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Abstract

We introduce a model of hadronization based on invertible neural networks that faith-
fully reproduces a simplified version of the Lund string model for meson hadroniza-
tion. Additionally, we introduce a new training method for normalizing flows, termed
MAGIC, that improves the agreement between simulated and experimental distributions
of high-level (macroscopic) observables by adjusting single-emission (microscopic) dy-
namics. Our results constitute an important step toward realizing a machine-learning
based model of hadronization that utilizes experimental data during training. Finally, we
demonstrate how a Bayesian extension to this normalizing-flow architecture can be used
to provide analysis of statistical and modeling uncertainties on the generated observable
distributions.
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1 Introduction

Hadronization is one of the least understood ingredients in the simulation of particle collisions.
While the Lund-string [1, 2] and cluster-fragmentation [3–5] models give reasonable overall
descriptions of hadronization, there are still significant discrepancies between both the two
models [6] and the models and data [7]. Augmenting these phenomenological models with a
data-driven description of hadronization may help to improve the predictions.

Hadronization models, such as the string and cluster models, serve two distinct purposes.
The first purpose is rooted in direct physics motivation. We aim to enhance our understanding
of QCD behavior beyond the approximations afforded by lattice quantum chromodynamics
(QCD) and perturbative QCD under specific limits. For this purpose, reliance on models is
essential. The second purpose is to provide a realistic description of final state particles in high
energy collisions. This description allows for the detailed study of detector responses, as well
as realistic modeling of both background and signals for high momentum transfer processes.
This modeling is critical in most high energy particle physics analyses both for interpreting the
results as well as estimating systematic uncertainties.

In the first scenario, discrepancies between models offer an opportunity to utilize measure-
ments to deepen our understanding of physics. In this context, substituting a physics model
with a machine learned (ML) model may obscure these discrepancies or mask the foundational
physics phenomena. However, a carefully designed ML model could also provide insights into
the physics model by supplying a detailed description across all phase space of the physics
model at a granular level. In the second scenario, discrepancies with data do not provide
deeper insights into the hadronization process but rather produce more ambiguous interpre-
tations of experimental data with larger associated systematic uncertainties. Here, data-driven
models can reduce these uncertainties while retaining the same physics motivation present in
the original models.

To develop these data-driven models the existing phenomenology can be augmented, keep-
ing the underlying strings or clusters as the building blocks, but perturbing their dynamics
to accommodate all relevant experimental observables. This is a problem well suited for ML
methods, which can form a flexible basis for adjusting the underlying model dynamics to match
experimental data. The first attempts at providing an ML description of simplified hadroniz-
ing systems have been carried out using both (MLHAD) conditional sliced Wasserstein autoen-
coders (cSWAEs) [8] and (HADML) generative adversarial networks (GANs) [9, 10]. These
two architectures have reproduced key features of the Lund string model in PYTHIA 8 [11]
and the cluster model in HERWIG 7 [12,13], respectively, but both rely on training data that is
not available at the experimental level. Here, MLHAD [8] uses the kinematics of first hadron
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emissions from a string, which is only available at the generator level. The HADML model uses
either the same information from cluster decays [9] or the full hadron-level kinematic infor-
mation for collisions [10], which is not yet available in practice. Similarly to the present paper,
Ref. [10] does attempt to improve the agreement between predictions of ML based hadroniza-
tion model with macroscopic observables, in a simplified set-up. The approaches differ in the
choices of the architecture, but also in the information used. In this respect the analysis in
Ref. [10] was a definite step forward, as it uses only information that can at least in principle
be measured.

At present, there are three main challenges to performing ML training on real experimen-
tal data: (1) develop a procedure to alter microscopic string dynamics for parton systems
produced from existing event generators; (2) quantify the uncertainties associated with this
procedure and propagate them through detector and material simulations; and (3) identify
and measure an adequately large set of observables sufficiently sensitive to hadronization to
break model degeneracy. Here, we address the first two challenges.

Building on the work of the MLHAD model from ref. [8], we analyze a simplified version
of the Lund string model, now in the context of normalizing-flow (NF) ML architectures [14–
16]. The NF architectures transform a simple underlying probability density into the complex
hadronization probability density via mappings that can be inverted. This specific feature of
NFs is key to the work presented here; hadronization from one NF model can be reweighted to
another model with minimal computational cost. The NF architectures presented here surpass
the previous cSWAE architecture in both efficiency1 and physics capabilities, and enables, in
the context of Bayesian NFs (BNFs) [17], a coherent analysis of uncertainties. Furthermore, it
provides a method for determining microscopic dynamics from macroscopic observables via a
novel training approach termed MAGIC.

This paper is organized as follows: in section 2 we briefly review the simplified Lund string
model. This model is used in section 3 to train a NF architecture for hadronization. In section 4
we use a modified NF to introduce the MAGIC method for fine-tuning hadronization models,
while in section 5 we use Bayesian NFs to estimate uncertainties. Finally, section 6 contains our
conclusions. Appendices contain details about the public code, appendix A, and a pedagogical
introduction to Bayesian normalizing flows, appendix B.

2 Hadronization

Hadronization describes the conversion of a partonic system consisting of quarks q, antiquarks
q̄, and gluons g into a final state consisting of hadrons h. In what follows, we use the Lund
string model of hadronization [1, 2] to describe the simplest hadronizing partonic system, a
qiq̄i pair of massless quarks with flavor i. Specifically, we consider the quark system in the
center of mass frame, with the quark and antiquark in close proximity and traveling apart
with equal and opposite momenta. In the Lund model, as the separation between the quark
and antiquark increases, the non-Abelian nature of the strong force causes an approximately
uniform string, or flux tube, of color field to form between the quark and the antiquark, with
an approximately uniform energy density ϵ↔ 1 GeV/fm↔ 0.2 GeV2. The quark and antiquark
are the endpoints of this string.

The constant force between the quark and antiquark translates into a potential energy
that increases with their separation. As the kinetic energy of the quark and antiquark at the
endpoints of the string is converted into the potential energy of the string, it can become
energetically favorable to create qq̄ pairs out of the vacuum, thereby breaking the string. The

1While the sampling time of the NF architecture presented here is more efficient than the model introduced
in [8], both architectures are still significantly slower than modern event generators.
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original string breaks into fragments, e.g., a composite hadron h↗ qiq̄ j and a string fragment
with endpoints qjq̄i . Multiple emissions can be implemented sequentially by boosting and
rotating into each hadronizing string fragment’s center-of-mass frame, emitting a hadron while
conserving energy and momentum, then boosting and rotating the hadron and the new string
fragment back to the rest frame of the initial string.

The kinematics of the emitted hadron is determined through a correlated sampling of trans-
verse momentum p↘ and longitudinal momentum fraction

z ↗ (E ± pz)hadron/(E ± pz)string ,

where E and pz are the energy and longitudinal momentum of the hadron or string, as labeled,
in the center-of-mass frame of the string fragment from which the hadron is emitted, and
the parton is moving in the ±ẑ direction in the same frame. After each hadron emission, the
kinematics of the string are updated. Although the qjq̄ j pair has no net transverse momentum,
both the qj quark and q̄ j antiquark carry transverse momentum p↘ ↗

!
p2

x + p2
y , where px and

py are perpendicular to each other and sampled from a Gaussian probability distribution

P(px , py ;ϑp↘) =
1

2ϖϑ2
p↘

exp

"
≃

p2
x + p2

y

2ϑ2
p↘

#
, (1)

where the width parameter ϑp↘ is obtained from fits to data.2

The probability for a hadron to be emitted with longitudinal lightcone momentum fraction
z is given by the Lund symmetric fragmentation function

f (z)⇐ (1≃ z)a

z
exp

$
≃

bm2
↘

z

%
, (2)

where m2
↘ ↗ m2+p2

↘ is the square of the transverse mass, m is the hadron mass, and a and b are
fixed parameters determined by fits to data.3 Each iteration of causally disconnected string
fragmentations consists of: randomly selecting one string end; assigning probabilistically a
quark flavor to be pair produced during string breaking; generating the transverse momentum
of this pair; generating the light-cone momentum fraction of the new hadron; and finally
computing the longitudinal momentum of the new hadron, by conserving the total energy and
momentum of the system. Iterative fragmentation continues until the energy of the string
system crosses a threshold. The remaining string piece is then combined into a final pair of
hadrons such that the energy of the initial two-parton system is converted entirely into the
emitted hadrons.

Working within the Lund string model, the phenomenology of hadronization is largely
determined by the probabilities with which different hadron species are produced, i.e., (i)
the forms of the probability distributions for the hadron momenta traditionally determined by
eqs. (1) and (2), (ii) the method of determining the color singlet systems, and (iii) the process
of flavor selection. Here, we set aside (ii) and (iii) to focus on (i), the kinematics of string
fragmentations, for which we want to ultimately develop a data-driven determination of the
probability distributions.

3 Normalizing flows

Normalizing flows (NFs) are generative ML models that can produce high-quality continu-
ous approximations of probability distributions from a limited set of data samples [14–16].

2Within PYTHIA 8, ϑp↘ is set with the parameter name and default value of StringPT:sigma = 0.335.
3The default parameter names and values as implemented in PYTHIA 8 are StringZ:aLund = 0.68 and

StringZ:bLund = 0.98, for a and b, respectively.
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They accomplish this by concatenating a series of N independent, bijective transformations,
F(z) = fN ( fN≃1(. . . f2( f1(z)) . . .)), which then map a latent space probability distribution
PZ(z) to a target distribution PX (x ). The latent space is typically chosen such that it can
be easily sampled. The form of the bijective functions fi is adjusted by modifying the model
parameters ω and any external parameters, including any provided conditional labels c.

Since each fi is a continuous function, the composite function F is also continuous. This
allows for density estimation over the full phase space including regions sparsely populated
by the training data. In section 4 we use this feature to introduce a method for fine-tuning
the form of the microscopic fragmentation function using measured observable quantities.
Furthermore, in the MLHAD NF architecture we use Bayesian NFs (BNFs) [17], in which the
model parameters ω themselves are random variables. They are taken to be normally dis-
tributed, with average values and variances learned from training data and which encode
data uncertainties, as described in section 5. Further details on both NFs and BNFs are given
in appendix B.

The MLHAD NF architecture is able to reproduce pseudo-data generated using a simplified
version of the PYTHIA 8 Lund string hadronization model. This pseudo-data is produced using
the same simplified model as in ref. [8], in which only light-quark flavors are allowed as end-
points, and isospin symmetry is required, i.e., only neutral and charged pions at a single mass
are generated. The MLHAD NF is trained on a dataset of N hadron emissions from a string
with energy Eref = 200 GeV. That is, the training dataset consists of N two-dimensional arrays
of first hadron emission kinematics x n = {pz,n, p↘,n}, where n ⇒ {1, . . . , N} and pz and p↘ are,
respectively, the longitudinal and transverse components of the emitted hadron’s momentum
in the-center-of-mass frame of the string. To generate hadron kinematics for strings with en-
ergies other than Eref, we use the rescaling property of the Lund string fragmentation function
to render pz independent of the string energy, transforming the generated value of pz accord-
ing to pz ⇑ pz Eref/E, where E is the energy of the quark in the initial string’s center-of-mass
frame [8].

Unlike in ref. [8], we train the MLHAD NF on a dataset containing different transverse
masses, m↘. For this, we construct labeled training datasets {xn, cn}Nn=1, where

cn ↗
m↘,max ≃m↘,n

m↘,max ≃m↘,min
, (3)

m↘,min = mϖ± ↔ 0.140 GeV and m↘,max = 1.3 GeV are, respectively, the minimal and maximal
values of m↘ used in training. The maximum is chosen such that none of the hadronization
chains considered will produce an m↘ above this value. That is, the conditional labels cn
are functions of hadronic transverse mass m↘ such that cn ⇒ [0, 1], where the boundaries
correspond to the minimum and maximum m↘. Here, m↘ is used rather than mass to ensure
the independence of the z and p↘ probability distributions for a given m↘ value, see eq. (2).
The training dataset is split into 15 different conditional labels, where each label corresponds
to a different fixed m↘. For each conditional label 5⇓105 first hadron emissions are used, for
a total of N = 7.5⇓ 106 emissions in the full training dataset.

Figure 1 shows a comparison between PYTHIA 8 generated kinematic distributions and the
learned MLHAD NF kinematic distributions for different values of the transverse mass (we have
set the NF model parameters ω to their fixed average values). We observe that the NF model
can fully reproduce the pz of the hadronizing qq̄ system of the Lund string model for arbi-
trary hadron mass. The result of a full hadronization chain, where hadrons are sequentially
emitted from the string fragments, is shown in fig. 2; the string fragmentation terminates at
Ecutoff = 25 GeV in this case in order to avoid the final combination step, which requires a sep-
arate treatment. We observe excellent agreement between the hadron multiplicities produced
by PYTHIA 8 and the MLHAD NF.
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Figure 1: A comparison between the (histograms) PYTHIA 8 and (solid lines) MLHAD

NF generated single emission pz distributions produced at four different fixed values
of m↘ which were not used in the training of the model.

4 Fine-tuning microscopic fragmentation kinematics

In this section we show how the MLHAD NF model trained on single hadron emission pseudo-
data can be used to adjust the microscopic model of single hadron emission kinematics, so
that it reproduces experimental data that has no direct single hadron emission measurements.
To do this we introduce a method for fine tuning NF-based models of hadronization, termed
microscopic alterations generated from infrared collections4 (MAGIC). The MAGIC training
method allows for the fine tuning of microscopic dynamics to describe a set of macroscopic
observables. Practically, the microscopic dynamics are produced from an underlying phe-
nomenological model, while the macroscopic observables are from experiment.

MAGIC is a natural extension of the traditional tuning techniques, such as manual tun-
ing [18] or automated regression techniques [19–22]. Crucially, while approaches such as
deep neutral networks using classification for tuning and reweighting (DCTR) [22] do parame-
ter reweighting and tuning, they do not directly modify the underlying parametric Lund model
used for training. MAGIC is able to increase the flexibility of the model beyond the parametric
form, eqs. (1) and (2), while remaining physically meaningful by keeping the emission-by-
emission paradigm described in section 2.

This method works by adding data-driven perturbations to an analytic solution, the Lund
symmetric fragmentation function of eq. (2) in the case of hadronization, by augmenting it
with an over-parameterized function such as an NF that can be modified arbitrarily to accom-
modate data. The Lund symmetric fragmentation function already provides a good description
of experimental data; we seek to learn data-driven perturbations to obtain even better agree-
ment with experiment.

As a toy example we take a simplified one-dimensional NF model, consisting of a weighted
mixture of Gaussian distributions, trained on the z component of the momentum of first-
emission hadrons, as described in section 3. MAGIC consists of two training phases: in the
first phase, the NF is trained on simulated kinematics as described in section 3; in the second
phase, the NF is modified to match the experimental data. The initial NF model, or base model,
provides high fidelity sampling of single-hadron emission kinematics x = pz . Here we omit
p↘, in contrast to section 3, for simplicity of the model. From these x kinematics, one can

4Here, infrared collections refer to any hadronization-sensitive high-level observable distribution that can be
obtained from experiment.
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Figure 2: (left) Comparison of hadron multiplicity distributions generated with
(orange) PYTHIA 8 and the (blue) MLHAD NF, constructed from hadronizations of
105 strings, all with an initial energy of Estring = 100 GeV and an energy cutoff of
Ecutoff = 25 GeV. (right) Scaling of average hadron multiplicity ⇔Nh↖ is given as a
function of the starting string energy. Each marker represents an averaging of hadron
multiplicity over the hadronization of 5⇓ 103 strings. The dotted lines show the av-
erage multiplicity ⇔Nh↖ and the bands the corresponding 1ϑ range.

obtain predictions for measurable, hadronization-sensitive observables y , e.g., hadron multi-
plicity. In the second phase of training, the base model is fine-tuned by reweighting the dataset
of y values generated by the base model to statistically match the experimentally observable
dataset. This second phase explicitly relies on the ability to reweight distributions.

The training data for the second phase of MAGIC consists of three components: (i) the
hadronization-chain-level kinematics x , i.e., the hadron kinematics pz from simulated emis-
sions produced by the base model; (ii) the desired measurable observables from simulated
hadronization chains produced by the base model y sim, e.g., the hadron multiplicity Nh pre-
dicted by the base model; and (iii) values of the same observables measured experimentally
yexp. As a proof of principle, we use just a single observable, the total number of hadrons for
a single hadronization chain, i.e., the hadron multiplicity such that y is Nh.

An example of the training data, consisting of N hadronization chains, is therefore5

x =




x 1 =
)

pz,h1
, pz,h2

, pz,h3

*
1

x 2 =
)

pz,h1
, pz,h2

, pz,h3
, pz,h4

*
2

...
x N =
)

pz,h1
, pz,h2

*
N




, y sim =




y1 = Nh,1 = 3
y2 = Nh,2 = 4

...
yN = Nh,N = 2




. (4)

The fine tuning modifies the hadronization model, i.e., the distribution governing pz for each
emission, to minimize the difference between the two ensembles y sim and yexp. We do not
match specific measured hadronization chains to a given hadronization history but instead
compare the two ensembles at the statistical level.

MAGIC does not require regenerating hadron emissions for each perturbation of the NF, and
instead reweights the hadronization chains, which is computationally advantageous with re-
simulating taking O(minutes per thousands of events) versus reweighting taking O(seconds
per thousands of events) in our toy simulation. We make use of the fact that NFs give explicit

5While not denoted explicitly in eq. (4), each array x i is zero-padded to a fixed length of size
max(y sim) =max(Nh,n).
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access to the model likelihood and reweight events that were originally sampled from the base
model to events sampled from the updated model. Each hadronization-chain weight can be
computed in terms of the likelihood ratio between the updated, or perturbed, model likelihood
PX (x n,ω P), and the base model likelihood PX (x n,ω B). Written in terms of single emissions,
the likelihood PX (x n,ω ) can be factorized as,

PX (x n,ω ) =
Nh,n∏

i=1

PX (x n,i ,ω ) , (5)

where Nh,n is the number of hadrons in hadronization chain n, and x n,i is emission i of chain n.
We introduce a hadronization-chain weight array w , where each weight is computed as

the product of the likelihood ratios for all emissions in a chain

w =




w1

w2
...

wN




, where wn =
Nh,n∏

i=1

PX (x n,i ,ω P)
PX (x n,i ,ω B)

. (6)

Explicitly for this example, x n,i is just the pz of hadron i from hadronization chain n. The
reduction in training time associated with this use of hadronization-chain weights is crucial
for the technical feasibility of the MAGIC approach to fine-tuning.

The learning objective of the fine-tuning phase is to minimize the statistical distance be-
tween y sim, weighted by w , and the target distribution yexp. In our toy example, we use the
Wasserstein distance [23–26], or Earth mover’s distance (EMD), as a measure of the similarity
between the two samples6 and define the loss function as

LEMD(y sim, yexp) =
N∑

n=1

M∑

m=1

f ↙n,mdn,m , (7)

where the elements of the flow matrix fn,m encode the fractional amount of weight to be
transferred between event y sim,n and yexp,m and dn,m = ||y sim,n ≃ yexp,m||2 is the distance
between these two hadronization chains. Here, M is the number of hadronization chains
observed in the experimental dataset.

Once the loss has been computed, back-propagation algorithms update the NF parame-
ters ω using PYTORCH’s automatic differentiation engine autograd. The autograd engine
utilizes differential programming paradigms with dynamic computational graphs to yield the
gradients of the loss function with respect to all parameters ∝ω LEMD by tracking the impact
of the hadronization-chain weights w (ω ) on the loss. We can then find a model likelihood
that produces the targeted observable distribution because updating ω corresponds to updat-
ing every PX (x n,i ,ω ). The only dynamical object in the fine-tuning phase of MAGIC is the
hadronization-chain weight array w ; the base model, x , y sim, and yexp all remain fixed.

In our toy example, we use a one-dimensional NF base model, see appendix B.1, trained on
N = 5⇓105 PYTHIA 8 generated hadronization chains with the Lund string parameter a set to
0.68. Each of the transverse momentum components of the emitted hadrons is sampled from
a Gaussian distribution, and the correlation between pz and p↘ is neglected for simplicity. We

6In many cases, when training from real experimental distributions, one may only have access to binned
datasets. The MAGIC paradigm may equivalently be used in these scenarios by simply utilizing a binned statis-
tical distance such as ϱ2.
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Figure 3: (left) Comparison between the single emission kinematic distribution pz of
the (blue dashed) base model, the (green dashed-dotted) distribution used to gener-
ate yexp, and (red) an ensemble of solutions learned using MAGIC. (right) Compari-
son of hadronization-chain level hadron multiplicity between the (blue) base, (red)
one of the fine tuned, and the (green) target distributions where each histogram is
constructed from 5⇓105 hadronization chains. The mean of each histogram is shown
as a vertical dashed line.

create a pseudo-experimental hadron multiplicity observable yexp with M = 5⇓105 samplings
of a second NF trained on PYTHIA 8 hadronization chains, produced with a = 1.5.7

We then perform 15 independent MAGIC fine-tunings8 of the base model, where each fine-
tuning is trained over three epochs in batches of 104 samples with the learning rate fixed to
ς = 2.5⇓ 10≃2 in the first epoch, and reduced to ς = 1⇓ 10≃2 for the remaining two epochs.
The results of the independent trainings can be seen in the left panel in fig. 3; we see that the
fine-tuned models all successfully learn the softer hadron emission spectrum used to generate
the pseudo-experimental values of hadron multiplicity. In the right of fig. 3, we see that the
corresponding hadron multiplicity distributions also agree.

We note some observations regarding the application of MAGIC. First, the fine-tuned mod-
els of pz shown in fig. 3 do not exactly match the target, and are not unique. This is expected,
and is ultimately a consequence of finite training data and time. In multi-dimensional MAGIC

fine-tunings, where the conditionally dependent fragmentation function f (pz |pT ) and trans-
verse momentum distributions P(px , py) were fine-tuned with just a single observable, we
found that qualitatively different solutions are obtained, all of which are able to reproduce
the observable distributions matching those of the target. This degeneracy is presumably bro-
ken once additional sufficiently-orthogonal observables are included in y . Because the base
NF model is capable of learning arbitrarily correlated multi-dimensional distributions, it is
expected that the MAGIC fine-tuning can also modify correlations between microscopic dis-
tributions assuming that the macroscopic distributions are sensitive to these correlations. In
general, more care must be taken in multi-dimensional MAGIC tunes to ensure appropriate cov-
erage across the full domain of the distribution, particularly when the microscopic distribution
contains more degrees of freedom than the macroscopic distribution.

The MAGIC fine-tuned models could be included within existing event generation pipelines,

7We do not use PYTHIA 8 directly to generate the targeted pseudo-experimental multiplicity training dataset
due to the included correlations between pz and p↘, unlike the simplified base model.

8Training using MAGIC is computationally inexpensive, for example, the training for the presented toy example
can be performed on a modern laptop CPU with training times of O(1 hour) to achieve similar accuracy to the
results shown in fig. 3.
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either directly as a kinematic generator or as a reweighter that utilizes the learned likelihood
ratio between the base, e.g., the default PYTHIA 8, and fine-tuned models, to provide event
weights similar to those of ref. [27]. We leave a full exploration and incorporation of the MAGIC

method within PYTHIA 8 for future work, as well as a more detailed quantitative comparison
with the approach of ref. [10].

5 Uncertainty estimation with Bayesian normalizing flows

When generating binned distributions using an ML model, there are typically two sources of
uncertainty to consider: an uncertainty ϑgen due to the limited statistics of the generated data,
as well as the systematic uncertainties due to the ML model. The systematic uncertainties can
be further separated into ϑtrain and ϑdata, where ϑtrain captures the uncertainties due to the
size of the training dataset and the ML architecture, while ϑdata are the additional systematic
uncertainties inherent to the training data. For example, when training on experimental data,
the statistical uncertainty of that data contributes to ϑtrain, while the systematic uncertainties,
such as the detector resolution, contribute toϑdata. Whileϑgen is just the statistical uncertainty
of the generated sample, ϑtrain and ϑdata are typically much more difficult to quantify. Here,
we propose methods to evaluate both ϑtrain and ϑdata.

Using a Bayesian NF, ϑgen and ϑtrain can be evaluated simultaneously, see appendix B.4.
In this framework, the posterior of the network parameters ω should capture how the training
uncertainties result in different neural network choices that are all compatible with the training
data. We first demonstrate that BNFs can capture both ϑgen and ϑtrain by training a BNF on a
dataset of Ntrain = 105 two-dimensional vectors of first-emission hadron kinematics given by
{pz , p↘}. Then, M = 5⇓ 104 sets of randomly-selected network parameters ωm are sampled
from the BNF posterior. For each ωm, we generate an independent dataset of Ngen = 105 first
emissions.

We compute the average number of emissions ⇔Nbin↖ in each bin of hadron pz , and its
variance ϑbin across all M BNFs:

⇔Nbin↖ ↗
1
M

M∑

m=1

⇔Nbin↖ωm
,

ϑ2
bin ↗ ⇔Nbin↖+

1
M

M∑

m=1


⇔Nbin↖ωm

≃ ⇔Nbin↖
2

,

(8)

where ⇔Nbin↖ωm
is the expected number of first emissions that fall in this particular pz bin,

estimated from the sample of Ngen emissions generated using the NF with parameters ωm. The
left panel in fig. 4 compares the ⇔Nbin↖ from the learned model with the training dataset. We
observe that for most bins, the model and the training dataset are consistent within uncertainty,
although this degrades for sparsely populated bins where the model has not been trained with
sufficient data.

The right panel in fig. 4 compares ϑgen =

⇔Nbin↖ with the total uncertainty ϑbin in a

given bin. The total uncertainty includes both the generated uncertainty as well as the train-
ing uncertainty, ϑ2

bin = ϑ
2
gen+ϑ

2
train. For illustrative purposes, we compare in fig. 4 (right) the

relative uncertainties in each bin, ϑbin/⇔Nbin↖ and ϑgen/⇔Nbin↖, rather than the absolute ones.
The BNF estimate of the total uncertainty ϑbin is always larger than ϑgen because it contains
also ϑtrain, the additional model uncertainty due to finite training statistics and model choice.
We observe that in the sparsely populated bins the relative uncertainty is large, with ϑbin sig-
nificantly larger than ϑgen, signaling that the BNF model is a poor predictor in this kinematic
regime, primarily due to the lack of training data in the corresponding bins. Conversely, in
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Figure 4: Generated and training uncertainties captured by the BNF. (left) Compar-
ison of the pz distribution generated by (green) PYTHIA 8 and the (blue) MLHAD

BNF. The PYTHIA 8 distribution was generated with 105 single emissions, and the
uncertainty is given by


Nbin. The BNF distribution is generated from an ensem-

ble average over 5⇓ 104 BNFs, each consisting of 105 single emissions, with means
and uncertainties calculated using eq. (8). (right) Scatter plot illustrating the rela-
tionship between the counts of bins from the left plot and the relative error in the
corresponding bin. It compares the (blue) BNF estimate of the relative uncertainty,
ϑbin/⇔Nbin↖, and the (red) relative generated uncertainty, ϑgen/⇔Nbin↖, for each bin.

densely populated bins the model is an accurate approximation of the data and the estimated
BNF uncertainty ϑbin approaches ϑgen. This implies that either the posterior is relatively cer-
tain of the underlying probability distribution, or that the model has been over-fit. To avoid
over-fitting, we regularized the training to stop when the model performance on a validation
dataset does not improve after 50 epochs.

A more detailed study of the uncertainties as a function of the number of generated events
Ngen is presented in fig. 5 for two representative pz bins from fig. 4: the densely populated
bin, pz ⇒ [6.67,8.33)GeV and the scarcely populated bin, pz ⇒ [48.33, 50)GeV. The expected
values ϑi for each Ngen in fig. 5 were obtained by first computing ⇔Nbin↖ωm

by approximat-
ing the integral in eq. (B.27) of appendix B.4 with a very large number of emissions, 107,
and then using ⇔Nbin↖ωm

to obtain ϑi as in eq. (8). This strategy ensures that the integration
uncertainty is negligible and independent of Ngen. For the largest bin ϑgen dominates even
when Ngen > Ntrain until for sufficiently large Ngen, ϑtrain becomes the leading uncertainty on
the generated dataset. This is expected, since the model is acting as a fit and, if sufficiently
constrained, need not return the statistical uncertainty of the bin counts in the training data.
For densely populated bins, ϑtrain may thus be smaller than just the statistical uncertainty in a
particular bin of the training dataset. In contrast, for the smallest bin, ϑtrain is the dominant
uncertainty even when Ngen ! Ntrain, indicating that the model is a poor predictor with the
posterior yielding a larger variance for ω . These uncertainties are necessary to properly ac-
count for the usefulness of the model when generating arbitrary datasets and are in line with
similar results found in the literature, see, e.g., Ref. [28].

While our model does not appear to suffer from under- or over-fitting, it is in general an
important question how one would detect under-fitting. Under-fitting, much like over-fitting,
cannot be captured by the uncertainties derived from the posterior distribution, since these
are not simply a consequence of the probability distributions of the model parameters, but
rather should assess the correctness of the model itself. One possibility to quantify under-
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Figure 5: Study of the component uncertainties obtained with the BNF: the generated
uncertainty ϑgen, training uncertainty ϑtrain, and the total uncertainty ϑbin evaluated
by the BNF for the (left) most populated and (right) least populated bins of the pz
distribution in fig. 4.

and over-fitting is by exploring different choices of model architectures, which we explore in
some detail in appendix B.5. Another possibility is to perform closure tests for a fixed model
architecture, see, e.g., Ref. [29] for an example of Bayesian model evaluation, and Ref. [30]
for a general discussion. The exploration of efficacy of the latter strategies we leave for future
work.

The NF architecture of section 3 can also be used to efficiently assess the systematic un-
certainties of experimental data, ϑdata, as long as the NF is conditioned on these systematic
uncertainties during training. Here, we consider a toy example where we treat the uncertain-
ties on the parameters of the hadronization model as systematic uncertainties. Specifically, we
introduce an uncertainty on the parameter b of the PYTHIA 8 Lund string model, see eq. (2).
We train the BNF on pseudo-data produced by PYTHIA 8, where the value of b is set to three
discrete values encoded by the conditional labels: the base value bB = 0.98 and two perturbed
values bP ⇒ {0.8,1.4}, corresponding to a systematic uncertainty envelope on b.

After training, a large dataset of hadronization chains can be generated with this BNF
using the conditional label bP . However, since the probability for each hadron emission,
x n ′ PX (x n, b), is now a known function of b from the conditioned training, we can also
calculate and track the probability for each perturbed conditional label bP per hadron emis-
sion. The weight for a hadronization chain to be produced with bP rather than bB is

w↔
Nh∏

n=1

PX (x n,ω ↙, bP)
PX (x n,ω ↙, bB)

, (9)

where Nh is the number of hadrons emitted in the particular hadronization chain, i.e., the
hadron multiplicity for the hadronization of that particular string. We can then quickly produce
large datasets for the values of bP , by simply reweighting the initial dataset generated with
bB.

It is important to note that eq. (9) would be an equality, rather than an approximate re-
lation, had we marginalized over all possible network parameters ω . However, for the sake
of expediency, we use a fixed set ω ↙ instead. Although ω ↙ can be chosen to be the parameter
set that provides a maximum a posteriori (MAP) value, in this example we simply sample an
arbitrary ω ↙ per emission for the posterior distribution of the BNF.
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Figure 6: Distribution of the number of hadrons produced per hadronization chain
for a sample of 5⇓104 strings. These hadronization chains are generated using three
BNFs with fixed network weights conditioned on three distinct datasets: (blue) the
base dataset bB = 0.98, (orange) a perturbed dataset with bP = 0.8, and (red) a
perturbed dataset with bP = 1.4. The distribution from the BNF for the base dataset
is then reweighted using eq. (9) to the perturbed values of b, (green) bP = 0.8 and
(blue) bP = 1.4.

In fig. 6 we illustrate the reweighting process by plotting the multiplicity distribution, the
number of hadrons produced per hadronization chain, from a large sample of hadronization
chains produced by our BNF. This distribution is then reweighted to the two perturbed values
of b. We see that reweighting each hadronization chain using (9) leads to multiplicity distri-
butions that match the PYTHIA 8 generated ones within statistical uncertainty. Beyond this toy
example, eq. (9) can be used to reweight any sample generated by a BNF to variations of the
systematic uncertainties, assuming that the BNF is initially trained with conditional labels for
each systematic uncertainty to be considered.

6 Conclusions

In this manuscript, we have shown that the normalizing flow architecture is well suited for
modeling the non-perturbative process of hadronization. A key feature of the normalizing
flows is the analytic knowledge of the probability distribution for individual hadron emissions.
The architecture is able to generate high fidelity first hadron emission kinematic samples, and
Bayesian normalizing flows can be used to provide estimates of the hadronization uncertainty.

We have also introduced a novel training method, MAGIC, which allows for the systematic
alteration of microscopic fragmentation dynamics such that the predictions best fit macroscopic
observables, e.g., hadron multiplicities. The MAGIC method avoids the need to produce addi-
tional samples each time the symmetric Lund string fragmentation is modified, and calculating
instead appropriate weights for existing data samples. The use of automatic differentiation to
update the model parameters makes the training numerically efficient.

We have showcased the potential of both Bayesian normalizing flows and MAGIC in the
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context of hadronization using toy examples, but there are a number of steps that still need
to be made before data can be used in training, such as considering gluon-strings and flavor
selection, both of which are part of ongoing work.
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A Public code

The public code can be found at https://gitlab.com/uchep/mlhad in the BNF/ subdirectory.
The repository consists of a hierarchical structure with three major components. The first
component contains the implementation of the one- and two-dimensional NF network, with
and without conditioning, the second component constitutes the integration of these NFs into
fragmentation chains, and the third component is the implementation of MAGIC. Detailed
explanations and examples of each component can be found within the code documentation
and example notebooks. All code is written in Python, developed using v3.11, and heavily
utilizes the PYTORCH, developed using v2.1, deep learning library. Finally, all training datasets
were produced using PYTHIA v8.309.

B Further details on normalizing flows

In this appendix we give further details on the Bayesian normalizing flows that we use in
MLHAD. Appendix B.1 reviews the basics of normalizing flows, appendix B.2 contains a brief
review of Bayesian neural networks, and Section B.3 describes Bayesian normalizing flows.

B.1 Normalizing flows

Normalizing flows (NFs) [14–16] are a class of generative ML architectures that can produce
high fidelity continuous approximations of complex probability distributions using a finite col-
lection of data samples. This is achieved by learning a composition of n independent bijective
transformations that relate a probability distribution PZ(z) on a chosen latent space Z to the
target distribution pX (x ) on target space X .

More precisely, given a multivariate random variable z ⇒ "d and an invertible map
f : "d ⇑ "d , the probability distribution for the random variable x = f (z) is given by

PX , f (x ) = PZ(z)|det Jf (z)|≃1 , (B.1)
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Figure 7: (top) Schematic of the input and output of the NF architecture. Here x i and
z̃ represent, respectively, the input and output samples obtained from the network
when mapping in the forward direction and z and x̃ i represent, respectively, input
and output samples of the network obtained when traversing the network in the
backward direction. The backward direction is used for event generation while the
forward direction is used for training. The forward (backward) direction consists of
a series of n successive transformations fi+1(z i) ( f ≃1

i (x i)).

where Jf = ϕ f /ϕ z is the Jacobian of the differentiable transformation f . The full map F
produced by the NF architecture is composed from a sequence of n such transformations
z ↗ z0 ⇑ z1 ↗ f1(z0) ⇑ · · · ⇑ x ↗ zn ↗ fn(zn≃1), as shown in fig. 7, with the final dis-
tribution given by

PX (x ) = PZ(z)
n∏

i=1

|det Jfi
(z i≃1)|≃1 . (B.2)

The NF architecture provides a continuous map from the latent space Z to the target space
X and vice versa. In order to train the network to generate high fidelity mappings of sam-
ples from the latent distribution PZ(z) to samples of the target distribution PX (x ) we re-
quire a learning objective that will drive our model distribution PX (x ;ω ) towards PX (x ).
Given training samples x a of N data points, x a = {x 1, x 2, . . . , x N}, with conditional labels
ca = {c1, c2, . . . , cN}, we use the minimization of the negative log likelihood as our learning
objective,

LNF = #PX (x ,c) [≃ logPX (x ;ω , c)] = ≃
N∑

a=1

logPX (x a;ω , ca)

=
N∑

a=1

)
≃ logPZ

F≃1(x a;ω , ca)

+ log |det JF≃1(x a;ω , ca)|

*
,

(B.3)

where F(x ;ω , c) denotes the full network, parameterized by weights ω and conditioned on
labels c. For a latent space sampled from a two-dimensional normal distribution, the loss
function is given by

LNF =
N∑

a=1


1
2

F≃1(x a;ω , ca)
2

2 ≃ log
det JF

F≃1(x a;ω , ca)



, (B.4)

where || · · · ||22 denotes the squared (2-norm. Because each operation is differentiable, the
gradient of LNF with respect to each model parameter ω may be computed using standard auto-
differentiation software and optimized through stochastic gradient descent. Intuitively, the
loss function in eq. (B.4) ensures that the latent variables obtained from mapping the training
data samples through the network, i.e., propagated from x a⇑ za, are normally distributed.
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For practical applications, the latent distribution PZ(z) is chosen such that it can be easily
evaluated and sampled, while the transformations fi are chosen such that (1) they are ex-
pressive enough to sufficiently approximate the transformation PZ(z)⇑ PX (x ) and (2) they
have computationally inexpensive Jacobians. For example, in the one-dimensional examples
presented in section 4, we use a uniform latent distribution, z ′ U[0,1], and a mixture of
Gaussian cumulative distribution functions as the transformations fi . For the two-dimensional
examples presented in section 3, we use a two-dimensional unit Gaussian latent distribution,
z ′N ()0, $2⇓2), and real-valued non-volume preserving (real NVP) transformations, as imple-
mented in the FREIA software library [31], for fi . In the following subsections, we provide
additional details regarding the architectures used in the one and two-dimensional models
presented in the main text.

B.1.1 One-dimensional normalizing flows

For one-dimensional distributions and a single map f : "1⇑ "1, the transformation formula
of eq. (B.1) can be rewritten as

logPX , f = logPZ( f (x)) + log


d f (x)

dx

 . (B.5)

In one-dimension we can utilize a cumulative distribution function (CDF) as the invertible
transformation f . Because CDFs are continuous, non-decreasing functions, they are guaran-
teed to have a unique inverse. Additionally, because CDFs satisfy

lim
x⇑≃∞

CDF(x) = 0 , and lim
x⇑∞

CDF(x) = 1 , (B.6)

a function that consists of a linear sum of CDFs is a CDF itself, i.e.,

lim
x⇑∞

"∑

i

wiCDFi(x)

#
=
∑

i

wi


lim

x⇑∞
CDFi(x)

=
∑

i

wi = 1 , (B.7)

as long as the weights w are normalized such that the right most equality is true and

lim
x⇑≃∞

"∑

i

wiCDFi(x)

#
=
∑

i

wi


lim

x⇑≃∞
CDFi(x)

=
∑

i

wi ⇓ 0= 0 . (B.8)

In the main text we use a weighted linear mixture of K Gaussian CDFs, ω(x;µi ,ϑi), as the
invertible transformation where the weights wi , means µi , and standard deviations ϑi of each
Gaussian component are tunable parameters learned by the network. This setup is commonly
referred to as a Gaussian mixture model (GMM). The transformation and its derivative can be
written explicitly as

f (x) =
K∑

i

wiω(x;µi ,ϑi) =
1
2

K∑

i

wi


1+ erf

$
x ≃µi∈

2ϑi

%
, (B.9)

d f (x)
dx

=
K∑

i

wiN (x;µi ,ϑi) , (B.10)

where we have used the fact that dω(x;µi ,ϑi)/dx =N (x;µ,ϑ).
Once a latent distribution PZ is specified, the network can be trained by maximizing

eq. (B.5)). After training, samples can be obtained in the inverse direction via inverse trans-
form sampling. For n successive transformations eq. (B.5), is modified to

logPX (x) = logPZ(F(x)) +
n∑

i=1

log


d fi(xi≃1)

dx

 . (B.11)
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To increase the flexibility of the network, we insert a total of n≃1 intermediate non-linear func-
tions yi between each transformation fi and fi+1 such that the full transformation F is given by
F = fn(yn≃1( fn≃1(· · · (y1( f1(x))) · · · ))) and the sum in eq. (B.11) runs from i = 1, . . . , 2n≃ 1.

Specifically, we use a logit transformation defined as

y(x) = logit
α

2
+ (1≃α)x


, where logit(x) = log
1

1≃ x
, (B.12)

with the derivative
dy(x)

dx
=

1≃α
x(1≃ x)

. (B.13)

Here, α is a hyperparameter of the network that is set to 0.01. The full architecture used in
section 4 utilizes a uniformly distributed latent distribution PZ ′ U[0,1] and n= 5 transforma-
tions fi , where each transformation contains K = 500 Gaussian components. The learnable
parameters are the Gaussian means and variances and the weights of the components, which
are constrained to sum to unity per transformation.

B.1.2 Two-dimensional flows

In section 3 we use two-dimensional real NVP transformations for fi . Real NVP transformations
consist of modular blocks containing two affine coupling layers. That is, given an input z i≃1,
the coupling block splits the input into two channels9 z i≃1 = {z i≃1,1, z i≃1,2} and applies a
sequential affine transformation to each channel as follows

z i,1 = z i≃1,1 ↓ exp

si,1

z i≃1,2

+ ti,1(z i≃1,2) ,

z i,2 = z i≃1,2 ↓ exp

si,2

z i,1

+ ti,2(z i,1) ,

(B.14)

where si,a and ti,a are scale and translation transformation operators, respectively, parame-
terized by fully-connected multi-layer-perceptrons, while ↓ denotes the element-wise direct
product.

Once passed through the coupling layer, the output z i = {z i,1, z i,2} of the two channels is
concatenated to the final output fi(z i≃1) = z i . The full architecture consists of n sequential
coupling blocks. Note that in the inverse direction,

z i,2 =

z i+1,2 ≃ ti,2

z i+1,1

↓ exp

≃si,2

z i+1,1


,

z i,1 =

z i+1,1 ≃ ti,1

z i,2

↓ exp

≃si,1

z i,2


,
(B.15)

the si,a and ti,a transformations are still evaluated in the forward direction and thus do not
require a tractable inverse.

By construction, the Jacobian matrix Jf for each coupling block is upper triangular, which
allows for an efficient computation of its determinant

det Jf (z) = det
ϕ fi j

ϕ z
= det


diag
)
exp

si,1(z i,2)
*

· · ·
0 diag

)
exp

si,2(z i+1,1)
*




=
∏

exp

si,1(z i,2)
∏

exp

si,2(z i+1,1)


.

(B.16)

Because the transformations si,a and ti,a can be arbitrarily complicated, the full architecture
can be conditioned by concatenating labels c to the inputs of si,a and ti,a, i.e.,
si,a(z), ti,a(z)⇑ si,a(z, c), ti,a(z, c).

9Because we will deal with two-dimensional random variables, in our case both z1, z2 are one-dimensional.
Which component of z is assigned as z1 or z2 is randomly chosen for each real NVP but is kept consistent over the
complete dataset and stored for inference.
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B.2 Bayesian neural networks

When fitting a model to a data sample, it is often useful to understand the correlations and
uncertainties related to the best-fit parameters. These uncertainties provide both information
on the stability of the fit as well as information on the statistical variations within the data
sample. Training a generative neural network is akin to a model fit, involving the optimization
of network parameters to minimize a learning objective that produces samples matching the
training dataset. As such, it is informative to understand the uncertainties associated with the
network parameters. In deterministic neural networks, model parameters are single valued
and remain fixed after training. There are a number of proposed methods for evaluating model
uncertainties in deterministic networks, including the incorporation of drop-out layers [32],
k-folding cross-validation [33], network ensemble averaging [34], etc.

However, these methods are either prescription-dependent, e.g., a choice of the drop-out
scheme, with no guarantee of comprehensive coverage, or require additional training cycles,
making them computationally prohibitive for sufficiently complex networks. An alternative
to these methods, which provides a systematic and statistically coherent assignment of un-
certainties to model output, can be provided by Bayesian neural networks (BNNs) [35, 36].
The major difference between deterministic neural networks and their Bayesian counter-parts
resides in the conversion of single-valued network parameters to parameters that are sampled
according to a posterior, approximated as a product of normal distributions with mean and
variance learned from the training dataset. In this context, the stability and uncertainty of
model output is understood over an ensemble of samplings in network parameter space.

Consider a BNN whose goal is to accurately model the functional relationship y = f (x ).
The BNN is parameterized by model parameters ω distributed before training according to
a prior P(ω ) and the model output f (x ) is understood as a likelihood describing the proba-
bility P(y |x ,ω ) of output y , given the model parameters ω and input x . After training the
model with a labeled dataset of N pairs {(x n, yn)}Nn=1, the probability of a particular output
y for a given x , the posterior predictive, may be written as a marginalization over the model
parameter space

P(y |x ) =


dω P(y |x ,ω )P(ω |{(x n, yn)}Nn=1) , (B.17)

where P(ω |{(x n, yn)}Nn=1) represents the posterior distribution determined by the training
data.

In practice, the actual form of P(ω |{(x n, yn)}Nn=1) is analytically intractable and thus diffi-
cult to extract, although possible using Markov chain Monte Carlo techniques. Because of this,
it is common practice to approximate this posterior through variational inference, where we
approximate the posterior with a proposal distribution Q(ω ), typically chosen as a product of
per parameter Gaussians, with all means and variances collectively denoted by ϵ. An accurate
model of the posterior is one where the difference between P(ω |{(x n, yn)}Nn=1) and Q(ω ;ϵ)
is minimized. This can be achieved by minimizing the KL divergence

min KL

Q(ω ;ϵ),P(ω |{(x n, yn)}Nn=1)


, (B.18)

where

KL

Q(ω ;ϵ),P(ω |{(x n, yn)}Nn=1)


= ≃


dω Q(ω ;ϵ) log
P(ω |{(x n, yn)}Nn=1)

Q(ω ;ϵ)
. (B.19)

Bayes’ theorem allows us to rewrite the intractable posterior

P(ω |{(x n, yn)}Nn=1) =

N
n=1 P(yn|ω , x n)P(ω )

P({yn∋}Nn∋=1|{x n∋}Nn∋=1)
, (B.20)
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where P(yn|ω , x n) is the per-event likelihood and P(ω ) denotes the assigned prior on the
model parameters. Introducing this into the KL divergence we obtain

KL

Q(ω ;ϵ),P(ω |{(x n, yn)}Nn=1)


= ≃


dω Q(ω ;ϵ) log

N
n=1 P(yn|ω , x n)P(ω )

P({yn∋}Nn∋=1|{x n∋}Nn∋=1)Q(ω ;ϵ)

= logP({yn∋}Nn∋=1|{x n∋}Nn∋=1)≃LELBO .
(B.21)

Because the KL divergence is non-negative and the evidence logP is not a function of ϵ, the
minimization in eq. (B.18) is achieved by maximizing the so-called evidence lower bound
(ELBO) contribution, defined within the square brackets,

LELBO =


dω Q(ω ;ϵ)

 N∑

n=1

logP(yn|ω , x n) + log
P(ω )

Q(ω ;ϵ)



=
N∑

n=1


dω Q(ω ;ϵ) logP(yn|ω , x n)≃ KL


Q(ω ;ϵ),P(ω )


↔ 1
M

M∑

j=1

N∑

n=1

logP(yn|ω j , x n)≃ KL

Q(ω ;ϵ),P(ω )

, where ω j ′Q(ω ;ϵ) .

(B.22)

Above, we have approximated in the last line the expectation value of
N

n=1 logP(yn|ω , x n)
sampled over Q(ω ;ϵ) as a summed average of

N
n=1 logP(yn|ω , x n) evaluated at M points

of ω distributed according to Q(ω ;ϵ). Maximization of the ELBO loss LELBO also minimizes
the KL divergence in eq. (B.18), with the benefit that it requires no knowledge about the
intractable distributions P(ω |{(x n, yn)}Nn=1) and P({yn∋}Nn∋=1|{x n∋}Nn∋=1). The first term in the
ELBO loss drives the model to provide an accurate fit to the training data, while the second
term acts as a regulator by weighting possible model parameters with a chosen prior P(ω ).

B.3 Bayesian normalizing flows

Incorporating the Bayesian framework into the normalizing flow architecture, appendix B.1,
only requires replacing the deterministic transformations si,a and ti,a in eq. (B.14) with their
Bayesian counterparts, i.e., the BNNs. The full normalizing flow network architecture with
BNN subnetworks is referred to as a Bayesian normalizing flow (BNF) [17]. The learning
objective is equivalent to eq. (B.22) with the likelihood P(yn|ω j , x n) now the NF model like-
lihood PX (x ;ω , c), i.e., with the replacement y ⇑ x in the notation, and with no additional
input measurements, only the model parameters ω which determine F(x |ω ). The ELBO loss
function in eq. (B.22) is therefore replaced by the following loss function, which includes a
minus sign to minimize rather than maximize,

LBNF = ≃
N∑

n=1

#ω′Q(ω ,ϵ)

log pF

X (x n;ω , cn)

+ KL

Q(ω ;ϵ),P(ω )


= ≃
N∑

n=1

#ω′Q(ω ,ϵ)


logPZ

F≃1(x n;ω , cn)


+ log
det JF

F≃1(x n;ω , cn)


+ KL

Q(ω ;ϵ),P(ω )


↔≃
N∑

n=1

1
M

M∑

m=1


logPZ

F≃1(x n;ωm, cn)



+ log
det JF

F≃1(x n;ωm, cn)



+ KL

Q(ω ;ϵ),P(ω )


.

(B.23)
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We assume a two dimensional standard normal latent space, along with both a Gaussian
prior P(ω ) and a Gaussian variational distribution Q(ω ), i.e.,

P(ω ;µP ,ϑP) =N (ω ;µP ,ϑP) , Q(ω ;µQ ,ϑQ) =N (ω ;µQ ,ϑQ) . (B.24)

The KL divergence for D parameters is then given by

KL

Q(ω ;ϵ),P(ω )

=

D∑

d=1

ϑ2
Q,d ≃ϑ2

P,d + (µQ,d ≃µP,d)2

2ϑ2
P,d

+ log
ϑP,d

ϑQ,d
. (B.25)

Choosing a standard normal prior, µP,d = 0, ϑP,d = 1 for d = 1, . . . , D, leaves us with our final
BNF loss function

LBNF =
N∑

n=1

1
M

M∑

m=1

 ||F≃1(x n;ωm, cn)||22
2

≃ log
det JF

F≃1(x n;ωm, cn)


D

+
D∑

d=1


1
2
(ϑ2

Q,d +µ
2
Q,d ≃ 1)≃ logϑQ,d


.

(B.26)

Above, the expression in the first line represents the same NF loss function as LNF in eq. (B.4),
but now averaged over M samplings of the network parameters. In practice, it is typical to set
M = 1 in order to reduce the computational cost of training, with the understanding that the
constraints imposed on the Jacobian structure will ensure that the mapping to and from the
latent space will remain stable with non-divergent gradients. The second term represents the
optimization of the individual network weight distributions to best replicate the intractable
posterior P(ω |{x n}Nn=1) via a product of Gaussians with tunable µQ and ϑQ that are not too
far away from the prior values 0 and 1.

B.4 Interpreting BNF ensembles

After training the BNF network one obtains a probabilistic model defined over a distribution of
network parameters ω . This distribution should, in principle, contain information about both
the model stability and uncertainties due to the training dataset. That is, the BNF defines an
envelope of possible NFs defined by different values of ω distributed according to probability
distribution Q(ω ). Concrete values of ω give a particular realization of the NF, i.e., a particular
map between the latent and target spaces. All observable quantities should be computed as
averages over many samplings of the network parameters ω .

To assess how the BNF encodes the training uncertainties into the learned densities, we
follow ref. [37]10 and consider the statistical distribution of an observable g defined over a
generated dataset, g({x i}

Ngen

i=1 ), where Ngen denotes the sample size of the generated data. For

a given set of parameters ω , g({x i}
Ngen

i=1 ) will have a likelihood P(g({x i}
Ngen

i=1 )|ω ). An example
of such an observable g is, e.g., the number of times an emission falls into a given bin, in which
case the likelihood P(g({x i}

Ngen

i=1 )|ω ) is a Poisson distribution with the average rate

⇔Nbin↖ω = Ngen



x⇒bin
dx P(x |ω ) , (B.27)

and the usual related variance
ϑ2

bin|ω = ⇔Nbin↖ω . (B.28)

10See Ref. [38] for another application of BNNs to HEP where the uncertainties are explicitly decomposed in
terms of aleatoric and epistemic uncertainties with the help of a bicephalous regression network. Although the
methodology is different, the decomposition of aleatoric and epistemic presented in Ref. [38] is equivalent to the
decomposition presented here in terms of generation and training uncertainties.
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The integral in x can be approximated by sampling from P(x |ω ). The likelihood
P(g({x i}

Ngen

i=1 )|ω ) will in turn determine the mean value of the observable, #X [Ngen]|ω [g], and
its variance, ϑ2

X [Ngen]|ω [g], where X [Ngen] is the space of all possible datasets of size Ngen. In
general, these will not be analytic functions of ω and will need to be determined numerically.

Since one needs to take into account all possible networks this affects the expectation value
and the variance of g,

#X [Ngen],ϵ[g] =


dω P(ω |{x j}Ntrain
j=1 )#X [Ngen]|ω [g] ,

ϑ2
X [Ngen],ϵ

=


dω P(ω |{x j}Ntrain
j=1 )#X [Ngen]|ω [(g ≃#X [Ngen],ϵ[g])

2]

=


dω P(ω |{x j}Ntrain
j=1 )

#X [Ngen]|ω [g

2]≃#X [Ngen]|ω [g]
2

+
E
#X [Ngen]|ω [g]≃#X [Ngen],ϵ[g]

F2

= ϑ2
gen +ϑ

2
train ,

(B.29)

where #X [Ngen],ϵ is the expectation value over the whole distribution of ω , Ntrain denotes the
sample size of the training data, and ϑ2

gen and ϑ2
train are given in the third and the fourth

lines of eq. (B.29), respectively. For the relevant example where g is the number of times an
emission falls into a given bin or region, we have

#X [Ngen],ϵ[Nbin] =


dω P(ω |{x j}Ntrain
j=1 )⇔Nbin↖ω = ⇔Nbin↖ ,

ϑ2
gen =


dω P(ω |{x j}Ntrain
j=1 )ϑ

2
bin|ω = ⇔Nbin↖ ,

ϑ2
train =


dω P(ω |{x j}Ntrain
j=1 ) (⇔Nbin↖ω ≃ ⇔Nbin↖)2 .

(B.30)

We observe how ϑgen is the uncertainty of a Poisson distributed random variable whose
expected rate is given by ⇔Nbin↖. That is, in this case ϑgen will not depend on the characteristics
of the posterior except for its mean, and thus does not include any training uncertainties. This
is reflected in the fact that although the posterior depends on the training dataset of size Ntrain,
ϑgen itself depends exclusively on the size of the generated dataset of size Ngen. In general, the
statistical variance of a randomly distributed g whose distribution is determined by the BNF
is captured by ϑgen and does not vanish, even if we collapse the posterior P(ω |{x j}Ntrain

j=1 ) to
a delta function. For instance, for the example where g is the number of times and emission
falls into a given bin, we have

ϑ2
gen =


dω ς

ω ≃ ωMAP({x j}Ntrain

j=1 )
 E
#X [Ngen]|ω [g

2]≃#X [Ngen]|ω [g]
2
F

=


dω ς

ω ≃ ωMAP({x j}Ntrain

j=1 )

⇔Nbin↖ω

= ⇔Nbin↖ωMAP = N


x⇒bin
dx P(x |ωMAP) ,

(B.31)

where ωMAP is the maximum a posteriori (MAP) estimate. That is, we recover the Poisson
uncertainty ϑ2

gen = ⇔Nbin↖. Again, we note that although ωMAP depends on the training dataset
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Figure 8: Relative total uncertainty for the most populous bin, as a function of the
model architecture. We scan over the number of nodes per hidden layer and obtain
the total uncertainty for the same bin as a function of said nodes per hidden layer.
The chosen bin is the one with the largest expected event count for the model with
32 nodes per hidden layer, the default architectural choice, denoted with a star.

of size Ntrain, the Poisson uncertainty of the observable itself reflects the size of the studied
dataset of size Ngen.

The fourth line of eq. (B.29), ϑ2
train, captures how the expected values of the observables

change due to uncertainties in ω and does vanish if we collapse the posterior to a delta function.
The larger ϑ2

train is, the larger the variations in possible networks sampled from the posterior
and the larger the set of ω parameter values resulting in outputs consistent with the training
dataset.

B.5 Architecture impact on the BNF uncertainty

In section 3, we showed how the BNF captures the training uncertainty. However, this uncer-
tainty also depends on the BNF architecture. In fig. 8 we show the uncertainty variations as
a function of the number of nodes per hidden layer in the BNF, while fig. 9 shows two exam-
ples of learned pz distributions and the values of the associated BNF parameters µQ and ϑQ
(see appendix B.4 for the details about the notation). We especially highlight the model with
32 nodes, which was used in the main text for both fig. 4 and fig. 5. In fig. 8 this model is
denoted with a star. Although the results in fig. 8 and fig. 9 do not represent an exhaustive
scan, since the number of hidden layers per module and number of modules remained fixed
to 2 modules with 4 layers each, we can nevertheless begin to characterize the behavior we
obtain for alternative models.

When the number of nodes is too low, the BNF model suffers from under-fitting: it is
simultaneously both inflexible (the pz distribution does not match the training data) and overly
certain. The learned standard deviations ϑQ for the posterior are too small, collapsing the
posterior for µQ to a delta function. The BNF then always samples very similar NFs, whose
parameters are given by the learned means µQ . This behavior can be seen in the two upper
panels in fig. 9, which shows the results for a learned BNF model with only 1 node per hidden
layer.

Conversely, when the number of nodes is large enough, and we appropriately regularize,
the learned average distribution matches much better the data, and the posterior is broad
enough to appropriately capture the model uncertainties. We observe howϑQ is now large and
thus allows a higher variation on the sampled ω . The learned means µQ should be non-zero to
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Figure 9: Impact of the model architecture on the quality of the model. The top
(bottom) row corresponds to a model with 1 (32) nodes per hidden layer. (left)
Comparison of the training dataset and the BNF predictions. (right) Visualization of
the inferred parameters of the BNF posterior distribution for the model weights, the
means µQ and standard deviations ϑQ of the approximate Gaussian posterior.

yield a non-trivial MAP distribution, although the specific values are hard to analyze due to the
inherent complexity of the neural network. Additionally, the model shows a subset of weights
which are effectively removed by having very low mean and variance. This indicates redundant
parameters which could be removed by pruning or by a refinement of the architecture. The
lower two panels in fig. 9 demonstrate this behavior for a learned model with 32 nodes per
hidden layer.

We observe that the uncertainty as displayed in fig. 8 is a good reflection of training quality
but not necessarily a good metric for model selection. This is exemplified by comparing the 16
node model to the 32 node model. We observe that the former has a larger uncertainty despite
providing a reasonable description of data. In this case, the uncertainty increases because the
model provides a poor prediction in the example bin. Since the model is both sufficiently
expressive and well trained, it recognizes this mis-modeling and reflects it in the increased
uncertainty. If we were interested in lighter models, we could choose the 16 node model at
the expense of a slightly larger uncertainty for the largest bin. In general, model selection
should take into account all bins, as well as other considerations, such as the model size. In
this work, however, we were not interested in selecting the optimal model but in selecting a
descriptive model with sensible uncertainties.
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