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A B S T R A C T

Glyphosate, the most widely used herbicide globally, is accumulating in the environment and poses significant 
potential eco- and bio-toxicity risks. While natural attenuation of glyphosate has been reported, the efficacy 
varies considerably and the dominant metabolite, aminomethylphosphonic acid (AMPA), is potentially more 
persistent and toxic. This study investigated the bioelectrochemical system (BES) for glyphosate degradation 
under anaerobic, reductive conditions. Atomistic simulations using density functional theory (DFT) predicted 
increased thermodynamic favorability for the non-dominant C-P lyase degradation pathway under external 
charge, which suppressed AMPA production. Experimental results confirmed that cathodic poised potential (-0.4 
V vs. Ag/AgCl) enhanced glyphosate degradation (75 % in BES vs. ~40 % in the control conditions after 37 
days), and lowered the AMPA yield (0.52 mol AMPA yield per mol glyphosate removed in BES vs. 0.77–0.86 mol 
mol-1 in the control conditions). Geobacter lovleyi was likely the active species driving the C-P lyase pathway, as 
evidenced by the increase of its relative abundance, the upregulation of its extracellular electron transfer genes 
(most notably mtr) and the up-regulation of its phnJ and hcp genes (encoding C-P layse and hydroxylamine 
reductase respectively).

1. Introduction

Application of glyphosate [N-(phosphonomethyl)glycine], the most 
frequently used broad-spectrum herbicide globally (Sun et al., 2019), 
has increased 12-fold since 1995 (from 67 to 826 million kg annually) 
(Benbrook, 2016; Duke and Powles, 2008) due to its high effectiveness 
in weed control and low toxicity to non-target organisms (Benbrook, 
2016). The intensive use has resulted in increasing environmental 
accumulation (Torretta et al., 2018), with concentrations up to hundreds 
mg/kg in soil (Ololade et al., 2014, 2019; Silva et al., 2018) and hun
dreds μg/L in water (Battaglin et al., 2014; European Food Safety Au
thority (EFSA), 2015), as well as detection in commercial animal feeds 
(Zhao et al., 2018). Unchecked glyphosate accumulation could have a 
host of adverse effects on water quality, soil quality and fertility 
(Romano-Armada et al., 2019), and humans (IARC, 2015).

Natural attenuation of glyphosate relies on microbial degradation 
through two aerobic pathways: the C-P lyase pathway and the glypho
sate oxidoreductase pathway (Zhan et al., 2018). The latter typically 
dominates and produces aminomethylphosphonic acid (AMPA) 

(Grandcoin et al., 2017). AMPA could pose chronic health effects on 
animals and humans (Balbuena et al., 2015; Van Bruggen et al., 2018), 
and is generally considered more persistent than glyphosate under 
natural conditions (Imfeld et al., 2013) with half-life reported to be as 
high as non-degradable (Tang et al., 2019) to 240 days (Campanale 
et al., 2021) (although the persistence of AMPA is still being debated and 
some reported half-life between 10 days (Zhang et al., 2015) to 100 days 
(Bento et al., 2016)). A nationwide survey in the U.S. confirmed that 
AMPA was detected more frequently, at similar or higher concentrations 
than glyphosate in environmental samples (Scribner et al., 2007). There 
is an urgent need to develop new degradation processes that yield safer 
metabolites.

Bioelectrochemical system (BES) is a device that utilizes electro- 
active microbes and extra-cellular electron transfer to drive redox re
actions (Pant et al., 2012; Wilberforce et al., 2021). As a biodegradation 
platform, BES has the unique capability to pinpoint oxidative (anodic) 
and reductive (cathodic) reactions given its fuel cell-like setup. On the 
cathode side, BES has demonstrated great versatility in using a variety of 
electron acceptors including H+ (Logan et al., 2008), CrO4

2− (Huang 
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et al., 2015), CO2 (Villano et al., 2010), nitrate (NO3
−) and perchlorate 

(ClO4
−) (Sevda et al., 2018). Further, BES was shown to have the capa

bility of utilizing external voltage to augment reductive reactions (e.g., 
biohydrogen production (Logan et al., 2008)) or drive non-spontaneous 
reactions (e.g., CO2 reduction (Villano et al., 2010)).

Given the relatively achievable theoretical energy for cleaving C-P 
and C-N bonds (264 kJ/mol and 305 kJ/mol respectively (Cottrell, 
1958)) and binding energy for the glyphosate oxidor
eductase–glyphosate, C–P-lyase–glyphosate, and C–P-lyase–AMPA 
complexes (−5.4 kcal/mol, −4.3 kcal/mol, and −5.1 kcal/mol respec
tively (Bhatt et al., 2021)), we hypothesized that BES could be exploited 
to manipulate glyphosate degradation. This approach synthesized 
glyphosate degradation techniques previously explored in the literature, 
particularly breakdown by microorganisms and abiotic electrochemical 
degradation (Musa et al., 2023; Zhan et al., 2018). Unlike the aerobic 
degradation reported so far, we targeted anaerobic reductive degrada
tion under −0.4 V poised potential (vs. Ag/AgCl) in BES cathode. We 
combined theoretical simulation and experimental verification, in 
which we predicted the thermodynamic favorability and experimentally 
monitored glyphosate disappearance, metabolite generation (i.e., 
AMPA, sarcosine, glycine, phosphate), and microbial community com
positions under three conditions: bioelectrochemical reduction, abiotic 
electrochemical reduction, and non-electric microbial degradation. Our 
goal was to confirm the viability of bioelectrochemical glyphosate 
degradation and to identify conditions and functional microbes that 
could achieve new glyphosate degradation pathways for real-world 
remediation applications.

2. Materials and methods

2.1. Density functional theory simulations

Initial molecular structures were generated for glyphosate as well as 
the decomposition products. Two pathways were considered: the AMPA 
pathway, which forms through cleaving the glyphosate C-N bond, and 
the C-P lyase pathway, formed by cleaving the C-P bond. Ab-initio sim
ulations were performed using the ORCA package (Lehtola et al., 2018; 
Neese, 2018, 2012). Species were calculated in the charge neutral and 
1− charge state to simulate the stability of decomposition products 

under a strong applied potential. An initial geometry optimization at the 
BP86 (Becke, 1988) level of theory was performed before a final opti
mization at the B3LYP (Becke, 1993; Stephens et al., 1994) level to 
obtain the converged geometry. The Def2-TZVP basis set was used in 
each of these simulations, with a convergence criterion for the geometry 
optimizations of 3.0 × 10−4 Ha bohr−1 (Weigend and Ahlrichs, 2005). 
We performed single-point energy calculations at the M06 (Zhao and 
Truhlar, 2008) level to obtain reaction energies and HOMO/LUMO gaps.

We define the reaction enthalpy change (ΔH) of the AMPA and C-P 
lyase pathways as the difference in electronic energy described in Eq. 
(X). 

ΔH = Eproducts − Ereactant (X) 

Where the electronic energy of the reactant for both pathways is 
glyphosate, and the electronic energy of the products depend on the 
pathway. We calculated reaction energies for neutral glyphosate and 
each decomposition product, which are shown in the black lines of 
Fig. 1a and 1b. We then introduced an additional electron to each system 
to simulate the largest possible change expected in reaction thermody
namics where an applied potential could stabilize an additional electron 
on the reactants and products. This model was chosen to obtain a 
thermodynamic understanding of how sensitive each pathway is to an 
additional electron. We calculated the change in reaction enthalpy for 
both the AMPA pathway and C-P lyase pathway according to Eq. (Y)

ΔΔH = ΔH0+ − ΔH1− (Y) 

Where ΔH0+ is the charge neutral reaction enthalpy, and ΔH1− is the 
reaction enthalpy after including an additional electron.

Charge transfer analysis is quantified here according to Eq. (Z)

ΔQatom = Qatom,0+ − Qatom, 1− (Z) 

Where Qatom, 0+ is the native Hirshfeld charge for a particular atom on 
the neutral molecule, and Qatom, 1− is the Hirshfeld charge on an atom in 
the 1− charged molecule.

2.2. Reactor construction, startup, and operation

Two-chamber bio-electrochemical reactors were constructed with 
acrylic sheets. Each chamber was 550 mL in volume and separated by a 

Fig. 1. Reaction coordinate diagrams for the AMPA and C-P lyase decomposition pathways (a and b respectively), HOMO/LUMO gaps for glyphosate with and 
without charge (c), and molecular structure of phosphorus decomposition products (d).
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CMI-7000S Cation Exchange Membrane (Membranes International, Inc., 
New Jersey, USA). The anode was 5 cm × 5 cm × 1 cm graphite sheet. 
The cathode was platinum mesh plate. The reference electrode was RE- 
5B Ag/AgCl electrode (Bioanalytical System, Inc., Indiana, USA). The 
poised potential was applied by a Model 1000C Series Multi-Potentiostat 
(CH Instruments, Inc., Texas, USA).

The electroactive biofilms were cultivated in the anodic mode with a 
poised potential of +0.2 V (vs. Ag/AgCl). The inoculum was wastewater 
from a local wastewater treatment plant (Tuscaloosa, AL, USA). The 
anode solution consisted of 10 mM phosphate buffer (pH = 7.8), 1 g/L 
sodium bicarbonate, 0.8 g/L sodium acetate, and vitamins and mineral 

salts as described elsewhere (Brandon et al., 2020). Anodes were inoc
ulated with 30 % (v/v) wastewater to anode solution in the first three 
cycles and pure anode solution for three more cycles. Final anode so
lution was purged with nitrogen gas (purity N 99.9 %) for 10 min at 10 
psi. The cathode solution was 10 mM phosphate buffer solution in each 
cycle. At the end of the cultivation phase, the peak current was 9.26 mA, 
and the Coulombic efficiency was 53.82–67.27 %.

Upon completion of the cultivation phase, the test phase was con
ducted in the cathodic mode. Four conditions were compared: the non- 
electric (open circuit) control, the non-glyphosate control, the BES 
treatment condition, and the abiotic control. Except for the non-electric 
control, −0.4 V (vs. Ag/AgCl) was applied; except for the non- 
glyphosate control, 5 mg/L glyphosate was added to the catholyte. 
The catholyte also contained 1 g/L sodium bicarbonate and 0.8 g/L 
sodium acetate. The anode solution was10 mM phosphate buffer solu
tion (pH = 7.40). The reactors were operated for five weeks. All reactors 
were kept at room temperature (~25 ◦C) and sampling holes were 
covered with tape to minimize water evaporation throughout the 
experiments.

2.3. Metabolites and water quality measurements

Glyphosate, AMPA, sarcosine, and glycine were quantified by Agi
lent Ultivo Triple Quadrupole LC/MS/MS (Agilent Technologies, Inc., 
California, USA). Isotope-labelled glyphosate-2–13C was applied as an 
internal standard. 120 µl of 5 % borate buffer and 120 µl of 12 g/L 9-Flu
orenylmethyl chloroformate (FMOC–Cl) were added to 1 ml of the 
sample and thoroughly shaken for 1 min. The derivatization process 
occurred at ambient temperature overnight, following which 120 µl of 
HCl was added to halt the derivatization reaction. Prior to measurement, 
the samples were filtered using a 0.45 µm filter. The mobile phases were 
prepared following method outlined by Sun et al. (2019) (Sun et al., 
2019), optimized operating conditions and MRM parameters are pro
vided in Appendix. pH was measured using the Ag/AgCl pH electrode 
(Thermo Fisher Scientific, Massachusetts, USA). Current generation was 
measured by the potentiostat (CH Instruments, Inc., Texas, USA) every 
40 s.

2.4. DNA extraction, sequencing, and microbial community analysis

Biofilms were preserved at the end of the cultivation phase and the 
end of the test phase. DNA extraction of samples was performed using 
ZYMO Quick-DNA/RNATM Microprep Plus Kit D7005 (Zymo Research, 
Irvine, CA, USA) according to the manufacturer’s instructions. Samples 
were sequenced by Zymo Research (Irvine, CA, USA). The sequences 
reported in this article have been deposited in the NCBI BioProject 
(accession no PRJNA1066388). Gene annotations are from UniProt 

Fig. 2. Temporal profiles of glyphosate concentration and pH (a and b, respectively) and known glyphosate biodegradation pathways (c, recreated from the 
literature (Giesy et al., 2000)). “Non-electric”, “BES”, and “Abiotic” are the open circuit control, the BES treatment condition, and the abiotic control, respectively. *p 
< 0.05, **p < 0.01, ***p < 0.001.

Table 1 
Comparison of the molar ratios of AMPA yield to glyphosate removal in this 
study and previous studies. Ratios were sometimes estimated based on figures 
and tables in previous studies.

Conditions 
(aerobic/ 
anaerobic)

Biomass Mole AMPA 
yield per mole 
glyphosate 
removed

Refs.

Anaerobic, 
biological 
reduction (non- 
electric control)

Wastewater-sourced 
bacteria

0.77 ± 0.10 This study

Anaerobic, bio- 
electrochemical 
reduction

Wastewater-sourced 
bacteria

0.52 ± 0.05 This study

Anaerobic, 
electrochemical 
reduction

None 0.86 ± 0.04 This study

Aerobic 
degradation

Bacteria cell-free 
extracts

0.56 Fan et al. (2012)

Aerobic 
degradation

Bacteria cell-free 
extracts

0.75 Sviridov et al. 
(2012)

Aerobic biological 
degradation

Soil-sourced 
microbes

0.15 (1 
sample) 
0.75–0.92 (5 
samples)

Tang et al. (2019)

Aerobic biological 
degradation

Sediment-sourced 
microbes

0.81 - –0.93 Tang et al. (2019)

Aerobic biological 
degradation

Pure culture 
Pseudomonas sp. 
strain LBr

0.95 Jacob et al. (1988)

Aerobic biological 
degradation

Pure culture 
Geobacillus 
caldoxylosilyticus 
T20 (thermophile)

1 Obojska et al. 
(2002)

Aerobic biological 
degradation

Soil-sourced 
bacteria

1 Hadi et al. (2013)

Aerobic biological 
degradation

Soli/aeration tank 
sourced fungi

1 Krzyśko-Lupicka 
et al. (1997), Fu 
et al. (2017)

Q. Wang et al.                                                                                                                                                                                                                                   Water Research 266 (2024) 122373 

3 



Fig. 3. Mole recovery of phosphorus (a) and degradation products (b). “Non-electric”, “BES”, and “Abiotic” are the open circuit control, the BES treatment condition, 
and the abiotic control, respectively.
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(https://www.uniprot.org/), the redundancy analysis (RDA) is per
formed with the community ecology package vegan of R 4.2.2.

3. Results and discussion

3.1. Simulated decomposition pathway thermodynamics

DFT calculations revealed a shift in the thermodynamic favorability 
across both decomposition pathways (Fig. 1a and 1b) upon applying an 
additional electron. We found that the change in reaction enthalpy 
(ΔΔH) of the AMPA pathway decreased by 266 kJ/mol upon adding an 
additional charge, while the C-P lyase pathway saw a comparatively 
large change, decreasing by 435 kJ/mol. The reaction enthalpy was 
similar for charged and uncharged states across both AMPA and C-P 
lyase pathway (ΔH1− =499 and ΔH0+ =457 kJ/mol) for these pathways, 
respectively. Reaction diagrams are shown in Fig. 1a and 1b. Given the 
similar enthalpy change across both pathways, it is plausible that similar 
quantities of AMPA and C-P lyase would be produced if the system were 
to fully equilibrate with an applied potential and that both pathways 
were kinetically accessible. The negative shift in reaction enthalpy 
across both pathways implies that the addition of an extra electron leads 
to glyphosate decomposition becoming more thermodynamically 
favorable, regardless of pathway.

The shift in the HOMO/LUMO gap of glyphosate indicates decreased 
thermodynamic stability after adding an additional electron. The 
HOMO/LUMO gap of neutral glyphosate was calculated to be 6.43 eV. 
Upon adding charge, this shifted to 4.26 eV, representing a decrease of 
2.17 eV (Fig. 1c). Generally, a high HOMO/LUMO gap is correlated with 
increased molecular stability, meaning the added charge on glyphosate 
reduces the HOMO/LUMO gap magnitude and decreases its thermody
namic stability (Kosar and Albayrak, 2011).

The localization of the location of the added electron amongst the 
decomposition products was determined by analyzing the relative 
thermodynamic stability of these molecules with an added charge. In 

either case, it was found that the phosphorus decomposition product had 
a lower total energy. The difference in energy amongst charged 
decomposition products for the AMPA and C-P lyase pathways were 
236.28 and 13.02 kJ/mol, respectively. The comparatively low ener
getic difference between charged species for the C-P lyase pathway 
could help explain the benefits of the applied potential, since either 
decomposition product is relatively stable with the added electron 
compared to the AMPA case. Still, an added charge on either phosphorus 
decomposition product results in significant conformational change in 
the molecule (Fig. 1d). This is most evident in analyzing changes in the 
P-O-H bond angle for either compound. For the AMPA pathway, the 
average P-O-H bond angle increased from 108.4◦ to 111.1◦ upon adding 
an electron, while in the C-P lyase pathway this angle increased from 
106.6◦ to 112.3◦. Hirshfeld charge transfer analysis revealed signifi
cantly increased electron density amongst the hydrogen atoms bonded 
to the phosphorus groups in both pathways. In the AMPA pathway, 
ΔQH, avg = −0.24 e while the C-P lyase pathway saw slightly increased 
charge transfer to these hydrogens with ΔQH, avg = − 0.27 e.

3.2. Cathodic poised potential facilitated glyphosate degradation

The experimental results agreed with the DFT predictions. First off, 
glyphosate degradation under the BES treatment conditions was 
significantly faster than both the non-electric and abiotic control con
ditions (Fig. 2a, p < 0.05). After three weeks, 44 % of the glyphosate 
disappeared in the BES treatment condition, whereas only 22 % and 16 
% decreases were noted under the non-electric and abiotic control 
conditions, respectively (Fig. 2a, p < 0.01). The difference persisted 
until day 37, where 75 %, 41 %, and 38 % of glyphosate were removed 
under BES, non-electric control, and abiotic control conditions, respec
tively (Fig. 2a, p < 0.001). The pH decreased to <7.5 after three days in 
the BES and abiotic control conditions, while a less significant pH 
reduction was observed under the non-electric control condition 
(Fig. 2b). The decreasing pH under poised potentials suggested that 
hydrogen evolution was not a dominant factor in this study.

Second, the BES condition shifted glyphosate degradation towards 
the C-P lyase pathway. The mole ratio of AMPA produced to glyphosate 
removed was significantly lower under the BES treatment condition than 
the other two conditions and decreased throughout the treatment pro
cess (Fig. S1). The mole ratio of sarcosine and glycine concentrations to 
glyphosate removed generally supported the same conclusion, but the 
difference between BES and non-electric conditions were less pro
nounced possibly due to biologically sourced or utilized glycine and 
sarcosine (Fig. S1). The final AMPA yield in this study (i.e., 0.52 mol 
AMPA yield per mol glyphosate degraded, Table 1), is significantly 
lower than most of the previous glyphosate biodegradation studies that 
did not employ electric stimulation (Table 1). The only exception is a 
study that reported a ratio of 0.15 mol/mol (Ref. (Tang et al., 2019) in 
Table 1), where the authors applied soil collected from a site with a long 
history of high glyphosate exposure (i.e., once every three months for 
four years) and pre-acclimated microbial community (Pizarro et al., 
2016; Ratcliff et al., 2006).

The total phosphorus recovery was 156 %–169 % and 182–196 % 
under the BES treatment and non-electric control conditions respec
tively, significantly higher than the abiotic control (115 %–129 %) 
(Fig. 3a). The additional phosphorus is likely sourced from microbial 
decay and genomic phosphorus, since previous studies reported the 
toxicity of glyphosate on microbial cells (Roberts et al., 2002; Zabloto
wicz and Reddy, 2004). The fast kinetics of glyphosate removal under 
BES condition reduced microbial decay, which led to lower phosphorus 
recovery than the non-electric control condition (Figs. 3a and S2d). The 
reason for the increase (15 %–29 %) in phosphorus recovery in the 
abiotic control was unclear. On day 37, all the catholyte from the abiotic 
control was filtered with 0.22 µm sterile filter and nucleic acid extrac
tion was performed on the filter membrane. The total DNA yield was <5 

Fig. 4. Redundancy analysis (RDA) of reactor conditions and microbial com
munity composition. “Non-electric”, “BES”, “Abiotic” and “Non-glyphosate” are 
the open circuit control, the BES treatment condition, the abiotic control, and 
the no-glyphosate control, respectively.
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Fig. 5. Abundance of the genes related to C-P lyase (a), electron transfer (b) and reduction (c) functions. “Biofilm”, “Non-electric”, “BES”, and “Non-glyphosate” 
represent the microbial community at the starting point, and day 37 in the open circuit control condition, the BES treatment condition, and the non-glyphosate 
control condition respectively. cpm: counts per million.
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ng. Therefore, a likely reason was uncontrollable experimental 
inaccuracies.

The total molar recovery of glyphosate and degradation products 
was 115 % - 152 % and 116 % - 146 % under the BES treatment and non- 
electric control conditions respectively, higher than the abiotic control 
(101 %–140 %) (Fig. 3b). The extra recovery under biological conditions 
was likely the additional glycine/sarcosine from the metabolic pro
ductions of the microbial communities, since glycine/sarcosine- 
producing microorganisms were detected in the microbial community 
(Fig. S2).

3.3. Poised potential and Geobacter were significantly correlated with the 
C-P lyase pathway

In addition to strong correlations with the concentrations of glycine 
and sarcosine, poised potential increased the relative abundance of 
Geobacter lovleyi and the microbial community diversity as measured by 
the Shannon diversity indices (Figs. 4 and S2), suggesting that it miti
gated the toxicity of glyphosate on microbial communities through 
faster removal or adaptation (Giesy et al., 2000; Hove-Jensen et al., 
2014). The relative abundance of Geobacter lovleyi (5.35 %) and Geo
bacter sp. (75.81 %) showed strong correlations with the glyphosate 
concentrations, while the relative abundance of Desulfovibrio vulgaris 
(3.89 %) was correlated with the concentrations of glycine and sarcosine 
(Fig. 4). Geobacter sp. and Geobacter lovleyi are known electro-active 
species, and strains from Geobacter lovleyi are organohalide-respirating 
bacteria (Wagner et al., 2012). D. vulgarisa is strictly anaerobic, 
sulfate-reducing bacterium with the ability of activating distinct path
ways in response to survival stresses (Zhou et al., 2011).

3.4. C-P lyase pathway was likely simulated by the phnJ, mtrB, and hcp 
genes from Geobacter lovleyi

Genes encoding the necessary proteins for C-P lyase core complex, 
including phnG, phnH, phnI, phnJ, phnK, phnL, and phnM (Stosiek et al., 
2020), were 2.5–10.8 times higher under the BES condition than 
non-electric and non-glyphosate conditions (Fig. 5a). Most notably, phnJ 
from Geobacter lovleyi, the gene encoding the main functional C-P bond 
cleavage protein (Horsman and Zechel, 2017), was the most abundant 
phn gene under the BES condition (57 cpm), which was 1.8 times of that 
under the non-electric condition and undetected under the 
non-glyphosate condition (Fig. 5a). phnK and phnL from Pseudomonas 
mendicina were the second and third most abundant phn gene under the 
BES condition, also significantly higher than the other conditions 
(Fig. 5a).

Extracellular electron transfer genes were also significantly up- 
regulated under the BES condition, with 5.8- and 9.4-times increases 
noted compared to non-glyphosate and non-electric conditions (Fig. 5b). 
omcB, omcS, and omcE from Geobacter sulfurreducens were the most 
abundant extracellular electron transfer genes under the BES condition 
(32.0 to 57.7 cpm), followed by mtrB from Geobacter lovleyi (29.6 cpm, 
Fig. 5b).

Reduction-related genes were generally down-regulated under the 
BES conditions compared to the biofilm control, but up-regulated 
compared to non-glyphosate and non-electric conditions. The hydrox
ylamine reductase (hcp) gene from Geobacter lovleyi was the most 
abundant one (35.6 cpm) under the BES condition, which was 1.7- to 
3.2-times higher than the other conditions (Fig. 5c). This agrees with a 
previous study that suggested significant correlations between hydrox
ylamine reductase activity and glyphosate degradation in agricultural 
soil (Chen et al., 2023).

Overall, the results suggest that glyphosate degradation under poised 
potential was likely catalyzed by Geobacter lovleyi given its significantly 
increased relative abundance (Fig. S2), correlation with glyphosate 
concentration (Fig. 4), and up-regulation of genes encoding C-P lyase 
core complex (phnJ), extra-cellular electron transfer (mtrB), and 

reduction (hcp) (Fig. 5). Geobacter sulfurreducens, which was previously 
reported to be in the microbial consortia in the remediation of soil and 
water polluted by indiscriminate use of herbicides and pesticides 
(Behera et al., 2022), likely contributed through facilitating the extra
cellular electron transfer (Fig. 5) despite the low relative abundance (0.3 
% in the BES condition, Fig. S2). Pseudomonas mendicina, although also 
low in relative abundance (0.1 % in the BES condition, Fig. S2), likely 
contributed to the enhanced C-P lyase pathway as evidenced by the 
up-regulation of its phnK and phnL genes (Fig. 5). Geobacter sp., while 
high in relative abundance (Fig. S2) and correlated with glyphosate 
concentrations (Fig. 4), was not significant in terms of functional gene 
expression.

4. Conclusions

This study investigated the degradation of glyphosate in bio
electrochemical systems (BES) with cathodic poised potentials. DFT 
simulations predicted that the C-P lyase degradation pathway would be 
thermodynamically favorable under external charge. Experimental re
sults confirmed that cathodic poised potentials improved the kinetics of 
glyphosate degradation up to 200 % of abiotic and open-circuit control 
conditions, and lowered the AMPA yield by 30 %. The enhanced C-P 
lyase pathway was likely related to the proliferation of Geobacter lovleyi, 
and the up-regulation of its phnJ, mtrB and hcp genes. This research 
shows the potential of BES as a glyphosate treatment process, which 
could be more affordable than current options (Table S4) while reducing 
the risk of secondary pollution by lowering the chemical and energy 
consumption.
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