Section 6.3, we will
prove the following version of Theorem 1.5 and show that it implies Theorem 1.5
in Appendix A.1.

Theorem 4.14. Let D be a triple-crossing diagram with weakly decorated polygon

N = (N, ). Assume that N is not a single point. The following are equivalent.

(1) D is move-reduced;
(2) D has no connected components that are contractible in T and contains
2 Area(N) + exc(A) triple crossings.

Similarly to Remark 1.8, 2 Area(N) + exc(A) is the minimal possible number of
triple crossings for a triple-crossing diagram with weakly decorated Newton polygon
(N, A).

Let 7 : R? — T denote the universal covering map. The following result will be
proved in Section 6.4.

3This applies especially to the case of a degree-two black vertex connected to the same white
vertex by both edges.
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Proposition 4.15. Let D be a move-reduced triple-crossing diagram with Newton
polygon N.

(1) The preimage D of D under  contains no closed loops, and any lift S of
a strand S € S(D) does not intersect itself;

(2) Any strand S € S(D) intersects itself |[S]|z — 1 times;

(3) Any two distinct parallel strands S, S’ € S(D) do not intersect, and there
is no face of D that contains portions of both strands in its boundary.

By part ((3)) of Proposition 4.15, there is a natural cyclic order on each set of
parallel strands, so the strongly decorated Newton polygon N is well-defined.

5. REDUCTION TO THE CYLINDER

The goal of this section is to prove the triple-crossing diagram version of Theo-
rem 1.16. Consider a move-reduced triple-crossing diagram D on the torus T. Let
D be a fundamental rectangle for T, and let u, d, [, r denote the up, down, left and
right sides of D, respectively. Identifying the u and d sides, we get a cylinder A,
and further identifying the [ and r sides, we get a torus T. We have quotient maps
D — A — T. The images of the u and d sides in A or in T coincide and are referred
to as the u — d side. Similarly, the images of the [ and r sides in T are referred to
as the I — r side.

We say that triple-crossing diagrams D and D’ are isotopic in T if there is
an ambient isotopy of T taking D to D’. When applying such isotopies, we fix
the fundamental rectangle D. Using an isotopy in T if necessary, we assume that
the intersections of strands with the sides of D are transverse. A strand S with
homology class (4, j) must intersect the [ — r side at least ¢ times and the u — d side
at least j times. The preimage of a strand under the map A — T is either a union
of arcs with endpoints on the boundary of A or a closed loop in A.

5.1. Pushing strands through the boundary.

Lemma 5.1. Suppose we have a strand S in D with both endpoints on a side s of D.
Then, using moves and isotopy in T, we can remove the endpoints of S in s without
increasing the number of intersections of any other strands with the boundary of D.

Proof. Let I denote the interval in s between the endpoints of S. Suppose I is
minimal with respect to inclusion among all intervals on the boundary of D between
endpoints of strands. Using Proposition 4.8, we make S boundary-parallel, and then
apply an isotopy in T pushing the strand S past the s-side of D (Figure 14(a)).

If I is not minimal, we use induction on the number of intervals contained in
I. Suppose I’ is an inclusion-minimal interval contained in I. Using the above
procedure, we can remove the endpoints of I’ and thereby reduce the number of
intervals contained in I. (]

Definition 5.2. We call the above procedure move (P); see Figure 14(a).

Lemma 5.3 ([GK13, Figure 12]). Suppose we have a pair of strands in D that
have consecutive in- or out-endpoints on a side of D, and moreover, suppose that
these two strands cross in . Then, the relative order of the two endpoints along
s can be reversed using moves and isotopy in T without increasing the number of
intersections of any other strands with the boundary of D.

We remove the consecutiveness assumption from Lemma 5.3.
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oy rEe b R

FEN . /\R %

(a) Move (P) (b) Move (T)

FIGURE 14. The move (P), pushing a boundary-parallel strand
past the d-side of D removing the intersection points with the d-
side, and the move (T), interchanging the relative order of the
endpoints of the red and blue strands along the d-side of D, thereby
removing the triangular region bounded by the strands and the d-
side of D.

Lemma 5.4. Suppose we have a pair (S,S') of strands with endpoints on a side
s of D with the same orientation (i.e., both in or both out), and suppose that S, S’
cross in . Then, the relative order of the endpoints of S, S’ in s can be reversed
using moves and isotopy in T, thereby removing the triangular region bounded by
S, S" and the side s, without increasing the number of intersections of any other
strands with the boundary of D.

Proof. Assume without loss of generality that both S, S’ have an out-endpoint in s.
Let I be the interval in s between the endpoints of S, S’. Use move (P) to remove
any strands that have both endpoints in I. Then, any strand with an out-endpoint
in I must cross at least one of S,S5’. Let £ be the number of crossings formed by
pairs of strands having an out-endpoint in I. Repeatedly using Lemma 5.3, we can
decrease £ until it becomes equal to 1 and use Lemma 5.3 once more to swap the
endpoints of S, 5". O

Definition 5.5. We call the procedure in Lemma 5.4 move (T); see Figure 14(b).

5.2. Affine matchings. Fix n > 1. Consider an infinite vertical strip S with
points labeled

(51) ...,Ao,AT,Al,Ag,AQ,... and ...,Bo,BT,Bl,B§,BQ,...

on the left and the right boundary of S from bottom to top, so that the points A;, B;
are at the same height, and the points A, B; are at the same height, for each i € Z.
Let A:={A; |i€Z}, A:=={A;|i€Z}, B:={B;|i€Z}, B:={A;|i€Z}. Let
Xi+n:=Xiyn and X5+ n:= X5, for X € {4, B} and i € Z.

Definition 5.6. An affine matching with period n is a bijection 7 : ALUB — AUB
such that (A1) = m(A;) +n and 7(Bi;) = m(B;) +n for all i € Z.

This notion is closely related to the classical notion of affine permutations dis-
cussed in Section 2.1. An affine matching is represented by drawing an arrow from
x to m(x) inside S for all x € AU B.

A triple-crossing diagram D in T gives rise to an affine matching mp as follows.
Let D be a fundamental rectangle. Using an SLy(Z) transformation, we can assume
that there are no strands with homology classes in {0} X Z other than zero-homology
loops. Let n denote half the number of intersection points of strands with the { —r
side of D (so there are 2n endpoints of strands on the [ — r side of D, half of
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which are oriented in and half of which are oriented out). Let S denote the infinite
vertical strip that is the universal cover of A. Then, S consists of Z-many copies of
D glued along the u — d sides, which we label ..., D_1,Dg,Dq,... from bottom to
top. Applying an isotopy in T, we may assume that the bottom-most intersection
point of a strand with the left side of D is oriented in. Label the intersection points
of strands with the boundary of S as in (5.1). Thus, the points in A LI B are in-
endpoints and the points in A LI B are out-endpoints. The connectivity of strands
in S determines an affine matching 7p with period n, which, moreover, has total
signed number of crossings through any horizontal line equal to 0 (since the total
homology of all strands is 0 by Lemma 4.11).

Remark 5.7. Each strand S in S determines a word wg in the alphabet {u,d,[,r}
whose letters from left to right record the crossings of S with the sides of D as
we move along the strand. Using move (P), we can assume that there are no
occurrences of ud or du in wg; thus, we have wg = xy*z for some =,z € {I,r},
y € {u,d}, and k > 0. For a strand S such that wg = xy*z, we denote by
S1,...,Sks1 the corresponding strands in D.

Lemma 5.8. If the strands S and T emanating from A; and A; 11 cross in S, then
we can swap their endpoints A; and A;+1 using moves and isotopy in T without
increasing the number of intersections of any other stands with the boundary of A.

Proof. By translating the fundamental rectangle, we can assume that ¢ = 1. With-
out loss of generality, we can assume that wg = rufz where k > 0 and 2 € {l,r}. If
wr = rr or wr = rdv for some word v, then the segments S; and T cross in D and
we can use move (T). Suppose wr = ruz with m > 0 and z € {l,r}. Consider a
crossing of S and 7" in S. If this crossing belongs to S; then it must also belong to
T;. Let j > 1 be the minimal index such that S; crosses Tj. If j > 2, then applying
move (T) at the u — d side, we can swap the bottom endpoints of S; and T} so that
the strands S;_1, 71 would cross. We continue this process until j = 1 and apply
move (T) at the [ — r side. O

5.3. Proof of Theorem 1.16. We are now ready to prove Theorem 1.16.

Lemma 5.9. The number of intersections of strands in D with the sides of A can
be made either the minimum possible (i.e., equal to } e g(py li|, where [S] = (i, 7))
or equal to 2 using moves and isotopy in T.

Proof. Consider the affine matching 7p with period n equal to half the number of
intersection points of strands with the [ — r side of D and consider a strand S from
A; to Az with the smallest value of dist(4;, A;). Assume i < j. By minimality of
dist(A4;, A;), the strand T emanating from A;;1 must cross the strand S. By Lemma
5.8, we can swap the endpoints A; and A; 1, decreasing dist(Ai,AJf). Eventually,
we force dist(A4;, A;) to be less than the height of I, in which case we apply move
(P) and decrease n. We proceed until either n = 1 or when there are no arcs from A;
to Az, in which case there will be also no arcs from B; to B; (for any 4,j € Z). U

We now study the case when n = 1. Since the total signed number of crossings
through any horizontal line is equal to 0, we have either:
(1) mp(A1) = Bg41 and mp(Bg) = A=y for some k € Z; or
(2) 7TD(A1) = Am and WD(BT) = B,k+1 for some k € Z.
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| (/ Peay B, Bs
” / B3 A D CBz A2 Bs
Ay ‘/B1 A, C):Bl Ay By
Az Bi Az D Bi Az By
Ao By A, C):Bo Ao By
Ag /BG Ay :<> By Ag By
(a) (b) ()
Case (1), Case (2), Case (2),
k=1 k=0 k=2

FI1GURE 15. The cases in the proof of Theorem 1.16; see Section 5.3.

See Figure 15. If wp satisfies (1), then the number of intersections of strands
with the sides of A is minimal and equal to 2. Suppose that mp satisfies (2).
If £ € {0,-1}, we can use move (P) to remove the two intersection points, so
the number of intersections of strands with sides of A is minimal and equal to 0.
However, if k ¢ {0, —1}, the number of intersections of strands with the sides of A
is not minimal (since we have }gcg(p) |i| = 0), and we call such a triple-crossing
diagram exceptional. In this case, D consists of a single strand S in T that is a
zero-homology loop (see Figure 6 for the associated bipartite graph when k& = 1). It
is not hard to see that the strand S is simple, that is, lifts to a non-self-intersecting
closed curve in R2. This is case (i) of Theorem 1.16. In order to complete the proof,
we need to show that in this case, the associated bipartite graph I'" has no perfect
matchings.

Proposition 5.10. Let I' be a move-reduced bipartite graph in T. Suppose that T
has a single strand which is a simple zero-homology loop. Then ' has a different
number of black and white vertices, and, in particular, has no perfect matchings.

Proof. Given a closed immersed curve p : S — R? with non-vanishing differential,
we let wind(p) € Z denote its winding number, which is the number counterclock-
wise turns made by the tangent vector of p. For a collection p of such curves such
that no three curves intersect at the same point, we let wind(p) := 3_ ., wind(p)
denote their total winding number. One can check that the total winding number
wind(p) is invariant under the skein relation

X =
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Let T be the lift of T' to the universal cover R? of T = R2?/Z?. Let S be the
unique strand of I'. We apply a small perturbation to .S so that each triple crossing
is replaced by three double crossings arranged in a small counterclockwise cycle
around the corresponding black vertex of I'. After this perturbation, each white
vertex of I' is surrounded by a clockwise cycle of strands, and the strand directions
alternate around each face of I'; see [Pos06, Lemma 14.4]. Let S be some lift of S
to R2. Thus, S is a simple closed curve, and therefore Wind(g) = +1, depending
on whether S is oriented counterclockwise or clockwise. Any two lifts of S differ by
a shift in Z2. Let N > 1 be a large positive integer, and let p be the collection of
all Z2-shifts of S that are contained inside the square [0, N]> C R2. Because S has
bounded size, there are at least cN? such shifts, for some fixed constant ¢ > 0, and
therefore |wind(p)| > ¢N2. On the other hand, resolving all crossings in p using
the skein relation (5.2), we obtain a collection p’ of simple closed curves satisfying
wind(p) = wind(p’). Each of these curves will contain a single vertex of I' inside
of it. Moreover, if the vertex of I' inside p’ € p’ is black (resp., white), then p’
is oriented counterclockwise (resp., clockwise). Therefore, the difference between
the numbers of black and white vertices of I' contained inside [0, N]? is of size at
least ¢N2. This implies that I" must have a different number of black and white
vertices: otherwise, the difference between the numbers of black and white vertices
of T' contained inside [0, N]> would be at most linear in N. O

6. RELATING AFFINE PERMUTATIONS TO BIPARTITE GRAPHS ON A TORUS

The goal of this section is to apply the results of Sections 2 and 3 to bipartite
graphs embedded in T and to finish the proof of our main results, Theorems 1.5
and 1.13.

6.1. The double affine symmetric group. The double aﬁ?ne symmetric group
Sy, is generated by SUSU{A}, where S := {s; | i € Z/nZ} and S := {s; | i € Z/nZ},
subject to the relations

SiSi4+1Si = Si+1SiSi+1, A5i+1 = SiA, S, = 1, 8iS5 = 8554 if ‘Z — j‘ > 1,

2
(2
%:1, s787 = szs7 il |i —j| > 1,

(6.1) S7S7r1ST = Sasisam  Asgr=siA, s i57 5%

n __ — — — Q.
A" =1, 8i87 = S5Si.

In other words, we have an isomorphism S, = (5&0) X 5&0)) X (A)/(A™), where A

acts on each copy of 57(10) by conjugation. Any element w € S, can be written
as a product w = s;,S;, - 'silA"lsjjsj"k1 -+ 77 for some k € {0,1,...,n — 1} and
I,m > 0. If I +m is minimal among all such ways of writing w as a product,

then s;, 8, - - siZAksmsij sy s called a reduced expression for w, and [ +m

is called the length of w and denoted ¢(w). Note that

o k T k
fri=5i81, -85 A" and  fi=8n_j Sn_j,  Sn—j, A

are then reduced expressions for affine permutations f, f € S,,. We denote p(w) ==

(f, f) and call (f, f) the pair of affine permutations associated to w. We have ¢(w) =
£(f) + £(f). We explain the reasoning behind the formula for f in Remark 6.3.

Remark 6.1. For any k € Z and f, f € §7(1k), there exists w € S,, satisfying ¢(w) =

(f?f)'
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6.2. Relating triple-crossing diagrams in A to double affine permutations.
Let w be a double affine permutation and let wiws ---w; be an expression for w,
where w; € SU S U{A}. Following Fock and Marshakov [FM16], we associate to
the expression wyws - - - w; a triple-crossing diagram in A as follows. Each generator
s € SUSU{A} is assigned a triple-crossing diagram D(s) in A as shown in Figure
16. The triple-crossing diagram D(wjws - --w;) for the expression wqiwsg - - w; is
obtained by concatenating the diagrams D(w1), D(ws), ..., D(w;) from left to right,
so that the right boundary of D(w;) is glued to the left boundary of D(w;1) for
i € [l = 1]. Further gluing the right boundary of D(w;) to the left boundary of
D(w;), we obtain a triple-crossing diagram in T. The corresponding plabic graph
in T is called an affine plabic fence. As explained in [FM16, Appendix D], each
relation in (6.1) can be realized using isotopy and moves on the corresponding
triple-crossing diagrams, except for the relations s7 = 1 and s% = 1, which are
realized using Thurston’s 1 — 0 move (R1)” (Figure 12). Note that the left-hand
side of (R1)” is the same as (R1)" (but the right-hand side is not), and therefore a
triple-crossing diagram D is move-reduced if and only if it is not move-equivalent
to a triple-crossing diagram D’ to which either (R1)” or (R2)" can be applied.

n —y N — / n =
i+ 2 %—> i+ 2 'v§—> 2/ :;é/
i+ 28 ,’.‘,é n— -
HlI ’,“9% z‘+1I 1= n—2
/fl /v‘] . . c
) =% ) ; §><} 3
- i1— |, 4 i1 ——y /
" | e | 2 — %
: : : 2
1 ! b / 1 /
i — 1 1 //>
D(si) D(s;) D(A)

FIGURE 16. Plabic graphs and triple-crossing diagrams in A asso-
ciated to generators.

Remark 6.2. Postnikov’s reduction (R1)’ leads to the relations s? = s; and s% =57
of the 0-Hecke monoid.

Remark 6.3. Rotation by 180 degrees acts on the triple-crossing diagrams by
D(Sl) — D(Sm), D(Sz) — D(Sn,i), D(A) — D(A),

and induces an antiautomorphism of S, sending s; — s;.—;, 57— Sp—i, and A — A.
We have defined ¢(w) = (f, f) so that rotation of D(w) by 180 degrees translates

under ¢ into an automorphism of S,, x S,, sending (f, f) — (f, f)-

Lemma 6.4. Suppose D is a move-reduced triple-crossing diagram in T which is
not a single strand that is a simple zero-homology loop. There is a double affine
permutation w = w(D) such that D is move-equivalent to D(w), and such that f, f
are both c-reduced, where ¢(w) = (f, f).
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Proof. Since D is not a single strand that is a simple zero-homology loop, after
applying a move-equivalence using Theorem 1.16, we may assume that the number
of intersections of strands in D with the sides of A is minimal and that there are no
strands with homology class in {0} x Z. Let 7 := mp denote the affine matching of
D; cf. Section 5.2. Then, we have m(A) = B and 7(B) = A. As in Remark 5.7, for
any strand S in D, the word wyg is given by wg = xy*z for x € {l,r} and y € {u, d}.

We first show that S cannot intersect itself in A. Without loss of generality,
assume wg = rufr for k > 0. If k = 0, S = S; cannot intersect itself since D is
move-reduced. Let & > 0 and let Sq,...,Sky1 denote the corresponding strands
in D in order as we move along S so that S; has word ru, Ss,...,S; have words
uu and Sk41 has word ur. Since D is move-reduced, no S; has a self-intersection,
so any self-intersection of S must be between S; and S; for i # j. If j # kK + 1,
using move (T) on the u — d side, we can make the intersection to be between
Sit1 and S;y1. Therefore, applying move (T) repeatedly, we may assume that the
only intersections are between Si;1 and some of the other strands. Then, since
S1,...,Sk do not cross, the endpoints of Si,...,S; on the u-side of D appear in
order from left to right, so the endpoints of S, ..., Sk41 on the d-side of D also
appear in order from left to right. If Si;; intersects S;, they form a parallel bigon
contradicting that D is move-reduced.

We construct w = w(D) by induction on the number of triple crossings in D.
Suppose D contains no triple crossings. Then, the affine matching is of the form
7(A;) = Biym and 7(B;) = A for some m € Z. We assign the double affine
permutation w := A™ to D.

Suppose the number of triple crossings in D is nonzero. Since no strand has a
self-intersection, there must be three distinct strands in A at every triple crossing, so
two of them must have their in-endpoints on the same side of A. Any strand whose
in-endpoint is between them must cross at least one of them (since no strand starts
and ends on the same side of A), so there exists i € [n] such that the strands S and
T emanating respectively from either A; and A;y, or from B; and By cross in A.
The proofs of Lemmas 5.4 and 5.8 show that we can create a triple crossing between
S7 and T3 near the boundary of A (i.e., such that there are no other triple crossings
in the triangular region bounded by S;,7; and the side of A containing their in-
endpoints). Let D’ be the triple-crossing diagram in A obtained by uncrossing this
triple crossing (Figure 17). We let w := s;w(D’) (resp., w := w(D")s;) if the two
strands emanate from A; and A;yy (resp., By and By 7).

i—m

Aigr At :‘—)

Azt — Agr——

A; 4 —

FIGURE 17. Uncrossing a triple crossing near the left boundary of
A (dashed).

Clearly, D(w) is move-equivalent to D, hence it is move-reduced. Let ¢(w) =
(f,f).- We show that f and f are c-reduced. Suppose not. By Theorem 2.3, there
is a c-reduced pair (f’,f/) such that f — f and f — f/, and we must have used
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either s? =1 or s% = 1 at least once. This implies that D(w) is not move-reduced,
a contradiction. g

6.3. Proof of Theorem 4.14. (1) = (2): Suppose D is move-reduced. Since N
is not a point, by Lemma 6.4, D is move-equivalent to a triple-crossing diagram
D(w), where w is a double affine permutation. Therefore, D and D(w) have the
same number of triple crossings. By Lemma 2.18, the number of triple crossings in

D(w) is £(f) + £(f) = Area(Z(Ey)) + Area(Z(E5)) + exc(X), where ¢(w) = (f, f).
By (6.2), we have £(f) + £(f) = 2Area(N) + exc(A). If D had a contractible
connected component D', then D’ must have a loop strand. By Theorem 4.5, D’,
and therefore D is not move-reduced.

For the converse implication, we will need the following result.

Lemma 6.5. Let D be a triple-crossing diagram with weakly decorated Newton
polygon N. If D is not move-reduced, then there is a move-reduced triple-crossing
diagram D’ with weakly decorated Newton polygon N containing strictly fewer triple
crossings than D.

Proof. Recall the reduction move (R1)” shown in Figure 12. The move (R1)”
preserves the connectivity of the strands, and therefore does not change N. If D is
not move-reduced, then we can use moves (M1)’, (R1)” and (R2)’ to get a move-
reduced D’ with weakly decorated Newton polygon N. Since D has no contractible
components, (M1)" cannot create contractible components, and therefore we must
use (R1)"” at least once before we can use (R2)’. Since we decrease the number

of triple crossings when we apply (R1)”, D’ contains strictly fewer triple crossings
than D. (]

(2) = (1): Suppose that D has 2 Area(N) + exc(A) triple crossings and that
D has no contractible connected components. If D is not move-reduced, there
is a move-reduced D’ with weakly decorated Newton polygon N with fewer than
2 Area(N) 4 exc(A) triple crossings by Lemma 6.5, contradicting (1) = (2).

6.4. Proof of Proposition 4.15. Let p be a triple-crossing at which three strands
S1, 82,53 meet. We call the variant of the skein relation shown in Figure 18(a)
uncrossing S1 and Sa at p.

%0 B-H

FIGURE 18. (a) Uncrossing the strands S; (blue) and Ss (green),
while the strand S5 (red) is unaffected. (b) The uncrossing move

applied to the two strands participating in both triple crossings on
the left-hand side of (M1)'.

By Lemma 6.4, D is move-equivalent to a triple-crossing diagram D(w), where
w € S, for some n and the associated affine permutations f, f are c-reduced.

To show part (1), suppose there is a closed loop S in D. Then, the projection
S := (85) of this closed loop is a strand with [S] = (0,0). Since move-equivalence
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preserves homology classes of strands, S becomes a zero-homology strand in D(w).
Since every strand in D(w) moves monotonously to the left or to the right, there
are no zero-homology strands in D(w), a contradiction. If D contains a strand
S with a self-intersection, then uncrossing S := 7(S) at the triple point with the
self-intersection yields a triple-crossing diagram with the same weakly decorated
Newton polygon but with fewer triple crossings, contradicting Theorem 4.14.

We now show part (2). By Corollary 2.20(1), part (2) is true for D(w). Suppose
part (2) is false for D. Since D is move-equivalent to D(w), there is an intermediate
triple-crossing diagram D’ for which part (2) is false, but upon applying (M1)’ to
D', it becomes true. Then there is a strand S in D’ that intersects itself more than
I[S]|z — 1 times, but upon applying (M1)’, the number of intersections becomes
I[S]|z — 1. Since (M1)’ only removes crossings between the two anti-parallel strands
T, and T, that cross on the left-hand side of (M1)’, T7 and T, should both be
portions of S. Upon uncrossing T} and T, at both the triple crossings (see Figure
18(b)), the Newton polygon is unchanged, and the strand S splits into a loop and
at most two other strands, so 2 Area(N) 4 exc(A) can decrease by at most one, but
the number of triple crossings decreases by two, contradicting Theorem 4.14.

To show part (3), we will need Lemma 6.6.

Lemma 6.6. Suppose S, S’ € S(D) are two distinct parallel strands that do not
intersect. Let R be a closed topological disk in T whose interior contains some
portion of S and S’. Let a and b (resp., ¢ and d) denote the in- and oul-endpoints
of S (resp., S') around the boundary of R. Then, the cyclic order of the endpoints
around the boundary of R cannot be abed or deba.

Proof. Let D denote the preimage of D in R2. Let R be a lift of R in R2. Let
S, S" denote the lifts of S, S to D that intersect R. Let N > 1 be a large positive
integer, and consider a circle of radius N centered at R. Then, either S or S’ has
a self-intersection (Figure 19) which contradicts part (1) of Proposition 4.15. O

FIGURE 19. There is no way to complete the red and blue strands
so that they do not cross without creating a self-intersection.

Suppose there is a face F' of D with portions of 5,5’ in its boundary. Recall
from Definition 4.10 that the strands in D induce a consistent orientation around
the boundary of F'. We let R be a disk that contains a portion of F' together with
parts of S and S’, and get a contradiction with Lemma 6.6.

Finally, we prove the statement in part (3) that parallel strands do not intersect.
Similarly to part (2), by Corollary 2.20(2), part (3) is true for D(w). Therefore,
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there is a D’ move-equivalent to D such that part (3) is false for D’, but upon
applying (M1)’ to D', it becomes true. The two anti-parallel strands that cross on
the left-hand side of (M1)’ should be portions of S, S respectively. Upon uncrossing
S and S’ at both triple crossings, the union of S and S’ becomes the union of a loop
and a strand T with homology class [T'] = [S]+[S’]. Therefore, N is unchanged and
2 Area(N) + exc(X) decreases by one, but the number of triple crossings decreases
by two, again contradicting Theorem 4.14.

6.5. Proof of Proposition 1.11. Suppose N = (N, @) is a strongly decorated
Newton polygon and p € Z/ d(a)Z. Recall from Section 3.2 that for e = (a, b) € Z2,
we denote n(e) := a and k(e) := b, and v(e) = k(e)/n(e). Using an SLy(Z)
transformation, we can assume that n(e) # 0 for all e € E(N). We assign to N the
pair (E+, E_) of strongly decorated vector configurations, consisting of edges of IV
oriented to the right and left, respectively, as follows. We define:
(1) Ey :={e|e€ E(N), n(e) >0} and oy = (a°) ¢j, ; and
(2) E- :={—e|ec E(N), n(e) <0} and a_ = (rev(a®))_,.j , where for
a cyclic composition o = (g, ag, ..., ), rev(a) == (Qm, Cm-1,...,Q1) is
the cyclic composition with the cyclic order reversed.
Similarly to Remark 6.3, we have rotated the vectors in £_ by 180 degrees. We have
the following basic relation between the area of N and the areas of the zonotopes
Z(EL), Z(E-):

(6.2) 2 Area(N) = Area(Z(E,)) + Area(Z(E_)).

To see this, observe that the lower boundary of Z(FE.) coincides with the lower
boundary of N (given by the vectors in E), and the upper boundary of Z(E,) is
obtained by rotating its lower boundary by 180 degrees. A similar statement holds
for Z(E_), from which the result follows; see Figure 20.

N Z(E,) Z(E-)

FIGURE 20. Proof of (6.2): the dashed line subdivides N into two
polygons whose areas are 1 Area(Z(E,)) and 1 Area(Z(E_)).

Let f and f be a pair of c-reduced affine permutations with Ej = E+ and
Ef — E_ constructed as in Section 3.2. Observe that Doecr, K(€) =X ccp kle),

and thus by Remark 6.1, there exists w € S, satisfying ¢(w) = (f, f). By (6.2),
the triple-crossing diagram D := D(w) has the correct number of triple crossings,
so it is move-reduced by Theorem 4.14. Let I' := F( ) be the associated bipartite
graph (cf. Appendix A). By construction, N(I‘) N.

Finally, we show that I" has a perfect matching. Let w = s;,8;, - - - Si,,Aij—lsj—' X
s7— be a reduced expression. Omitting all generators s;, and s;- such that the
corresponding vertical edge in I' is traversed by the same strand in the opposite

directions (i.e., yields a self-intersection in D(w)), we get a triple-crossing diagram
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(a) T'(w) (b) T'(w')

*)

(c) N(D(w)) = N(T(w"))

FIGURE 21. Two plabic graphs I'(w), I'(w') from Example 6.8
having the same strongly decorated Newton polygons but different
modular invariants. According to Theorem 1.13, these graphs are
not move-equivalent.

D’ with strongly decorated Newton polygon (N, ') satisfying (/)¢ = (1,1,...,1)
for all e € E(N). By Theorem 4.14 and part (2) of Proposition 4.15, D’ is move-
reduced, so it is minimal in the sense of [GK13]. The corresponding bipartite graph
IV :=T'(D’) has a perfect matching by [GK13, Lemma 3.11], and since I' is obtained
from I' by deleting a subset of edges, so does I'.

Example 6.7. Let N = (N, ) be the strongly decorated Newton polygon with
edges e; = (2,0), es = (2,2) and e; = (—4,-2), and a“ = a® = a® = (2)
shown in Figure 21(c). The strongly decorated vector configuration E, and its e-
straight arrow diagram D(E, ) are shown in Figure 10(a-b). From D(E, ), we find
the reduced expression f = s;s354535154A%. Similarly, we have f = s;A2, so that
w = 818384838184A2s§. The corresponding triple-crossing diagram D(w) is shown
in Figure 22.

Example 6.8. Let w’ = 515354535154A255 be obtained from w in Example 6.7 by
replacing s3 with s5. The associated plabic* graphs I'(w), I'(w’) shown in Figure 21
have the same strongly decorated Newton polygons but different modular invariants
in Z/d(a)Z, where d(a) = 2.

6.6. Proof of Theorem 1.13. We show first that two move-reduced graphs I', T
are move-equivalent if and only if

(N(D), (1)) = (N(I), (1))

4Strictly speaking, the graphs shown in Figure 21 are not plabic in the language of Section 4.2
since they have edges with both endpoints black. To convert them into plabic graphs, one has to
add a degree two white vertex in the middle of each such edge.
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[l Il IR NCRRGUI N GUREN N

FIGURE 22. The triple-crossing diagram D(w) with strongly dec-
orated Newton polygon N = (N, &) from Example 6.7.

The = direction is clear, since both N and w are invariant under move-equivalence;
see Sections 1.4 and 1.5.

For the <= direction, using Lemma 6.4, we assume that the triple-crossing
diagram D (resp., D) associated to I" (resp., I'') is of the form D(w) (resp., D(w"))
for some double affine permutations w,w’. Let (f, f) (resp., (f’,?l)) be the pair
of affine permutations associated to w (resp., w’). Let o(w) = AwA~! be the
rotation operator, and let o(T') be the bipartite graph associated to the triple-
crossing diagram D(o(w)). Note that u(o(T')) = p(T'), but u(o(f)) = p(f) +1 and
w(o(F)) = u(f) — 1. Therefore, replacing I' with o#()=#()(T), we can assume
that (f) = p(f").

We will show that there is an r € Z such that o”(f) ~ f" and o"(f) ~F. Since
N(T') = N(I") implies that E; = Ep and E’? = E?/, by Theorem 3.2, it suffices

—/

to show that there is an r € Z such that u(o”(f)) = u(f’) and u(o”(f)) = p(f),
or equivalently, such that r = 0 (mod d(cf)) and r = pu(f) — u(F) (mod d(ery)).

Note that d(a) = ged(d(ery),d(eg)) and p(T') = p(f) + p(f) (mod d(er)). Since

u(T) = p(’) and u(f) = u(f’), we have u(f) — u(f) = 0 (mod d(a)). The
existence of such an r follows from Lemma 6.9.

Lemma 6.9. Let dyi,dy be positive integers, and let d = ged(dy,ds). Then, there
exists v € Z such that r =0 (mod dy) and r = d (mod ds).

Proof. Let x,y € Z be such that xd; + ydy = d. Take r := xd;. ([l

Finally, we show that there are d(«) nonempty move-equivalence classes, i.e.,

that for any p € Z/d(a)Z, there is a move-reduced graph T' with (N(T'), u(T')) =
(N, ). In the proof of Proposition 1.11, we constructed T' with N(I') = N as the
graph associated to a triple-crossing diagram D(w). Let (f, f) be the pair of affine
permutations associated to w. Let w’ be the double affine permutation associated

to (o"(f), f) and let T” be the bipartite graph associated to the triple-crossing
diagram D(w’). Then

(N(I), u(I)) = (N(T), u(T) + 1),

so by varying r, we can get any value of the modular invariant.
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0-® -0

(R1—ii) (R2b)
White-
based loop
reduction
o
I o o —
(R2w—ii) (R3)

FIGURE 23. Moves and reductions on graphs that are not com-
patible with triple-crossing diagrams. (R1—ii), (R2b) and (R3)
contain black leaves. Both sides of (R2w—ii) correspond to the
same triple-crossing diagram.

APPENDIX A. FROM BIPARTITE GRAPHS TO TRIPLE-CROSSING DIAGRAMS

The goal of this section is to give a relation (Lemmas A.3 and A.5) between
bipartite graphs and triple-crossing diagrams; cf. Remark 4.13. We will use these
results to deduce Theorem 1.5 from Theorem 4.14. Unless otherwise stated, all
graphs in this section are bipartite.

Let (M1b) (resp., (M1w)) denote the version of (M1) with black (resp., white)
trivalent interior vertices, and let (M2b) (resp., (M2w)) denote the version of (M2)
contracting/uncontracting black (resp., white) vertices. Note that (M1lw) can be
realized using (M1b) and (M2b) — we uncontract all the black vertices using (M2b),
apply (M1b) and then contract using (M2b).

We say that I' is (M2w)-reduced if contraction using (M2w) cannot be applied
to I'.

Lemma A.1. Two (M2w)-reduced graphs T and I are move-equivalent if and only
if they are related by (M1b) and (M2b). An (M2w)-reduced graph is move-reduced
if and only if it is not move-equivalent to an (M2uw)-reduced graph to which one of
(R1)-(R3) can be applied.

Proof. By inspection, we see that no move or reduction, except possibly (M2b),
involves a degree-two black vertex that can be contracted using (M2w). (Moves
(R1) and (R2) might have degree-two black vertices but they cannot be contracted
using (M2w).) Applying (M2b) with a degree-two black vertex is the same as
applying (M2w). O

For the rest of this section, we assume that our graphs are (M2w)-reduced. A
white-based loop in T is a parallel edge in which the black vertex has degree two
(see the left-hand side of (R1—ii) in Figure 23). In (R1), if the black vertex has
degree greater than three, then we can uncontract using (M2b) to make it degree
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three, and denote this case of (R1) by (R1—iii). Otherwise, we have a white-based
loop and we denote this case by (R1—ii) (Figure 23).

Let (R2b) (resp., (R2w)) denote black (resp., white) leaf removal. If the white
leaf in (R2w) is incident to a black vertex of degree greater than three, we can
uncontract the black vertex using (M2b) to get a white leaf incident to a black
vertex of degree three and call this (R2w—iii). If we have a black vertex of degree
two, we call it (R2w—ii) (Figure 23).

Let I' be a graph in T. Use (R2b), (R2w—ii) and (R3) to remove all black leaves
and white leaves incident to degree-two black vertices. Use (M2b) to uncontract
black vertices with degree greater than three until every black vertex has degree
either zero, two or three. We call such a graph partially reduced. Remove isolated
black vertices and omit all degree-two black vertices, converting the two incident
edges into a single edge to get a plabic graph. Use the procedure in Figure 13 to
obtain a triple-crossing diagram D(I'). Under this procedure, zig-zag paths in I'
become strands of D(T'). The choices in applying (M2b) lead to move-equivalent
triple-crossing diagrams. Let (M2b—iii) denote the resplit move (Figure 24), which
consists of two applications of (M2b).

O-& H-T

(M2b—iii)
Rcspht move

(0]
5 — OYO s
(R1—iii) (R2w—iii)

FiGURE 24. Moves and reductions on graphs that correspond
to moves and reductions on triple-crossing diagrams. Under
I' —» D(T), (M1b) and (M2b—iii) become (M1)’, and (R1—iii) and
(R2w—iii) become (R1).

Lemma A.2. Two partially reduced graphs T' and T' are move-equivalent if and
only if they are related by (M1b) and (M2b—iii). A partially reduced graph T' is
move-reduced if and only if it is not move-equivalent to a partially reduced graph T
to which either (R1—1i), (R1—1ii) or (R2w—iii) can be applied.

Proof. Since T is partially reduced, no black vertices involved in (M2b) have degree
two. Any applications of (M2b) involving black vertices of degree greater than three
can be decomposed into multiple applications of (M2b—iii).

Clearly, (M1b) preserves partial reducedness. Contracting/uncontracting using
(M2b) does not change whether any of the moves (R2b), (R2w—ii) or (R3) can
be applied. Therefore, if T is related to I using (M2b), then we can further
apply (M2b) to make I'" partially reduced. The reductions (R1—ii), (R1—iii) and
(R2w—iii) are the only ones that can be applied to a partially reduced graph. O
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Conversely, we obtain a graph I'(D) from a triple-crossing diagram D as follows.
Use the procedure in Figure 13 to obtain a plabic graph, contract any white-white
edges incident to distinct white vertices and place a black vertex at the midpoint
of each white-white edge to obtain a bipartite graph T'(D). The different choices
in applying Figure 13(b) all lead to the same plabic graph when we contract any
white-white edges incident to distinct white vertices.

Note that I'( D) is partially reduced and has no isolated black vertices. Therefore,
I' = D(T') and D + T'(D) are inverse functions between partially reduced graphs
without isolated black vertices and triple-crossing diagrams.

Lemma A.3. The functions I' — D(T') and D +— T'(D) between partially reduced
graphs without isolated black vertices and triple-crossing diagrams respect move-
equivalence.

Proof. Under the correspondence, (M1)’ becomes either (M1b) or (M2b—iii), so the
result follows from Lemma A.2. O

Remark A.4. The functions I' — D(I") and D — I'(D) do not commute with
reductions; see Figures 23 and 25.

Lemma A.5. The function T' — D(T') is a bijection between move-equivalence
classes of move-reduced graphs without isolated vertices and move-equivalence
classes of move-reduced triple-crossing diagrams, with inverse D — T'(D).

Proof. If T is move-reduced and has no isolated black vertices, then it can be trans-
formed using (M2b) into a partially reduced graph. Therefore, move-equivalence
classes of move-reduced graphs without isolated black vertices are in bijection with
move-equivalence classes of move-reduced partially reduced graphs without isolated
black vertices.

By Lemma A.3, ' — D(T') is a bijection between move-equivalence classes
of move-reduced graphs and some subset T of move-equivalence classes of triple-
crossing diagrams that we need to identify.

Let I' be move-reduced and partially reduced without isolated vertices. I' has
no white-based loops; otherwise (R1—ii) can be applied. Since isolated loops in
D := D(T") correspond to isolated white vertices or white-based loops in I', D
contains no isolated loops. Since (M1)’ cannot create isolated loops, D is move-
reduced if and only if it is not move-equivalent to a D’ to which (R1)" can be
applied. Under the functions I' — D(T") and D — I'(D), (R1-iii) and (R2w—iii)
become (R1)" (Figure 24), so D is move-reduced by Lemma A.2. Therefore, T'
is contained in the set of move-equivalence classes of move-reduced triple-crossing
diagrams.

Let D be a move-reduced triple-crossing diagram, and let I' := T'(D). Since

(1) (R1-iii) and (R2w—iii) become (R1)" (Figure 24);
(2) An isolated white vertex becomes the left-hand side of (R2)’ (Figure 25(a));
and
(3) The left-hand side of (R1—ii) becomes the left-hand side of (R2)’ (Figure
25(b)),
I has no isolated white vertices, and I' is move-reduced by Lemma A.2. There-

fore, T' contains the set of move-equivalence classes of move-reduced triple-crossing
diagrams. (|
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o — Q —
o
(b)
o0—e—o0
(d)

(c)

FiGURE 25. Reductions on triple-crossing diagrams that do not
correspond to reductions on graphs under D — T'(D). Here, (a)
and (b) are the two versions of (R2)’, and (c¢) and (d) the two
versions of (R1)”. In (d), we further contract the degree-two black
vertex to get an (M2w)-reduced graph.

A.1. Proof of Theorem 1.5. We need Lemma A.6.

Lemma A.6. Let I' be a move-reduced graph without isolated vertices. Assume
N(T') is not a single point. The number of contractible faces of T is equal to the
number of degree-three black vertices of T'.

Proof. If T is the affine plabic fence associated to A*, then both numbers are zero.
Each s; and s; increases both numbers by one. Therefore, the result holds for affine
plabic fences. If I' is move-reduced, then I' is move-equivalent to the bipartite
graph associated with an affine plabic fence by Lemma 6.4 and Lemma A.5, and
move-equivalence does not change the number of contractible faces. ([l

If T' and I are related by (M2w) or (M2b), then each of the conditions (1)—(2)
holds for T if and only if it holds for I. Each of (1)-(2) implies that " is leafless.
Therefore, we can assume that I' is partially reduced. Moreover, since I'" has a
perfect matching, I'" has no isolated vertices.

(1) = (2): Since I has a perfect matching, N is not a single point by Theo-
rem 1.16. The implication follows from Lemma A.5, Theorem 4.14 and Lemma A.6.

(2) = (1): Suppose N is a single point. Then, 2 Area(N)+exc(A) = 0 so I" has
no contractible faces. Since (M1)—-(M2) cannot create leaves or contractible faces,
none of the reductions (R1)—(R3) can be applied to any graph move-equivalent to
I', so I' is move-reduced.

Assume N is not a single point. By Lemma A.2, I is not move-reduced if and only
if it is move-equivalent to a partially reduced I'” to which either (R1—ii), (R1—iii)
or (R2w—iii) can be applied. Since I' has no leaves and (M1)-(M2) cannot create
leaves, either (R1—ii) or (R1—iii) can be applied to I'. Let D := D(T') be the as-
sociated triple-crossing diagram. Then, either (R1)"” or (R2)’ can be applied to D'.
We decrease the number of contractible faces in I' when we apply either reduction
(see Figure 25(b) and (c)). Transform D’ into a move-reduced D" by further using
(M1)’, (R1)” and (R2)’". The graph I'V = I'(D") has strictly fewer contractible faces
than T, no isolated vertices, and satisfies N(I'"") = N(I'). Since N is not a single
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point, I has 2 Area(N) + exc(\) contractible faces by Lemma A.5, Theorem 4.14
and Lemma A.6, a contradiction.
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