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ABSTRACT: AI-based algorithms are emerging in many meteorological applications that pro-

duce imagery as output, including for global weather forecasting models. However, the imagery

produced byAI algorithms, especially by convolutional neural networks (CNNs), is often described

as too blurry to look realistic, partly because CNNs tend to represent uncertainty as blurriness. This

blurriness can be undesirable since it might obscure important meteorological features. More com-

plex AI models, such as Generative AI models, produce images that appear to be sharper. However,

improved sharpness may come at the expense of a decline in other performance criteria, such as

standard forecast veri昀椀cation metrics. To navigate any trade-o昀昀 between sharpness and other per-

formance metrics it is important to quantitatively assess those other metrics along with sharpness.

While there is a rich set of forecast veri昀椀cation metrics available for meteorological images, none

of them focus on sharpness. This paper seeks to 昀椀ll this gap by 1) exploring a variety of sharpness

metrics from other 昀椀elds, 2) evaluating properties of these metrics, 3) proposing the new concept

of Gaussian Blur Equivalence as a tool for their uniform interpretation, and 4) demonstrating their

use for sample meteorological applications, including a CNN that emulates radar imagery from

satellite imagery (GREMLIN) and an AI-based global weather forecasting model (GraphCast).
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SIGNIFICANCE STATEMENT: AI-based estimates of meteorological images, e.g., for fore-

casting applications, often lack sharpness, but there are no well established metrics to measure

sharpness of meteorological imagery. This manuscript seeks to close this gap by exploring sharp-

ness metrics for meteorological imagery, analyzing their properties, and providing guidelines for

their interpretation. We hope that the tools provided here will aid the development of AI algorithms

that provide more realistic meteorological imagery.

1. Introduction

Neural networks (NNs) are increasingly used to generate meteorological imagery for numerous

meteorological applications, ranging from the generation of synthetic radar imagery (Hilburn et al.

2020) to global weather forecasting tasks (Bonev et al. 2023; Bi et al. 2023; Lam et al. 2023). A

concern with many of these models, especially many convolutional neural networks (CNNs), is that

they produce imagery that is considered too blurry to be realistic (Blau and Michaeli 2018). Newer

AI models, in particular Generative AI models - which are discussed in Section 1c - can yield

imagery that contains much more detail and thus appears to be much ”sharper”. The emergence

of Generative AI provides vast new opportunities to customize AI models to satisfy the speci昀椀c

requirements of an application, e.g., the need to provide detailed meteorological features. However,

navigating this extended AI model space also presents new challenges, as sharper images are not

always better images. For example, optimizing sharpness by itself may result in a decrease of other

performance criteria, such as those measured by traditional forecast veri昀椀cation metrics. Vice

versa, optimizing traditional forecast veri昀椀cation metrics, such as root mean square error, tends

to decrease sharpness, an e昀昀ect often described as reduced e昀昀ective resolution of many AI-based

weather prediction models (Subich et al. 2025; Selz et al. 2025). To be able to e昀昀ectively navigate

such trade-o昀昀s, it is essential to assess the images produced by AI models using both traditional

forecast veri昀椀cation metrics, as well as measures for sharpness.

a. Relationship to existing forecast veri昀椀cation metrics

There is a rich body of literature on forecast veri昀椀cationmetrics, for an excellent overview of such

metrics see for example Gilleland et al. (2009, 2010), Jolli昀昀e and Stephenson (2012), or Dorninger

et al. (2018). For use of such metrics in practice, see Turner et al. (2020), which describes a
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framework for NWP model veri昀椀cation, and Weather Bench 2 (Rasp et al. 2024), which describes

a framework to compare the performance of AIWP and NWP models.

Many of these forecast veri昀椀cation metrics apply to spatial 昀椀elds. Such metrics include pixel-

based methods (such as root mean square error; RMSE), neighborhood methods (such as fractions

skill score; FSS; Roberts and Lean (2008)), scale-separation methods (Briggs and Levine 1997;

Buschow and Friederichs 2020), feature-based methods (Davis et al. 2006; Brown et al. 2007),

and 昀椀eld deformation methods (Gilleland et al. 2009). However, none of those focus speci昀椀cally

on evaluating sharpness. For example, pixel-wise comparison of two images, such as calculating

the average RMSE, only evaluates pixel-wise match-ups, and reveals nothing about the level of

detail included in either image. Similarly, an estimate of the pixel-wise displacement vectors that

map one 昀椀eld to another, as can be obtained using 昀椀eld deformation methods, on its own tells

us nothing about sharpness of either image. Neighborhood-based methods, such as FSS, require

that a continuously-valued image must 昀椀rst be discretized (often binarized), and during that step

many details relevant to sharpness, such as gradual transition from a low to high values and the

texture details in the images, are removed before the FSS can be applied. Similarly, feature-based

veri昀椀cation metrics, such as the Method for Object-based Diagnostic Evaluation (MODE; Brown

et al. (2007)), require to 昀椀rst map an image to a discrete set of objects, and most details are removed

during that step. Finally, scale-separation methods assess similarity of images at speci昀椀c scales in

spectral space, typically applying either a Fourier or wavelet transformation to the images 昀椀rst

(Gilleland et al. 2009; Briggs and Levine 1997; Buschow and Friederichs 2020). While those

metrics do not directly measure sharpness either, they share the property of performing image

comparisons in spectral space with the spectral sharpness metrics discussed in Section 2c.

Probably the concept most closely related to sharpness is e昀昀ective resolution. E昀昀ective reso-

lution, in the context of weather prediction models, is de昀椀ned as the smallest spatial scale where

atmospheric structures are reproduced with realistic amplitudes (Selz et al. 2025). While well es-

tablished in numerical weather prediction (Skamarock 2004), it has recently seen a resurgence for

the comparison of AI-based weather prediction models to numerical weather prediction models

(Subich et al. 2025; Selz et al. 2025). E昀昀ective resolution of a forecast image is typically evaluated

in spectral space, e.g., by evaluating energy spectra (Selz et al. 2025), properties of spherical har-

monic modes (Subich et al. 2025), or properties of a Haar wavelet decomposition (Pfreundschuh
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et al. 2022). However, e昀昀ective resolution focuses on evaluating the spatial scale of represented

features, but does not directly measure the sharpness of those features, such as rapid transitions.

The emergence of highly customizable AI models, especially Generative AI, creates the need to

study a wide variety of sharpness metrics that can capture di昀昀erent aspects of sharpness. For this

reason we expand our perspective by studying sharpness metrics from other 昀椀elds for potential use

in meteorological applications. It cannot be emphasized enough though that any such sharpness

metrics should only be applied in addition to any traditional forecast veri昀椀cation metrics relevant to

an application, since as stated earlier, we expect there to be trade-o昀昀s between satisfying sharpness

criteria and satisfying other critical performance requirements.

b. A guiding example

As illustrative example of a neural network for image generation we use the GREMLIN model

developed by Hilburn et al. (2020) throughout this manuscript. GREMLIN is short for ”GOES

Radar Estimation via Machine Learning to Inform NWP” and is a convolutional neural network

(CNN) model for image-to-image translation. It translates images from geostationary satellites to

synthetic radar imagery, speci昀椀cally composite re昀氀ectivity. Its purpose is to estimate radar com-

posite re昀氀ectivity in regions where radar is not available, such as in mountainous and remote terrain

and over oceans. GREMLIN is a standard CNNwith a U-net (Ronneberger et al. 2015) architecture

and a custom loss function that improves GREMLIN’s ability to predict high intensity events. Fig-

ure 1(a) shows a sample observed radar composite re昀氀ectivity image (ground truth) and Figure 1(b)

shows the corresponding estimate from GREMLIN. Image values for both the observed composite

re昀氀ectivity and the GREMLIN estimate are scaled – in Fig. 1 and throughout this manuscript – as

follows. The radar re昀氀ectivity (in dBZ) is divided by 60 dBZ resulting in non-dimensional values

within [0,1]. The result is multiplied by 255 to get the image pixel values.

It is apparent in Fig. 1 that GREMLIN’s composite re昀氀ectivity estimate is much blurrier than the

observation (ground truth). We would like to modify GREMLIN to provide sharper features, but

at this point we cannot even quantify what exactly that means - as there are no standard metrics to

quantify sharpness of meteorological imagery.
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Radar observation GREMLIN estimate

(a) (b)

Figure 1: GREMLINmodel for generating synthetic radar imagery: (a) observed composite re昀氀ec-
tivity from radar (ground truth); (b) estimated composite re昀氀ectivity by CNN model GREMLIN
(Hilburn et al. 2020) based on satellite imagery. Scale: both observed and estimated radar re昀氀ec-
tivity values are divided by 60 dBZ to obtain values within [0,1], then multiplied by 255.

c. Predictive vs. generative AI models

It is important to distinguish predictive vs. generative AI models for image generation. Predictive

AI models, such as GREMLIN and many other standard CNNs that use RMSE-like loss functions

for image-to-image translation tasks, produce a single output image that, approximately, represents

the average of all possible solutions (Subich et al. 2025; Selz et al. 2025). In contrast, Generative AI

models, such as Generative Adversarial Networks (GANs) (Goodfellow et al. 2014) and di昀昀usion

models (Sohl-Dickstein et al. 2015), produce one or more output images that each represent a single

sample of all possible solutions.

Figure 2, which is derived from an image by Ledig et al. (2017), illustrates the di昀昀erence between

predictive and generative model output for the task of super-resolution, i.e., generating a high-

resolution image from a given low-resolution image. Super-resolution is an ill-de昀椀ned task, since

in昀椀nitely many high-resolution images correspond to the same low-resolution image. Ledig et al.

(2017) study the use of GANs for super-resolution. In Fig. 2 the patches with red frames represent

an ensemble, i.e., a subset of the in昀椀nitely many possible high-resolution images that correspond to

a given (not shown) low-resolution image. The patch in blue indicates the predictive model solution

which is an approximation of the average of all red patches, i.e., of the ensemble mean. The patch

6

Accepted for publication in Artificial Intelligence for the Earth Systems. DOI 10.1175/AIES-D-24-0083.1.
Unauthenticated | Downloaded 07/14/25 03:31 AM UTC



Red:     Subset of possible solutions - ensemble

Blue:    Output of standard CNN       - approximating ensemble mean
Yellow: Single output of GAN            - approximating single ensemble member

Figure 2: Schematic illustrating the typical results obtained by a standard CNN and a GAN for the
ill-de昀椀ned task of generating high-resolution imagery from low-resolution imagery. The patches in
red represent a subset of the in昀椀nitelymany solutions to the problem (ensemblemembers), the patch
in blue represents the solution obtained by a CNN with Mean Squared Error (MSE) loss function
(roughly ensemble average), and the patch in yellow represents a GAN solution (approximation
of single ensemble member). Image credit: Figure adapted from Fig. 3 in Ledig et al. (2017) -
reprinted with permission from IEEE.

in yellow indicates a generative model solution (here from a GAN) which approximates a single

ensemble member. As a consequence, the image from the predictive model (in blue) represents

the “safe” solution: it typically has the highest possible accuracy (e.g., lowest mean square error;

MSE), but it is very blurry and does not itself represent a physically possible solution. In contrast,

the image from the generative model (in yellow) is quite sharp and represents a physically possible

solution, but at the cost of lower accuracy (e.g., higher MSE), and it might represent an outlier of

the ensemble.

d. E昀昀ect of AI model uncertainty

Fig. 3 summarizes how model uncertainty is expressed in imagery generated by predictive vs.

generative AI models. For a predictive AI model the uncertainty is expressed as increased blurri-
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Predictive AI model:

AI model is uncertain 

about estimate for 

specific sample

" Increased blurriness in output

image

Generative AI model:

AI model is uncertain 

about estimate for 

specific sample

" No obvious blurriness in individual

output image(s)

" Increased spread in image ensemble

output image g mean of ensemble output image = member of ensemble

Figure 3: How uncertainty is expressed in imagery from predictive vs. generative AI models

ness in the output image, while for a generative AI model the uncertainty is expressed in the spread

of the ensemble, while each individual image appears to be sharp.

In the meteorological community a generative model is best understood as serving the function

of a probabilistic model, i.e., a model that inherently yields an ensemble forecast and whose output

should thus be interpreted as one member of an ensemble. However, in the AI community gener-

ative models are not always interpreted that way. They are often used to generate a single output

image, and the fact that this image might be an outlier, and thus not representative of the entire

ensemble, may be hidden. That is because in many computer science applications, such as ani-

mations, an image only has to ”look” realistic. A single member of a generative AI model output

昀椀ts this requirement of ”looking” realistic. However, that criterion is not good enough for a typi-

cal meteorological application, which requires a forecast to be representative of the set of possible

solutions.

Thus one needs to be careful when using a single estimate of a generative model. It is recom-

mended to export an ensemble - rather than just a single member - and to check the ensemble’s

spread. If the spread is small, then using a single ensemble member is 昀椀ne. If only certain regions

of the image have a signi昀椀cant spread, one may choose to visually indicate those regions in the

resulting image, or to present several ensemble members. There is an increasing need for the com-

munity to explore the most e昀昀ective ways to communicate the uncertainty information gained from
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ensembles to di昀昀erent end users, as Generative AI will greatly increase the availability of ensem-

bles in meteorological applications. As a starting point, see the study by Demuth et al. (2020) on

how to communicate ensemble information to forecasters of the National Weather Service.

Lastly, we note that the uncertainty discussed here is the total uncertainty of the AI model, i.e.

it includes both internal variability of the weather system, aka the aleatory component, and all

types of AI model errors, aka the epistemic component. See Haynes et al. (2023) for a detailed

discussion of the concepts of aleatory and epistemic uncertainty for machine learning models.

The total uncertainty is expressed as blurriness for predictive models and as spread for generative

models, regardless of its source.

e. Is a sharper image a better image?

In our quest to make images sharper, we need to carefully consider the speci昀椀c needs of each

application. For example, when predicting precipitation, what is more important, higher spatial

accuracy or higher sharpness? The answer depends completely on how the information is supposed

to be used, as well as which information is already available. For example, to get a good estimate

of the probability that it rains in a particular location, it is likely more important to optimize for

spatial accuracy. On the other hand, to get an idea of the severity of the overall rain event, it might

be more important to optimize the sharpness of the meteorological features even at the potential

cost of more error in the location of the features.

As these examples illustrate, a blurrier but more accurate image may be more useful for analysis

purposes, despite its lack of visual appeal. However, there may be instances where having sharp

features resolved (even if those features have some degree of spatial or intensity error) is helpful.

For instance, if the internal texture of a feature is important, it may not matter whether individual

pixels are in the correct location so long as their local features and arrangement is accurate – in such

a case, having a sharper but potentially less “accurate” model may be of great utility. A similar

scenario where a sharper image is preferred is situations where an over-smoothed solution may

blur out small, isolated features which may be crucial to know about, e.g., the presence of isolated

storms, even if they are not in the correct position.

In addition, we need to keep track of the aforementioned trade-o昀昀s. For example, Blau and

Michaeli (2018) 昀椀nd that for the application of image enhancement with neural networks there is a

9

Accepted for publication in Artificial Intelligence for the Earth Systems. DOI 10.1175/AIES-D-24-0083.1.
Unauthenticated | Downloaded 07/14/25 03:31 AM UTC



perception-distortion trade-o昀昀, i.e. a trade-o昀昀 between perception-based qualities (such as sharp-

ness) and distortion (i.e. accuracy).

Lastly, there is also the important question whether sharper images, for example a single image

produced by a Generative AI model, may hide the model’s uncertainty from the user. This could be

misleading and instill unwarranted con昀椀dence for the user in the model’s correctness. We suggest

the following actions when using Generative AI to produce meteorological imagery:

• Educate users about the fact that individual forecasts obtained using Generative AI may look

extremely detailed and realistic, even if themodel is not terribly con昀椀dent in its own prediction,

i.e. the model uncertainty is hidden.

• Consider calculating ensembles and communicating uncertainty by other means if presenting

only a single output image to the user.

• We urgently need studies on the e昀昀ect that sharp forecast images, obtained using Generative

AI, have on the user’s perception of the model’s con昀椀dence, especially for users who may base

critical decisions on such imagery, such as forecasters.

For all of these reasons, we encourage readers to critically examine the actual bene昀椀ts sought

from sharper images. In particular, care must be taken when using Generative AI to generate

sharper images, as outlined above. On the other hand, there is no doubt that Generative AI - in

particular di昀昀usion models - provide a powerful technique that, if used carefully, has the potential

to greatly advance the 昀椀eld of meteorological forecasting by providing more detailed forecasts,

ensemble forecasts, and estimating uncertainty. The potential power of employing di昀昀usionmodels

in meteorological forecasting has been demonstrated recently, for example by the SEEDS (Li et al.

2024) and GenCast (Price et al. 2025) models.

f. Means to increase sharpness and proposed use of sharpness metrics

We need to keep in mind the reasons that cause blurriness for a considered AI model, and thus,

whether it is possible, or meaningful, to reduce that blurriness. For example, for a predictive model

with an RMSE-like loss function we know that blurriness represents uncertainty, so developers may

昀椀rst look for ways to reduce the epistemic uncertainty by changing the model architecture, loss

function (e.g., Subich et al. (2025)), or hyperparameters, then re-evaluating sharpness and other
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performance criteria. One may also seek to expand the training set, by adding more samples to

better represent the sample space, or adding more input variables. In particular, we highlight an

often-overlooked source of sharpness: sharpness of the input data. While most of the focus for

increasing sharpness has been on loss functions and architectures, the sharpness of the output is

directly tied to the sharpness of the input data, and in many cases 昀椀nding and utilizing sharper

sources of data can be an e昀케cient way to add sharpness. Post-processing tools, e.g., applying

sharpening 昀椀lters to the output images may be another way to increase sharpness of predictive

model output. Lastly, moving from predictive to generative AI models tends to increase sharpness,

with the caveats discussed in Section e.

We hope that the development of sharpnessmetrics will allow the community to answer important

questions, such as:

• How sharp are images generated by generative models compared to predictive models?

• How sharp are images from either type of model in comparison to ground truth?

• Which model changes, e.g., in training data, model architecture, loss function, hyperparame-

ters, or post-processing, improve the sharpness of the model’s output?

• What are the common trade-o昀昀s between improving sharpness vs. potentially decreasing other

important forecast veri昀椀cation metrics?

We foresee two primary ways to use sharpness metrics:

• Diagnostic use: Sharpness metrics can be used as a diagnostic tool during model develop-

ment, i.e., to point developers toward speci昀椀c shortcomings of a model. The information can

be used by the developer, for example, to change the training dataset or model architecture

in an attempt to 昀椀x the shortcoming. We see much potential for this type of use during the

tuning, model-selection, and evaluation phase of AI model development.

• Use in loss function: Sharpness metrics can also be added to the loss function of a neural net-

work to provide sharpness-related feedback during training. Many of the sharpnessmetrics are

relatively easy to implement to be included in a custom loss function. For example, calculat-

ing image gradients is a standard functionality in neural network programming environments,

facilitating the use of the image-gradient based sharpness metrics discussed in Section 2b.
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Similarly, taking the spatial Fourier transform of an image is also surprisingly easy in a neural

network programming environment (Lagerquist and Ebert-Upho昀昀 2022), thus enabling the

use of metrics such as Fourier-RMSE discussed in Section 2c. What is challenging, how-

ever, is to choose a meaningful trade-o昀昀 in a loss function between optimizing traditional and

sharpness-based metrics. We include a few experiments on the use of sharpness-based metrics

for neural network training in a vignette in Subsection S1c of the supplemental document. A

deeper study of how to choose such trade-o昀昀s is suggested as a topic for future research.

g. Image assumptions, scope and organization of this paper

The scope of this paper is to explore several metrics to evaluate the sharpness of any type of

meteorological image – whether it comes from observations, from a physics-based model, or from

an AI-generated model – along with guidelines on how to interpret them.

For simplicity, we make the following assumptions for images to be evaluated:

1. We assume images to be two-dimensional. Many of the concepts discussed here also apply

to higher dimensional images, but for ease of explanation, we restrict our discussion to 2D

images with the two dimensions denoted as G and H.

2. We only consider single-channel (i.e., gray) images. For multi-channel (or multi-color) im-

ages, a metric can be applied to each channel separately, followed by taking the min, max, or

average value across all channels. We suggest a deeper exploration of multi-channel images

as a topic for future research.

3. We assume images to have no missing or unde昀椀ned values (no NaNs).

The remainder of this paper is organized as follows:

• Section 2 provides an overview of metrics included in this study. All of these metrics have

been used before in computer vision. We also include a description of heatmaps, one of the

main visualization tools we use.

• Section 3 introduces the new concept of the Gaussian Blur Equivalent (GBE) and presents two

case studies that illustrate its practical use in comparing sharpness: i) GREMLIN estimates vs.

observed radar, and ii) weather forecasts from an AI-based model (GraphCast) vs. a traditional

Numerical Weather Prediction (NWP) model (GFS).
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• Section 4 discusses properties of sharpness metrics that are important for their use, ranging

from their computational complexity to the impact of white noise on the sharpness values.

• Section 5 provides a 昀椀nal discussion and suggests topics for future work.

• Section S1 of the supplementary document contains vignettes that illustrate the evaluation of

sharpness using the original metrics from Section 2 - rather than the GBE values introduced

in Section 3 - for several meteorological applications.

• Section S2 of the supplementary document provides the de昀椀nitions of all metrics included in

this manuscript, along with mathematical proofs for the metrics’ properties that are presented

in Section 4.

Accompanying code is available on Github, see the Data availability statement for details.

2. Sharpness Metrics

The term image sharpness is used extensively in literature, but it is di昀케cult to 昀椀nd a consistent

de昀椀nition. Early de昀椀nitions of sharpness can be found in photography, where sharpness is often

de昀椀ned as the acuity, or contrast, between the edges of an object in an image (SLR Lounge 2023).

Note that this de昀椀nition, and many others in photography, assume the presence of clearly de昀椀ned

edges in the image. However, meteorological imagery, such as the two examples shown in Fig. 4,

may not include any such edges. Furthermore, considering the cloud in Fig. 4(a), it is clear that

the perception of sharpness in this satellite image mostly comes from the level of detail provided

inside the cloud, i.e., the cloud’s texture, rather than by the sharpness of the cloud’s boundaries.

One may even debate the exact location of the cloud’s boundaries. The 昀椀eld of photography also

o昀昀ers metrics analyzing image frequencies through the use of the Fourier transform. However, the

昀椀eld of computer vision has developed a wider and more suitable set of sharpness metrics for our

purpose, which are discussed next.

Vu et al. (2011) provide an excellent overview of sharpness metrics from computer vision and

classify them into three categories: edge-based, pixel-based and transform-based metrics. The list

below discusses our selection of metrics, which is based on that classi昀椀cation by Vu et al. (2011).

We emphasize that for this 昀椀rst study we selected a set of metrics that i) have simple mathematical
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(a) (b)

Figure 4: Two examples of meteorological imagery: (a) satellite image from the Geostation-
ary Operational Environmental Satellite #16 (GOES-16) showing clouds; (b) forecast of 500mb
geootential height at 5 days lead time from GraphCast (Lam et al. 2023) initialized on 4-23-2024
(00Z).Image credit for (b): GraphCast visualization from our Real-time visualization website for
purely AI-based weather models (Radford et al. 2025). The richness of texture in the cloud im-
age and the lack of clear boundaries in the geopotential height forecast illustrate why using only
sharpness measures that focus on edges, i.e., boundaries between ”objects”, would disregard many
important details in meteorological imagery.

equations and are easy to understand, ii) appear useful for meteorological applications, and iii)

cover a wide range of di昀昀erent concepts.

1. Edge-based metrics 昀椀rst identify edges, then analyze their properties. We do not cover these

metrics due to their underlying assumption that images must have well-de昀椀ned edges. Further-

more, if there are sharp edges present in an image, their e昀昀ect on sharpness will be detected

by gradient-based metrics anyway, which are included in the next category.

2. Pixel-based metrics, aka spatial metrics, include gradient-based methods. We include several

gradient-based metrics here. Pixel-based metrics also include methods based on eigenval-

ues/singular value decomposition (SVD) of images (Wee and Paramesran 2008), which are

much more abstract and less commonly used. Those are not included here and may be added

in future studies.

3. Transform-based metrics, aka spectral metrics, include methods based on Fourier or wavelet

transforms. We include metrics based on both transforms.
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4. Neural network based metrics were not yet discussed by Vu et al. (2011), because they did not

yet exist. Thesemetrics utilize the values of certain internal states (latent space representation)

of trained neural networks to assess image properties, e.g., see Zhang et al. (2018). Those

metrics are not covered here, as their functionality is too opaque (i.e., black box character) for

this 昀椀rst study.

We distinguish between univariate metrics, which take a single image as input at a time, and

bivariate metrics, which require two input images at a time. Accuracy metrics, e.g., RMSE, are

always bivariate, as one always needs a ground truth for comparison to assess the accuracy of an

image. Bivariate sharpness metrics also compare one image to another, but instead of comparing

the similarity of the image itself, they compare the similarity of the image’s sharpness. In contrast,

univariate sharpness metrics are applied to a single input image and assess the sharpness of just

that image. To compare the sharpness of two images, one calculates the univariate metric for each

image and then analyzes their di昀昀erence. There is a key di昀昀erence between univariate and bivariate

sharpness metrics when used to compare two images. Bivariate sharpness metrics compare sharp-

ness locally, i.e. they compare whether the images have the same sharpness at individual locations.

In contrast, univariate sharpness metrics compare sharpness between images without taking the

location of sharp features within an image into account. For example, when comparing two square

images, one can rotate one image by 90 degrees without changing the results.

For simplicity we refer to each metric as being computed across an “image,” but they can each

also be computed on smaller subsets of an image, as wewill see in Section 2d, to generate sharpness

heatmaps.

We discuss the metrics in three groups in the following subsections: 1) standard forecast veri昀椀-

cation metrics, 2) sharpness metrics based on total variation and image gradients, and 3) sharpness

metrics in spectral space. For each metric we provide a short description, the abbreviated name of

its implementation in the GitHub repository (in parentheses), and whether the metric is univariate

or bivariate. We emphasize again that none of these metrics are new. Group 1 metrics are already

in use for meteorological imagery. The metrics in Groups 2 and 3 are not very common for meteo-

rological imagery, but have all been used in other 昀椀elds. De昀椀nitions of all metrics are provided
in Section S2a of the Supplemental material.
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a. Group 1: Standard forecast veri昀椀cation metrics

While the purpose of this study is to evaluate the sharpness of imagery, it is important to consider

sharpness and standard veri昀椀cation metrics in tandem, namely to make sure that increasing sharp-

ness does not come at the expense of drastically reducing other important metrics. We chose the

three simple metrics below to represent a few common veri昀椀cation metrics. These metrics are only

a sample selection for Group 1 and developers should replace them with any forecast veri昀椀cation

metrics deemed relevant for their considered application.

1. Image Intensity / Dynamic Range [univariate]: We keep track of the min, mean, and max

intensity value of each image, because the dynamic range of an image has a signi昀椀cant e昀昀ect

on its apparent sharpness. An easy way to increase many sharpness metrics of an image would

be to just increase its dynamic range - which is typically not what we want. This motivates us

to keep track of the intensity of images.

2. Root Mean Squared Error (RMSE) [bivariate]: RMSE is the square root of the mean

squared error (MSE) between two images and is a commonly-used similarity metric for the

training of neural networks. We keep track of RMSE to make sure we do not drastically reduce

the similarity of image estimates while trying to make them sharper.

3. Structural Similarity Index Measure (SSIM) [bivariate]: SSIM is a similarity measure be-

tween two images based on a weighted combination of three simpler comparisons: luminance

(intensity), contrast, and structure. The product of these measures gives SSIM. An important

note is that SSIM acts on a patchwise rather than pixelwise basis, and as such can capture more

spatial information than pixelwise methods like RMSE. SSIM values range between 0 and 1,

with SSIM = 1 indicating identical images and values approaching 0 indicating increasingly

dissimilar images. SSIM is often cited to better represent image similarity - as perceived by

humans - than, for example, RMSE. For details, see Wang et al. (2004).

b. Group 2: Sharpness metrics based on total variation and image gradients

Since sharp boundaries result in sharp gradients, it is intuitive to use properties related to the gra-

dient of an image to assess its sharpness. Total variation is very similar to gradient-based methods
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and is thus included here. We expect this group of metrics to respond strongly to sharp edges in an

image.

1. Total Variation (TV) [univariate]: Total variation measures how much an image changes

if it is shifted slightly. This can measure the sharpness of edges because when a sharp edge

is shifted slightly it will cause a larger di昀昀erence than if a smoother edge is shifted the same

amount. TV values close to 0 indicate very smooth images, while sharper images will have

larger TV values. It is important to note that we follow common convention in not normalizing

TV by image size, so TV values for images (or blocks) of di昀昀erent sizes are not comparable,

and it is normal to get TV values that are very large compared to most other metrics described

here.

2. Mean Gradient Magnitude (Grad-Mag) [univariate]: At each pixel, we can compute gra-

dients in both the horizontal (x) and vertical (y) directions; the magnitude of the gradient at

that pixel is then the norm of the vector formed by those directional gradients. The Grad-

Mag is the mean of these gradient magnitudes across the image, and as such gives a summary

statistic that reports, on average, how rapidly intensity changes occur within the image. More

rapid intensity changes generally correspond with sharper images, so higher Grad-Mag values

indicate a sharper image, with Grad-Mag = 0 indicating a completely uniform image with no

variation.

3. Gradient Total Variation (Grad-TV) [univariate]: Gradient total variation is the total vari-

ation of the gradient magnitude map, where the gradient map is described in Grad-Mag above,

and total variation is as described in TV. Because both TV and gradients measure sharpness,

the gradient TV is really giving information about how sharp the sharpness map is - i.e., are

areas of rapid change (associated with sharpness) themselves sharp. In practice, this second-

order sharpness seems to correspond with sharpness.

4. Gradient RMSE (Grad-RMSE) [bivariate]: In this bivariate metric, we compute the RMSE

not between two images directly, but between two gradient magnitude images. We compute

the gradient magnitudes as in Grad-Mag above, but rather than averaging those across a single

image to obtain a statistic, we compute the RMSE between the gradient maps for two distinct

images. As in general for RMSE, values closer to 0 indicate more similarity, while larger
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values indicate more dissimilarity. By taking the RMSE of gradient magnitude maps, we

are measuring how closely aligned regions of rapid change are between the two images; i.e.,

measuring how well sharp edges correspond between the two images.

5. Laplace RMSE (Laplace-RMSE) [bivariate]: Laplace RMSE is very similar to gradient

RMSE, but instead of taking the magnitude of the gradient vector at each pixel, we compute

the divergence of the gradient at each pixel, which is a way of quantifying the local shape of

the gradient vector 昀椀eld. By taking the RMSE of two such divergence maps, we are comput-

ing how similar the shapes of edges are between two images. As with any of these RMSE

measures, values close to 0 indicate that the two images have very similar Laplacian maps,

while larger values indicate larger di昀昀erences.

c. Group 3: Sharpness metrics in spectral space

The last set of metrics seeks to analyze the sharpness of images in spectral space. The idea

is to 昀椀rst apply a Fourier or wavelet transformation, and then to analyze image properties in the

corresponding spectral representation of the image.

1. Fourier RMSE (Fourier-RMSE) [bivariate]: When taking the 2D Fourier transform, the

resulting complex-valued phase space can be reduced down to the power spectrum by taking

the absolute value of the complex values at each frequency, which gives another real-valued 2D

array. Fourier RMSE is then the RMSE between the power spectra of the two images being

compared. Note that in the power spectrum, spatial coordinates correspond to frequencies,

which are all weighted evenly in this RMSE computation.

2. Fourier Total Variation (Fourier-TV) [univariate]: We once again start with the power

spectrum, but instead of comparing two power spectra, we take the Total Variation of the power

spectrum for a single image. The power spectrum contains information about sharpness (as

high-frequency information can be interpreted as “sharp”), and TV measures how sharp the

power spectrum is, so like Grad-TV, we have some degree of second-order sharpness.

3. Spectral Slope (Spec-Slope) [univariate]: As mentioned in Fourier-TV, the power spectrum

of an image, in particular, the distribution of high vs low-frequency information, contains

information on how sharp an image is and spectral slope seeks to capture this information.
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The de昀椀nition of spectral slope is based on the fact that the magnitude spectrum of almost all

natural and model images decreases inversely with frequency and that in a logarithmic plot

this decrease can be roughly approximated by a line (Vu et al. 2011). The slope of the line is

called the spectral slope of the image. It is very sensitive to blurring, while also being entirely

invariant to uniform changes in intensity, i.e., rescaling the image intensity does not change

the spectral slope value. Outside of mostly carefully constructed (arti昀椀cial) examples, values

of spectral slope are all negative, with more negative values indicating less sharp images.

Spec-Slope’s invariance to uniform changes of an image’s intensity is advantageous for some

applications, but this invariance also creates undesired side e昀昀ects. Because spectral slope is

invariant to intensity, it tends to return very high sharpness results in regions of low intensity

and contrast for even miniscule signals, such as noise.

4. S1 ((1) [univariate]: (1 is derived from Spec-Slope, designed to compensate for Spec-Slope’s

aforementioned problem with low intensity signals by adding a minimal contrast requirement.

Namely, the (1 metric computes the contrast for a considered image (or image patch). If the

contrast is below a certain threshold, it returns a null sharpness value. Otherwise, it returns

the value of Spec-Slope. Thus, (1 returns non-zero sharpness values only for regions that

have been deemed (by setting the contrast threshold) to have su昀케cient variation to justify

consideration. We note that this contrast threshold is a hyperparameter that must be set with

care depending on the data type, range, and analysis needs of each application. As a default

parameter we use the value 25 (chosen as 10% of the max intensity value, 255, of most images

in this manuscript) throughout this manuscript, with the exception of results provided for

GraphCast in Section 3c.

5. Wavelet Total Variation (Wavelet-TV) [univariate]: Wavelet-TV is based on the wavelet

transform, which takes in an image and (for one level) yields a set of four output arrays: the

approximation coe昀케cients and three sets of detail coe昀케cients. The detail coe昀케cients con-

tain information about variation in the image at various scales and orientations, while the

approximation coe昀케cient contains information about average intensities, so by summing the

absolute value of all of these coe昀케cients, we arrive at a notion of total variation in the image

utilizing wavelets. Like Total Variation, we view increasing values of Wavelet-TV as having
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higher sharpness and note that Wavelet-TV is also not normalized by the size of the image, so

Wavelet-TV values for di昀昀erent image (or block) sizes are not comparable.

d. Visualizing local sharpness using heatmaps

Since meteorology is a very visual 昀椀eld, we believe it is essential for all of the metrics to not only

provide a single number for quantitative assessment, but also a visual representation of which fea-

tures in an image are perceived to be particularly accurate or sharp. To provide such visual feedback

we generate heatmaps by evaluating small patches of each image and displaying the resulting local

information as an image, i.e., the heatmap of an image for a speci昀椀c metric, as illustrated in Figure

5. Sharpness heatmaps have been used before (Vu et al. 2011), but to the best of our knowledge

they have never been applied for meteorological imagery.

Each patch is a small square block with edges that are 1/8th the length of the horizontal edge

length of the input image. We calculate and visualize the metric values for all blocks - that rep-

resents the heatmap. Using disjoint blocks can lead to edges lying along the border between two

blocks not being detected. Thus we use overlapping blocks. For most experiments, adjacent blocks

overlap 75% of their area, but for blocks smaller than 8× 8 pixels the overlap may be less than

75% because we enforce a minimum block stride of 2 pixels. The output heatmap reports the

values for each block on the central pixels of that block but because of the overlap each block in-

cludes information from a larger region than its value is outputted to. For all metrics that utilize the

Fourier transform, we implement windowing using the Hann window (following Vu et al. (2011)

who used similar heatmaps) on each block to minimize the edge e昀昀ects on the Fourier transform.

Each heatmap can be shown on its own or used as an overlay over the input image(s) to indicate

areas with very high or low values of each metric. We use the following colors to indicate the

di昀昀erent types of heatmaps and the occurrence of NaNs:

• Gray indicates the original image, i,e., image intensity.

• Blue indicates values of univariate metrics, i.e., metrics that are calculated from an individual

image (no comparison).

• Red indicates values of bivariate metrics, i.e., metrics that compare two images. Throughout

this paper, all bivariate metrics indicate the comparison of each image to the original image,
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(a) (b) (c)

Figure 5: Heatmaps comparing observed radar (reference) with the corresponding GREMLIN es-
timate (evaluation image) for (a) Metric Group 1, (b) Metric Group 2, and (c) Metric Group 3.
The colormap for SSIM is inverted because SSIM indicates stronger similarity by a higher value
- in contrast to standard similarity measures, such as RMSE. Yellow indicates pixels with invalid
values.

which is always shown on the top left. Thus bivariate metrics for the original image with itself

are identical to zero for all metrics except SSIM, and identical to one for SSIM.

• Yellow indicates individual pixels with invalid values (NaNs). We have observed NaNs only

for the spectral slope metrics (Spec-Slope and (1), since spectral slope is unde昀椀ned in areas

of an image that have no signal (constant value). The

min/mean/max values of the heatmaps used in the stats plots are calculated across all valid

pixels, i.e., pixels with NaNs are currently ignored.

As a convention we always plot the reference image in the left most column, i.e. on the left side

of Fig. 5(a), (b), and (c). Bivariate heatmaps (those in red) compare an image to the reference
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image. This explains why the red heatmaps for the reference image are all constant, i.e. 0 for

most bivariate metrics and 1 for SSIM, since SSIM has a value of 1 for identical images and 0 for

maximal dissimilarity. Note also that the color scale for SSIM is reversed in these heatmaps, to

indicate stronger di昀昀erences by darker red.

Let us illustrate the interpretation of Fig. 5 for this GREMLIN example. Group 1 metrics indi-

cate that the reference and evaluation image di昀昀er most strongly in image regions of strong inten-

sity. Group 2 metrics tell us that the reference image is sharper than the evaluation image (blue

heatmaps), and that the di昀昀erence in sharpness is strongest in areas where the images are most

di昀昀erent, as the red heat maps in Group 2 are in similar locations as in Group 1. Most Group 3

metrics, Fourier-RMSE, Fourier-TV and Wavelet-TV tell a similar story as Group 2 metrics, but

indicate smaller, more focused regions of sharpness and sharpness di昀昀erence. Spec-Slope does not

appear useful here, as it indicates greatest sharpness in regions with extremely small intensity. The

(1 metric seeks to limit these regions by applying a minimal contrast treshhold, but with limited

success: the (1 metric still highlights areas of little interest since they might just be noise. Note

that whatever the contrast threshhold, the (1 metric tends to have the highest values right at the

cuto昀昀, because that is where image contrast has the lowest allowed value to pass the Spec-Slope

value through, and thus where small amounts of white noise tend to have the largest e昀昀ect on (1.

e. Discussion

An important note about these metrics is that while there are some that are speci昀椀cally for simi-

larity or for sharpness, others measure some combination of the two. All of the metrics in Group 1

are about either intensity (for the raw image itself) or similarity. On the other hand, Groups 2 and 3

include metrics that either measure sharpness alone, or a combination of sharpness and similarity.

The univariate metrics in these groups can be seen as directly measuring the sharpness of the im-

ages being input. The bivariate metrics measure not just sharpness, but the local alignment of sharp

features (except for Fourier-RMSE, which measures the local alignment of phase space features).

This captures both similarity and sharpness, because there are two ways for sharp features to come

out of local alignment: one is that there is a lack of sharp features in one image to align, and another

is for there to be sharp features that are out of position. Both perspectives are useful, particularly
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when taken in combination, as the univariate metrics can help disambiguate whether the bivariate

metrics show di昀昀erences due to a lack of sharp features or because of their misalignment.

Note the huge di昀昀erences of the dynamic range of the various metrics. For example, for the

sample images in Fig. 5 the dynamic range of univariate sharpness metrics varies between 4 units

(Spec-Slope, (1) and 400,000 units (Fourier-TV). Similarly, the dynamic range of the bivariate

sharpness metrics varies between 80 units and 20 million units. Some of these di昀昀erences could

be reduced using normalizing factors related to image size, but even then large variations remain.

We introduce a more meaningful approach in Section 3.

3. Introducing the Concept of Gaussian Blur Equivalent

As seen in Fig. 5 the range of values greatly varies across the metrics. This makes it hard to

interpret the raw metric values. What constitutes strong sharpness for each metric? How do values

of di昀昀erent metrics compare? Rather than determining how to interpret each metric individually,

we propose instead a calibrationmethod that generates a uniform scale for image comparison across

all metrics, the Gaussian Blur Equivalent (GBE).We introduce the concepts of GBE plot and GBE
values in Section 3a, then illustrate their use for a GREMLIN example in Section 3b and for two

GraphCast examples in Section 3c. We conclude with a discussion in Section 3d.

a. GBE for image comparison

The GBE is designed for the comparison of two images. The reference image is typically the

ground truth, e.g., the observed radar in the case of GREMLIN. The evaluation image is the image

to be evaluated, e.g., the GREMLIN estimate. The core idea of GBE is to compare the evaluation

image to a series of images, starting with the reference image and increasingly blurred versions of

the reference image, as illustrated in Fig. 6. For each metric we compare which level of blurriness

of the reference image corresponds most closely to the blurriness level of the evaluation image.

The steps of calculating GBE are described below, along with illustrations for the GREMLIN

example in Fig. 7.

1. Panel (a): Create a sequence of increasingly blurred copies of the reference image by applying

Gaussian blur with standard deviation, f, increasing from 0 to some chosen value, fmax.
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?

Gaussian blur increasing

Gaussian Blur Equivalent (GBE):

Where does the evaluation image 

fit in the above sequence?  

Reference image

Evaluation image

Figure 6: Core idea of GBE to calibrate a sharpness metric: How much do we have to blur the
reference image to get the same (min, mean or max) sharpness value as for the evaluation image?

2. Panel (a): Calculate all metrics for all blurred versions of the reference image with respect to

the reference image.

3. Panel (c): Generate a plot of the min, mean, and max metric values for the blurred reference

images. Min, mean and max, are indicated in yellow, red, and blue, respectively, with each

image resulting in a yellow, red, and blue, data point in the plot in the same order (left to right)

as the heatmaps in Panel (a). Subsequent data points are connected by dashed lines. These

are the calibration curves for the chosen metric for a speci昀椀c reference image, aka raw metric

value (RMV) plot.

4. Generate heat maps (Panel (b)) and calculate metric values (Panel (d)) for the reference and

evaluation image.

5. Panel (e): Construct the GBE plot by combining the RMV plots in (c) and (d) as follows. Use

the RMV plot (Panel (c)) and add horizontal lines for min, mean, max of the evaluation image

(values are shown as the yellow/red/blue end points on the right of Panel (d)).

6. Panel (f): To calculate the GBE values, identify in the GBE plot, for each metric the smallest

blur value at which the yellow/red/blue curve and same color horizontal line intersect. These

values are called the Gaussian Blur Equivalent (GBE) values,

f
<,B

GBE(reference image, evaluation image),
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where < denotes the metric and B the statistic (min, mean, or max).

Interpretation: The Gaussian Blur Equivalent value, f<,B

GBE(reference image, evaluation image),

is the standard deviation value of the Gaussian blur operation that, when applied to the reference

image, would yield an identical metric value as the evaluation image. The GBE values provide the

desired interpretation for comparison - using a uniform scale - across all metrics.

b. GBE comparison for GREMLIN vs. observed radar

Fig. 8(a) shows the GBE plots for the GREMLIN example from Fig. 5 for all metrics. Fig. 8(b)

shows the estimated GBE values, obtained by visual inspection from Fig. 8(a). In future work we

plan to add automatic calculation of GBE values, but those algorithms need to properly deal with

degenerate cases and alert users to those. Furthermore, visual inspection is required either way, for

reasons discussed in Section 3d.

GREMLIN results (Fig. 8): Focusing on the univariate sharpness metrics, the gradient-based

sharpness metrics place the image estimate at about the blurriness of applying a Gaussian 昀椀lter

with fmean around 2 to 2.5, while the spectral metrics consider the estimate to be much sharper,

namely corresponding to fmean around 0.5 to 1.

We should emphasize that we have not established any guidelines for ideal GBE values. Such

guidelines are bound to be highly application dependent. For example, for the GREMLIN applica-

tion, it turns out that the reference images (radar observations) contain considerable noise, which,

as discussed below in Section 4, can in昀氀ate the sharpness values of the reference image. In those

cases, we would not want the GREMLIN estimates to reach the sharpness values of the reference

images, since we do not want to reproduce the noise of the reference image. In contrast, if the

ground truth is obtained from an NWP model (as in the following subsection) that is meant to

model observations, then we would want the estimates to be even sharper than the ground truth

(as NWP model output tends to be too smooth) which would yield a negative GBE value, but the

current set-up does not provide for estimating negative GBE values.

c. GBE comparison for GraphCast vs. GFS

One of the key motivations for this paper was to be able to compare the sharpness of the new

generation of purely AI-based global weather prediction models (AIWP) to forecast imagery gen-
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(a) Reference and increasingly blurred copies (b) Reference and evaluation

image

(c) RMV plot (d) RMV plot

GBE 

values

min mean max

intensity 0 0 0.5

grad-mag 0 2.0 1.8

grad-

rmse

0 4.0 3.7

(f) GBE values

(e) GBE plot

Calibration 

curves 

from 

blurred 

reference

image

Copy estimate9s metric values & 

add as horizontal lines

Coordinates of 

intersection

Figure 7: Calculation of GBE plot and GBE values, illustrated using GREMLIN example and three
sample metrics, intensity, Grad-Mag and Grad-RMSE.
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Figure 8: (a) GBE comparison for radar observations (reference) vs. GREMLIN estimate (evalua-
tion image) for the sample in Fig. 5 using metric groups 1, 2, and 3. Metric (1 here uses the default
contrast threshold, 25. (b) Mean GBE values in (a) estimated visually from red curves and lines.

erated by traditional NWP models. Here we compare an AIWP model, namely GraphCast (Lam

et al. 2023), to an NWP model, namely the Global Forecast System (GFS) by the National Cen-

ters for Environmental Prediction (NCEP; NCEP (2024)). We do so for just two sample cases,

where the GraphCast forecasts (evaluation images) are compared to the corresponding GFS fore-

casts (reference images), using the GBE approach. We use Release 1 of GraphCast (version 0.1 of

Jan 5, 2024, SHA 8debd72, at https://github.com/google-deepmind/graphcast), initialize
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it with GFS initial conditions at C, run a forecast for a time Δ) , and compare the results at (C +Δ))

with a GFS forecast. Note that this GraphCast version was 昀椀netuned on the European NWPmodel,

namely the Integrated Forecasting System (IFS; Wedi et al. (2015)) by the European Centre for

Medium-RangeWeather Forecasts (ECMWF), rather than GFS. Thus GraphCast results initialized

by GFS (rather than IFS) are known to be not quite as good, although di昀昀erences tend to be small.

For example, for the forecast of 500-hPa geopotential heights about a half day degradation in skill

has been observed for models initialized with GFS rather than IFS data (personal communication

with ECMWF’sMatthew Chantry). The exact results of this comparison should thus not be used to

judge the performance of the GraphCast algorithm - using just two samples to judge an algorithm

is not advisable anyway. Instead this section serves only as an illustration of how to apply and

interpret these metrics for this type of application.

Figure 9 shows the forecasts generated by GFS and GraphCast for two events - a 昀氀ash昀氀ood event

forecast 48h out, and an atmospheric river event 148h out. The heatmap and GBE results are

shown in Figures 10 and 11 for the 昀氀ash昀氀ood event and in Figures 12 and 13 for the atmospheric

river event.

GraphCast 昀氀ash昀氀ood results (Figures 10, 11): The mean metric results are very 昀氀at for the

blurred imagery which is likely due to the fact that most areas of the images are blank. Thus we

focus on max metric results for all metrics except SSIM, and use min metric results for SSIM. We

emphasize that the mean GBE value should be used wherever possible in these analyses, since it

provides a better estimate of overall sharpness of features than just using the value of the sharpest

features, i.e., the max GBE value. However, in this case the mean GBE value is not usable.

Note that for this 昀氀ash昀氀ood event the maximal GraphCast intensity is roughly 1/3 of the maximal

GFS intensity. As will be seen in Section 4 all metrics decrease linearly with a change in intensity,

with the exception of SSIM and Spec-Slope, which are invariant, and (1, which varies non-linearly.

Thus, the low sharpness indicated in Fig. 11 for most metrics is largely due to the lower intensity,

rather than lack of sharp transitions. Univariate gradient-based metrics place the GBE value around

f
max

= 2.0, and Fourier- and Wavelet-TV place it higher, around f
max

= 3 to 3.5. The Spec-

Slope heatmap indicates that that metric is not capturing relevant sharpness information here, so

we discard it from consideration. On the other hand, by setting the threshold value for (1 to 0.1,
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Figure 9: 6h accumulated precipitation (in inches) forecast by GFS and GraphCast for a 昀氀ash昀氀ood
event at lead time of 48 hours and for an atmospheric river event at 148 hour lead time. Image size:
64 x 64 for 昀氀ash昀氀ood, 256x256 for atmospheric river.

we were able to extract sharpness information only for the relevant portions of the image, so we

retain that as an informative measure.

GraphCast atmospheric river results (Figures 12, 13): For the atmospheric river event the

maximal GraphCast intensity is similar, even a bit higher, than the maximal GFS intensity. The

univariate gradient-based metrics indicate a f
max value of about 1.8 to 2, and Fourier-TV and

Wavelet-TV place it around 1.0 and 1.8, respectively. We hypothesize that this reduction in sharp-

ness despite similar intensity values is due to the high level of texture and sharpness visible in Fig.

9(c) and the relative smoothness of the GraphCast forecast in Fig. 9(d). The Spec-Slope heatmap
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Figure 10: Heatmaps for the 昀氀ash昀氀ood event for GFS vs. GraphCast forecasts of 6h accumulated
precipitation at lead time of 48 hours. The contrast threshold for metric (1 used here is 0.1.

again shows that it is measuring signi昀椀cant sharpness in very dark regions that we are not interested

in, so we once again discard it from consideration.

The two examples above compare the sharpness of AIWP-generated imagery to NWP-generated

imagery. One should keep in mind that NWP-generated imagery itself comes from a numerical

simulation of the real world, and is in fact much smoother than observations, e.g., satellite or radar

imagery. A long-term goal of AI algorithms will be to match the sharpness of real observations.
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Figure 11: (a) GBE plots for the 昀氀ash昀氀ood event, comparing GFS vs. GraphCast forecasts of 6h
accumulated precipitation at lead time of 48 hours. The contrast threshold for metric (1 used here
is 0.1. (b) Max GBE values in (a) estimated visually from blue curves and lines. Note that for
SSIM the min values estimated from the yellow curves and lines is used. ”−−” indicates a value
discarded because of the corresponding heatmap.
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Figure 12: Heatmaps for the atmospheric river event for GFS vs. GraphCast forecasts of 6h accu-
mulated precipitation at lead time of 168 hours. The contrast threshold for metric (1 used here is
0.1.
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Figure 13: (a) GBE plots for the atmospheric river event, comparing GFS vs. GraphCast forecasts
of 6h accumulated precipitation at lead time of 168 hours. The contrast threshold for metric (1

used here is 0.1. (b) Max GBE values in (a) estimated visually from blue curves and lines. Note
that for SSIM the min values estimated from the yellow curves and lines is used. ”−−” indicates a
value discarded because of the corresponding heatmap.
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d. Discussion

From the examples in this section we learned a few lessons regarding the use of these metrics.

The overarching theme of these lessons is that no single metric (or even combination of metrics)

can serve as a “silver bullet” to determine sharpness in all situations. Each dataset and application

will have di昀昀erent requirements and properties that a昀昀ect how these metrics respond, and care is

required in selecting which metrics to focus on. We can utilize the examples in this section as a set

of case studies with which we illustrate this analysis process.

One of the 昀椀rst metrics to look at is simply intensity, as illustrated by the GFS vs. GraphCast

昀氀ash昀氀ood example. As we will discuss shortly in Section 4, almost all of these metrics have their

response directly correlated with intensity, and as such if the overall intensity ranges do not match,

every other metric will be a昀昀ected. Similarly, before diving into deeper analyses of sharpness,

one should always print heatmaps and do a sanity check whether any metrics display undesirable

behavior on this particular dataset. For instance, we found that in all three of these examples, the

spectral slope metrics focused principally on “sharp” regions in the darkest perceivable regions

around the features actually of interest, so we did not focus on them further in these analyses.

Finally, the heatmaps can inform which GBE curve (min, mean, or max) to examine. Namely, in

datasets in which the features of interest are relatively sparse - for example, the images in two of the

three examples considered in this section, namely the two GFS-GraphCast comparisons, contain

mostly 昀氀at, dark backgrounds with isolated regions of interest - an overwhelming proportion of the

heatmap blocks will indicate “no sharpness” or “fully similar”, and as such the mean GBE values

are saturated with these values and become uninformative. For this reason, we focus on the max

GBE curve for all metrics except for SSIM. For SSIM we utilize the min GBE curve, since its

interpretation is reversed (its max value means maximal similarity).

Once we have done this pre-analysis, we can begin analyzing the GBE curves themselves. At

this point, we are still asking the question of “which metrics are informative for my dataset?”, and

as such we are looking at the GBE reference curves rather than the GBE values of the evaluation

images. An “informative” GBE curve is one that displays consistent drop-o昀昀 in sharpness as the

reference image is blurred more and more – for instance, in Figure 8(a) the mean GBE curves for

TV, Grad-Mag, and Grad-TV are all fairly informative, while the mean GBE curve for Wavelet-

TV is very uninformative (昀氀at) in this case. We note that Fourier-TV in this case would not be
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considered particularly informative, because while there is a dramatic drop in the mean GBE curve

from blur values 0 to 2, it is likely that a large portion of this is due to observation noise being

reduced via blurring, as the mean GBE curve remains more or less 昀氀at after this initial drop. In

Figures 11 and 13 we decided to get information from the max GBE curves (min for SSIM). There,

Wavelet-TV and Fourier-TV have very informative max GBE curves, and while TV, Grad-Mag, and

Grad-TV are all reasonably informative as well, they do su昀昀er from more asymptotic 昀氀attening at

higher blur levels.

Throughout this section so far, we have focused more on the univariate metrics than the bivariate

ones. We have done this intentionally as our focus is on the sharpness itself, which is most easily

compared via univariate metrics. All of the bivariate metrics include some degree of similarity

as well as sharpness, and as such are most useful for asking more complicated questions of the

data such as “are the sharp features in these two regions well-aligned?” Answering these types

of questions is best done using a combination of univariate and bivariate metrics: the univariate

metric response can be used to disambiguate which portions of the bivariate response are due to

a lack of sharp features and which portions are due to misaligned sharp features. However, such

analyses are by their nature more involved, and are generally beyond the scope of this paper.

We can 昀椀nally utilize the GBE values themselves to analyze how sharp each of these examples

are. Examining the numbers in Fig. 8(b) and focusing on TV, Grad-Mag, and Grad-TV, this case

has a mean GBE of approximately 2, indicating that the GREMLIN model is indeed losing some

of the sharp features present in the radar observations. However, as discussed in Section 3b, some

of this lack of perceived sharpness may be due to a degree of noise in the observed radar data that

would not be desirable for GREMLIN to recreate.

Next, examining the numbers in Figure 11(b) for the GFS-GraphCast example of 昀氀ash昀氀ood and

focusing on TV, Grad-Mag, Grad-TV, Fourier-TV, and Wavelet-TV, the max GBE values are be-

tween 2 and 3.5. However, recall that this 昀氀ash昀氀ood example had signi昀椀cantly lower intensity than

the reference image, and as such these blurriness values are exaggerated, and the “true” max GBE

value is likely between 1 and 2. This matches visual inspection: the reference GFS image itself

does not contain many sharp features, so the GraphCast prediction is proportionally not as blurry.

Finally, examining the numbers in Figure 13(b) for the atmospheric river example and focusing on

the same set of metrics as in the 昀氀ash 昀氀ood example, we obtain consistently smaller max GBE val-
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ues, ranging from 1 to 2, which roughly matches our intensity-corrected estimate for the 昀氀ash昀氀ood

event.

4. Important Properties of Sharpness Metrics

There are several properties of these metrics that are relevant to explore using more abstract

analysis techniques. In this section, we present several experiments that illustrate how these metrics

respond to:

• What e昀昀ect does adding white noise have on these metrics? (Section 4a.)

• How do the metrics change if we 1) translate, 2) change intensity, or 3) change the edge sharp-

ness of a synthetic example? (Section 4b.)

In addition to these practical experiments, we also analyzed certain properties of the metrics theo-

retically. Speci昀椀cally, we show the e昀昀ect on metrics resulting from changing resolution, shifting

the intensity range by a 昀椀xed o昀昀set, and scaling the intensity range by a 昀椀xed scaling factor. For a

quick summary of those theoretical results, see Table 1, and for the full details see Supplemental

Sections S2b, S2c, and S2d.

There are a few takeaways from this analysis. First, we note that changing the resolution a昀昀ects

only those metrics that utilize total variation (e.g. TV, gradient TV, Fourier TV, and Wavelet TV)

and does so in a predictable way (increases proportionally to the number of pixels), so making

sharpness comparisons across di昀昀ering resolutions should be relatively straightforward. On the

other hand, metrics have very di昀昀erent responses to shifting and scaling intensity. Most metrics

(aside from SSIM, Spec-Slope, and (1) scale proportionally as intensity is rescaled (i.e. multiplied

by a scaling factor), while all the metrics aside from those three and wavelet total variation are

invariant to shifting the intensity range (i.e. adding or subtracting a 昀椀xed value). The upshot of

this is that when comparing data that needs to be normalized, most metrics can be compared fairly

easily (with just the scaling factor taken into account) but additional care needs to be taken for

SSIM, spectral slope, (1, and wavelet total variation.

We also present derivations of the computational complexity of eachmetric in Supplemental Sec-

tions S2e and S2f, with a summary of those results along with practical timings of the computation

of each metric on representative examples in Table 2.

36

Accepted for publication in Artificial Intelligence for the Earth Systems. DOI 10.1175/AIES-D-24-0083.1.
Unauthenticated | Downloaded 07/14/25 03:31 AM UTC



Table 1: Summary of Metric Properties. For details, see Supplemental Sections S2b, S2c, and S2d.

Image Change Invariant Metrics Non-invariant metrics
Resolution All others TV-based metrics increase with square of edge length

Shifting intensity All others SSIM, Spec-Slope, (1, & Wavelet-TV change non-linearly

Scaling intensity SSIM*, Spec-Slope All others scale proportionally, except (1 (non-linear)

*SSIM is invariant to scaling the overall dynamic range of the input type (allowing comparisons

between 0-1 and 0-255 scaled data) but not to scalings within a given dynamic range.

Table 2: Computational Complexity of Metrics

Metric Big $ 64×64 wall clock 128×128 wall clock
RMSE $ (=) 0.0103 sec 0.0113 sec
SSIM $ (=) 0.1379 sec 0.1580 sec
TV $ (=) 0.0260 sec 0.0295 sec
Grad-Mag $ (=) 0.0447 sec 0.0509 sec
Grad-TV $ (=) 0.0414 sec 0.0464 sec
Grad-RMSE $ (=) 0.0385 sec 0.0446 sec
Laplace-RMSE $ (=) 0.0197 sec 0.0223 sec
Fourier-RMSE $ (= log=) 0.0852 sec 0.0946 sec
Fourier-TV $ (= log=) 0.0807 sec 0.0908 sec
Spec-Slope $ (= log=) 0.9053 sec 1.2101 sec
(1 $ (= log=) 0.9723 sec 1.3772 sec
Wavelet-TV $ (=) 0.1662 sec 0.1740 sec
Note: all wall clock times are an average from 昀椀ve similar computations
with the same base image.

a. E昀昀ect of adding white noise

In this section we consider the question of how the various metrics respond to adding white

noise to an image. In Section 3, we discussed an algorithm based on blurring the image to reduce

sharpness – in this subsection, we explore how sharpness values can be arti昀椀cially in昀氀ated by the

presence of noise. This section serves as an illustration of how these metrics respond to a signal

that a human would not regard as making an image “sharper.” As an illustrative example we use a
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satellite image of a cloud, gradually add white noise to it, and track the values of all metrics in this

image sequence. The white noise is added separately for each pixel by drawing from a Gaussian

distribution with f set to be a factor times the maximal intensity of the original image. The factor

is provided on top of the 昀椀rst row of images in Figures 14.

Observations: All metrics increase with increasing white noise in the image, but to varying de-

gree. Wavelet-TV seems to be least a昀昀ected by the impact of white noise, with the mean increasing

by less than 100% for f = 1.0, while all other sharpness metrics increase dramatically with white

noise. Thus, Wavelet-TV stands out as being the most invariant to the addition of white noise in

an image.

This result highlights a potential issue with utilizing one or more of these metrics inside the loss

function of a neural network: if the network has as one of its goals increasing “sharpness” as
measured by these metrics, one way for the network to achieve that goal is to increase the
white noise in its output images, which is generally not a desirable property for a neural
network. Thus, great care must be taken in incorporating and properly weighting any term in a

loss function incorporating these metrics. In part because of issues like this, a detailed study on the

use of sharpness metrics within loss functions is beyond the scope of this paper, but we refer the

reader to Section S1c in the supplemental material for a brief example of the impacts of sharpness

metrics in a neural network loss function.
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(a) (b)

(c) (d)

(e) (f)

Figure 14: Response of metrics to adding white noise to a satellite image. (a,c,e) show heatmaps
and (b,d,f) RMV plots for Metric Groups 1, 2, and 3, respectively.
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(a) (b)

(c) (d)

(a) Original (b)	Translated

(d) Sharp	transi.on(c) Low	intensity

(a) Original (b)	Translated

(d) Sharp	transi.on(c) Low	intensity

Figure 15: Synthetic images for experiments in Fig. 16. (a) Reference image: Background with
intensity 0 with a single blob-like feature - a disk of radius 20 pixels, intensity 100 units, and linear
drop o昀昀 of 2 units/pixel from boundary of blob outwards. (b) Translated image: blob is translated to
a di昀昀erent, non-overlapping location, (c) Low intensity image: Same as (a) but intensity is divided
by 2.0 throughout the entire image, (d) Sharp transition image: size and intensity of central disk
of blob is the same as in (a) but rate of drop-o昀昀 is twice as steep, namely decrease of 4 units/pixel
from the disk’s boundary outwards.

b. E昀昀ect of feature location, feature intensity, and speed of transition

We conduct three experiments that illustrate the e昀昀ect that speci昀椀c changes to an image have

on the various metrics. Figures 15(a) shows the reference image that has one blob-like feature

consisting of a disk with linear intensity drop-o昀昀 from the disk boundary outward. Figures 15(b-

d) show modi昀椀cations of the image, namely translation of the feature (b), halving intensity of the

image (c), and doubling rate of boundary transition from disk to background (d). Fig. 16 shows

pair-wise comparisons of the reference image to each of the modi昀椀ed images.

Examining these heatmaps, there are a few things to note. When we translate the disk, all the

univariate metrics translate along with it, precisely as expected. In each heatmap block, the bivari-

ate metrics are e昀昀ectively comparing the presence of a disk vs. a blank background at each location
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Translation Reduced intensity Sharper Transition

(a) (b) (c)

Figure 16: Heatmaps for all metrics demonstrating e昀昀ect of changing (a) the location of a feature,
(b) intensity of an image (including of all features), and (c) the rate of transition from feature to
background.
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for this image pair (because the old and new location do not overlap here), and as such we obtain

two “bumps”: one at the original location, and one at the new location. This is the well-known

double-penalty problem in the assessment of weather forecasting skills (Zhao and Zhang 2018).

It is, however, worth noting how these bivariate metrics fall o昀昀: RMSE has a fairly linear fall o昀昀

with the linear decrease in intensity, as does Fourier-RMSE. On the other hand, SSIM has quite

large values anywhere that there is any discrepancy between the images, all the way right out to

the edges of the blobs where it 昀椀nally starts falling o昀昀. Finally, Grad-RMSE and Laplace-RMSE

exhibit a maximum intensity partway to the edge of the disk, approximately where the linear fall

o昀昀 begins - this makes sense, as that is the location where the gradient is largest, and thus gradient

discrepancies.

When we change intensity, we note that our theoretical results reported in Table 1 hold true: All

of the metrics except for SSIM, Spec-Slope, and (1 reduce in intensity by approximately 50%. This

is easy to see for the univariate metrics, and we can see it in the bivariate metrics by comparing

the values found in column (b) with those in column (a). SSIM, here, displays some degree of

di昀昀erence coming from the change in intensity, with the largest di昀昀erences being in the fall-o昀昀

region rather than at the center of the disk. Finally, Spec-Slope remains identical over changes

in intensity, but while (1 shows similar minimum values between intensities, because the contrast

threshold was not changed between the two images, more heatmap regions fell within that threshold

and were cut out, resulting in a slightly smaller valid region.

Finally, as we make the transition region sharper, we can see this re昀氀ected in the metrics. The

accuracy metrics (RMSE and SSIM) pick up on the fact that only the transition region has changed,

marking the center of the disk as “unchanged.” All of the univariate metrics display similar be-

havior to one another again, and both constrict the region of detected sharpness and intensify it,

corresponding to a narrower, sharper edge. Grad-RMSE has a very similar shape to when the

disk was compared against a blank region of the image in column (a), but while the maximum

value is about the same, the mean value is much smaller when only the transition rate has been

changed. Laplace-RMSE on the other hand displays similar overall statistic values (similar maxi-

mum, slightly reduced mean) but the heatmap shows a distinct concentration of high values right

around the region of sharper transition that was not present in corresponding location in column (a).
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Finally, Fourier-RMSE displays a completely di昀昀erent pattern than it did in column (a), focusing

in very precisely on the region of increased transition.

c. Discussion

The metrics presented here are largely invariant to changes in resolution (with the notable excep-

tion of TV-based metrics), but are a昀昀ected, in general, by changes in intensity. These e昀昀ects are

mitigated by utilizing derived tools, like the GBE measure introduced in the previous section, and

the standard practice of normalizing data to a common, 昀椀xed range (such as 0−1 or 0−255) will

also ensure that variances due to intensity di昀昀erences are minimized. While it is generally good

practice to share processing details such as normalization steps that were performed, data range

information, and analysis resolution, it is particularly critical when these metrics are being used,

as that information can enable fair comparison and replication from other groups.

It is worth noting that because of the high sensitivity of these metrics to white noise, applying

a denoising step before computing sharpness could be a useful preprocessing step. While analysis

of such denoising techniques is beyond the scope of this paper, we suggest that starting with the

median 昀椀lter (Huang et al. 1979) would be a reasonable approach.

We also note that while GBE is theoretically invariant due to its proportional nature, in practice

numerical and discretization errors as well as the stochastic nature of some of the transformations

discussed here (such as adding white noise) mean that in practice there may be some changes to

derived GBE statistics.

5. Discussion and Future Work

We presented here a set of metrics that the community can use to evaluate sharpness and other

properties. We hope to have provided an initial understanding of how these various metrics apply to

several distinct applications and how their properties a昀昀ect those results. Some of the key insights

we gained include:

• All of these metrics are correlated with and can indicate trends in what we as humans consider

“sharp,” but none fully capture the subjective, perceptual nature of sharpness. A good illus-

tration of this is the experiment in Subsection 4a: most people would not consider a noisier

image to be “sharper,” but every metric we tested registered signi昀椀cantly increased sharpness
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in the presence of added noise. Thus, we should remember that these metrics are measur-
ing idiosyncratic quantities that are each just a proxy of what humans perceive as image
sharpness.

• As a result, there is no “catch-all” metric that will work in every case. Instead, it is always

important to test a variety of tools both quantitatively and qualitatively on each dataset and

choose the ones that 昀椀t.

• There are many ways to assess which of these metrics are compatible with a given dataset.

Section 3d summarizes many of our “lessons learned” on understanding how to make those

choices. Some of the most important lessons are:

– Before using any metric one should look at a) intensity, b) heatmaps, and c) GBE curves.

– Undesired noise in the reference images (e.g., from observations) needs to be taken into

account.

– Any overall di昀昀erence in intensity must be considered, as that can strongly a昀昀ect all

other sharpness results (with the notable exception of (1).

• While many of these metrics possess similar properties to one another, there are distinct dif-

ferences in how they respond to certain changes in the input data, particularly resolution, loca-

tion, intensity, and sharpness of transitions that should be taken into account when selecting

metrics.

We have only scratched the surface of this topic and suggest to expand this study by exploring the

following topics:

• A more in-depth study of which kinds of sharpness the various metrics primarily focus on,

e.g. from edges vs. texture.

• Adopting a better way to avoid NaNs as output of metrics, such as discussed in Vu et al. (2011)

for Spec-Slope.

• Adding some of the metrics discussed in Section 2 that we dropped for this study.

• Testing alternate methods of blurring for techniques derived from GBE, such as bilateral blur-

ring (Tomasi and Manduchi 1998).
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• Developing more best practices / protocols for the use of these metrics.

• Conducting experiments to test how much the spherical harmonic loss function recently pro-

posed by Subich et al. (2025) improves sharpness.

Another important topic - one that is only brie昀氀y touched on in Subsection S1c of the supplemental

document - is the question of how to e昀昀ectively use these metrics to train neural networks, rather

than just to evaluate them. We hope to explore this topic in a follow-up paper.
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