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ABSTRACT

Background: Stroke therapy is essential to reduce impairments and improve motor movements by engaging
autogenous neuroplasticity. Utilizing machine learning and therapy session kinematic measurements promises
to have a central role in rehabilitation decision-making in determining if patient therapy is improving.

Objective: This study aims to use supervised learning methods to address a clinician’s autonomous
classification of stroke residual severity labeled data towards improving in-home robotics-assisted stroke
rehabilitation.

Methods: Thirty-three stroke patients participate in in-home therapy sessions using the Motus Nova robotics
rehabilitation technology to capture upper and lower body motion. The therapy session summary data is based
on high-resolution movement and assistance data and clinician-informed discrete stroke residual severity labels.
This arises from a final processed dataset of 32,902 patient sessions based on the maximum score per patient
per session. Four machine learning algorithms are used to classify stroke residual severity: light gradient
boosting, extra trees, deep neural networks, and classical logistic regression. Their performance measures are
evaluated to identify which method maximizes stroke residual severity classification accuracy.

Results: We demonstrate that the light gradient boosting method provides the most reliable autonomous
detection of stroke severity.

Conclusion: We show how objectively measured rehabilitation training paired with machine learning methods
can be used to identify the residual stroke severity class with efforts to enhance in-home self-guided,
individualized stroke rehabilitation. As data from rehabilitation practices are often of comparable size and nature
to the data collected in our study, this suggests that the light gradient boosting method should be considered a
standard, more efficient tool for this analysis.

Keywords: Stroke; Rehabilitation Robotics; Machine Learning; Artificial Intelligence; Physical Therapy;
Neuroplasticity



Introduction

Stroke is a leading cause of mortality and disability worldwide, and the economic costs of treatment and post-
stroke care are substantial [1]. In 2019, there were 12.2 million incident cases of stroke, 101 million prevalent
stroke cases, and 6.55 million deaths from stroke [2]. The severity of a stroke can range from mild to severe,
with severe strokes often leading to long-term disability or even death. Stroke rehabilitation typically involves a
team of healthcare professionals, including doctors, nurses, therapists, and other specialists. The specific goals
and interventions of stroke rehabilitation vary depending on the individual’s needs and abilities. They may
include physical therapy to improve mobility, occupational therapy to improve the ability to perform daily
activities, speech therapy to improve communication skills, and cognitive therapy to improve memory, problem-
solving, and other cognitive abilities. While traditionally, recovery has taken place in inpatient and outpatient
rehabilitation facilities, there is growing recent literature about moving the recovery process into the home [3]
[4] and integrating technology-based interventions [5]. This study takes steps to make this goal of stroke patient
recovery in-home and autonomous via robotics-assisted stroke rehabilitation and classifying stroke residual
severity via machine learning methods.

Machine learning in healthcare and stroke rehabilitation is not a new concept (see [6] [7] [8] [9] as notable
examples of this vast research field and [10] for a systematic review of machine learning methods for post-
stroke rehabilitation recovery prediction). In particular, multiple studies have been performed to predict
outcomes in patient survival, locoregional recurrences, and long-term outcomes in ischemic stroke patients [11]
[12] [23] [14] [15]. Similarly, studies focused on motor function have leveraged retrospective healthcare data
and targeted predicting the short- and long-term functional ability [16] [17] [18]. Such studies represent an
exciting step forward in stroke rehabilitation but have some limitations. These limitations include the use of
healthcare data that is infrequently measured (sometimes entirely limited to admission data), which can
hamper the performance of models that rely on large datasets for generalizability. Similarly, most studies limit
their scope to predicting short- and long-term outcomes and may fail to capture some of the day-to-day
changes stroke survivors experience.

This study aims to overcome these limitations by quantifying the progress of patient improvement via in-home
therapy sessions using the Motus Nova robotics rehabilitation technology [19] that captures upper and lower
body motion. The Motus Hand and Motus Foot are robotic therapeutic devices designed to be used by stroke
survivors with residual upper and lower extremity impairments at home without needing help from a clinician
or caregiver. The Motus Hand and Foot are rooted in the results from constraint-induced movement therapy
studies [20] [21], and focus on getting stroke survivors high volumes of repetitive task practice. The Motus Hand
and Motus Foot engage the affected wrist or ankle of the user, guiding them through various therapeutic
exercises targeting various functional tasks (e.g., gross motor control, fine motor control, and precision
tracking). Earlier versions of the technology have been shown to have clinically significant improvements in
depressive symptoms, functional independence, upper extremity use in functional tasks, distance walking, and
gait speed [19] [22] [23].

Traditionally, to determine stroke survivor functional ability, a stroke survivor will be assessed by a clinician
during often infrequent clinical visits (whether through an outpatient rehabilitation facility, visiting a neurologist,
or a primary care physician). The time scale of these assessments fails to capture the progress made during the
recovery process when it happens. Utilizing machine learning and therapy session kinematic measurements
promises to have a central role in rehabilitation decision-making in determining if patient therapy is improving.
Machine learning is the methodology that allows computers to learn from experience. By constructing and
training supervised classifiers to learn decision rules from data, automatic solutions can be exploited to make
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predictions on new data [24] [25]. Like in many healthcare, disease, or machine learning research applied in a
clinical setting, labeling of patient data by a clinician is necessary [6]. This study applies the same heuristic
methodologies. Our goal is to use kinematics data collected during in-home, self-guided therapy sessions to
construct supervised machine learning methods to address autonomous classification of stroke residual severity
labeled data towards improving in-home robotics-assisted individualized stroke rehabilitation.

Methods

Study Design

The Motus Hand and the Motus Foot each consist of two major components: a peripheral (see the bottom
panel of Figure 1 for a close-up of the Motus Hand peripheral) that the patient attaches to their affected limb
and an interactive console that guides their therapy routine and assessment using a video game interface. The
peripherals have a pneumatic actuator that can dynamically provide assistance/resistance by filling an air
muscle in the peripheral that moves the wrist/ankle joint. The wrist/ankle joint of the peripheral has an
embedded angle and pressure sensor that transmits live angle and pressure data to the console. This allows the
console to give the user immediate visual feedback of their movement through avatars in a video game on the
screen. The therapeutic video game activities can provide a dynamic feedback loop consisting of in-game goals
(ships to shoot or coins to collect, for example) that drive user movements, which correspond to movement on-
screen, which allow the console to react and set new goals/obstacles. This feedback loop is designed to
promote sensory-motor function.

Figure 1. Patients do therapy sessions with the Motus Hand or Motus Foot using a pneumatically-driven
exogenous robotic device worn on the affected hand/arm/foot (the Motus Hand is depicted in the bottom
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panel). The peripheral acts as a game controller (through an angle sensor embedded in the wrist joint) that
allows users to play therapeutic video games that dynamically adapt to their needs and provide the requisite
assistance/resistance (computer screen in the bottom panel).

A therapy session with the Motus Hand or Foot consists of stretching, gross motor control, fine motor control,
and endurance exercises, depending on the patient’s needs. This process is depicted in Figure 1 where a Motus
Hand user is playing “Cosmic Tennis,” a gross motor control exercise that plays like the classic arcade game Pong
[26]. The user’s wrist/ankle movement corresponds to the movement of the paddle on the right-hand side of
the screen, and the goal is to hit the ball back and forth to score on the Artificial Intelligence (Al)—controlled
opponent. Because of the user-guided nature of a therapy session with the Motus Hand and Foot, therapy
sessions can vary greatly in length. In the data collected, therapy sessions range from 5 to 60 minutes.

The Motus Hand and Foot collect high-resolution angle and pressure data from sensors embedded in the
wrist/ankle joints and the pressure management system. This high-resolution data is collected at a frequency of
30 Hz, and stored in a time series database. Other information collected during a therapy session includes score,
peripheral type (Motus Hand or Motus Foot), current game, etc. (see Table 1 for a full list of data collected). This
study used anonymous data from 33 stroke patients, with a total of 32,902 therapy activities. To use the data
collected during a therapy session to classify a patient’s stroke residual severity autonomously, each patient was
given a guided assessment with a clinician using the Motus Hand or Foot to classify them as having a High Range
of Motion (ROM), Low ROM, or No ROM. These classification levels are intentionally chosen to be coarse to
mimic the environment in a rehabilitation therapy session.

Data Collection

—
v
Data Transformation
|
Wide Sparse Dataset | %> ‘?g
i ]
‘Qﬁ
(32902, 11){ S
=
Data Modeling
®. Classification
High
n=114 *—
= 174 Low
® . | m _@L
N
o i

Figure 2. Concept diagram of the overall data analysis and modeling. Data is gathered from 32,902 therapy
activities using the Motus Hand and Motus Foot. The data is processed and used in a supervised machine-
learning model to classify the stroke severity of the patient. A total of 11 predictor variables contribute to
classifying stroke severity.
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To find an ideal classifier, we consider the training and performance of four machine learning algorithms: a light
gradient boosting [27], an extra trees classifier [28], a deep neural network [29], and multi-class logistic
regression [30]. A practical model is then constructed using the most common data measured in each session
based on the maximum score per session per patient. Unsupervised learning methods, such as the correlation
matrix and principal component analysis, are then applied to the final dataset to show that all variables
collected are relevant to the study. This includes a 10-fold cross-validation on the final dataset with the mean
and standard deviation of accuracy from each computational experiment. From here, the following metrics
determine the model’s performance, including the accuracy, precision, and recall from the confusion matrix. The
macro average Fl-score was used to judge the efficacy of the models, as this is a multi-classification problem
[31], and as such, accuracy would be an insufficient measure. Figure 2 provides a high-level overview of the data
collection, analysis, processing, and modeling that ultimately produce the final classification results.

Details of Data Collection

Throughout a therapy session using the Motus Hand or Motus Foot, live angle data (measured in degrees from a
natural midpoint in wrist/ankle placement) is collected from the sensor embedded in the wrist or ankle joint at
30 readings per second. This “raw” angle sensor data is then stored in a time series database (InfluxDB [32]). In
addition to the high-resolution angle data, pressure readings (measured in PSl) are taken from the pressure
management system at 30 measurements per second. While these readings are not high resolution compared
to state-of-the-art kinematics technology [33], it is significantly higher resolution than what a typical physician
would have access to during assessments in a normal physical therapy visit.

Each therapy session for a patient includes a selection of about 30 activities that focus on different types of
motor function, including gross motor control, fine motor control, flexor tone reduction, endurance, reaction
time, and tracking. A patient can participate in more than one video game during a patient session. The score is
recorded and stored once the patient completes the video game. The scores for each game are not necessarily
standardized. This means a score of 100 in one game can represent a dramatically different performance than a
score of 100 in another. The score is collected each time a player performs an action in the game that would
increase or decrease the score, so this field is collected more irregularly and infrequently than angle and
pressure data. Gender and other biometric data such as age, height, and weight are not included in the patient
description or the analysis.

Clinician Labeling

To train a classifier for determining stroke residual severity, our dataset must have appropriate labels
corresponding to the patient’s level of function around the time the data was collected. During a series of video
calls and using the Motus Hand and Foot technology, a clinician met with each stroke survivor and performed a
series of assessments. Remote assessment of extremity function using an external device has been studied, and
generally indicates that it is non-inferior to in-person assessment when done properly [34]. The clinician used
the potentiometer [35] embedded in the wrist/ankle joint of the Motus Hand/Foot and a “clinician dashboard”
interface to read live angle and pressure data from the patient and provide them the requisite assistance to
stretch the patient’s wrist or ankle to collect passive and active range of motion thresholds. With these
assessments, the clinician estimated each individual’s active range of motion, passive range of motion, and
characterized their level of function as “No Range of Motion”, “Low Range of Motion”, or “High Range of
Motion.” While these labels are quite broad, the labeling process is hardly a simple algorithm. At the clinician’s
discretion, quantitative and qualitative factors must apply an appropriate label. This data is summarized in Table
2.
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All patients first were given a passive range of motion assessment, in which they were stretched as far as their
wrist/ankle would allow without experiencing pain or discomfort. Next, an active range of motion assessment
was conducted. In this assessment, the patient bends their wrist/ankle as far up and down as they can without
any assistance from the Motus Hand/Foot, and without compensating with other parts of their bodies (hips,
shoulders, etc.). Depending on the patient’s assessed active range of motion, an assisted range of motion
assessment was performed. This assessment consists of providing patients with varying amounts of assistance
and recording their range of motion in the presence of an upward force.

We define a patient as “Assisted” or “Passive” based on the most arduous assessment performed on the
patient. The low ROM label contains a combination of patients that either did or did not have enough
movement for the assisted range of motion assessment. Notice that all patients who are classified with a high
ROM (low residual stroke severity) were able to complete the assisted range of motion assessment. This is
important when noticing that patients with ID 2085 and 1781 (blue) have a similar total range of motion (Rmax -
Rmin), but patient ID 1781 requires clinician assistance to reach their maximum ROM. However, there is
ambiguity in some labels. For example, take patient ID 2356 (red), where it can be argued that the patient
should have a high stroke residual severity (corresponding to low/no ROM) given the low total range of motion
with the assistance. This is where the clinician has other outside factors that contribute to the final labeled
classification of a patient. The clinician is visually able to assess the level of tone and spasticity that a patient
may be exhibiting, which would not necessarily be captured in the minimum and maximum range of motion
values.

The assessment results and labels were reviewed and confirmed by an additional expert.

Data Harmonization

To create a more manageable dataset for the labeling task, we generate summary statistics of the high-
resolution data for each activity performed during a therapy session. First, to compensate for sensor reading
issues, we smooth outliers out of the raw time series data (replacing data points in the 99" and 1° percentile
with the 99th and 1st percentile values, respectively). Then, summarize the angle (relative to a reference
midpoint in degrees) and pressure (in PSI) using the following variables: Rmin, the minimum ROM for a game;
Rmax, the maximum ROM for a game; Rmean, the mean ROM for a game; Pmin, the minimum pressure for a game;
Frex, the maximum centripetal force generated while moving downward; Fex, the maximum centripetal force
generated while moving upward, Pmax, the maximum pressure for a game; Pmean, the mean pressure for a game.
We finally pair these game-level summary statistics with the number of movements performed in the game
(Nmov), the maximum score in the game (Score), and the total time spent playing that game during a therapy
session (tgame). This transformation from high-resolution data to game-level summary statistics provides a much
more manageable dataset to which we can apply the clinician labels. A low ROM patient (as labeled by the
clinician) has little ROM during each game throughout a session. Using this idea, we construct a new dataset
from each activity (game) a patient participates in during a session, with each row having a unique (patient ID,
session ID, game ID) tuple. It is worth noting that a patient is unlikely to take part in every activity throughout a
therapy session; often, they gravitate to a few choice activities during each session. A summary of the data in
each row in the described dataset is presented in Table 1.

Table 1. Session Game Data Dictionary.
Variable Description Unit Example
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Fflex

Fext

Nmov

Rmin

Rmax

tgame

Pmin

Pmax

Pmean

Score

Class

Maximum centripetal force generated moving in the
downward direction (computed from derivatives of angle
data)

Maximum centripetal force generated moving in the
upward direction

(computed from derivatives of angle data)
The number of completed movements

Absolute minimum angle detected by angle sensor during
therapy session

Absolute maximum angle detected by angle sensor
during therapy session

Total time spent performing therapy during a session for
that game

Minimum Pressure applied by the sensor in a patient
session

Maximum pressure applied by the sensor in a patient
session

Average pressure applied by the sensor in a patient
session

Score achieved by patient per video game
Peripheral type variable indicating the Hand or Foot

Designate stroke severity label for a patient by a clinician
(High,

Low, No)

Unique identifier for each activity that is available on the
Motus

Hand/Foot

Anonymous identifier for each patient using the Motus
Hand/Foot in this study

Unique identifier for each session performed on the
Motus Hand/Foot

Newtons

Newtons

integer

degrees

degrees

seconds

PSI

PSI

PSI

integer
0,1

0,1,2

integer

integer

integer

-3.047709105

3.251405759

10

-25

46.41941

15

-0.04511994

10.30989

3.590553432

100
Hand

High

11

782302348734
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After combining the data into this standardized dataset, the data then requires sanitization, analysis, and
normalization. To sanitize the data, we need to fill in missing values, correct invalid sensor values, and throw out
data that did not represent a meaningful therapeutic exercise.

Table 2. Example patient label table assessed by a clinician using a potentiometer [35]. Note that the final label
is at the clinician’s discretion and could be based on qualitative factors not accounted for in the test.

ID Rmax Rmin Assessment Classification
2054 30 3 Passive No
1495 37 -20 | Passive No
2058 50 -24 | Passive No
2273 21 -16 | Passive No
2085 40 -15 | Passive No
2098 44 -9 Passive No
1864 28 -12  Passive No
1859 45 -17 | Passive No
1479 45 -20 | Passive No
1865 30 -15 | Passive No
2128 34 -10 | Passive No
1838 33 -15  Passive No
2183 41 -16 | Passive No
2040 37 -18 | Passive No
2097 43 -18 | Passive Low
2356 -3 -17  Assisted Low
2356 -3 -17  Assisted Low
1688 52 -23  Assisted Low
1876 54 -12 | Passive Low
2029 46 -20 | Passive Low
1458 30 -18 | Passive Low
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1113 33 -20  Assisted High

2262 38 -13  Assisted High
1637 10 -12  Assisted High
2282 8 -16  Assisted High
1781 39 -15  Assisted High
2360 10 -18  Assisted High

2035 41 7 Assisted High

1799 48 1 Assisted High

2191 40 -20  Assisted High
1974 38 -6 Assisted High
2004 41 -20  Assisted High
2179 49 12 Assisted High
1470 20 -16  Assisted High

To isolate games with insufficient activity to draw meaningful conclusions, we restrict the number of
movements, Nmoy, performed during a game. A “movement” is any change of direction recorded in the angle
sensor after noise is smoothed out of the time series. We remove any activity with fewer than three
movements, as no significant therapeutic exercise can be performed with fewer than three movements (under
assistance from the robotic Motus Hand/Foot).

Exploratory Data Analysis

It is well-known that proper data normalization is critical for maximizing model performance across machine
learning applications and methods [36]. Knowing the proper normalization technique for each feature requires a
cursory dataset analysis. In Figure 3, we show representative distributions of the features that will be input
variables for our comparative model analysis. While some variables are not normally distributed, assuming the
data is normally distributed is sufficient considering the results [37].
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Figure 3. Example of the distribution plots for four of the random variables separated by the class label from the
clinician. Subsequently, random variables are distributed normally, which is crucial for using the z-score when
inputting into a machine learning algorithm.

This study seeks to determine if there exists a key indication variable that is a direct indicator of stroke
classification. We analyze the correlation among the features in our dataset to identify potential redundancies.
Then, we look at the principal component decomposition [38] to see if the variation in the data can be
meaningfully reduced to a lower dimensional space.

The correlation matrix for the feature set, constructed by computing the correlation between each pair of
features in the dataset, is shown in Figure 4. Because a correlation matrix points to potential relationships
between features, it can indicate the feasibility of dimensionality reduction when preparing a dataset for
building a classifier. If two variables are highly correlated, i.e., [Cor(X,Y)| > 0.9, the authors in [39] suggest that
one of those variables can be dropped from the analysis. We use this threshold of 0.9 where appropriate. There
exists a strong negative correlation between Fe:and Fpex (=-0.9), however we choose not to drop either of these
variables from our analysis, because they represent the amount of flexion force and extension force a patient
has been able to exert over the course of the therapy session. The correlation between the game pressure
mean, Pmean, and game pressure max, Pmax, With the value of 0.80, indicates that the Motus Hand or Foot applied
more pressure on average in each session; however, because this correlation fails to surpass the threshold of
0.90 we do not drop either variable. Similarly, the correlation (0.60) between game time, t;ame and game score,
Score, is intuitive: the longer a patient plays a game, the higher their score. Unfortunately, this correlation also
does not meet the threshold for exclusion in the final feature set.
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Figure 4. The correlation matrix does not include key variables such as Patient ID, Session ID, Game ID, and Start
Time. Importance in dimensionality reduction based on a greater than 0.9 threshold. As seen above, Fflex and
Fext are highly negatively correlated. However, these variables were both used in the analysis.

Another informative approach for analyzing the potential for dimensionality reduction in a feature set is
principal component analysis (PCA). Principal components are new variables constructed as linear combinations
of the initial variables. These particular linear combinations ensure that the new variables (i.e., principal
components) are uncorrelated and that as few components as possible contain most of the information from
the initial variables. Explained variance is a statistical measure of how much variation in a dataset is attributable
to each principal component (eigenvectors) generated by the PCA method [40]. Explained variance thus allows
us to rank the components in order of importance and to focus on the most important ones when interpreting
the results of our analysis.
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Figure 5. Depiction of the principal components with the explained variance ratio. As shown, 95% of the
explained variance is contributed by all principal components. As a result, all variables are used in the machine
learning model for the analysis.

In Figure 5, we show the explained variance each principal component contributes to the total variation in the
feature set. No component can be described as dominant, as none accounts for more than 20% of the variance
in the initial data set. Given this and the results from our correlation analysis, we can conclude that all 11
variables are needed for the analysis.

Model Description

Here, we provide a brief overview of the models compared in the Results.

Logistic regression is a classical statistical technique for binary classification. The technique consists of mapping
the probability of an event happening to a logistic curve with the model inputs as dependent variables. Logistic
regression is still widely used and is a common first model when performing classification because it is easy to
implement and interpret.

Gradient Boosting Decision Tree (GBDT) is a widely-used machine learning algorithm due to its efficiency,
accuracy, and interpretability [27]. In essence, the algorithm uses smaller “weaker classifiers” with a number of
leaves. By taking a weighted average of these several “weaker classifiers,” we then can construct a “stronger
classifier” [41]. By training several weaker models, this process is known as AdaBoosting. It results in a stronger
model by adding more leaves to the decision tree and taking a weighted combination of these weaker models,
where the weights are determined by the performance [42].

The Deep Feed-Forward Neural Network (DNN) is a high-performance deep learning model with varying hidden
layers. Several architectures were tested on the training dataset to see if there was an increase in performance
by adding hidden layers (from four to eight) or a reduction in nodes in each input layer [43]. The ReLU activation
function was implemented into the model instead of the sigmoid function. Both were tried. Accuracy results
from the computational experiment could surpass 80%, regardless of adding more layers, changing the hidden
layer input size, or changing the activation function. The best performing DNN trained in our analysis has three
hidden layers with the input size of the hidden layers as (8,5,8), respectively. Layer size, learning rates, batch
size, and epoch size were all hyperparameters tuned during the training process.

The Extra Trees Classifier (ETC) is an ensemble learning method for classification. Ensemble learning is a
machine learning technique that combines the predictions of multiple individual models to produce a more
accurate and robust final prediction. The basic idea is to train multiple models independently, each with a
different algorithm or set of hyperparameters, and then combine their predictions at the end [44]. This is similar
to the AdaBoosting concept with light gradient boosting, where models can be combined by averaging or
weighting their predictions [45]. The model uses entropy as the splitting criterion for the trees, with 100% of the
features considered at each split. The maximum number of leaf nodes for each tree is 87,17, and the model is
comprised of 42 trees [45].

Results

Our computational experiments compare the performance of different machine learning methods and find the
best model for identifying stroke residual severity. The original harmonized dataset (described in Table 1)
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contained all the scores, the minimum and maximum ROM, and minimum and maximum pressure, and we took
the maximum score per game per session. Because of the smaller dataset, the training and testing were split on
the 80/20 principle, where 20% of the data was the testing data.

Table 3 shows a performance based on 10-fold cross-validation for each machine learning classification
algorithm. k-fold cross-validation is used to verify that a high-accuracy model is not necessarily overfitting the
training data. The data set is then randomly divided into 10 subsets, or “folds” [46]. Each of these folds is then
used as the training data, while another is used as the testing data for fitting a new model. We then take the
mean and standard deviation of the model accuracy across the 10 folds.

a Light Gradient Boosting b Logistic Regression
3000
5 12 81 00 =) 797 52 1270
T I 2500
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- 2000 -
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High Low No High Low No
Predicted Predicted

Figure 6. Confusion matrices for LGB and Logistic Regression. Considering the false negative column of the No
classification, it is seen that the LGB model greatly improved this classification. This is especially important when
classifying a patient as having No stroke severity when they have a High severity. Misclassifications can be
particularly dangerous, ranging from providing inadequate therapy to a high-range-of-motion patient to injuring
a low-range-of-motion user with therapy designed for a high-range-of-motion user.

Figure 6 presents the confusion matrix of each of the supervised learning methods. Generally, a confusion
matrix is used to represent the algorithm’s performance visually. Each row of the matrix represents the
instances in an actual class, while each column represents the instances in a predicted class, or vice versa. We
represent the percentage over the exact numeric number for display purposes. Three performance metrics
come from the confusion matrix: precision, recall, and the F1-score. Accuracy measures the proportion of
predicted positives that are truly positive. Recall measures the proportion of predicted negatives that are truly
negative. The Fl1-score is the harmonic mean of the precision and recall [31]. In this case, this is macro-averaging
(treating all classes equally important). A full breakdown of the performance measures (precision, recall, and F1-
score) is shown in Table 4. It is important to notice that while the Extra Tree Classifier has a comparable accuracy
(picking the correct label) with the Light Gradient Boosting (LGB) method, LGB performs reliably better than all
of the other models when also weighing false positives and false negatives (precision, recall, and F1-score).
Remarkably, the LGB model best fits the dataset with more than a 50% improvement compared to the classical
method, such as the logistic regression (see the classification report in Figure 7).
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istic Regression Classification Report
i 37.61% 46.12% 0.8

High 48.77% 8.27% 14.15%

Low

No 61.71% 89.42% 73.02% 0o
accuracy 60.96% 60.96% 60.96% L0.4
macro avg 56.69% 45.10% 44 43%
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Figure 7. Classification reports for Light Gradient Boosting and Logistic Regression to compare the model
performance based on each class’s accuracy, macro average, and weighted average. As shown, the LGB model is
73% better in terms of accuracy and F1-score compared to the logistic regression model.

Table 3. 10-fold cross-validation mean scores with standard deviation.

Classifier Mean | Std
Extra Trees 96.40% 0.4%
Light Gradient 94.0% @ 0.4%
Boosting

Neural Network 71.70% 0.7%

Logistic Regression 61.20% 0.5%

Discussion

We have shown how objectively measured rehabilitation training paired with machine learning methods can be
used to identify the residual stroke severity class with efforts to enhance in-home self-guided, individualized
stroke rehabilitation. We have addressed several challenges arising in healthcare applications of machine
learning, such as processing data that contains different physical quantities, errors in sensory data, and
ambiguous classifications based on human error.

In previous studies, the algorithms most frequently used among the included models were linear and logistic
regressions, confirming a preferable choice toward more conventional and interpretable methods rather than
more complex and advanced ones [47] [48]. Unfortunately, with the nature of our data, these methods
presented with poor accuracy (less than 80%), and consequently, we considered different approaches. We
showed that the LGB method provides substantially high accuracy, albeit on a relatively small dataset. The
method provides additional advantages that make it an ideal classifier for online autonomous stroke residual
severity classification: it is an easy model to transfer. It requires (relatively) little computational resources.
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Table 4. Performance Measures.

Precision | Recall F1-score
Extra Trees
Low 95.44% | 92.83% @ 94.12%
High 94.46% | 91.10% @ 92.75%
No 94.55% | 97.04% @ 95.78%
LGB
Low 96.80% | 95.61% | 96.20%
High 96.49% | 94.97% @ 95.73%
No 96.70% | 97.83% @ 97.26%
DNN
Low 74.34% | 64.94% | 69.32%
High 61.93% | 28.27% | 38.82%
No 71.64% | 87.71% @ 78.86%
Logistic Regression
Low 59.61% | 37.61% @ 46.12%
High 48.77% 8.27% 14.15%
No 61.71% | 89.42% | 73.02%

Finer-grained severity classifications (for example, labeling patients based on their total range of motion or
amount of tone) provide for an interesting, challenging expansion of this work. More detailed labels would allow
the Al clinician to recognize subtle differences between users, but the more label classes that are added, the
more labeled data would be required to properly train a machine learning model to recognize the inherent
differences between the classes.

Building an expanded and more sophisticated dataset remains an area of further study. Real-time processing of
sensor data allows a classifier to engage with a user online and recognize and classify subtle changes in their
motor function. Subsequently, an up-to-date understanding of a patient’s motor function needs allows a
clinician (Al or otherwise) to prescribe personalized, targeted interventions that will be the most impactful. Real-
time understanding of a patient’s needs coupled with an in-home robotic therapy device like the Motus
Hand/Foot allows immediate feedback. An Al in therapeutic games can detect patient needs like fatigue over
the course of a therapy session and adapt its strategy accordingly.
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Conclusion

Autonomous classification is becoming more important for successful rehabilitation as rehabilitation begins to
move out of the clinical setting. Still, it faces challenges with the accessibility and volume of appropriate clinical
data for training models and model access to user data for classification.

By leveraging the in-home stroke rehabilitation robotics provided by the Motus Hand and Motus Foot, we have
made significant progress in addressing these issues that prevent adequate training of an autonomous
classification model. With the data collected from self-guided in-home therapy sessions, we could train a
classification model to identify the stroke residual severity in 33 patients. We compared four different models:
Extra Trees, Light Gradient Boosting Method, Deep Feed-Forward Neural Network, and Logistic Regression,
finding the Light Gradient Boosting Method to outscore the other three with an average F1-score of 94%. The
Light Gradient Boosting Method is a particularly powerful model for this case because it combines
interpretability and portability.

Because our model relies only on therapy session summary statistics, the proposed method is expected to be
successful when applied to a wide range of rehabilitation data sets of similar sizes. Once trained, the model is
highly portable and can be integrated into similar rehabilitation settings to provide an autonomous real-time
classification of stroke residual severity. Additionally, when paired with something like the Motus Hand and
Motus Foot technology, our classifier provides the opportunity to develop personalized training based on the
stroke residual severity of the individual and adapt the therapy exercises to each patient’s needs. The efficacy of
real-time classification and adaptation remains a subject of future study.
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