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ABSTRACT: Al-based algorithms are emerging in many meteorological applications that pro-
duce imagery as output, including for global weather forecasting models. However, the imagery
produced by Al algorithms, especially by convolutional neural networks (CNNs), is often described
as too blurry to look realistic, partly because CNNs tend to represent uncertainty as blurriness. This
blurriness can be undesirable since it might obscure important meteorological features. More com-
plex Al models, such as Generative Al models, produce images that appear to be sharper. However,
improved sharpness may come at the expense of a decline in other performance criteria, such as
standard forecast verification metrics. To navigate any trade-off between sharpness and other per-
formance metrics it is important to quantitatively assess those other metrics along with sharpness.
While there is a rich set of forecast verification metrics available for meteorological images, none
of them focus on sharpness. This paper seeks to fill this gap by 1) exploring a variety of sharpness
metrics from other fields, 2) evaluating properties of these metrics, 3) proposing the new concept
of Gaussian Blur Equivalence as a tool for their uniform interpretation, and 4) demonstrating their
use for sample meteorological applications, including a CNN that emulates radar imagery from

satellite imagery (GREMLIN) and an Al-based global weather forecasting model (GraphCast).
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SIGNIFICANCE STATEMENT: Al-based estimates of meteorological images, e.g., for fore-
casting applications, often lack sharpness, but there are no well established metrics to measure
sharpness of meteorological imagery. This manuscript seeks to close this gap by exploring sharp-
ness metrics for meteorological imagery, analyzing their properties, and providing guidelines for
their interpretation. We hope that the tools provided here will aid the development of Al algorithms

that provide more realistic meteorological imagery.

1. Introduction

Neural networks (NNs) are increasingly used to generate meteorological imagery for numerous
meteorological applications, ranging from the generation of synthetic radar imagery (Hilburn et al.
2020) to global weather forecasting tasks (Bonev et al. 2023; Bi et al. 2023; Lam et al. 2023). A
concern with many of these models, especially many convolutional neural networks (CNNs), is that
they produce imagery that is considered too blurry to be realistic (Blau and Michaeli 2018). Newer
Al models, in particular Generative Al models - which are discussed in Section 1c - can yield
imagery that contains much more detail and thus appears to be much “sharper”. The emergence
of Generative Al provides vast new opportunities to customize Al models to satisfy the specific
requirements of an application, e.g., the need to provide detailed meteorological features. However,
navigating this extended Al model space also presents new challenges, as sharper images are not
always better images. For example, optimizing sharpness by itself may result in a decrease of other
performance criteria, such as those measured by traditional forecast verification metrics. Vice
versa, optimizing traditional forecast verification metrics, such as root mean square error, tends
to decrease sharpness, an effect often described as reduced effective resolution of many Al-based
weather prediction models (Subich et al. 2025; Selz et al. 2025). To be able to effectively navigate
such trade-offs, it is essential to assess the images produced by Al models using both traditional

forecast verification metrics, as well as measures for sharpness.

a. Relationship to existing forecast verification metrics

There is a rich body of literature on forecast verification metrics, for an excellent overview of such
metrics see for example Gilleland et al. (2009, 2010), Jolliffe and Stephenson (2012), or Dorninger

et al. (2018). For use of such metrics in practice, see Turner et al. (2020), which describes a
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framework for NWP model verification, and Weather Bench 2 (Rasp et al. 2024), which describes
a framework to compare the performance of AIWP and NWP models.

Many of these forecast verification metrics apply to spatial fields. Such metrics include pixel-
based methods (such as root mean square error; RMSE), neighborhood methods (such as fractions
skill score; FSS; Roberts and Lean (2008)), scale-separation methods (Briggs and Levine 1997;
Buschow and Friederichs 2020), feature-based methods (Davis et al. 2006; Brown et al. 2007),
and field deformation methods (Gilleland et al. 2009). However, none of those focus specifically
on evaluating sharpness. For example, pixel-wise comparison of two images, such as calculating
the average RMSE, only evaluates pixel-wise match-ups, and reveals nothing about the level of
detail included in either image. Similarly, an estimate of the pixel-wise displacement vectors that
map one field to another, as can be obtained using field deformation methods, on its own tells
us nothing about sharpness of either image. Neighborhood-based methods, such as FSS, require
that a continuously-valued image must first be discretized (often binarized), and during that step
many details relevant to sharpness, such as gradual transition from a low to high values and the
texture details in the images, are removed before the FSS can be applied. Similarly, feature-based
verification metrics, such as the Method for Object-based Diagnostic Evaluation (MODE; Brown
et al. (2007)), require to first map an image to a discrete set of objects, and most details are removed
during that step. Finally, scale-separation methods assess similarity of images at specific scales in
spectral space, typically applying either a Fourier or wavelet transformation to the images first
(Gilleland et al. 2009; Briggs and Levine 1997; Buschow and Friederichs 2020). While those
metrics do not directly measure sharpness either, they share the property of performing image
comparisons in spectral space with the spectral sharpness metrics discussed in Section 2c.

Probably the concept most closely related to sharpness is effective resolution. Effective reso-
lution, in the context of weather prediction models, is defined as the smallest spatial scale where
atmospheric structures are reproduced with realistic amplitudes (Selz et al. 2025). While well es-
tablished in numerical weather prediction (Skamarock 2004), it has recently seen a resurgence for
the comparison of Al-based weather prediction models to numerical weather prediction models
(Subich et al. 2025; Selz et al. 2025). Effective resolution of a forecast image is typically evaluated
in spectral space, e.g., by evaluating energy spectra (Selz et al. 2025), properties of spherical har-

monic modes (Subich et al. 2025), or properties of a Haar wavelet decomposition (Pfreundschuh
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et al. 2022). However, effective resolution focuses on evaluating the spatial scale of represented
features, but does not directly measure the sharpness of those features, such as rapid transitions.
The emergence of highly customizable Al models, especially Generative Al, creates the need to
study a wide variety of sharpness metrics that can capture different aspects of sharpness. For this
reason we expand our perspective by studying sharpness metrics from other fields for potential use
in meteorological applications. It cannot be emphasized enough though that any such sharpness
metrics should only be applied in addition to any traditional forecast verification metrics relevant to
an application, since as stated earlier, we expect there to be trade-offs between satisfying sharpness

criteria and satisfying other critical performance requirements.

b. A guiding example

As illustrative example of a neural network for image generation we use the GREMLIN model
developed by Hilburn et al. (2020) throughout this manuscript. GREMLIN is short for "GOES
Radar Estimation via Machine Learning to Inform NWP” and is a convolutional neural network
(CNN) model for image-to-image translation. It translates images from geostationary satellites to
synthetic radar imagery, specifically composite reflectivity. Its purpose is to estimate radar com-
posite reflectivity in regions where radar is not available, such as in mountainous and remote terrain
and over oceans. GREMLIN is a standard CNN with a U-net (Ronneberger et al. 2015) architecture
and a custom loss function that improves GREMLIN’s ability to predict high intensity events. Fig-
ure 1(a) shows a sample observed radar composite reflectivity image (ground truth) and Figure 1(b)
shows the corresponding estimate from GREMLIN. Image values for both the observed composite
reflectivity and the GREMLIN estimate are scaled — in Fig. 1 and throughout this manuscript — as
follows. The radar reflectivity (in dBZ) is divided by 60 dBZ resulting in non-dimensional values
within [0, 1]. The result is multiplied by 255 to get the image pixel values.

It is apparent in Fig. 1 that GREMLIN’s composite reflectivity estimate is much blurrier than the
observation (ground truth). We would like to modify GREMLIN to provide sharper features, but
at this point we cannot even quantify what exactly that means - as there are no standard metrics to

quantify sharpness of meteorological imagery.
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Figure 1: GREMLIN model for generating synthetic radar imagery: (a) observed composite reflec-
tivity from radar (ground truth); (b) estimated composite reflectivity by CNN model GREMLIN
(Hilburn et al. 2020) based on satellite imagery. Scale: both observed and estimated radar reflec-
tivity values are divided by 60 dBZ to obtain values within [0, 1], then multiplied by 255.

c. Predictive vs. generative Al models

It is important to distinguish predictive vs. generative Al models for image generation. Predictive
Al models, such as GREMLIN and many other standard CNNs that use RMSE-like loss functions
for image-to-image translation tasks, produce a single output image that, approximately, represents
the average of all possible solutions (Subich et al. 2025; Selz et al. 2025). In contrast, Generative Al
models, such as Generative Adversarial Networks (GANs) (Goodfellow et al. 2014) and diffusion
models (Sohl-Dickstein et al. 2015), produce one or more output images that each represent a single
sample of all possible solutions.

Figure 2, which is derived from an image by Ledig et al. (2017), illustrates the difference between
predictive and generative model output for the task of super-resolution, i.e., generating a high-
resolution image from a given low-resolution image. Super-resolution is an ill-defined task, since
infinitely many high-resolution images correspond to the same low-resolution image. Ledig et al.
(2017) study the use of GANs for super-resolution. In Fig. 2 the patches with red frames represent
an ensemble, i.e., a subset of the infinitely many possible high-resolution images that correspond to
a given (not shown) low-resolution image. The patch in blue indicates the predictive model solution

which is an approximation of the average of all red patches, i.e., of the ensemble mean. The patch
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Red: Subset of possible solutions - ensemble
Blue: Output of standard CNN - approximating ensemble mean

Figure 2: Schematic illustrating the typical results obtained by a standard CNN and a GAN for the
ill-defined task of generating high-resolution imagery from low-resolution imagery. The patches in
red represent a subset of the infinitely many solutions to the problem (ensemble members), the patch
in blue represents the solution obtained by a CNN with Mean Squared Error (MSE) loss function
(roughly ensemble average), and the patch in yellow represents a GAN solution (approximation
of single ensemble member). Image credit: Figure adapted from Fig. 3 in Ledig et al. (2017) -
reprinted with permission from IEEE.

in yellow indicates a generative model solution (here from a GAN) which approximates a single
ensemble member. As a consequence, the image from the predictive model (in blue) represents
the “safe” solution: it typically has the highest possible accuracy (e.g., lowest mean square error;
MSE), but it is very blurry and does not itself represent a physically possible solution. In contrast,
the image from the generative model (in yellow) is quite sharp and represents a physically possible
solution, but at the cost of lower accuracy (e.g., higher MSE), and it might represent an outlier of

the ensemble.

d. Effect of AI model uncertainty

Fig. 3 summarizes how model uncertainty is expressed in imagery generated by predictive vs.

generative Al models. For a predictive AI model the uncertainty is expressed as increased blurri-
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Predictive Al model:

output image = mean of ensemble

specific sample

Generative Al model:

output image = member of ensemble

Al model is uncertain
about estimate for
specific sample

Al model is uncertain
L about estimate for J

* No obvious blurriness in individual
output image(s)
* Increased spread in image ensemble

* Increased blurriness in output
image

Figure 3: How uncertainty is expressed in imagery from predictive vs. generative Al models

ness in the output image, while for a generative Al model the uncertainty is expressed in the spread
of the ensemble, while each individual image appears to be sharp.

In the meteorological community a generative model is best understood as serving the function
of a probabilistic model, i.e., a model that inherently yields an ensemble forecast and whose output
should thus be interpreted as one member of an ensemble. However, in the Al community gener-
ative models are not always interpreted that way. They are often used to generate a single output
image, and the fact that this image might be an outlier, and thus not representative of the entire
ensemble, may be hidden. That is because in many computer science applications, such as ani-
mations, an image only has to ’look™ realistic. A single member of a generative Al model output
fits this requirement of ”looking” realistic. However, that criterion is not good enough for a typi-
cal meteorological application, which requires a forecast to be representative of the set of possible
solutions.

Thus one needs to be careful when using a single estimate of a generative model. It is recom-
mended to export an ensemble - rather than just a single member - and to check the ensemble’s
spread. If the spread is small, then using a single ensemble member is fine. If only certain regions
of the image have a significant spread, one may choose to visually indicate those regions in the
resulting image, or to present several ensemble members. There is an increasing need for the com-

munity to explore the most effective ways to communicate the uncertainty information gained from
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ensembles to different end users, as Generative Al will greatly increase the availability of ensem-
bles in meteorological applications. As a starting point, see the study by Demuth et al. (2020) on
how to communicate ensemble information to forecasters of the National Weather Service.
Lastly, we note that the uncertainty discussed here is the total uncertainty of the Al model, i.e.
it includes both internal variability of the weather system, aka the aleatory component, and all
types of Al model errors, aka the epistemic component. See Haynes et al. (2023) for a detailed
discussion of the concepts of aleatory and epistemic uncertainty for machine learning models.
The total uncertainty is expressed as blurriness for predictive models and as spread for generative

models, regardless of its source.

e. Is a sharper image a better image?

In our quest to make images sharper, we need to carefully consider the specific needs of each
application. For example, when predicting precipitation, what is more important, higher spatial
accuracy or higher sharpness? The answer depends completely on how the information is supposed
to be used, as well as which information is already available. For example, to get a good estimate
of the probability that it rains in a particular location, it is likely more important to optimize for
spatial accuracy. On the other hand, to get an idea of the severity of the overall rain event, it might
be more important to optimize the sharpness of the meteorological features even at the potential
cost of more error in the location of the features.

As these examples illustrate, a blurrier but more accurate image may be more useful for analysis
purposes, despite its lack of visual appeal. However, there may be instances where having sharp
features resolved (even if those features have some degree of spatial or intensity error) is helpful.
For instance, if the internal texture of a feature is important, it may not matter whether individual
pixels are in the correct location so long as their local features and arrangement is accurate — in such
a case, having a sharper but potentially less “accurate” model may be of great utility. A similar
scenario where a sharper image is preferred is situations where an over-smoothed solution may
blur out small, isolated features which may be crucial to know about, e.g., the presence of isolated
storms, even if they are not in the correct position.

In addition, we need to keep track of the aforementioned trade-offs. For example, Blau and

Michaeli (2018) find that for the application of image enhancement with neural networks there is a
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perception-distortion trade-off, i.e. a trade-off between perception-based qualities (such as sharp-
ness) and distortion (i.e. accuracy).

Lastly, there is also the important question whether sharper images, for example a single image
produced by a Generative Al model, may hide the model’s uncertainty from the user. This could be
misleading and instill unwarranted confidence for the user in the model’s correctness. We suggest

the following actions when using Generative Al to produce meteorological imagery:

* Educate users about the fact that individual forecasts obtained using Generative Al may look
extremely detailed and realistic, even if the model is not terribly confident in its own prediction,

i.e. the model uncertainty is hidden.

* Consider calculating ensembles and communicating uncertainty by other means if presenting

only a single output image to the user.

* We urgently need studies on the effect that sharp forecast images, obtained using Generative
Al have on the user’s perception of the model’s confidence, especially for users who may base

critical decisions on such imagery, such as forecasters.

For all of these reasons, we encourage readers to critically examine the actual benefits sought
from sharper images. In particular, care must be taken when using Generative Al to generate
sharper images, as outlined above. On the other hand, there is no doubt that Generative Al - in
particular diffusion models - provide a powerful technique that, if used carefully, has the potential
to greatly advance the field of meteorological forecasting by providing more detailed forecasts,
ensemble forecasts, and estimating uncertainty. The potential power of employing diffusion models
in meteorological forecasting has been demonstrated recently, for example by the SEEDS (Li et al.

2024) and GenCast (Price et al. 2025) models.

f. Means to increase sharpness and proposed use of sharpness metrics

We need to keep in mind the reasons that cause blurriness for a considered Al model, and thus,
whether it is possible, or meaningful, to reduce that blurriness. For example, for a predictive model
with an RMSE-like loss function we know that blurriness represents uncertainty, so developers may
first look for ways to reduce the epistemic uncertainty by changing the model architecture, loss

function (e.g., Subich et al. (2025)), or hyperparameters, then re-evaluating sharpness and other
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performance criteria. One may also seek to expand the training set, by adding more samples to
better represent the sample space, or adding more input variables. In particular, we highlight an
often-overlooked source of sharpness: sharpness of the input data. While most of the focus for
increasing sharpness has been on loss functions and architectures, the sharpness of the output is
directly tied to the sharpness of the input data, and in many cases finding and utilizing sharper
sources of data can be an efficient way to add sharpness. Post-processing tools, e.g., applying
sharpening filters to the output images may be another way to increase sharpness of predictive
model output. Lastly, moving from predictive to generative Al models tends to increase sharpness,
with the caveats discussed in Section e.

We hope that the development of sharpness metrics will allow the community to answer important

questions, such as:

How sharp are images generated by generative models compared to predictive models?

How sharp are images from either type of model in comparison to ground truth?

Which model changes, e.g., in training data, model architecture, loss function, hyperparame-

ters, or post-processing, improve the sharpness of the model’s output?

What are the common trade-offs between improving sharpness vs. potentially decreasing other

important forecast verification metrics?
We foresee two primary ways to use sharpness metrics:

* Diagnostic use: Sharpness metrics can be used as a diagnostic tool during model develop-
ment, i.e., to point developers toward specific shortcomings of a model. The information can
be used by the developer, for example, to change the training dataset or model architecture
in an attempt to fix the shortcoming. We see much potential for this type of use during the

tuning, model-selection, and evaluation phase of Al model development.

* Use in loss function: Sharpness metrics can also be added to the loss function of a neural net-
work to provide sharpness-related feedback during training. Many of the sharpness metrics are
relatively easy to implement to be included in a custom loss function. For example, calculat-
ing image gradients is a standard functionality in neural network programming environments,

facilitating the use of the image-gradient based sharpness metrics discussed in Section 2b.
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Similarly, taking the spatial Fourier transform of an image is also surprisingly easy in a neural
network programming environment (Lagerquist and Ebert-Uphoff 2022), thus enabling the
use of metrics such as Fourier-RMSE discussed in Section 2c. What is challenging, how-
ever, is to choose a meaningful trade-off in a loss function between optimizing traditional and
sharpness-based metrics. We include a few experiments on the use of sharpness-based metrics
for neural network training in a vignette in Subsection S1c of the supplemental document. A

deeper study of how to choose such trade-offs is suggested as a topic for future research.

g. Image assumptions, scope and organization of this paper

The scope of this paper is to explore several metrics to evaluate the sharpness of any type of
meteorological image — whether it comes from observations, from a physics-based model, or from
an Al-generated model — along with guidelines on how to interpret them.

For simplicity, we make the following assumptions for images to be evaluated:

1. We assume images to be two-dimensional. Many of the concepts discussed here also apply
to higher dimensional images, but for ease of explanation, we restrict our discussion to 2D

images with the two dimensions denoted as x and y.

2. We only consider single-channel (i.e., gray) images. For multi-channel (or multi-color) im-
ages, a metric can be applied to each channel separately, followed by taking the min, max, or
average value across all channels. We suggest a deeper exploration of multi-channel images

as a topic for future research.
3. We assume images to have no missing or undefined values (no NaNs).
The remainder of this paper is organized as follows:

* Section 2 provides an overview of metrics included in this study. All of these metrics have
been used before in computer vision. We also include a description of heatmaps, one of the

main visualization tools we use.

* Section 3 introduces the new concept of the Gaussian Blur Equivalent (GBE) and presents two
case studies that illustrate its practical use in comparing sharpness: i) GREMLIN estimates vs.
observed radar, and ii) weather forecasts from an Al-based model (GraphCast) vs. a traditional

Numerical Weather Prediction (NWP) model (GFS).
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* Section 4 discusses properties of sharpness metrics that are important for their use, ranging

from their computational complexity to the impact of white noise on the sharpness values.
* Section 5 provides a final discussion and suggests topics for future work.

* Section S1 of the supplementary document contains vignettes that illustrate the evaluation of
sharpness using the original metrics from Section 2 - rather than the GBE values introduced

in Section 3 - for several meteorological applications.

* Section S2 of the supplementary document provides the definitions of all metrics included in
this manuscript, along with mathematical proofs for the metrics’ properties that are presented

in Section 4.

Accompanying code is available on Github, see the Data availability statement for details.

2. Sharpness Metrics

The term image sharpness is used extensively in literature, but it is difficult to find a consistent
definition. Early definitions of sharpness can be found in photography, where sharpness is often
defined as the acuity, or contrast, between the edges of an object in an image (SLR Lounge 2023).
Note that this definition, and many others in photography, assume the presence of clearly defined
edges in the image. However, meteorological imagery, such as the two examples shown in Fig. 4,
may not include any such edges. Furthermore, considering the cloud in Fig. 4(a), it is clear that
the perception of sharpness in this satellite image mostly comes from the level of detail provided
inside the cloud, i.e., the cloud’s texture, rather than by the sharpness of the cloud’s boundaries.
One may even debate the exact location of the cloud’s boundaries. The field of photography also
offers metrics analyzing image frequencies through the use of the Fourier transform. However, the
field of computer vision has developed a wider and more suitable set of sharpness metrics for our
purpose, which are discussed next.

Vu et al. (2011) provide an excellent overview of sharpness metrics from computer vision and
classify them into three categories: edge-based, pixel-based and transform-based metrics. The list
below discusses our selection of metrics, which is based on that classification by Vu et al. (2011).

We emphasize that for this first study we selected a set of metrics that 1) have simple mathematical
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(a)

Figure 4: Two examples of meteorological imagery: (a) satellite image from the Geostation-
ary Operational Environmental Satellite #16 (GOES-16) showing clouds; (b) forecast of 500mb
geootential height at 5 days lead time from GraphCast (Lam et al. 2023) initialized on 4-23-2024
(00Z).Image credit for (b): GraphCast visualization from our Real-time visualization website for
purely Al-based weather models (Radford et al. 2025). The richness of texture in the cloud im-
age and the lack of clear boundaries in the geopotential height forecast illustrate why using only
sharpness measures that focus on edges, i.e., boundaries between “objects”, would disregard many
important details in meteorological imagery.

equations and are easy to understand, ii) appear useful for meteorological applications, and iii)

cover a wide range of different concepts.

1. Edge-based metrics first identify edges, then analyze their properties. We do not cover these
metrics due to their underlying assumption that images must have well-defined edges. Further-
more, if there are sharp edges present in an image, their effect on sharpness will be detected

by gradient-based metrics anyway, which are included in the next category.

2. Pixel-based metrics, aka spatial metrics, include gradient-based methods. We include several
gradient-based metrics here. Pixel-based metrics also include methods based on eigenval-
ues/singular value decomposition (SVD) of images (Wee and Paramesran 2008), which are
much more abstract and less commonly used. Those are not included here and may be added

in future studies.

3. Transform-based metrics, aka spectral metrics, include methods based on Fourier or wavelet

transforms. We include metrics based on both transforms.
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4. Neural network based metrics were not yet discussed by Vu et al. (2011), because they did not
yet exist. These metrics utilize the values of certain internal states (latent space representation)
of trained neural networks to assess image properties, e.g., see Zhang et al. (2018). Those
metrics are not covered here, as their functionality is too opaque (i.e., black box character) for

this first study.

We distinguish between univariate metrics, which take a single image as input at a time, and
bivariate metrics, which require two input images at a time. Accuracy metrics, e.g., RMSE, are
always bivariate, as one always needs a ground truth for comparison to assess the accuracy of an
image. Bivariate sharpness metrics also compare one image to another, but instead of comparing
the similarity of the image itself, they compare the similarity of the image’s sharpness. In contrast,
univariate sharpness metrics are applied to a single input image and assess the sharpness of just
that image. To compare the sharpness of two images, one calculates the univariate metric for each
image and then analyzes their difference. There is a key difference between univariate and bivariate
sharpness metrics when used to compare two images. Bivariate sharpness metrics compare sharp-
ness locally, i.e. they compare whether the images have the same sharpness at individual locations.
In contrast, univariate sharpness metrics compare sharpness between images without taking the
location of sharp features within an image into account. For example, when comparing two square
images, one can rotate one image by 90 degrees without changing the results.

For simplicity we refer to each metric as being computed across an “image,” but they can each
also be computed on smaller subsets of an image, as we will see in Section 2d, to generate sharpness
heatmaps.

We discuss the metrics in three groups in the following subsections: 1) standard forecast verifi-
cation metrics, 2) sharpness metrics based on total variation and image gradients, and 3) sharpness
metrics in spectral space. For each metric we provide a short description, the abbreviated name of
its implementation in the GitHub repository (in parentheses), and whether the metric is univariate
or bivariate. We emphasize again that none of these metrics are new. Group 1 metrics are already
in use for meteorological imagery. The metrics in Groups 2 and 3 are not very common for meteo-
rological imagery, but have all been used in other fields. Definitions of all metrics are provided

in Section S2a of the Supplemental material.

15

Unauthenticated | Downloaded 0 /25 03:31 AM UTC

n loaded 07/14/2
Accepted for publication in Artificial Intelligence for the Earth Systems. DOI 10.1175/AIES-D-24-0083.1.



a. Group 1: Standard forecast verification metrics

While the purpose of this study is to evaluate the sharpness of imagery, it is important to consider
sharpness and standard verification metrics in tandem, namely to make sure that increasing sharp-
ness does not come at the expense of drastically reducing other important metrics. We chose the
three simple metrics below to represent a few common verification metrics. These metrics are only
a sample selection for Group 1 and developers should replace them with any forecast verification

metrics deemed relevant for their considered application.

1. Image Intensity / Dynamic Range [univariate]: We keep track of the min, mean, and max
intensity value of each image, because the dynamic range of an image has a significant effect
on its apparent sharpness. An easy way to increase many sharpness metrics of an image would
be to just increase its dynamic range - which is typically not what we want. This motivates us

to keep track of the intensity of images.

2. Root Mean Squared Error (RMSE) [bivariate]: RMSE is the square root of the mean
squared error (MSE) between two images and is a commonly-used similarity metric for the
training of neural networks. We keep track of RMSE to make sure we do not drastically reduce

the similarity of image estimates while trying to make them sharper.

3. Structural Similarity Index Measure (SSIM) [bivariate]: SSIM is a similarity measure be-
tween two images based on a weighted combination of three simpler comparisons: luminance
(intensity), contrast, and structure. The product of these measures gives SSIM. An important
note is that SSIM acts on a patchwise rather than pixelwise basis, and as such can capture more
spatial information than pixelwise methods like RMSE. SSIM values range between 0 and 1,
with SSIM = 1 indicating identical images and values approaching 0 indicating increasingly
dissimilar images. SSIM is often cited to better represent image similarity - as perceived by

humans - than, for example, RMSE. For details, see Wang et al. (2004).

b. Group 2: Sharpness metrics based on total variation and image gradients

Since sharp boundaries result in sharp gradients, it is intuitive to use properties related to the gra-

dient of an image to assess its sharpness. Total variation is very similar to gradient-based methods
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and is thus included here. We expect this group of metrics to respond strongly to sharp edges in an

image.

1. Total Variation (TV) [univariate]: Total variation measures how much an image changes
if it is shifted slightly. This can measure the sharpness of edges because when a sharp edge
is shifted slightly it will cause a larger difference than if a smoother edge is shifted the same
amount. TV values close to 0 indicate very smooth images, while sharper images will have
larger TV values. It is important to note that we follow common convention in not normalizing
TV by image size, so TV values for images (or blocks) of different sizes are not comparable,
and it is normal to get TV values that are very large compared to most other metrics described

here.

2. Mean Gradient Magnitude (Grad-Mag) [univariate]: At each pixel, we can compute gra-
dients in both the horizontal (x) and vertical (y) directions; the magnitude of the gradient at
that pixel is then the norm of the vector formed by those directional gradients. The Grad-
Mag is the mean of these gradient magnitudes across the image, and as such gives a summary
statistic that reports, on average, how rapidly intensity changes occur within the image. More
rapid intensity changes generally correspond with sharper images, so higher Grad-Mag values
indicate a sharper image, with Grad-Mag = 0 indicating a completely uniform image with no

variation.

3. Gradient Total Variation (Grad-TV) [univariate]: Gradient total variation is the total vari-
ation of the gradient magnitude map, where the gradient map is described in Grad-Mag above,
and total variation is as described in TV. Because both TV and gradients measure sharpness,
the gradient TV is really giving information about how sharp the sharpness map is - i.e., are
areas of rapid change (associated with sharpness) themselves sharp. In practice, this second-

order sharpness seems to correspond with sharpness.

4. Gradient RMSE (Grad-RMSE) [bivariate]: In this bivariate metric, we compute the RMSE
not between two images directly, but between two gradient magnitude images. We compute
the gradient magnitudes as in Grad-Mag above, but rather than averaging those across a single
image to obtain a statistic, we compute the RMSE between the gradient maps for two distinct

images. As in general for RMSE, values closer to 0 indicate more similarity, while larger
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values indicate more dissimilarity. By taking the RMSE of gradient magnitude maps, we
are measuring how closely aligned regions of rapid change are between the two images; i.e.,

measuring how well sharp edges correspond between the two images.

5. Laplace RMSE (Laplace-RMSE) [bivariate]: Laplace RMSE is very similar to gradient
RMSE, but instead of taking the magnitude of the gradient vector at each pixel, we compute
the divergence of the gradient at each pixel, which is a way of quantifying the local shape of
the gradient vector field. By taking the RMSE of two such divergence maps, we are comput-
ing how similar the shapes of edges are between two images. As with any of these RMSE
measures, values close to 0 indicate that the two images have very similar Laplacian maps,

while larger values indicate larger differences.

c. Group 3: Sharpness metrics in spectral space

The last set of metrics seeks to analyze the sharpness of images in spectral space. The idea
is to first apply a Fourier or wavelet transformation, and then to analyze image properties in the

corresponding spectral representation of the image.

1. Fourier RMSE (Fourier-RMSE) [bivariate]: When taking the 2D Fourier transform, the
resulting complex-valued phase space can be reduced down to the power spectrum by taking
the absolute value of the complex values at each frequency, which gives another real-valued 2D
array. Fourier RMSE is then the RMSE between the power spectra of the two images being
compared. Note that in the power spectrum, spatial coordinates correspond to frequencies,

which are all weighted evenly in this RMSE computation.

2. Fourier Total Variation (Fourier-TV) [univariate]: We once again start with the power
spectrum, but instead of comparing two power spectra, we take the Total Variation of the power
spectrum for a single image. The power spectrum contains information about sharpness (as
high-frequency information can be interpreted as “sharp”), and TV measures how sharp the

power spectrum is, so like Grad-TV, we have some degree of second-order sharpness.

3. Spectral Slope (Spec-Slope) [univariate]: As mentioned in Fourier-TV, the power spectrum
of an image, in particular, the distribution of high vs low-frequency information, contains

information on how sharp an image is and spectral slope seeks to capture this information.
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The definition of spectral slope is based on the fact that the magnitude spectrum of almost all
natural and model images decreases inversely with frequency and that in a logarithmic plot
this decrease can be roughly approximated by a line (Vu et al. 2011). The slope of the line is
called the spectral slope of the image. It is very sensitive to blurring, while also being entirely
invariant to uniform changes in intensity, i.e., rescaling the image intensity does not change
the spectral slope value. Outside of mostly carefully constructed (artificial) examples, values
of spectral slope are all negative, with more negative values indicating less sharp images.
Spec-Slope’s invariance to uniform changes of an image’s intensity is advantageous for some
applications, but this invariance also creates undesired side effects. Because spectral slope is
invariant to intensity, it tends to return very high sharpness results in regions of low intensity

and contrast for even miniscule signals, such as noise.

4. S1 (S1) [univariate]: S is derived from Spec-Slope, designed to compensate for Spec-Slope’s
aforementioned problem with low intensity signals by adding a minimal contrast requirement.
Namely, the §; metric computes the contrast for a considered image (or image patch). If the
contrast is below a certain threshold, it returns a null sharpness value. Otherwise, it returns
the value of Spec-Slope. Thus, S returns non-zero sharpness values only for regions that
have been deemed (by setting the contrast threshold) to have sufficient variation to justify
consideration. We note that this contrast threshold is a hyperparameter that must be set with
care depending on the data type, range, and analysis needs of each application. As a default
parameter we use the value 25 (chosen as 10% of the max intensity value, 255, of most images
in this manuscript) throughout this manuscript, with the exception of results provided for

GraphCast in Section 3c.

5. Wavelet Total Variation (Wavelet-TV) [univariate]: Wavelet-TV is based on the wavelet
transform, which takes in an image and (for one level) yields a set of four output arrays: the
approximation coeflicients and three sets of detail coefficients. The detail coefficients con-
tain information about variation in the image at various scales and orientations, while the
approximation coefficient contains information about average intensities, so by summing the
absolute value of all of these coefficients, we arrive at a notion of total variation in the image

utilizing wavelets. Like Total Variation, we view increasing values of Wavelet-TV as having
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higher sharpness and note that Wavelet-T'V is also not normalized by the size of the image, so

Wavelet-TV values for different image (or block) sizes are not comparable.

d. Visualizing local sharpness using heatmaps

Since meteorology is a very visual field, we believe it is essential for all of the metrics to not only
provide a single number for quantitative assessment, but also a visual representation of which fea-
tures in an image are perceived to be particularly accurate or sharp. To provide such visual feedback
we generate heatmaps by evaluating small patches of each image and displaying the resulting local
information as an image, i.e., the heatmap of an image for a specific metric, as illustrated in Figure
5. Sharpness heatmaps have been used before (Vu et al. 2011), but to the best of our knowledge
they have never been applied for meteorological imagery.

Each patch is a small square block with edges that are 1/8th the length of the horizontal edge
length of the input image. We calculate and visualize the metric values for all blocks - that rep-
resents the heatmap. Using disjoint blocks can lead to edges lying along the border between two
blocks not being detected. Thus we use overlapping blocks. For most experiments, adjacent blocks
overlap 75% of their area, but for blocks smaller than 8 X 8 pixels the overlap may be less than
75% because we enforce a minimum block stride of 2 pixels. The output heatmap reports the
values for each block on the central pixels of that block but because of the overlap each block in-
cludes information from a larger region than its value is outputted to. For all metrics that utilize the
Fourier transform, we implement windowing using the Hann window (following Vu et al. (2011)
who used similar heatmaps) on each block to minimize the edge effects on the Fourier transform.
Each heatmap can be shown on its own or used as an overlay over the input image(s) to indicate
areas with very high or low values of each metric. We use the following colors to indicate the

different types of heatmaps and the occurrence of NaNs:
* Gray indicates the original image, i,e., image intensity.

¢ Blue indicates values of univariate metrics, i.e., metrics that are calculated from an individual

image (no comparison).

* Red indicates values of bivariate metrics, i.e., metrics that compare two images. Throughout

this paper, all bivariate metrics indicate the comparison of each image to the original image,
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Figure 5: Heatmaps comparing observed radar (reference) with the corresponding GREMLIN es-
timate (evaluation image) for (a) Metric Group 1, (b) Metric Group 2, and (c) Metric Group 3.
The colormap for SSIM is inverted because SSIM indicates stronger similarity by a higher value
- in contrast to standard similarity measures, such as RMSE. Yellow indicates pixels with invalid
values.

which is always shown on the top left. Thus bivariate metrics for the original image with itself

are identical to zero for all metrics except SSIM, and identical to one for SSIM.

* Yellow indicates individual pixels with invalid values (NaNs). We have observed NaNs only
for the spectral slope metrics (Spec-Slope and S1), since spectral slope is undefined in areas
of an image that have no signal (constant value). The
min/mean/max values of the heatmaps used in the stats plots are calculated across all valid

pixels, i.e., pixels with NaNs are currently ignored.

As a convention we always plot the reference image in the left most column, i.e. on the left side

of Fig. 5(a), (b), and (c). Bivariate heatmaps (those in red) compare an image to the reference
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image. This explains why the red heatmaps for the reference image are all constant, i.e. O for
most bivariate metrics and 1 for SSIM, since SSIM has a value of 1 for identical images and 0 for
maximal dissimilarity. Note also that the color scale for SSIM is reversed in these heatmaps, to
indicate stronger differences by darker red.

Let us illustrate the interpretation of Fig. 5 for this GREMLIN example. Group 1 metrics indi-
cate that the reference and evaluation image differ most strongly in image regions of strong inten-
sity. Group 2 metrics tell us that the reference image is sharper than the evaluation image (blue
heatmaps), and that the difference in sharpness is strongest in areas where the images are most
different, as the red heat maps in Group 2 are in similar locations as in Group 1. Most Group 3
metrics, Fourier-RMSE, Fourier-TV and Wavelet-TV tell a similar story as Group 2 metrics, but
indicate smaller, more focused regions of sharpness and sharpness difference. Spec-Slope does not
appear useful here, as it indicates greatest sharpness in regions with extremely small intensity. The
S1 metric seeks to limit these regions by applying a minimal contrast treshhold, but with limited
success: the §1 metric still highlights areas of little interest since they might just be noise. Note
that whatever the contrast threshhold, the S| metric tends to have the highest values right at the
cutoff, because that is where image contrast has the lowest allowed value to pass the Spec-Slope

value through, and thus where small amounts of white noise tend to have the largest effect on S;.

e. Discussion

An important note about these metrics is that while there are some that are specifically for simi-
larity or for sharpness, others measure some combination of the two. All of the metrics in Group 1
are about either intensity (for the raw image itself) or similarity. On the other hand, Groups 2 and 3
include metrics that either measure sharpness alone, or a combination of sharpness and similarity.
The univariate metrics in these groups can be seen as directly measuring the sharpness of the im-
ages being input. The bivariate metrics measure not just sharpness, but the local alignment of sharp
features (except for Fourier-RMSE, which measures the local alignment of phase space features).
This captures both similarity and sharpness, because there are two ways for sharp features to come
out of local alignment: one is that there is a lack of sharp features in one image to align, and another

is for there to be sharp features that are out of position. Both perspectives are useful, particularly
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when taken in combination, as the univariate metrics can help disambiguate whether the bivariate
metrics show differences due to a lack of sharp features or because of their misalignment.

Note the huge differences of the dynamic range of the various metrics. For example, for the
sample images in Fig. 5 the dynamic range of univariate sharpness metrics varies between 4 units
(Spec-Slope, S1) and 400,000 units (Fourier-TV). Similarly, the dynamic range of the bivariate
sharpness metrics varies between 80 units and 20 million units. Some of these differences could
be reduced using normalizing factors related to image size, but even then large variations remain.

We introduce a more meaningful approach in Section 3.

3. Introducing the Concept of Gaussian Blur Equivalent

As seen in Fig. 5 the range of values greatly varies across the metrics. This makes it hard to
interpret the raw metric values. What constitutes strong sharpness for each metric? How do values
of different metrics compare? Rather than determining how to interpret each metric individually,
we propose instead a calibration method that generates a uniform scale for image comparison across
all metrics, the Gaussian Blur Equivalent (GBE). We introduce the concepts of GBE plot and GBE
values in Section 3a, then illustrate their use for a GREMLIN example in Section 3b and for two

GraphCast examples in Section 3c. We conclude with a discussion in Section 3d.

a. GBE for image comparison

The GBE is designed for the comparison of two images. The reference image is typically the
ground truth, e.g., the observed radar in the case of GREMLIN. The evaluation image is the image
to be evaluated, e.g., the GREMLIN estimate. The core idea of GBE is to compare the evaluation
image to a series of images, starting with the reference image and increasingly blurred versions of
the reference image, as illustrated in Fig. 6. For each metric we compare which level of blurriness
of the reference image corresponds most closely to the blurriness level of the evaluation image.

The steps of calculating GBE are described below, along with illustrations for the GREMLIN

example in Fig. 7.

1. Panel (a): Create a sequence of increasingly blurred copies of the reference image by applying

Gaussian blur with standard deviation, o, increasing from 0 to some chosen value, omax.
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200 Gaussian Blur Equivalent (GBE):
100 Where does the evaluation image
fit in the above sequence?

Figure 6: Core idea of GBE to calibrate a sharpness metric: How much do we have to blur the
reference image to get the same (min, mean or max) sharpness value as for the evaluation image?

2. Panel (a): Calculate all metrics for all blurred versions of the reference image with respect to

the reference image.

3. Panel (¢): Generate a plot of the min, mean, and max metric values for the blurred reference
images. Min, mean and max, are indicated in yellow, red, and blue, respectively, with each
image resulting in a yellow, red, and blue, data point in the plot in the same order (left to right)
as the heatmaps in Panel (a). Subsequent data points are connected by dashed lines. These
are the calibration curves for the chosen metric for a specific reference image, aka raw metric

value (RMV) plot.

4. Generate heat maps (Panel (b)) and calculate metric values (Panel (d)) for the reference and

evaluation image.

5. Panel (e): Construct the GBE plot by combining the RMV plots in (c) and (d) as follows. Use
the RMV plot (Panel (c)) and add horizontal lines for min, mean, max of the evaluation image

(values are shown as the yellow/red/blue end points on the right of Panel (d)).

6. Panel (f): To calculate the GBE values, identify in the GBE plot, for each metric the smallest
blur value at which the yellow/red/blue curve and same color horizontal line intersect. These

values are called the Gaussian Blur Equivalent (GBE) values,

GBE(reference image, evaluation image),
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where m denotes the metric and s the statistic (min, mean, or max).

Interpretation: The Gaussian Blur Equivalent value, '"’]%E(reference image, evaluation image),

o

G
is the standard deviation value of the Gaussian blur operation that, when applied to the reference
image, would yield an identical metric value as the evaluation image. The GBE values provide the

desired interpretation for comparison - using a uniform scale - across all metrics.

b. GBE comparison for GREMLIN vs. observed radar

Fig. 8(a) shows the GBE plots for the GREMLIN example from Fig. 5 for all metrics. Fig. 8(b)
shows the estimated GBE values, obtained by visual inspection from Fig. 8(a). In future work we
plan to add automatic calculation of GBE values, but those algorithms need to properly deal with
degenerate cases and alert users to those. Furthermore, visual inspection is required either way, for
reasons discussed in Section 3d.

GREMLIN results (Fig. 8): Focusing on the univariate sharpness metrics, the gradient-based
sharpness metrics place the image estimate at about the blurriness of applying a Gaussian filter

with g-hean

around 2 to 2.5, while the spectral metrics consider the estimate to be much sharper,
namely corresponding to o-™€21 around 0.5 to 1.

We should emphasize that we have not established any guidelines for ideal GBE values. Such
guidelines are bound to be highly application dependent. For example, for the GREMLIN applica-
tion, it turns out that the reference images (radar observations) contain considerable noise, which,
as discussed below in Section 4, can inflate the sharpness values of the reference image. In those
cases, we would not want the GREMLIN estimates to reach the sharpness values of the reference
images, since we do not want to reproduce the noise of the reference image. In contrast, if the
ground truth is obtained from an NWP model (as in the following subsection) that is meant to
model observations, then we would want the estimates to be even sharper than the ground truth

(as NWP model output tends to be too smooth) which would yield a negative GBE value, but the

current set-up does not provide for estimating negative GBE values.

c. GBE comparison for GraphCast vs. GFS

One of the key motivations for this paper was to be able to compare the sharpness of the new

generation of purely Al-based global weather prediction models (AIWP) to forecast imagery gen-
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Figure 7: Calculation of GBE plot and GBE values, illustrated using GREMLIN example and three
sample metrics, intensity, Grad-Mag and Grad-RMSE.
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Figure 8: (a) GBE comparison for radar observations (reference) vs. GREMLIN estimate (evalua-
tion image) for the sample in Fig. 5 using metric groups 1, 2, and 3. Metric S| here uses the default
contrast threshold, 25. (b) Mean GBE values in (a) estimated visually from red curves and lines.

erated by traditional NWP models. Here we compare an AIWP model, namely GraphCast (Lam
et al. 2023), to an NWP model, namely the Global Forecast System (GFS) by the National Cen-
ters for Environmental Prediction (NCEP; NCEP (2024)). We do so for just two sample cases,
where the GraphCast forecasts (evaluation images) are compared to the corresponding GES fore-
casts (reference images), using the GBE approach. We use Release 1 of GraphCast (version 0.1 of

Jan 5, 2024, SHA 8debd72, athttps://github.com/google-deepmind/graphcast), initialize
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it with GFS initial conditions at #, run a forecast for a time AT, and compare the results at (z +AT)
with a GFS forecast. Note that this GraphCast version was finetuned on the European NWP model,
namely the Integrated Forecasting System (IFS; Wedi et al. (2015)) by the European Centre for
Medium-Range Weather Forecasts (ECMWF), rather than GFS. Thus GraphCast results initialized
by GFS (rather than IFS) are known to be not quite as good, although differences tend to be small.
For example, for the forecast of 500-hPa geopotential heights about a half day degradation in skill
has been observed for models initialized with GFS rather than IFS data (personal communication
with ECMWF’s Matthew Chantry). The exact results of this comparison should thus not be used to
judge the performance of the GraphCast algorithm - using just two samples to judge an algorithm
is not advisable anyway. Instead this section serves only as an illustration of how to apply and
interpret these metrics for this type of application.

Figure 9 shows the forecasts generated by GFS and GraphCast for two events - a flashflood event
forecast 48h out, and an atmospheric river event 148h out. ~ The heatmap and GBE results are
shown in Figures 10 and 11 for the flashflood event and in Figures 12 and 13 for the atmospheric
river event.

GraphCast flashflood results (Figures 10, 11): The mean metric results are very flat for the
blurred imagery which is likely due to the fact that most areas of the images are blank. Thus we
focus on max metric results for all metrics except SSIM, and use min metric results for SSIM. We
emphasize that the mean GBE value should be used wherever possible in these analyses, since it
provides a better estimate of overall sharpness of features than just using the value of the sharpest
features, i.e., the max GBE value. However, in this case the mean GBE value is not usable.

Note that for this flashflood event the maximal GraphCast intensity is roughly 1/3 of the maximal
GFS intensity. As will be seen in Section 4 all metrics decrease linearly with a change in intensity,
with the exception of SSIM and Spec-Slope, which are invariant, and S, which varies non-linearly.
Thus, the low sharpness indicated in Fig. 11 for most metrics is largely due to the lower intensity,
rather than lack of sharp transitions. Univariate gradient-based metrics place the GBE value around
oMaX =2 0, and Fourier- and Wavelet-TV place it higher, around o™X = 3 to 3.5. The Spec-
Slope heatmap indicates that that metric is not capturing relevant sharpness information here, so

we discard it from consideration. On the other hand, by setting the threshold value for §; to 0.1,
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(a) Flashflood - GFS @48h (b) Flashflood - GraphCast @48h
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Figure 9: 6h accumulated precipitation (in inches) forecast by GFS and GraphCast for a flashflood
event at lead time of 48 hours and for an atmospheric river event at 148 hour lead time. Image size:
64 x 64 for flashflood, 256x256 for atmospheric river.

we were able to extract sharpness information only for the relevant portions of the image, so we
retain that as an informative measure.

GraphCast atmospheric river results (Figures 12, 13): For the atmospheric river event the
maximal GraphCast intensity is similar, even a bit higher, than the maximal GFS intensity. The
univariate gradient-based metrics indicate a c™3X value of about 1.8 to 2, and Fourier-TV and
Wavelet-TV place it around 1.0 and 1.8, respectively. We hypothesize that this reduction in sharp-
ness despite similar intensity values is due to the high level of texture and sharpness visible in Fig.

9(c) and the relative smoothness of the GraphCast forecast in Fig. 9(d). The Spec-Slope heatmap
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Figure 10: Heatmaps for the flashflood event for GFS vs. GraphCast forecasts of 6h accumulated
precipitation at lead time of 48 hours. The contrast threshold for metric S used here is 0.1.

again shows that it is measuring significant sharpness in very dark regions that we are not interested
in, so we once again discard it from consideration.

The two examples above compare the sharpness of AIWP-generated imagery to NWP-generated
imagery. One should keep in mind that NWP-generated imagery itself comes from a numerical
simulation of the real world, and is in fact much smoother than observations, e.g., satellite or radar

imagery. A long-term goal of Al algorithms will be to match the sharpness of real observations.
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Figure 11: (a) GBE plots for the flashflood event, comparing GFS vs. GraphCast forecasts of 6h
accumulated precipitation at lead time of 48 hours. The contrast threshold for metric S| used here
is 0.1. (b) Max GBE values in (a) estimated visually from blue curves and lines. Note that for
SSIM the min values estimated from the yellow curves and lines is used. ”

discarded because of the corresponding heatmap.
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Figure 12: Heatmaps for the atmospheric river event for GFS vs. GraphCast forecasts of 6h accu-
mulated precipitation at lead time of 168 hours. The contrast threshold for metric S; used here is
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Figure 13: (a) GBE plots for the atmospheric river event, comparing GFS vs. GraphCast forecasts
of 6h accumulated precipitation at lead time of 168 hours. The contrast threshold for metric S;
used here is 0.1. (b) Max GBE values in (a) estimated visually from blue curves and lines. Note

that for SSIM the min values estimated from the yellow curves and lines is used. ”

value discarded because of the corresponding heatmap.
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d. Discussion

From the examples in this section we learned a few lessons regarding the use of these metrics.
The overarching theme of these lessons is that no single metric (or even combination of metrics)
can serve as a “silver bullet” to determine sharpness in all situations. Each dataset and application
will have different requirements and properties that affect how these metrics respond, and care is
required in selecting which metrics to focus on. We can utilize the examples in this section as a set
of case studies with which we illustrate this analysis process.

One of the first metrics to look at is simply intensity, as illustrated by the GFS vs. GraphCast
flashflood example. As we will discuss shortly in Section 4, almost all of these metrics have their
response directly correlated with intensity, and as such if the overall intensity ranges do not match,
every other metric will be affected. Similarly, before diving into deeper analyses of sharpness,
one should always print heatmaps and do a sanity check whether any metrics display undesirable
behavior on this particular dataset. For instance, we found that in all three of these examples, the
spectral slope metrics focused principally on “sharp” regions in the darkest perceivable regions
around the features actually of interest, so we did not focus on them further in these analyses.
Finally, the heatmaps can inform which GBE curve (min, mean, or max) to examine. Namely, in
datasets in which the features of interest are relatively sparse - for example, the images in two of the
three examples considered in this section, namely the two GFS-GraphCast comparisons, contain
mostly flat, dark backgrounds with isolated regions of interest - an overwhelming proportion of the
heatmap blocks will indicate “no sharpness” or “fully similar”, and as such the mean GBE values
are saturated with these values and become uninformative. For this reason, we focus on the max
GBE curve for all metrics except for SSIM. For SSIM we utilize the min GBE curve, since its
interpretation is reversed (its max value means maximal similarity).

Once we have done this pre-analysis, we can begin analyzing the GBE curves themselves. At
this point, we are still asking the question of “which metrics are informative for my dataset?”, and
as such we are looking at the GBE reference curves rather than the GBE values of the evaluation
images. An “informative” GBE curve is one that displays consistent drop-off in sharpness as the
reference image is blurred more and more — for instance, in Figure 8(a) the mean GBE curves for
TV, Grad-Mag, and Grad-TV are all fairly informative, while the mean GBE curve for Wavelet-

TV is very uninformative (flat) in this case. We note that Fourier-TV in this case would not be
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considered particularly informative, because while there is a dramatic drop in the mean GBE curve
from blur values O to 2, it is likely that a large portion of this is due to observation noise being
reduced via blurring, as the mean GBE curve remains more or less flat after this initial drop. In
Figures 11 and 13 we decided to get information from the max GBE curves (min for SSIM). There,
Wavelet-TV and Fourier-TV have very informative max GBE curves, and while TV, Grad-Mag, and
Grad-TV are all reasonably informative as well, they do suffer from more asymptotic flattening at
higher blur levels.

Throughout this section so far, we have focused more on the univariate metrics than the bivariate
ones. We have done this intentionally as our focus is on the sharpness itself, which is most easily
compared via univariate metrics. All of the bivariate metrics include some degree of similarity
as well as sharpness, and as such are most useful for asking more complicated questions of the
data such as “are the sharp features in these two regions well-aligned?” Answering these types
of questions is best done using a combination of univariate and bivariate metrics: the univariate
metric response can be used to disambiguate which portions of the bivariate response are due to
a lack of sharp features and which portions are due to misaligned sharp features. However, such
analyses are by their nature more involved, and are generally beyond the scope of this paper.

We can finally utilize the GBE values themselves to analyze how sharp each of these examples
are. Examining the numbers in Fig. 8(b) and focusing on TV, Grad-Mag, and Grad-TV, this case
has a mean GBE of approximately 2, indicating that the GREMLIN model is indeed losing some
of the sharp features present in the radar observations. However, as discussed in Section 3b, some
of this lack of perceived sharpness may be due to a degree of noise in the observed radar data that
would not be desirable for GREMLIN to recreate.

Next, examining the numbers in Figure 11(b) for the GFS-GraphCast example of flashflood and
focusing on TV, Grad-Mag, Grad-TV, Fourier-TV, and Wavelet-TV, the max GBE values are be-
tween 2 and 3.5. However, recall that this flashflood example had significantly lower intensity than
the reference image, and as such these blurriness values are exaggerated, and the “true” max GBE
value is likely between 1 and 2. This matches visual inspection: the reference GFS image itself
does not contain many sharp features, so the GraphCast prediction is proportionally not as blurry.
Finally, examining the numbers in Figure 13(b) for the atmospheric river example and focusing on

the same set of metrics as in the flash flood example, we obtain consistently smaller max GBE val-
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ues, ranging from 1 to 2, which roughly matches our intensity-corrected estimate for the flashflood

event.

4. Important Properties of Sharpness Metrics

There are several properties of these metrics that are relevant to explore using more abstract
analysis techniques. In this section, we present several experiments that illustrate how these metrics

respond to:

* What effect does adding white noise have on these metrics? (Section 4a.)

* How do the metrics change if we 1) translate, 2) change intensity, or 3) change the edge sharp-

ness of a synthetic example? (Section 4b.)

In addition to these practical experiments, we also analyzed certain properties of the metrics theo-
retically. Specifically, we show the effect on metrics resulting from changing resolution, shifting
the intensity range by a fixed offset, and scaling the intensity range by a fixed scaling factor. For a
quick summary of those theoretical results, see Table 1, and for the full details see Supplemental
Sections S2b, S2¢, and S2d.

There are a few takeaways from this analysis. First, we note that changing the resolution affects
only those metrics that utilize total variation (e.g. TV, gradient TV, Fourier TV, and Wavelet TV)
and does so in a predictable way (increases proportionally to the number of pixels), so making
sharpness comparisons across differing resolutions should be relatively straightforward. On the
other hand, metrics have very different responses to shifting and scaling intensity. Most metrics
(aside from SSIM, Spec-Slope, and S) scale proportionally as intensity is rescaled (i.e. multiplied
by a scaling factor), while all the metrics aside from those three and wavelet total variation are
invariant to shifting the intensity range (i.e. adding or subtracting a fixed value). The upshot of
this is that when comparing data that needs to be normalized, most metrics can be compared fairly
easily (with just the scaling factor taken into account) but additional care needs to be taken for
SSIM, spectral slope, S, and wavelet total variation.

We also present derivations of the computational complexity of each metric in Supplemental Sec-
tions S2e and S2f, with a summary of those results along with practical timings of the computation

of each metric on representative examples in Table 2.
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Table 1: Summary of Metric Properties. For details, see Supplemental Sections S2b, S2¢, and S2d.

Image Change Invariant Metrics Non-invariant metrics
Resolution All others TV-based metrics increase with square of edge length
Shifting intensity All others SSIM, Spec-Slope, S1, & Wavelet-TV change non-linearly

Scaling intensity SSIM*, Spec-Slope All others scale proportionally, except S; (non-linear)

*SSIM is invariant to scaling the overall dynamic range of the input type (allowing comparisons

between 0-1 and 0-255 scaled data) but not to scalings within a given dynamic range.

Table 2: Computational Complexity of Metrics

Metric Big O 64 x 64 wall clock 128 x 128 wall clock
RMSE O (n) 0.0103 sec 0.0113 sec
SSIM O (n) 0.1379 sec 0.1580 sec
TV O(n) 0.0260 sec 0.0295 sec
Grad-Mag O(n) 0.0447 sec 0.0509 sec
Grad-TV O(n) 0.0414 sec 0.0464 sec
Grad-RMSE O(n) 0.0385 sec 0.0446 sec
Laplace-RMSE O(n) 0.0197 sec 0.0223 sec
Fourier-RMSE  O(nlogn) 0.0852 sec 0.0946 sec
Fourier-TV O(nlogn) 0.0807 sec 0.0908 sec
Spec-Slope O(nlogn) 0.9053 sec 1.2101 sec
S O(nlogn) 0.9723 sec 1.3772 sec
Wavelet-TV O(n) 0.1662 sec 0.1740 sec

Note: all wall clock times are an average from five similar computations

with the same base image.

a. Effect of adding white noise

In this section we consider the question of how the various metrics respond to adding white
noise to an image. In Section 3, we discussed an algorithm based on blurring the image to reduce
sharpness — in this subsection, we explore how sharpness values can be artificially inflated by the
presence of noise. This section serves as an illustration of how these metrics respond to a signal

that a human would not regard as making an image “sharper.” As an illustrative example we use a
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satellite image of a cloud, gradually add white noise to it, and track the values of all metrics in this
image sequence. The white noise is added separately for each pixel by drawing from a Gaussian
distribution with o set to be a factor times the maximal intensity of the original image. The factor
is provided on top of the first row of images in Figures 14.

Observations: All metrics increase with increasing white noise in the image, but to varying de-
gree. Wavelet-TV seems to be least affected by the impact of white noise, with the mean increasing
by less than 100% for o~ = 1.0, while all other sharpness metrics increase dramatically with white
noise. Thus, Wavelet-TV stands out as being the most invariant to the addition of white noise in
an image.

This result highlights a potential issue with utilizing one or more of these metrics inside the loss
function of a neural network: if the network has as one of its goals increasing ‘‘sharpness” as
measured by these metrics, one way for the network to achieve that goal is to increase the
white noise in its output images, which is generally not a desirable property for a neural
network. Thus, great care must be taken in incorporating and properly weighting any term in a
loss function incorporating these metrics. In part because of issues like this, a detailed study on the
use of sharpness metrics within loss functions is beyond the scope of this paper, but we refer the
reader to Section S1c in the supplemental material for a brief example of the impacts of sharpness

metrics in a neural network loss function.
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Figure 14: Response of metrics to adding white noise to a satellite image. (a,c,e) show heatmaps

and (b,d,f) RMV plots for Metric Groups 1, 2, and 3, respectively.
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(a) Original

(b) Translated

Min: 0.00 Mean: 10.71 Max:100.00 Min: 0.00 Mean: 10.71 Max:100.00

(c) Low intensity (d) Sharp transition

Min: 0.00 Mean: 5.35 Max:50.00 Min: 0.00 Mean: 5.31 Max:100.00

Figure 15: Synthetic images for experiments in Fig. 16. (a) Reference image: Background with
intensity 0 with a single blob-like feature - a disk of radius 20 pixels, intensity 100 units, and linear
drop off of 2 units/pixel from boundary of blob outwards. (b) Translated image: blob is translated to
a different, non-overlapping location, (c) Low intensity image: Same as (a) but intensity is divided
by 2.0 throughout the entire image, (d) Sharp transition image: size and intensity of central disk
of blob is the same as in (a) but rate of drop-off is twice as steep, namely decrease of 4 units/pixel
from the disk’s boundary outwards.

b. Effect of feature location, feature intensity, and speed of transition

We conduct three experiments that illustrate the effect that specific changes to an image have
on the various metrics. Figures 15(a) shows the reference image that has one blob-like feature
consisting of a disk with linear intensity drop-off from the disk boundary outward. Figures 15(b-
d) show modifications of the image, namely translation of the feature (b), halving intensity of the
image (c), and doubling rate of boundary transition from disk to background (d). Fig. 16 shows
pair-wise comparisons of the reference image to each of the modified images.

Examining these heatmaps, there are a few things to note. When we translate the disk, all the
univariate metrics translate along with it, precisely as expected. In each heatmap block, the bivari-

ate metrics are effectively comparing the presence of a disk vs. a blank background at each location
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Figure 16: Heatmaps for all metrics demonstrating effect of changing (a) the location of a feature,

(b) intensity of an image (including of all features), and (c) the rate of transition from feature to
background.
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for this image pair (because the old and new location do not overlap here), and as such we obtain
two “bumps”: one at the original location, and one at the new location. This is the well-known
double-penalty problem in the assessment of weather forecasting skills (Zhao and Zhang 2018).
It is, however, worth noting how these bivariate metrics fall off: RMSE has a fairly linear fall off
with the linear decrease in intensity, as does Fourier-RMSE. On the other hand, SSIM has quite
large values anywhere that there is any discrepancy between the images, all the way right out to
the edges of the blobs where it finally starts falling off. Finally, Grad-RMSE and Laplace-RMSE
exhibit a maximum intensity partway to the edge of the disk, approximately where the linear fall
off begins - this makes sense, as that is the location where the gradient is largest, and thus gradient
discrepancies.

When we change intensity, we note that our theoretical results reported in Table 1 hold true: All
of the metrics except for SSIM, Spec-Slope, and S| reduce in intensity by approximately 50%. This
is easy to see for the univariate metrics, and we can see it in the bivariate metrics by comparing
the values found in column (b) with those in column (a). SSIM, here, displays some degree of
difference coming from the change in intensity, with the largest differences being in the fall-off
region rather than at the center of the disk. Finally, Spec-Slope remains identical over changes
in intensity, but while S| shows similar minimum values between intensities, because the contrast
threshold was not changed between the two images, more heatmap regions fell within that threshold
and were cut out, resulting in a slightly smaller valid region.

Finally, as we make the transition region sharper, we can see this reflected in the metrics. The
accuracy metrics (RMSE and SSIM) pick up on the fact that only the transition region has changed,
marking the center of the disk as “unchanged.” All of the univariate metrics display similar be-
havior to one another again, and both constrict the region of detected sharpness and intensify it,
corresponding to a narrower, sharper edge. Grad-RMSE has a very similar shape to when the
disk was compared against a blank region of the image in column (a), but while the maximum
value is about the same, the mean value is much smaller when only the transition rate has been
changed. Laplace-RMSE on the other hand displays similar overall statistic values (similar maxi-
mum, slightly reduced mean) but the heatmap shows a distinct concentration of high values right

around the region of sharper transition that was not present in corresponding location in column (a).

42

Jnauthenticated | Downloaded 07/14/25 03:31 AM UTC

Unautk load /25
Accepted for publication in Artificial Intelligence for the Earth Systems. DOI 10.1175/AIES-D-24-0083.1.



Finally, Fourier-RMSE displays a completely different pattern than it did in column (a), focusing

in very precisely on the region of increased transition.

c. Discussion

The metrics presented here are largely invariant to changes in resolution (with the notable excep-
tion of TV-based metrics), but are affected, in general, by changes in intensity. These effects are
mitigated by utilizing derived tools, like the GBE measure introduced in the previous section, and
the standard practice of normalizing data to a common, fixed range (such as 0 —1 or 0 —255) will
also ensure that variances due to intensity differences are minimized. While it is generally good
practice to share processing details such as normalization steps that were performed, data range
information, and analysis resolution, it is particularly critical when these metrics are being used,
as that information can enable fair comparison and replication from other groups.

It is worth noting that because of the high sensitivity of these metrics to white noise, applying
a denoising step before computing sharpness could be a useful preprocessing step. While analysis
of such denoising techniques is beyond the scope of this paper, we suggest that starting with the
median filter (Huang et al. 1979) would be a reasonable approach.

We also note that while GBE is theoretically invariant due to its proportional nature, in practice
numerical and discretization errors as well as the stochastic nature of some of the transformations
discussed here (such as adding white noise) mean that in practice there may be some changes to

derived GBE statistics.

5. Discussion and Future Work

We presented here a set of metrics that the community can use to evaluate sharpness and other
properties. We hope to have provided an initial understanding of how these various metrics apply to
several distinct applications and how their properties affect those results. Some of the key insights

we gained include:

* All of these metrics are correlated with and can indicate trends in what we as humans consider
“sharp,” but none fully capture the subjective, perceptual nature of sharpness. A good illus-
tration of this is the experiment in Subsection 4a: most people would not consider a noisier

image to be “sharper,” but every metric we tested registered significantly increased sharpness
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in the presence of added noise. Thus, we should remember that these metrics are measur-
ing idiosyncratic quantities that are each just a proxy of what humans perceive as image

sharpness.

* As aresult, there is no “catch-all” metric that will work in every case. Instead, it is always
important to test a variety of tools both quantitatively and qualitatively on each dataset and

choose the ones that fit.

* There are many ways to assess which of these metrics are compatible with a given dataset.
Section 3d summarizes many of our “lessons learned” on understanding how to make those

choices. Some of the most important lessons are:

— Before using any metric one should look at a) intensity, b) heatmaps, and ¢) GBE curves.

— Undesired noise in the reference images (e.g., from observations) needs to be taken into

account.

— Any overall difference in intensity must be considered, as that can strongly affect all

other sharpness results (with the notable exception of Sy).

* While many of these metrics possess similar properties to one another, there are distinct dif-
ferences in how they respond to certain changes in the input data, particularly resolution, loca-
tion, intensity, and sharpness of transitions that should be taken into account when selecting

metrics.

We have only scratched the surface of this topic and suggest to expand this study by exploring the

following topics:

A more in-depth study of which kinds of sharpness the various metrics primarily focus on,

e.g. from edges vs. texture.

Adopting a better way to avoid NaNs as output of metrics, such as discussed in Vu et al. (2011)

for Spec-Slope.

Adding some of the metrics discussed in Section 2 that we dropped for this study.

Testing alternate methods of blurring for techniques derived from GBE, such as bilateral blur-

ring (Tomasi and Manduchi 1998).
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* Developing more best practices / protocols for the use of these metrics.

* Conducting experiments to test how much the spherical harmonic loss function recently pro-

posed by Subich et al. (2025) improves sharpness.

Another important topic - one that is only briefly touched on in Subsection S1c of the supplemental
document - is the question of how to effectively use these metrics to train neural networks, rather

than just to evaluate them. We hope to explore this topic in a follow-up paper.
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