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ABSTRACT 

Background: Stroke therapy is essen�al to reduce impairments and improve motor movements by engaging 

autogenous neuroplas�city.  U�lizing machine learning and therapy session kinema�c measurements promises 

to have a central role in rehabilita�on decision-making in determining if pa�ent therapy is improving. 
 

Objec�ve:  This study aims to use supervised learning methods to address a clinician’s autonomous 

classifica�on of stroke residual severity labeled data towards improving in-home robo�cs-assisted stroke 

rehabilita�on. 
 

Methods: Thirty-three stroke pa�ents par�cipate in in-home therapy sessions using the Motus Nova robo�cs 
rehabilita�on technology to capture upper and lower body mo�on. The therapy session summary data is based 
on high-resolu�on movement and assistance data and clinician-informed discrete stroke residual severity labels. 

This arises from a final processed dataset of 32,902 pa�ent sessions based on the maximum score per pa�ent 
per session. Four machine learning algorithms are used to classify stroke residual severity: light gradient 

boos�ng, extra trees, deep neural networks, and classical logis�c regression. Their performance measures are 
evaluated to iden�fy which method maximizes stroke residual severity classifica�on accuracy. 
 

Results: We demonstrate that the light gradient boos�ng method provides the most reliable autonomous 

detec�on of stroke severity. 

Conclusion: We show how objec�vely measured rehabilita�on training paired with machine learning methods 

can be used to iden�fy the residual stroke severity class with efforts to enhance in-home self-guided, 

individualized stroke rehabilita�on. As data from rehabilita�on prac�ces are o�en of comparable size and nature 
to the data collected in our study, this suggests that the light gradient boos�ng method should be considered a 

standard, more efficient tool for this analysis. 
 

Keywords: Stroke; Rehabilita�on Robo�cs; Machine Learning; Ar�ficial Intelligence; Physical Therapy; 
Neuroplas�city 
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Introduc�on 

Stroke is a leading cause of mortality and disability worldwide, and the economic costs of treatment and post-

stroke care are substan�al [1]. In 2019, there were 12.2 million incident cases of stroke, 101 million prevalent 
stroke cases, and 6.55 million deaths from stroke [2]. The severity of a stroke can range from mild to severe, 
with severe strokes o�en leading to long-term disability or even death. Stroke rehabilita�on typically involves a 
team of healthcare professionals, including doctors, nurses, therapists, and other specialists. The specific goals 
and interven�ons of stroke rehabilita�on vary depending on the individual’s needs and abili�es. They may 
include physical therapy to improve mobility, occupa�onal therapy to improve the ability to perform daily 
ac�vi�es, speech therapy to improve communica�on skills, and cogni�ve therapy to improve memory, problem-

solving, and other cogni�ve abili�es. While tradi�onally, recovery has taken place in inpa�ent and outpa�ent 
rehabilita�on facili�es, there is growing recent literature about moving the recovery process into the home [3] 

[4] and integra�ng technology-based interven�ons [5]. This study takes steps to make this goal of stroke pa�ent 
recovery in-home and autonomous via robo�cs-assisted stroke rehabilita�on and classifying stroke residual 
severity via machine learning methods. 

Machine learning in healthcare and stroke rehabilita�on is not a new concept (see [6] [7] [8] [9] as notable 

examples of this vast research field and [10]  for a systema�c review of machine learning methods for post-
stroke rehabilita�on recovery predic�on). In par�cular, mul�ple studies have been performed to predict 
outcomes in pa�ent survival, locoregional recurrences, and long-term outcomes in ischemic stroke pa�ents [11] 

[12] [13] [14] [15]. Similarly, studies focused on motor func�on have leveraged retrospec�ve healthcare data 
and targeted predic�ng the short- and long-term func�onal ability [16] [17] [18]. Such studies represent an 

exci�ng step forward in stroke rehabilita�on but have some limita�ons. These limita�ons include the use of 
healthcare data that is infrequently measured (some�mes en�rely limited to admission data), which can 
hamper the performance of models that rely on large datasets for generalizability. Similarly, most studies limit 
their scope to predic�ng short- and long-term outcomes and may fail to capture some of the day-to-day 

changes stroke survivors experience. 

This study aims to overcome these limita�ons by quan�fying the progress of pa�ent improvement via in-home 

therapy sessions using the Motus Nova robo�cs rehabilita�on technology [19] that captures upper and lower 

body mo�on. The Motus Hand and Motus Foot are robo�c therapeu�c devices designed to be used by stroke 
survivors with residual upper and lower extremity impairments at home without needing help from a clinician 
or caregiver. The Motus Hand and Foot are rooted in the results from constraint-induced movement therapy 

studies  [20] [21], and focus on ge�ng stroke survivors high volumes of repe��ve task prac�ce. The Motus Hand 
and Motus Foot engage the affected wrist or ankle of the user, guiding them through various therapeu�c 
exercises targe�ng various func�onal tasks (e.g., gross motor control, fine motor control, and precision 
tracking). Earlier versions of the technology have been shown to have clinically significant improvements in 
depressive symptoms, func�onal independence, upper extremity use in func�onal tasks, distance walking, and 

gait speed [19] [22] [23]. 
 

Tradi�onally, to determine stroke survivor func�onal ability, a stroke survivor will be assessed by a clinician 
during o�en infrequent clinical visits (whether through an outpa�ent rehabilita�on facility, visi�ng a neurologist, 
or a primary care physician).  The �me scale of these assessments fails to capture the progress made during the 

recovery process when it happens. U�lizing machine learning and therapy session kinema�c measurements 
promises to have a central role in rehabilita�on decision-making in determining if pa�ent therapy is improving. 
Machine learning is the methodology that allows computers to learn from experience. By construc�ng and 

training supervised classifiers to learn decision rules from data, automa�c solu�ons can be exploited to make 
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predic�ons on new data [24] [25]. Like in many healthcare, disease, or machine learning research applied in a 

clinical se�ng, labeling of pa�ent data by a clinician is necessary [6]. This study applies the same heuris�c 
methodologies. Our goal is to use kinema�cs data collected during in-home, self-guided therapy sessions to 

construct supervised machine learning methods to address autonomous classifica�on of stroke residual severity 
labeled data towards improving in-home robo�cs-assisted individualized stroke rehabilita�on.   

Methods 

Study Design 

The Motus Hand and the Motus Foot each consist of two major components: a peripheral (see the botom 
panel of Figure 1 for a close-up of the Motus Hand peripheral) that the pa�ent ataches to their affected limb 
and an interac�ve console that guides their therapy rou�ne and assessment using a video game interface. The 
peripherals have a pneuma�c actuator that can dynamically provide assistance/resistance by filling an air 
muscle in the peripheral that moves the wrist/ankle joint. The wrist/ankle joint of the peripheral has an 

embedded angle and pressure sensor that transmits live angle and pressure data to the console. This allows the 
console to give the user immediate visual feedback of their movement through avatars in a video game on the 

screen. The therapeu�c video game ac�vi�es can provide a dynamic feedback loop consis�ng of in-game goals 

(ships to shoot or coins to collect, for example) that drive user movements, which correspond to movement on-

screen, which allow the console to react and set new goals/obstacles. This feedback loop is designed to 
promote sensory-motor func�on. 

 

 

Figure 1. Pa�ents do therapy sessions with the Motus Hand or Motus Foot using a pneuma�cally-driven 

exogenous robo�c device worn on the affected hand/arm/foot (the Motus Hand is depicted in the botom 
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panel). The peripheral acts as a game controller (through an angle sensor embedded in the wrist joint) that 
allows users to play therapeu�c video games that dynamically adapt to their needs and provide the requisite 
assistance/resistance (computer screen in the botom panel). 

 

A therapy session with the Motus Hand or Foot consists of stretching, gross motor control, fine motor control, 
and endurance exercises, depending on the pa�ent’s needs. This process is depicted in Figure 1 where a Motus 

Hand user is playing “Cosmic Tennis,” a gross motor control exercise that plays like the classic arcade game Pong 

[26]. The user’s wrist/ankle movement corresponds to the movement of the paddle on the right-hand side of 

the screen, and the goal is to hit the ball back and forth to score on the Ar�ficial Intelligence (AI)–controlled 

opponent. Because of the user-guided nature of a therapy session with the Motus Hand and Foot, therapy 

sessions can vary greatly in length.  In the data collected, therapy sessions range from 5 to 60 minutes. 

The Motus Hand and Foot collect high-resolu�on angle and pressure data from sensors embedded in the 
wrist/ankle joints and the pressure management system. This high-resolu�on data is collected at a frequency of 
30 Hz, and stored in a �me series database. Other informa�on collected during a therapy session includes score, 
peripheral type (Motus Hand or Motus Foot), current game, etc. (see Table 1 for a full list of data collected). This 
study used anonymous data from 33 stroke pa�ents, with a total of 32,902 therapy ac�vi�es. To use the data 
collected during a therapy session to classify a pa�ent’s stroke residual severity autonomously, each pa�ent was 
given a guided assessment with a clinician using the Motus Hand or Foot to classify them as having a High Range 

of Mo�on (ROM), Low ROM, or No ROM. These classifica�on levels are inten�onally chosen to be coarse to 
mimic the environment in a rehabilita�on therapy session. 
 

 
Figure 2. Concept diagram of the overall data analysis and modeling. Data is gathered from 32,902 therapy 
ac�vi�es using the Motus Hand and Motus Foot. The data is processed and used in a supervised machine-

learning model to classify the stroke severity of the pa�ent. A total of 11 predictor variables contribute to 
classifying stroke severity. 

 



5/21 

To find an ideal classifier, we consider the training and performance of four machine learning algorithms: a light 
gradient boos�ng [27], an extra trees classifier [28], a deep neural network [29], and mul�-class logis�c 
regression [30]. A prac�cal model is then constructed using the most common data measured in each session 

based on the maximum score per session per pa�ent. Unsupervised learning methods, such as the correla�on 
matrix and principal component analysis, are then applied to the final dataset to show that all variables 

collected are relevant to the study. This includes a 10-fold cross-valida�on on the final dataset with the mean 
and standard devia�on of accuracy from each computa�onal experiment. From here, the following metrics 
determine the model’s performance, including the accuracy, precision, and recall from the confusion matrix. The 
macro average F1-score was used to judge the efficacy of the models, as this is a mul�-classifica�on problem 

[31], and as such, accuracy would be an insufficient measure. Figure 2 provides a high-level overview of the data 

collec�on, analysis, processing, and modeling that ul�mately produce the final classifica�on results. 

Details of Data Collec�on 

Throughout a therapy session using the Motus Hand or Motus Foot, live angle data (measured in degrees from a 
natural midpoint in wrist/ankle placement) is collected from the sensor embedded in the wrist or ankle joint at 
30 readings per second. This “raw” angle sensor data is then stored in a �me series database (InfluxDB [32]). In 
addi�on to the high-resolu�on angle data, pressure readings (measured in PSI) are taken from the pressure 
management system at 30 measurements per second.  While these readings are not high resolu�on compared 
to state-of-the-art kinema�cs technology [33], it is significantly higher resolu�on than what a typical physician 
would have access to during assessments in a normal physical therapy visit. 

 

Each therapy session for a pa�ent includes a selec�on of about 30 ac�vi�es that focus on different types of 
motor func�on, including gross motor control, fine motor control, flexor tone reduc�on, endurance, reac�on 
�me, and tracking. A pa�ent can par�cipate in more than one video game during a pa�ent session. The score is 
recorded and stored once the pa�ent completes the video game. The scores for each game are not necessarily 
standardized. This means a score of 100 in one game can represent a drama�cally different performance than a 
score of 100 in another. The score is collected each �me a player performs an ac�on in the game that would 
increase or decrease the score, so this field is collected more irregularly and infrequently than angle and 

pressure data. Gender and other biometric data such as age, height, and weight are not included in the pa�ent 
descrip�on or the analysis. 

Clinician Labeling 

To train a classifier for determining stroke residual severity, our dataset must have appropriate labels 
corresponding to the pa�ent’s level of func�on around the �me the data was collected.  During a series of video 
calls and using the Motus Hand and Foot technology, a clinician met with each stroke survivor and performed a 

series of assessments. Remote assessment of extremity func�on using an external device has been studied, and 
generally indicates that it is non-inferior to in-person assessment when done properly [34]. The clinician used 
the poten�ometer [35] embedded in the wrist/ankle joint of the Motus Hand/Foot and a “clinician dashboard” 

interface to read live angle and pressure data from the pa�ent and provide them the requisite assistance to 
stretch the pa�ent’s wrist or ankle to collect passive and ac�ve range of mo�on thresholds.  With these 
assessments, the clinician es�mated each individual’s ac�ve range of mo�on, passive range of mo�on, and 
characterized their level of func�on as “No Range of Mo�on”, “Low Range of Mo�on”, or “High Range of 

Mo�on.”  While these labels are quite broad, the labeling process is hardly a simple algorithm. At the clinician’s 

discre�on, quan�ta�ve and qualita�ve factors must apply an appropriate label. This data is summarized in Table 
2. 
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All pa�ents first were given a passive range of mo�on assessment, in which they were stretched as far as their 
wrist/ankle would allow without experiencing pain or discomfort.  Next, an ac�ve range of mo�on assessment 
was conducted.  In this assessment, the pa�ent bends their wrist/ankle as far up and down as they can without 
any assistance from the Motus Hand/Foot, and without compensa�ng with other parts of their bodies (hips, 
shoulders, etc.).  Depending on the pa�ent’s assessed ac�ve range of mo�on, an assisted range of mo�on 
assessment was performed.  This assessment consists of providing pa�ents with varying amounts of assistance 
and recording their range of mo�on in the presence of an upward force.  

 

We define a pa�ent as “Assisted” or “Passive” based on the most arduous assessment performed on the 
pa�ent. The low ROM label contains a combina�on of pa�ents that either did or did not have enough 
movement for the assisted range of mo�on assessment. No�ce that all pa�ents who are classified with a high 
ROM (low residual stroke severity) were able to complete the assisted range of mo�on assessment. This is 
important when no�cing that pa�ents with ID 2085 and 1781 (blue) have a similar total range of mo�on (Rmax - 

Rmin), but pa�ent ID 1781 requires clinician assistance to reach their maximum ROM. However, there is 
ambiguity in some labels. For example, take pa�ent ID 2356 (red), where it can be argued that the pa�ent 
should have a high stroke residual severity (corresponding to low/no ROM) given the low total range of mo�on 
with the assistance. This is where the clinician has other outside factors that contribute to the final labeled 
classifica�on of a pa�ent.  The clinician is visually able to assess the level of tone and spas�city that a pa�ent 
may be exhibi�ng, which would not necessarily be captured in the minimum and maximum range of mo�on 
values. 

The assessment results and labels were reviewed and confirmed by an addi�onal expert. 

Data Harmoniza�on 

To create a more manageable dataset for the labeling task, we generate summary sta�s�cs of the high-

resolu�on data for each ac�vity performed during a therapy session. First, to compensate for sensor reading 

issues, we smooth outliers out of the raw �me series data (replacing data points in the 99th and 1st percen�le 
with the 99th and 1st percen�le values, respec�vely). Then, summarize the angle (rela�ve to a reference 
midpoint in degrees) and pressure (in PSI) using the following variables: Rmin, the minimum ROM for a game; 

Rmax, the maximum ROM for a game; Rmean, the mean ROM for a game; Pmin, the minimum pressure for a game; 

Fflex, the maximum centripetal force generated while moving downward; Fext, the maximum centripetal force 
generated while moving upward, Pmax, the maximum pressure for a game; Pmean, the mean pressure for a game. 

We finally pair these game-level summary sta�s�cs with the number of movements performed in the game 
(Nmov), the maximum score in the game (Score), and the total �me spent playing that game during a therapy 

session (tgame). This transforma�on from high-resolu�on data to game-level summary sta�s�cs provides a much 
more manageable dataset to which we can apply the clinician labels. A low ROM pa�ent (as labeled by the 
clinician) has litle ROM during each game throughout a session. Using this idea, we construct a new dataset 

from each ac�vity (game) a pa�ent par�cipates in during a session, with each row having a unique (pa�ent ID, 
session ID, game ID) tuple. It is worth no�ng that a pa�ent is unlikely to take part in every ac�vity throughout a 

therapy session; o�en, they gravitate to a few choice ac�vi�es during each session. A summary of the data in 

each row in the described dataset is presented in Table 1. 
 
Table 1. Session Game Data Dic�onary. 

Variable Descrip�on Unit Example 
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Fflex Maximum centripetal force generated moving in the 
downward direc�on (computed from deriva�ves of angle 
data) 

Newtons -3.047709105 

Fext Maximum centripetal force generated moving in the 
upward direc�on 

(computed from deriva�ves of angle data) 

Newtons 3.251405759 

Nmov The number of completed movements integer 10 

Rmin Absolute minimum angle detected by angle sensor during 

therapy session 

degrees -25 

Rmax Absolute maximum angle detected by angle sensor 
during therapy session 

degrees 46.41941 

tgame Total �me spent performing therapy during a session for 
that game 

seconds 15 

Pmin Minimum Pressure applied by the sensor in a pa�ent 
session 

PSI -0.04511994 

Pmax Maximum pressure applied by the sensor in a pa�ent 
session 

PSI 10.30989 

Pmean Average pressure applied by the sensor in a pa�ent 
session 

PSI 3.590553432 

Score Score achieved by pa�ent per video game integer 100 

h Peripheral type variable indica�ng the Hand or Foot 0, 1 Hand 

Class Designate stroke severity label for a pa�ent by a clinician 
(High, 

Low, No) 

0, 1, 2 High 

g Unique iden�fier for each ac�vity that is available on the 
Motus 

Hand/Foot 

integer 4 

p Anonymous iden�fier for each pa�ent using the Motus 
Hand/Foot in this study 

integer 11 

s Unique iden�fier for each session performed on the 
Motus Hand/Foot 

integer 782302348734 
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A�er combining the data into this standardized dataset, the data then requires sani�za�on, analysis, and 
normaliza�on. To sani�ze the data, we need to fill in missing values, correct invalid sensor values, and throw out 
data that did not represent a meaningful therapeu�c exercise.  
 

 

 

Table 2. Example pa�ent label table assessed by a clinician using a poten�ometer [35]. Note that the final label 
is at the clinician’s discre�on and could be based on qualita�ve factors not accounted for in the test. 

ID Rmax Rmin Assessment Classifica�on 

2054 30 3 Passive No 

1495 37 -20 Passive No 

2058 50 -24 Passive No 

2273 21 -16 Passive No 

2085 40 -15 Passive No 

2098 44 -9 Passive No 

1864 28 -12 Passive No 

1859 45 -17 Passive No 

1479 45 -20 Passive No 

1865 30 -15 Passive No 

2128 34 -10 Passive No 

1838 33 -15 Passive No 

2183 41 -16 Passive No 

2040 37 -18 Passive No 

2097 43 -18 Passive Low 

2356 -3 -17 Assisted Low 

2356 -3 -17 Assisted Low 

1688 52 -23 Assisted Low 

1876 54 -12 Passive Low 

2029 46 -20 Passive Low 

1458 30 -18 Passive Low 
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1113 33 -20 Assisted High 

2262 38 -13 Assisted High 

1637 10 -12 Assisted High 

2282 8 -16 Assisted High 

1781 39 -15 Assisted High 

2360 10 -18 Assisted High 

2035 41 7 Assisted High 

1799 48 1 Assisted High 

2191 40 -20 Assisted High 

1974 38 -6 Assisted High 

2004 41 -20 Assisted High 

2179 49 12 Assisted High 

1470 20 -16 Assisted High 

 

To isolate games with insufficient ac�vity to draw meaningful conclusions, we restrict the number of 
movements, Nmov, performed during a game. A “movement” is any change of direc�on recorded in the angle 
sensor a�er noise is smoothed out of the �me series. We remove any ac�vity with fewer than three 
movements, as no significant therapeu�c exercise can be performed with fewer than three movements (under 
assistance from the robo�c Motus Hand/Foot). 

Exploratory Data Analysis 

It is well-known that proper data normaliza�on is cri�cal for maximizing model performance across machine 
learning applica�ons and methods [36]. Knowing the proper normaliza�on technique for each feature requires a 
cursory dataset analysis. In Figure 3, we show representa�ve distribu�ons of the features that will be input 
variables for our compara�ve model analysis. While some variables are not normally distributed, assuming the 
data is normally distributed is sufficient considering the results [37]. 
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Figure 3. Example of the distribu�on plots for four of the random variables separated by the class label from the 
clinician. Subsequently, random variables are distributed normally, which is crucial for using the z-score when 

inpu�ng into a machine learning algorithm. 

 

This study seeks to determine if there exists a key indica�on variable that is a direct indicator of stroke 

classifica�on. We analyze the correla�on among the features in our dataset to iden�fy poten�al redundancies. 
Then, we look at the principal component decomposi�on [38] to see if the varia�on in the data can be 
meaningfully reduced to a lower dimensional space. 

 

The correla�on matrix for the feature set, constructed by compu�ng the correla�on between each pair of 
features in the dataset, is shown in Figure 4. Because a correla�on matrix points to poten�al rela�onships 
between features, it can indicate the feasibility of dimensionality reduc�on when preparing a dataset for 
building a classifier. If two variables are highly correlated, i.e., |Cor(X,Y)| > 0.9, the authors in [39] suggest that 

one of those variables can be dropped from the analysis.  We use this threshold of 0.9 where appropriate. There 
exists a strong nega�ve correla�on between Fext and Fflex (≈-0.9), however we choose not to drop either of these 
variables from our analysis, because they represent the amount of flexion force and extension force a pa�ent 
has been able to exert over the course of the therapy session. The correla�on between the game pressure 
mean, Pmean, and game pressure max, Pmax, with the value of 0.80, indicates that the Motus Hand or Foot applied 

more pressure on average in each session; however, because this correla�on fails to surpass the threshold of 
0.90 we do not drop either variable. Similarly, the correla�on (0.60) between game �me, tgame and game score, 

Score, is intui�ve: the longer a pa�ent plays a game, the higher their score. Unfortunately, this correla�on also 
does not meet the threshold for exclusion in the final feature set. 
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Figure 4. The correla�on matrix does not include key variables such as Pa�ent ID, Session ID, Game ID, and Start 
Time. Importance in dimensionality reduc�on based on a greater than 0.9 threshold. As seen above, Fflex and 
Fext are highly nega�vely correlated. However, these variables were both used in the analysis. 

 

Another informa�ve approach for analyzing the poten�al for dimensionality reduc�on in a feature set is 
principal component analysis (PCA). Principal components are new variables constructed as linear combina�ons 
of the ini�al variables. These par�cular linear combina�ons ensure that the new variables (i.e., principal 
components) are uncorrelated and that as few components as possible contain most of the informa�on from 
the ini�al variables. Explained variance is a sta�s�cal measure of how much varia�on in a dataset is atributable 
to each principal component (eigenvectors) generated by the PCA method [40]. Explained variance thus allows 
us to rank the components in order of importance and to focus on the most important ones when interpre�ng 
the results of our analysis. 
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Figure 5. Depic�on of the principal components with the explained variance ra�o. As shown, 95% of the 
explained variance is contributed by all principal components. As a result, all variables are used in the machine 
learning model for the analysis. 

 

In Figure 5, we show the explained variance each principal component contributes to the total varia�on in the 
feature set. No component can be described as dominant, as none accounts for more than 20% of the variance 
in the ini�al data set. Given this and the results from our correla�on analysis, we can conclude that all 11 
variables are needed for the analysis. 

Model Descrip�on 

Here, we provide a brief overview of the models compared in the Results. 

 

Logis�c regression is a classical sta�s�cal technique for binary classifica�on. The technique consists of mapping 
the probability of an event happening to a logis�c curve with the model inputs as dependent variables. Logis�c 
regression is s�ll widely used and is a common first model when performing classifica�on because it is easy to 
implement and interpret. 

 

Gradient Boos�ng Decision Tree (GBDT) is a widely-used machine learning algorithm due to its efficiency, 
accuracy, and interpretability [27]. In essence, the algorithm uses smaller “weaker classifiers” with a number of 

leaves. By taking a weighted average of these several “weaker classifiers,” we then can construct a “stronger 

classifier” [41]. By training several weaker models, this process is known as AdaBoos�ng. It results in a stronger 
model by adding more leaves to the decision tree and taking a weighted combina�on of these weaker models, 
where the weights are determined by the performance [42]. 
 

The Deep Feed-Forward Neural Network (DNN) is a high-performance deep learning model with varying hidden 

layers. Several architectures were tested on the training dataset to see if there was an increase in performance 

by adding hidden layers (from four to eight) or a reduc�on in nodes in each input layer [43]. The ReLU ac�va�on 
func�on was implemented into the model instead of the sigmoid func�on. Both were tried. Accuracy results 
from the computa�onal experiment could surpass 80%, regardless of adding more layers, changing the hidden 
layer input size, or changing the ac�va�on func�on. The best performing DNN trained in our analysis has three 

hidden layers with the input size of the hidden layers as (8,5,8), respec�vely. Layer size, learning rates, batch 
size, and epoch size were all hyperparameters tuned during the training process.  

 

The Extra Trees Classifier (ETC) is an ensemble learning method for classifica�on. Ensemble learning is a 
machine learning technique that combines the predic�ons of mul�ple individual models to produce a more 
accurate and robust final predic�on. The basic idea is to train mul�ple models independently, each with a 
different algorithm or set of hyperparameters, and then combine their predic�ons at the end [44]. This is similar 
to the AdaBoos�ng concept with light gradient boos�ng, where models can be combined by averaging or 
weigh�ng their predic�ons [45]. The model uses entropy as the spli�ng criterion for the trees, with 100% of the 
features considered at each split. The maximum number of leaf nodes for each tree is 87,17, and the model is 

comprised of 42 trees [45]. 

Results 

Our computa�onal experiments compare the performance of different machine learning methods and find the 
best model for iden�fying stroke residual severity. The original harmonized dataset (described in Table 1) 
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contained all the scores, the minimum and maximum ROM, and minimum and maximum pressure, and we took 
the maximum score per game per session. Because of the smaller dataset, the training and tes�ng were split on 
the 80/20 principle, where 20% of the data was the tes�ng data. 

Table 3 shows a performance based on 10-fold cross-valida�on for each machine learning classifica�on 
algorithm. k-fold cross-valida�on is used to verify that a high-accuracy model is not necessarily overfi�ng the 
training data. The data set is then randomly divided into 10 subsets, or “folds” [46]. Each of these folds is then 
used as the training data, while another is used as the tes�ng data for fi�ng a new model. We then take the 
mean and standard devia�on of the model accuracy across the 10 folds. 

 

 
Figure 6. Confusion matrices for LGB and Logis�c Regression. Considering the false nega�ve column of the No 
classifica�on, it is seen that the LGB model greatly improved this classifica�on. This is especially important when 
classifying a pa�ent as having No stroke severity when they have a High severity. Misclassifica�ons can be 
par�cularly dangerous, ranging from providing inadequate therapy to a high-range-of-mo�on pa�ent to injuring 
a low-range-of-mo�on user with therapy designed for a high-range-of-mo�on user. 
 

Figure 6 presents the confusion matrix of each of the supervised learning methods. Generally, a confusion 
matrix is used to represent the algorithm’s performance visually. Each row of the matrix represents the 
instances in an actual class, while each column represents the instances in a predicted class, or vice versa. We 

represent the percentage over the exact numeric number for display purposes. Three performance metrics 
come from the confusion matrix: precision, recall, and the F1-score. Accuracy measures the propor�on of 
predicted posi�ves that are truly posi�ve. Recall measures the propor�on of predicted nega�ves that are truly 
nega�ve. The F1-score is the harmonic mean of the precision and recall [31]. In this case, this is macro-averaging 

(trea�ng all classes equally important). A full breakdown of the performance measures (precision, recall, and F1-

score) is shown in Table 4. It is important to no�ce that while the Extra Tree Classifier has a comparable accuracy 

(picking the correct label) with the Light Gradient Boos�ng (LGB) method, LGB performs reliably beter than all 
of the other models when also weighing false posi�ves and false nega�ves (precision, recall, and F1-score). 
Remarkably, the LGB model best fits the dataset with more than a 50% improvement compared to the classical 
method, such as the logis�c regression (see the classifica�on report in Figure 7). 



14/21 

 

Figure 7. Classifica�on reports for Light Gradient Boos�ng and Logis�c Regression to compare the model 

performance based on each class’s accuracy, macro average, and weighted average. As shown, the LGB model is 

73% beter in terms of accuracy and F1-score compared to the logis�c regression model. 

Table 3. 10-fold cross-valida�on mean scores with standard devia�on. 

Classifier Mean Std 

Extra Trees 96.40% 0.4% 

Light Gradient 

Boos�ng 

94.0% 0.4% 

Neural Network 71.70% 0.7% 

Logis�c Regression 61.20% 0.5% 

Discussion 

We have shown how objec�vely measured rehabilita�on training paired with machine learning methods can be 
used to iden�fy the residual stroke severity class with efforts to enhance in-home self-guided, individualized 
stroke rehabilita�on. We have addressed several challenges arising in healthcare applica�ons of machine 
learning, such as processing data that contains different physical quan��es, errors in sensory data, and 
ambiguous classifica�ons based on human error. 

In previous studies, the algorithms most frequently used among the included models were linear and logis�c 
regressions, confirming a preferable choice toward more conven�onal and interpretable methods rather than 
more complex and advanced ones [47] [48]. Unfortunately, with the nature of our data, these methods 

presented with poor accuracy (less than 80%), and consequently, we considered different approaches. We 
showed that the LGB method provides substan�ally high accuracy, albeit on a rela�vely small dataset. The 
method provides addi�onal advantages that make it an ideal classifier for online autonomous stroke residual 
severity classifica�on: it is an easy model to transfer. It requires (rela�vely) litle computa�onal resources. 
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Table 4. Performance Measures. 

 Precision Recall F1-score 

Extra Trees    

Low 95.44% 92.83% 94.12% 

High 94.46% 91.10% 92.75% 

No 94.55% 97.04% 95.78% 

LGB    

Low 96.80% 95.61% 96.20% 

High 96.49% 94.97% 95.73% 

No 96.70% 97.83% 97.26% 

DNN    

Low 74.34% 64.94% 69.32% 

High 61.93% 28.27% 38.82% 

No 71.64% 87.71% 78.86% 

Logis�c Regression    

Low 59.61% 37.61% 46.12% 

High 48.77% 8.27% 14.15% 

No 61.71% 89.42% 73.02% 

 

Finer-grained severity classifica�ons (for example, labeling pa�ents based on their total range of mo�on or 
amount of tone) provide for an interes�ng, challenging expansion of this work. More detailed labels would allow 
the AI clinician to recognize subtle differences between users, but the more label classes that are added, the 
more labeled data would be required to properly train a machine learning model to recognize the inherent 
differences between the classes. 
 

Building an expanded and more sophis�cated dataset remains an area of further study. Real-�me processing of 
sensor data allows a classifier to engage with a user online and recognize and classify subtle changes in their 
motor func�on. Subsequently, an up-to-date understanding of a pa�ent’s motor func�on needs allows a 
clinician (AI or otherwise) to prescribe personalized, targeted interven�ons that will be the most impac�ul. Real-
�me understanding of a pa�ent’s needs coupled with an in-home robo�c therapy device like the Motus 
Hand/Foot allows immediate feedback. An AI in therapeu�c games can detect pa�ent needs like fa�gue over 
the course of a therapy session and adapt its strategy accordingly. 
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Conclusion 

Autonomous classifica�on is becoming more important for successful rehabilita�on as rehabilita�on begins to 
move out of the clinical se�ng. S�ll, it faces challenges with the accessibility and volume of appropriate clinical 
data for training models and model access to user data for classifica�on. 
 

By leveraging the in-home stroke rehabilita�on robo�cs provided by the Motus Hand and Motus Foot, we have 
made significant progress in addressing these issues that prevent adequate training of an autonomous 
classifica�on model. With the data collected from self-guided in-home therapy sessions, we could train a 

classifica�on model to iden�fy the stroke residual severity in 33 pa�ents. We compared four different models: 
Extra Trees, Light Gradient Boos�ng Method, Deep Feed-Forward Neural Network, and Logis�c Regression, 
finding the Light Gradient Boos�ng Method to outscore the other three with an average F1-score of 94%. The 
Light Gradient Boos�ng Method is a par�cularly powerful model for this case because it combines 
interpretability and portability. 

Because our model relies only on therapy session summary sta�s�cs, the proposed method is expected to be 
successful when applied to a wide range of rehabilita�on data sets of similar sizes. Once trained, the model is 
highly portable and can be integrated into similar rehabilita�on se�ngs to provide an autonomous real-�me 
classifica�on of stroke residual severity. Addi�onally, when paired with something like the Motus Hand and 
Motus Foot technology, our classifier provides the opportunity to develop personalized training based on the 
stroke residual severity of the individual and adapt the therapy exercises to each pa�ent’s needs. The efficacy of 

real-�me classifica�on and adapta�on remains a subject of future study. 
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