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Abstract

Inspired by the Kantorovich formulation of optimal transport distance between probability measures on a
metric space, Gromov-Wasserstein (GW) distances comprise a family of metrics on the space of isomorphism
classes of metric measure spaces. In previous work, the authors introduced a variant of this construction which
was inspired by the original Monge formulation of optimal transport; elements of the resulting family are referred
to Gromov-Monge (GM) distances. These GM distances, and related ideas, have since become a subject of
interest from both theoretical and applications-oriented perspectives. In this note, we establish several theoretical
properties of GM distances, focusing on comparisons between GM and GW distances. In particular, we show
that GM and GW distances are equal for non-atomic metric measure spaces. We also consider variants of GM
distance, such as a Monge version of Sturm’s L,-transportion distance, and give precise comparisons to GW
distance. Finally, we establish bi-Holder equivalence between GM distance and an isometry-invariant Monge
optimal transport distance between Euclidean metric measure spaces that has been utilized in shape and image
analysis applications.

1 Introduction

Gromov-Wasserstein (GW) distance is a metric which allows one to compare probability measures defined over
different metric spaces. This is a task which is necessary in many applications in shape analysis and machine
learning, and GW distance has consequently become popular in these fields; see [35, 3, 12, 46, 17, 21], among
many others. A primary reason for the usefulness of this framework is that computation of GW distance involves
finding a soft correspondence between points of the two metric spaces being compared (more precisely, a proba-
bility coupling; see below), which gives a meaningful registration of the spaces for downstream analysis. On the
other hand, it is sometimes desirable to require an exact point registration (i.e., a function) between the spaces,
and this led us to define a variant of GW distance, called Gromov-Monge (GM) distance, in our previous paper
[33]. Roughly, GM defines an optimization problem with the same objective as GW, but restricts the feasible set
from soft correspondences to exact correspondences, so that GW < GM, in general. The GM distance, and related
ideas, have since appeared in both theoretical and applied contexts [42, 38, 22, 26, 47] (see Section 2.3 for a
detailed literature review). The purpose of the present paper is to collect some results on GM distance which have
not appeared elsewhere'. The overarching theme is to address the following main question: what are conditions
on the metric spaces/measures being compared which imply that their GW and GM distances agree?

In order to describe our results, we now introduce some precise definitions. A metric measure space (mm-
space) is a triple X = (X,dx,px) such that (X,dx) is a metric space and px is a fully supported Borel
probability measure on X. For p € [1,00), the Gromov-Wasserstein p-distance between two such structures X’
and ) is given by

p

GW,(X,Y) = inf ( / / jdx (z,2") — dy (y,y)Pr(dz x dy)r(da’ dy'>> ,
4 (XxY)?

where the infimum is over couplings of ux and py ; thatis, joint probability measures m on X XY whose marginals
are pux and py. This defines a metric on the space of mm-spaces up to a suitable notion of isomorphism, and
extends in a natural way to p = oo. As it is defined as an optimization problem over the space of couplings,

'Some of these results appeared in early versions of the arXiv version of our paper [33], but were removed from the published version for
the sake of brevity.



GW distance is reminiscent of Kantorovich’s formulation of optimal transport, which gives rise to Wasserstein p-
distances (see [44, 34] for general references on optimal transport theory). If we instead extend Monge’s original
formulation of optimal transport, we are led to the notion of Gromov-Monge p-distance,

=

a9y =it ([[ - Jax(o) = vt 66 Pux(ops(a))

where the infimum is now over functions ¢ : X — Y which push the measure px forward to py . It is straight-
forward to show that GW,,(X,Y) < GM,(X,)), in general (Remark 2.10).

The results of this paper explore connections between GW and GM distances (and related constructions)
under various assumptions on the spaces being compared. In fact, we work in the more general setting of measure
networks; that is, triples X = (X,wx, px) where the nerwork function wxy : X x X — R is an arbitrary
measurable map (Definition 2.1). Our main contributions are:

* We show that GM,(X,Y) = GW,(X,)) for measure networks with non-atomic probability measures
(Theorem 2). This generalizes a result in the recent paper [25] and is analogous to results which show the
equivalence of Kantorovich and Monge (classical) optimal transport for non-atomic measures [5, 36]. This
is also related to a growing body of work which seeks to characterize classes of measure networks where
GW,, is realized by a Monge map [40, 42, 38]; in particular, recent work of Dumont, Lacombe and Vialard
gives a complete solution for certain measure networks over Euclidean spaces [22]. This line of work is
inspired by a famous result of Brenier for classical optimal transport [10].

* For measure networks over finite, uniformly distributed probability spaces with symmetric positive definite
network functions, we show GMs = GW5 (Proposition 3.8); in particular, GW, is always realized by a
Monge map in this setting. This has applications to, e.g., graph analysis, where w can be the heat kernel. Our
result is in the spirit of a result in [42], which applies to conditionally negative definite network functions.

* In the mm-space setting, we show that GW/, is equal to a variant of GM,, which allows for a certain notion
of mass splitting (Theorem 3). This refines various observations about GW distance that have appeared
previously [40, 18, 16].

* We define an alternate version of GM distance for mm-spaces based on embeddings into a common ambient
space, in analogy with Sturm’s L,-transportation distance [39], and show that the embedding GM distance
and Sturm’s distance coincide for non-atomic mm-spaces (Theorem 4). Moreover, we show that the GM (as
defined above) gives a lower bound on the embedding version, in general (Theorem 5).

* Previous works in shape and image analysis consider isometry-invariant versions of Monge optimal trans-
port [24, 9, 1]. We show that isometry-invariant Monge distance for Euclidean mm-spaces is bi-Holder
equivalent to the embedding formulation of GM distance (Theorem 6).

The structure of the paper is as follows. In Section 2, we give the necessary background definitions and survey
recent literature. Section 3 presents results on equivalence of GW and GM distances for certain classes of measure
networks. Finally, in Section 4, we introduce the embedding formulation of GM distance, give comparison results
with the corresponding GW version and show bi-Hd6lder equivalence with isometry-invariant Monge distances for
Euclidean spaces.

2  Gromov-Wasserstein and Gromov-Monge Distances

This section introduces our basic notation and gives precise definitions of various optimal transport-based dis-
tances.

2.1 Measure Networks and Metric Measure Spaces

As was described above, the original work in Gromov-Wasserstein (GW) distances [30] concerned comparison of
mm-spaces, but the purview of the theory has since been extended [15, 41, 20, 14]. In this paper, we will work in
the following setting, borrowing terminology from [15].

Definition 2.1. A measure network (m-net) is a triple X = (X, wx, ux) such that X is a separable and com-
pletely metrizable topological space (or Polish space), 1x is a fully-supported Borel probability measure and
wx : X X X — R is a measurable function, which we refer to as the network function. We use N to denote the
class of measure networks.



In the case that the network function is a metric on X, we will typically denote it as dx, we will assume that
dx generates the topology of X and we will refer to the triple X = (X, dx,ux) as a metric measure space
(mm-space). We denote the class of mm-spaces by M.

Examples 2.2. There are many useful examples of m-nets which are not mm-spaces. Here are a few:

o [tis frequently useful to consider network functions which satisfy a subset of the metric axioms. For instance,
a pseudo-metric is a function wx : X x X — R satisfying all of the metric axioms, besides allowing
wx (z,2") = 0 for x # x'. Pseudo-metric measure spaces arise naturally as elements of the completion of
the space of metric measure spaces with respect to Gromov-Wasserstein distances [40].

* A graph G = (V, E) with (finite) vertex set V and edge set E can be represented as an m-net by setting
X =V, taking px to be uniform and defining w(x,x’) € {0,1} to be 1 if and only if {x,2'} € E [45].

» The previous example can be generalized by taking w to be some other graph kernel, such as the graph
Laplacian or a heat kernel [19].

There are two notions of equivalence of measure networks which are relevant to the GW framework. We recall
that a measurable function ¢ : X — Y between measure spaces (X, pux) and (Y, py ) is measure-preserving if
Gupx = pry, where ¢ ux (A) = ux(¢p~1(A)), for any measurable A C Y.

Definition 2.3. Let X and Y be m-nets. A strong isomorphism from X to ) is a measure-preserving bijective map
¢ : X — Y with measure-preserving inverse, such that wy (¢(z), p(z')) = wx (z,2’) forall (z,2") € X x X.

Definition 2.4. Measure networks X and ) are weakly isomorphic if there exists a Borel probability space
(Z, pz), together with measure-preserving maps ¢x : Z — X and ¢y : Z — Y suchthatwx (¢px (2), ¢x (') =
wy (¢y (2), ¢y (2")) holds for pz & pz-almost every (z,2') € Z x Z.

Trivially, if X and Y are strongly isomorphic then they are weakly isomorphic. The converse holds if X and
Y are mm-spaces, but not in general (see Theorem 1 below).

2.2 Distances Between Measures and Measure Networks

Optimal transport distances are defined in terms of certain joint probability measures called couplings, which we
now recall.

Definition 2.5. Let (X, px) and (Y, vy ) be probability spaces. A coupling of 1x and vy is a probability measure
mon X XY whose marginals are j1x and vy, respectively. That is, let px : X XY = Xandpy : X XY =Y
be coordinate projections; then a coupling satisfies (px )™ = px and (py)um = py. The collection of all
couplings of px and py will be denoted C(px, pry ).

For a measure-preserving map ¢ : X — Y, letidx x ¢ : X — X X Y be defined by (idx x ¢)(z,2’') =
(x,¢(z")). We define the coupling induced by ¢ to be my = (idx X ¢)upux € Clux,py). Let T(ux, ty)
denote the collection of all measure-preserving mappings from (X, ux) to (Y, py ) and let

Ty (px, py) =A{mg | ¢ € T(pux, py)} C Clux, py)
denote the set of couplings induced by measure-preserving mappings.

Remark 2.6. The set C(ux, py) is always nonempty, since it contains the product measure x & py. However,
the set T (ix, y) (or Ty (ux, pry)) can be empty. For example, if ux is a Dirac measure on a single point and
py is a sum of Dirac measures %(61, + &) fory # v/, then there is no measure-preserving map ¢ : X —'Y.

With the notion of coupling in hand, we can now define some classical optimal transport distances between
measures over the same metric space. We do so in the setting of metric spaces, since this level of generality will
be sufficient for our purposes. For background on classical optimal transport, see, e.g., [44]. In the following, we
allow our distances to take the value co; that is, they may be extended metrics.

Definition 2.7. Let (X, dx ) be a metric space and let i and v be Borel probability measures on X. The Wasser-
stein p-distance is defined for p € [1,00) by

W, (u,v)P = inf / dx(xz, 2" YWr(de x de’) = inf ||dx]||?,
=t [ Pl x di) =t fxlg



and for p = oo by

Weolp, v) = ﬂeic?ﬁm sup{dx (z,2") | (x,2") € supp(m)} = Wegbfw) | dx | oo (supp())»

where supp(7) is the support of .
We likewise define the Monge p-distance by restricting the feasible set of couplings; that is,

M, (p,v) = { - infreryuw) ldx oy p <00
P\ lnfﬂ—eT#(,u.,V) HdXHL“(supp(ﬂ)) p = 00,

where we take the infimum over the empty set to be infinity.
When the underlying metric space needs to emphasized, we will write W;( = W, and M;( = M,,.

These distances have analogues which measure the distance between pairs of mm-spaces or measure networks.
Since the underlying spaces are allowed to vary, we need to measure the quality of a coupling in a relative manner,
leading to the following definition.

Definition 2.8. Ler X and ) be measure networks and p € [1,00). The p-distortion of a coupling © € C(ux, pry)
is

dis,, (m)P = disp x y(7)? = // lwx (2, 2') — wy (y,y)|" 7(dx x dy)n(dz’ x dy’)
(XxY)>2
= llwx =y 7o (rgm-
Similarly, for p = oo, we define

disoo (1) = disoo, x,y(7) = sup{|wx (z,2") — wy (y,y")| | (z,v), (z',y") € supp(7)}.

We define the p-distortion of a measure-preserving map ¢ € T (ux, pry) to be dis,(¢) = disy,(m4), with my
as in Definition 2.5. The expression for the distortion simplifies in the p < oo case as

dis, () = / /X lox(ea!) —ar (6(@). 6P () (@),

and similarly in the p = oo case.

Finally, we define our distances between measure networks. These agree in the mm-space setting with the
definitions given in the introduction.

Definition 2.9. For p € [1, cc|, the Gromov-Wasserstein p-distance is the function GW, : N x N — R U {oo}
defined by
GW,(X,Y) = inf  disy(n).
TeC(pux,py)

The Gromov-Monge p-distance is the function GM,, : N x N — R U {oo} defined by

GM,(X,)) = inf dis = inf dis, (74),
p( y) PET (px ,1y) p(¢) T €Ty (ux 1y ) p( d))

where we once again declare the infimum over the empty set to be infinity.

Remark 2.10. Since GW,, involves optimization over a larger set of couplings than GM,, the inequality
GW,(X,Y) < GM,(X,Y) always holds.

Remark 2.11. The infimum in the definition of GW, is actually a minimum. This is proved in [15, Theorem 2.2]
for m-nets whose network functions are bounded and whose measures are fully supported, and in [40, Lemma
1.7] for m-nets whose network functions are metrics, i.e., for mm-spaces (without any boundedness or support
assumptions). Working through the proofs, one sees that the various assumptions are not necessary, and the result
goes through in the general setting of Definition 2.1.

In this paper, we consider m-nets with potentially unbounded network functions, meaning that GW, is not
guaranteed, in general, to be finite. It is sometimes useful to restrict to subspaces of m-nets with additional control
on the network functions. It is straightforward to see that GW,, is finite when restricted to N, x N,,, where N, is
as defined below.



Definition 2.12. For p € [1,00) and an m-net X, define the p-size of X, size,(X) € RU {oo}, by

sizep (X)P = //Xxx lwx (z,2") [P pux (do)px (dz').

Similarly, let
sizeo (X) = sup |wx(z,2')|.
z,x'eX

We denote the class of m-nets (respectively, mm-spaces) X with size,(X) < oo by N, (respectively, M,,).

Remark 2.13. The terminology above is used in, e.g., [40]. In the setting of mm-spaces, size,(X) is sometimes
referred to as the p-diameter of X. It appears in certain estimates of GW distance—see [32, Theorem 5.1]. In
particular, letting % denote the 1-point mm-space,

GW,, (X, %) = sizep(X) = GMp (X, %),

where the first equality appears in [32, Theorem 5.1 (f)] and the second follows because the unique coupling of X
and x is induced by a measure-preserving map.

The following theorem summarizes some basic results on metric properties of GM and GW distances in the
literature. We recall some terminology from metric geometry. For a set Z, a functiond : Z x Z — RU {oc} is
a Lawvere metric if it satisfies the triangle inequality and d(z, z) = 0 for all z € Z—this terminology refers to
classic work of Lawvere, which characterizes such structures in the language of enriched category theory [27]. A
Lawvere metric is a pseudometric if it is, in addition, finite-valued and symmetric (i.e., it satisfies the axioms of
a metric, except it is possible that d(z, z’) = 0 for z # 2’), as in Example 2.2.

Theorem 1. Letp € [1, 00].

* On the space M, the Gromov-Wasserstein p-distance defines a pseudometric such that GW,(X,Y) = 0 if
and only if X and Y are strongly isomorphic [30, 40].

* On the space M, the Gromov-Monge p-distance defines a Lawvere metric such that GM,(X,Y) = 0 if and
only if X and Y are strongly isomorphic. It may take the value oo even on My, [33].

* On the space N, the Gromov-Wasserstein p-distance defines a pseudometric such that GW,(X,Y) = 0 if
and only if X and Y are weakly isomorphic [15].

Remark 2.14. Let us comment on some subtleties of the results referenced in Theorem 1. When GW , was first
introduced, it was shown to define a metric up to strong isomorphism on the space of compact mm-spaces [30,
Proposition 6]. This was later extended to My, in [40, Proposition 1.12]; the proof is essentially the same as in the
compact case. The case of GW,, for m-nets was formalized in [15], where it was shown to define a metric on N
(m-nets with bounded network functions), considered up to weak isomorphism; going through the proof there, one
sees that it extends immediately to Ny,. Similarly, [33, Theorem 3] shows that GM,, defines a Lawvere metric on
the space of strong isomorphism classes of compact mm-spaces, but the proof extends to all of M without change.

The metric properties for GM,, on the space of measure networks are more subtle.

Proposition 2.15. On the space N, GM,, defines a Lawvere metric such that if GM,(X,Y) = 0 then X and Y
are weakly isomorphic and if X and Y are strongly isomorphic, then GM,,(X,Y) = 0. However, it is possible for
weakly isomorphic X and Y to have GM,(X,Y) > 0.

Proof. That GM,,(X,X) = 0 is obvious and the proof of the triangle inequality follows as in the mm-space
case [33], hence GM,, is a Lawvere metric. By Remark 2.10, GM,(X,)) = 0 implies GW,(X,Y) = 0,
hence X and ) are weakly isomorphic. It is also easy to show that if X and ) are strongly isomorphic, then
GM,(X,Y) =0.

It remains to show that weak isomorphism of X" and ) does not necessarily imply GM,,(X, Y) = 0. This can
be done by example: take X = {z} with uniform measure and wy identically zero, and Y = {y, 3’} with uniform
measure and wy identically zero. It follows by a (trivial) computation that GW,(X,)) = 0, hence X and ) are
weakly isomorphic, but the set of measure preserving maps 7 (px, pty ) is empty, hence GM,(X,Y) = c0. O



Example 2.16. With slightly more work, one can construct weakly isomorphic spaces X and ) such that
GM,, (X, ) is finite but nonzero. Indeed, take

T X X
X ={z, 22"}, px(@)=3, px@)=px@E")==, wx=[0 0 0| o
2 4 i
0 0 0
and
vy oy oy
Y=A{v.v' 0"V ) =m()=7.m) =5 wr= (1 1 0) Yy
0 0 0/ y"

Then one can show that X andY are weakly isomorphic, but both of the two possible preserving maps ¢ : X —'Y
have positive distortion.

In Section 3, we give more precise comparisons between Gromov-Wasserstein and Gromov-Monge distances
under additional assumptions on the measure networks.

2.3 Related Work

We defined Gromov-Monge distances between mm-spaces in our previous paper [33]. There, the focus was on
restrictions to various subcategories of mm-spaces, and GM distances were mainly used as a framing device to
motivate certain inverse problems for mm-spaces. Gromov-Monge distances have since arisen in theoretical and
applied contexts, and we survey those appearances here.

Several articles consider the following problem, which is inspired by the well known work of Brenier in the
classical optimal transport setting [10].

Problem 2.17 (Monge Map Problem for GW). Given a class of measure networks, determine whether Gromov-
Wasserstein distance between any two elements is realized by a Monge map. That is, for a class C of measure
networks, we would like to show whether or not it is the case that for all X,y € C, there exists ¢ € T (ux, pry)
such that GW,(X,Y) = dis,(¢) (for some p € [1,00]).

Finding a class of mm-spaces with an affirmative answer to Problem 2.17 was first posed by Sturm as a
“Challenge” in [40, Challenge 3.6]. Moreover, [40, Challenge 5.27]) asks one to solve the problem specifically
for the class of finite mm-spaces of fixed cardinality, with uniform measures. The first solution to Problem 2.17
appears as [40, Theorem 9.21] for the class of measure networks X with X C R", wx (z,2') = ||z —2'||? (squared
Euclidean distance) and px absolutely continuous with respect to Lebesgue measure and rotationally invariant.
This result, and all other results described in the remainder of this subsection, are valid for GW 5, specifically.

A solution to the Monge map problem for the class measure networks X with X a finite subset of the real line
of some fixed finite cardinality, wx (x,2’) = |z — 2’|? and px uniform was proposed in [43], with a view toward
a “sliced” approximation of GW distance (similar to sliced Wasserstein distances [8]). In particular, it was
claimed that the optimal Monge map is always order-preserving or order-reversing. However, a counterexample
to this stronger claim was recently demonstrated [6]. The solution to Problem 2.17 nonetheless holds in this
setting, and was shown in the thesis of Vayer to also hold for higher-dimensional finite Euclidean mm-spaces [42,
Theorem 4.1.2]. That is, for the class of mm-spaces X with X a subset of a Euclidean space (of arbitrary finite
dimension) of fixed finite cardinality, wx (z,z’) = ||z — 2'||? and px uniform, it was shown that GW distance is
always realized by a permutation (i.e., a Monge map).

In [42], Vayer also considered Euclidean measure networks whose measures are assumed to be compactly sup-
ported and to have density with respect to Lebesgue measure, and whose network functions are squared Euclidean
distance—we refer to this as the quadratic Euclidean class—and Euclidean measure networks whose network
functions are (standard) inner products—we refer to this as the inner product Euclidean class. Vayer proves
the existence of Monge maps under additional assumptions (the existence of an optimal coupling with certain
properties) in both of these classes [42, Theorem 4.2.3 and Proposition 4.2.4]. Recently, general detailed solutions
to Problem 2.17 were obtained in the quadratic and inner product Euclidean classes by Dumont, Lacombe, and
Vialard in [22, Theorems 3.2 and 3.6], as consequences of technical theorems on existence of Monge maps for op-
timal transport costs defined by submersions. Finally, in [38], Salmona, Delon and Desolneux study GW distances
between measure networks in the quadratic and inner product Euclidean classes whose measures are Gaussians.



An explicit formula is derived in the inner product class [38, Proposition 4.1] and it is shown that if one restricts
the feasible set of couplings to those couplings which are themselves Gaussian, the same solution is optimal in the
quadratic class [38, Theorem 4.1].

Gromov-Monge distances, or closely related variants, have recently appeared in the machine learning litera-
ture. In [26], the GM distance is symmetrized by defining a new distance, called Reversible Gromov-Monge
(RGM) distance, which involves optimization over a pair of measure-preserving maps satisfying a certain con-
sistency condition. In particular, one always has GM2(X,)) < RGM(X,Y). Several theoretical properties of
RGM distance are derived, and applications to simulation-based inference are described, where the idea is to use
optimal measure-preserving maps to design transform samplers. Similarly, a two-map variant of GM distance is
introduced in [47], where the main distinction from RGM is the inclusion of a term which penalizes the maps
according to how far they are from being inverses to one another. A benefit of GM-type distances, which is taken
advantage of in both [26] and [47], is that the spaces of admissible mappings can be parameterized as neural net-
works. Learning optimal measure-preserving maps can then take advantage of efficient neural network training
algorithms.

Finally, we note that isometry-invariant versions of Monge distance have appeared in the literature previously
in the context of registering images [24] and anatomical surfaces [9, 1]. We show in Section 4.3 that these metrics
are bi-Holder equivalent to an alternative version of GM distance, as defined in Section 4.1. More details on these
isometry-invariant metrics and their connections to GM distances are provided below in Remark 4.5.

3 Comparisons Between Gromov-Monge and Gromov-Wasserstein Dis-
tances

A natural relaxation of the Monge Map Problem 2.17 is:

Problem 3.1 (Equality of GW and GM). Given a class of measure networks C, determine whether GW,,(X,Y) =
GM, (X, ) forall X,Y € C.

This is indeed a relaxation of Problem 2.17; if there exists a measure-preserving map ¢ : X — Y such
that GW,(X,)) = disp(¢), then GW,(X,Y) > GM,(X,Y) and Remark 2.10 implies that this is actually an
equality. This section treats Problem 3.1 and other related problems.

3.1 Non-Atomic Spaces

We first address the question of equality of Gromov-Wasserstein and Gromov-Monge distances in the setting of
non-atomic spaces—recall that a measure is non-atomic if it assigns zero mass to any singleton.

Theorem 2. Let X and Y be measure networks in N,, such that px and py are non-atomic. Then, for p € [1,00),
GM,(X,Y) = GW,(X, D).

This result is analogous to a theorem of Pratelli [36], who showed equality of Wasserstein and Monge optimal
transport for nonatomic measures when the underlying cost is assumed to be continuous, generalizing a result
of Ambrosio [5, Theorem 2.1] (remarkably, Pratelli’s theorem allows for unbounded costs, which can even take
the value co). Our theorem generalizes recent work of Hur, Guo and Liang [25], which shows equality of GW
and GM;, for non-atomic measure networks with continuous and bounded network functions whose underlying
spaces are subsets of R? (this follows by combining Theorem 3 and Proposition 1 of [25]). Notably, we make
no continuity or boundedness assumption on network functions in Theorem 2. In [26, Theorem 5.5], from the
published version of [25], the authors give a refinement of Theorem 2, at a similar level of generality, citing a
preprint version of the present paper as an inspiration for the proof of their result.

Let I = [0,1] and let A denote Lebesgue measure, restricted to . We will consider the product measure
space (I2,)\%) = (I x I, A ® \). The strategy of the proof is to transform the general problem into the simpler
subproblem on the class of measure networks of the form (12, w, A\?), via a classical isomorphism theorem. Such
a strategy was proposed by Gangbo in [23, Proposition A.3] to prove equality of Wasserstein and Monge distances
in the classical optimal transport setting. However, Pratelli observes in [36, Section 1.2] that such an approach
cannot work in general, due to the fact that the maps appearing in the isomorphism theorem may be discontinuous.
We will show that this lack of continuity is no longer a problem in the GW/GM setting, leading to a relatively
simpler proof than the classical optimal transport results [5, 36]. We will require a few lemmas.

Lemma 3.2. Let X be a measure network with non-atomic probability measure px. Then there exists a measure
network Iy = (I%,ws, \?) which is strongly isomorphic to X.



Proof. Tt is a standard fact of measure theory that, since (X, ux ) is a Polish space with non-atomic probability
measure, there exists a measure-preserving bijection ¢ : I — X (with respect to A and px) such that its inverse
is also measure-preserving (i.e., ¢ is a measure space isomorphism) [37, Ch. 15, Theorem 16]. Likewise, we have
a measure space isomorphism ) : I — I2, with respect to A and A2, Then 7 := ¢ o)~ : I? — X is a measure
space isomorphism with respect to A? and 11 x. We then define

wis(s, 1) = wx (7(s),7(1))
for s,t € I. Then 7 is a strong isomorphism, by definition. O

Remark 3.3. Following the proof of Lemma 3.2, one sees that we could have alternatively identified X strongly
isomorphically with a measure network of the form (I, wy , \)—indeed, this is a common method for parameteriz-
ing m-nets or mm-spaces (see [15, Section 2.5.1] or [40, Lemma 5.3]). The reason for modeling our spaces over
the square (1%, \?) is so that we can apply a technical lemma (Lemma 3.5), as is further explained in Remark 3.6.

The next result then follows by Theorem 1 and Proposition 2.15 (in particular, the triangle inequalities and the
identification of strongly isomorphic spaces under both GW,, and GM,).

Lemma 3.4. Let X and Y be Polish measure networks with non-atomic probability measures, and let Ty and Ty
be as in Lemma 3.2. Then GWp(X,)) = GW,(Zx,Zy) and GM,(X,Y) = GM,(Zx,Iy).

The following is a special case of [11, Theorem 1.1 (i)].

Lemma 3.5 ([11]). For any © € C(\2,)\2), there exists a sequence of measure-perserving maps ¢, : 1? — I*
such that (idp2 X ¢y, )4 A% converges weakly to .

Remark 3.6. In the original work of Brenier and Gangbo [11], the result was stated for approximation of cou-
plings over the cube I? for d > 2, as this is the general setting for other results in that paper. This is the reason
that we have chosen to identify an arbitrary m-net X with an m-net Zx over the square (I?, \?) in Lemma 3.2,
rather than over the interval (I, \) (see Remark 3.3). In fact, checking the details of the proof of [11, Theorem
1.1] one sees that it applies also to the d = 1 case (i.e., to (I, \)). However, in order to give a precise reference,
we have opted to work with the d = 2 case.

Proof of Theorem 2. Tt suffices to consider the case of measure networks Z = (I%,w, A\?) and 7' = (I%,w’, \?)
N,,. Indeed, if the result holds for measure networks over (1%, A\?), then for general non-atomic measure networks
X and ), one has

GWy(X,Y) = GW,(Ix, Iy) = GMP(I/'V’ILV) = GM,(X,)),

by Lemma 3.4.
Let 7 be an optimal coupling for Z and Z’ (see Remark 2.11). By Lemma 3.5, there is a sequence of measure-
preserving maps ¢y, : 1> — I? such that 7, = (idj2 X @) 7% 7, in the weak topology. It is proved

in [15, Lemma 2.3] that the distortion function dis,, is continuous in the weak topology, when it is defined with
respect to measure networks in N.. The same proof goes through for measure networks in N,, so we have

GM,(Z,Z') < lim dis,(mp) = dis,(7) = GW,(Z, 7).
m—0o0

By the general bound GW,(Z,Z") < GM,(Z,Z’) (Remark 2.10), this shows GW,(Z,Z') = GM,(Z,Z") and
completes the proof of the theorem. O

3.2 Discrete Spaces

‘We now consider the scenario which is the “opposite” of the non-atomic setting: finite spaces with discrete mea-
sures. For this subsection, let Cg, denote the class of measure networks X finite and px uniform; we put no
additional restriction on network functions at this point. We begin with a simple structural result, characterizing
infinite values and asymmetry for Gromov-Monge distances.

Proposition 3.7. Let X,) € Cg, with | X| = m and |Y| = n. Then GM,(X,Y) < oo if and only if n divides
m. In the case m = n, GM,(X,Y) = GM,(Y, X) < oc.

Proof. Suppose that n divides m, say m = kn. Then any function ¢ : X — Y whose fibers all have cardinality
k is a measure-preserving map; in particular, 7 (px, py ) # 0, so GM,(X,Y) < oco. Conversely, let ¢ : X — Y
be a measure-preserving map. For any y € Y, we have

=) = ux (07 ) = 07 )

n



hence m = |6~ L(y)|n.
If m = n, then the measure preserving maps are exactly the bijections ¢ : X — Y, and

diSp_rxyy((ﬁ) = diSp_’yyx((bil) < 0.
O

In light of the previous result, it is natural to restrict our attention to the subclass C,, consisting of X € Cgy, of
fixed cardinality, | X | = n. As was stated in Section 2.3, Problem 2.17 has been solved by Vayer in the subclass of
C,, consisting of measure networks X’ with X C R (for some arbitrary dimension d) and wyx (z,z’) = ||z — 2’||*:
in this subclass, GW 2-distance is realized by a Monge map (i.e., a permutation) [42, Theorem 4.1.2]. The
proof uses ideas of [29] and, in particular, relies on the observation that squared Euclidean distance matrices are
conditionally negative definite. We now prove a similar result for the subclass of C,, consisting of m-nets with
symmetric positive definite network functions. That is, for X € C,,, we pick an ordering (1, ...,2,) of X and
consider the network function as a matrix wx € R™*™ by setting wx (¢, j) = wx (s, z;) (see Example 2.16). We
say that wx if symmetric positive definite if it is symmetric positive definite as a matrix.

Proposition 3.8. For anyn € Z~, consider X,) € C,, such that their network functions are symmetric positive
definite. Then GWo (X, ) is realized by a measure-preserving map.

As an example of a natural symmetric positive definite network function, consider a graph with vertex set X,
px uniform and wx given by the heat kernel exp(—tL) for some parameter ¢ > 0, where L is the graph Laplacian
matrix. The idea of the proof comes from [19, Theorem 2], which specifically considers graph heat kernels, and
[4, Lemma 4.3], which offers a similar computation in the setting of cosine similarity matrices; neither of these
results make the connection to Monge maps, although the former derives a bound on sparsity of optimal couplings.

Proof. As above, consider wy and wy as matrices in R™*™. Likewise, we consider probability measures as
column vectors px, uy € R™ (specifically, they are both equal to the column vector with all entries equal to %).
Since it is symmetric positive definite, wx admits a Cholesky decomposition wx = U)T( Ux.Letwy = V)T Vy be
defined similarly.

A coupling of p1x and py can be considered as a matrix 7 € R™*" whose row and column sums agree with
wx and py, respectively. We can express the distortion of 7 as

diSQ(ﬂ')2 = Z (CUX('L'; k) - WY(jaﬂ))Qﬂ-(ivj)ﬂ-(k7€)

i,7,k,4
= > wx (i, k)?w (i, )m(k, 0 + Y wy (5,07 (i, j)m(k, )
1,7,k 7,k

2> wx(i, k)wy (4, O)m (i, j)m(k, £)

1,5,k,€

=) wx (i k) px( )+ ZWY 350"y (F)py (€)
—2 ) wx (i, k)wy (3, (i, j)m(k, €).

1,5,k,€

Since the first two terms do not depend on 7, minimizing diss(7)? is equivalent to maximizing the quanity
> i wx (@ k)wy (4, O)m (i, j)m(k, £) over all couplings m. Let (-,-) denote the Frobenius inner product on
R™*™ and || - || the associated norm. Then our object is to maximize

Z wx (i, k)wy (4, O (i, j)m(k, £) = (wxm, mwy) = (UxUxm,mV3} Vy)
ivjk,0

= (UxnV, UxaW ) = |UxaW )%,

The function 7 — ||[Ux7VL||? is a convex function on R™*™. Moreover, considered as a space of matrices, the
set of couplings C(ux, 1y ) is given by

Clux,py) = WER"X"|Z (i, 7) Zw :—andw(z])>0V1] ;
j



that is, it is a rescaling of the set of bistochatic matrices by a factor of % By Birkhoff’s theorem, C(ux, 1y ) is the
convex hull of the set of scaled (by %) permutation matrices. These correspond to couplings which are induced by
measure-preserving mappings X — Y. By standard optimization theory, the convex function 7 — ||Ux7ViE|| is
always maximized at an extremal point of its constraint polytope [7]. This proves the claim. O

3.3 The General Metric Measure Space Setting

We consider a variant of Gromov-Monge distance on the class of mm-spaces which allows for a certain notion of
mass splitting.

Definition 3.9. Ler (X, dx ) be a metric space, let Z be a set and let ¢ : Z — X be a function. The associated
pullback pseudometric is the function ¢*dx : Z X Z — R defined by

(¢"dx)(2,2") = dx (¢(2), $(2)).
It is easy to check that ¢* dx indeed satisfies the axioms of a pseudometric.

Definition 3.10. Let X' be an mm-space. A mass splitting of X is a measure network Z such that there exists a
measure-preserving map p : Z — X with the property that wy = p*dx.

Theorem 3. Let X and Y be metric measure spaces. Then
GW,(X,)) = iIZ1f GM,(Z2,Y),

where the infimum is taken over mass-splittings of X.

Similar ideas of splitting mass to realize Gromov-Wasserstein distance through Monge maps were employed in
[18] to construct explicit geodesics between networks in a shape analysis setting. The algorithm used in [18] is an
implementation of the geodesic characterization first obtained in [40, Theorem 3.1]. The result is also reminiscent
of [16, Proposition 2.7.5], which considers a similar characterization of a Gromov-Hausdorff-like distance on the
space of networks (without measures).

Example 3.11. 7o illustrate the idea of the theorem with a simple example, consider the space X consisting of
a single point and the space ) consisting of two points Y = {y1,y2} with dy (y1,y2) = 1 and with uniform
weights. The Gromov-Wasserstein p-distance between the spaces is realized by the unique coupling m satisfying
7((2,y;)) = 3 so that GW,(X,Y) = 5, while GM,,(X,Y) = oo since T (ux, py) = 0. On the other hand,
consider the mass splitting Z with Z = {z1, 22}, wz(21,22) = 0 and with uniform weights. It is easy to check
that Z is a mass-splitting of X with p(z;) = x. Moreover, GM,(Z,Y) = 21% and this quantity is realized by the
measure-preserving map ¢(z;) = y;. This general setup is illustrated by the following diagram:

\\
[
Y

X Y

Proof of Theorem 3. Given a measure coupling m of ux and py, define a mass splitting Z by setting Z =
supp(n) C X XY, uz = m, p = px|z (with px : X x Y — X denoting projection onto the first coordinate)
and wy = p*dx. Then ¢ = py|z : Z — Y (with py : X XY — Y the projection map) is a measure-preserving
map with

disy 2@ = [ wa(e.) = dr(0(2). 6 Phz(de)nz(a)
= // ldx (z,2") — dy (y,y")|Pm(dz x dy)m(dx’ x dy') = dis,, x,y(m)P.
(XxY)2

‘We conclude that
GW,(X,Y) > irzlf GM,(Z2,)).

Conversely, let Z = (Z,wz, uz) be a mass splitting of X', with measure-preserving map p : Z — X such
that wy = p*dx, and let ¢ : Z — Y be a measure-preserving map (we assume that one exists; otherwise, the
desired inequality GW,(X,Y) < GM,(Z, ) follows trivially). We define a probability measure 7 on X x Y as
= (p X ¢)upz. Then w defines a measure coupling of px and py . Indeed,

(px)pm = (px)u(p X @) ppz = (px 0 (p X )tz = pyiiz = px,
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and, by a similar argument, we also have (py )xm = py. Consider the following calculation (we suppress all
function arguments to condense notation):

// |dX*dY|p7T®7T:// ldx —dy[P(p x @) ppz ® (p X @) uhz
(X xY)? (XxY)?

— [ dx =y (o x 0 x (9% 0Dz @ 0

(XxY)?

— [ lixo(oxp)-dvoox Pz oz @
ZXZ

:// lwz —dy o (¢ x O)|Prz @ pz. 3)
ZIXZ

Equality (1) follows from the fact that (7 X ¢)upz @ (7 X ¢)upuz and (71 X @) X (7 X ¢))upz @ pz define
equivalent measures on (X x Y)2 and (2) and (3) both follow from the change-of-variables formula, with the
latter also using dx o (p X p) = wz. This calculation shows that

GW,(X,Y) < inf GM,(2,)

and the proof is therefore complete. O

4 An Embedding Formulation of Gromov-Monge Distance

In this section, we restrict our attention to mm-spaces (rather than general m-nets) and study alternative notions of
distance between them.

4.1 Gromov-Monge Distances from Joint Embeddings
In [39], Sturm defined an alternative metric for comparing mm-spaces, which is analogous to the embedding
formulation of Gromov-Hausdorff distance. For mm-spaces X and )/, let

Gwzm(va) = inf Wf((d)x)#ﬂxv ((,bY)#MY),

Z,px vy

where the infimum is taken over all isometric embeddings ¢x : X — Z and ¢y : Y — Z into some metric space
Z and Wf is the usual Wasserstein p-distance between probability measures on Z. We analogously define a new
extended quasi-metric GMZm on the space of mm-spaces by

CM;™(X,¥) = inf MZ ((fx) 1, (Dy )ity ),

where the infimum is once again taken over isometric embeddings into a common ambient metric space.

Theorem 4. Let X and )Y be mm-spaces with non-atomic probability measures. Then for p € [1,00),
GW™(X,Y) = GM™ (X, D).

Proof. Clearly, GW™ < GM;™ holds in general; in particular, if GW)™ (X, )) = oo (which is possible with-
out any boundedness assumption on the mm-spaces) then GM;™(X,)) = oo as well. Assume, then, that
GW (X, D) is finite, and let ¢x : X — Z and ¢y : Y — Z be isometric embeddings into some metric
space (Z,dz). It follows from [39, Lemma 3.3 (ii)] that, in the context of computing GWZm, we may assume
without loss of generality that (Z, dz) is complete and separable—that is, we can restrict the definition to the
infimum of embeddings into such spaces without changing the value of the metric. The same proof applies to
show that this can be assumed without loss of generality in the context of computing GM;™. Since the push-
forwards (¢x)4px and (Py )4 py are nonatomic (this follows by injectivity and the assumption that the orig-
inal measures were nonatomic) and the function Z x Z — R defined by (z,2') — dz(z,2')P is continuous,
Pratelli’s result [36, Theorem B] implies that W/ ((¢x)xpx, (¢v)#py) = MZ((dx)pux, (¢y)4my). Be-
cause this equality holds for every choice of Z, ¢ x, ¢y, passing to the infimum over such embeddings yields
GWS™ (X, D) = GMS™(X, D). O
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4.2 Comparing Gromov-Monge Distances

Here, we show that the two notions of Gromov-Monge distance considered in this paper are comparable for
arbitrary mm-spaces, but are not equivalent in general. The following is a Gromov-Monge version of [32, Theorem

5.1(2)]

Theorem 5. For mm-spaces X and Y and for any p € [1, 0],
1 1m
QGMP(X,JJ) < GM; (X,Y). @

In the case that p = oo, we have

1
5 OMac (X, ) = G (X, D). 5)

Proof. 1f GM™(X,Y) = oo then (4) is trivially satisfied, so let us assume that GM;™ (X, )) < oo. To prove that
(4) holds under this assumption, we will show that whenever GM}™ (X', )) < r, there exists ¢ € T (px, jty) such
that ||dx —dy || Lo (ry0m,) < 2r. If GMP™(X,)) < r then we can find isometries ¢x : X — Zand ¢y : Y — Z
into a metric space Z such that Mf((qﬁx)#ux, (py)#py) < r. We may as well assume that X, Y C Z and that
px and py are measures on Z with supp(ux) = X and supp(puy) = Y. By definition of Mf, there exists
¢ € T(pux, pry) such that [|dz || Lr(x,) < r. Now note that for all z,2’ € X, the triangle inequality in Z implies
that

|dz (2, 2") = dz($(x), 9(2")| < dz(z, () + dz (2, $(a)).
Putting this together with the triangle inequality for the L? norm, we have

HdX - dYHLP(w¢®7T¢) < 2||dZHLP(7T¢) < 2r.

This establishes (4).
Now we wish to show that %GMOO(X, Y) > GMIN(X,Y). If GMy(X,Y) = oo then we are done, so
assume not. Let ¢g : X — Y be any measure preserving map with

ldx = dy || Lo (supp(m gy @749)) = sup ldx (z,2") — dy (¢o(x), do(x'))| = 2.

The claim follows if we are able to construct a metric space (Z, dz) and isometric embeddings ¢ x and ¢y such
that MZ ((¢x )z pix, (¢y )z iy ) < r. Let Z denote the disjoint union of X and Y and define a metric dz on Z by
setting dZ|X><X =dx, dz|y><y = dy and

dz(z,y) = dz(y,z) = inf {dx(z, ') + 71+ dy(do(2), y)}

foranyx € X andy € Y. Then

MZ (px, py) = inf sup dz(x, ¢(x)) < sup dz(z, ¢o(z))
GET (kx 1y) z€X zeX
= sup inf {dx(x,2") +r+dy(¢o(x"),po(z))} = 7.
rexX T €EX
This completes the proof. |

Example 4.1 (GM,, and GM}™ are Not BiLipschitz Equivalent). Consider the family of mm-spaces A,. Each
A, consists of the space X,, = {1, ..., n} withmetric dy, (i, j) = 1—0;; and measure v,, defined by v,,(i) = 1/n.

Forp < oo,
1

iy )

GM;m(AQna An) > GW;m(AQn; An)

where the former bound holds generally and the latter is shown in [32, Claim 5.3]. On the other hand, for p < oo,
GM,,(Agn, Ay) = 1/(2n)Y/P. This follows from the fact that T (vay, vy,) is simply the set of 2-to-1 maps from
{1,...,2n} to {1,...,n} and all such maps have the same Monge cost, so that the quantity is obtained by a
direct calculation. It follows that GM,, and GM™ are not bi-Lipschitz equivalent for any p € [1, 00).

Example 4.2 (Tightness of the Inequality). We now show, by example, that the factor of % in (4) cannot be
improved. The analysis provided here is similar to that of [32, Remark 5.14].
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Using the notation of Example 4.1, consider the spaces A, and A1 = x (the latter is the one point mm-space).
The distance GMp,(A,,, *) is the p-size of A, (see Remark 2.13), which is given explicitly by

1/p 1/p

- . 1 1 1 1/P 11/}7
M) = (L atar ) = (] =(ne-n5) = (1-7)

ij=1 i#j

(this agrees with the more general formula given in [32, Remark 5.17]). On the other hand, we claim that
GM';m(An, x) = %for all n. We then have that, for any ¢ < 2, one can take n sufficently large so that
GM,,(Ap, %) > ¢« GM™ (A, x), which shows that the inequality (4) is tight.

It remains to derive the value of GMZm(An, ). In this setting, any isometric embeddings of A,, and x into
a common metric space amount to choosing distances «; between i € A, and the single point x. Given such a

choice & = (aq, . .., ), the Monge distance between the pushforward measures is given by
1/p
i o - 1 — LH&H
. 7 n nl/p P>
i=1
where || - ||, is the standard £,,-norm on R™. It follows that

1
em . —
GMp (Ana *) - Hélzf Tll/p ||04HP5
where the entries of & are subject to constraints which guarantee a valid metric. Namely, we must have o; > 0
forall i, as well as o;; — oj <1 = dp(1,7) < a4 + o forall i # j. In particular, the constraints of the form
1 < a; +aj withi < j imply that

(Z) = Zl < Z(ai +aj)=(n- 1)20@ = (n —D)[ld]1,

i<j i<j

whence we obtain, for all p > 1,

1<1 ST 1 .
5 = E||04||1 > mHaHp,

where the first inequality follows from the discussion above and the second is the generalized means inequality.
Therefore, GM™ (A, x) > % holds for all p > 1. On the other hand, the constant vector &@ = (1/2,...,1/2)
1

gives a valid metric and realizes this lower bound, so that GM;™ (A, x) = 3.

Remark 4.3. Example 4.2 also shows that the inequality sGW,(X,Y) < GW,(X,Y) from [32, Theorem
5.1(g)] (note the slightly different normalization convention used there) is tight, since it is not hard to see that
GW,(Ay, %) = GMp(Ap, *) and GW™ (A, x) = GM™ (A, *). It was previously only shown in [32, Remark
5.14] that this is not an equality, in general.

4.3 Gromov-Monge Distances for Euclidean Spaces

A Euclidean mm-space is an mm-space X such that X C R™ for some n and dx is the restriction of Euclidean
distance (and px is a Borel measure with respect to the subspace topology). For Euclidean mm-spaces X and )
with the same ambient space R”, we can consider the isometry-invariant Monge p-distance

ME"0(x, ) = in ( we [ ||T($)—¢($)|pux(d$))l/p,

TeE(n) \P€T (kx,1y)

where we use E(n) to denote the group of Euclidean isometries of R™ and || - || for the Euclidean norm. Fixing
R™ as the ambient Euclidean space, unless specified otherwise, we use the cleaner notation M;SO = ME”*SO.

Theorem 6. Let X and Y be Euclidean mm-spaces in the same ambient space R", let p > 1 and let M =
max{diam(X), diam(Y")}. Then
CME™ (X, D) < ME°(X, ) < M¥* ¢, . (GME™ (X, 1)),

where c,, is a constant depending only on n.
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The theorem is analogous to [31, Theorem 4], which compares GW;m and isometry-invariant Wasserstein
distance for Euclidean spaces. The proof of the theorem is essentially the same, with the main difference being
the use of the following technical lemma, which is a variation of [31, Lemma 2], specialized to the Monge setting.
Recall that a correspondence between sets X and Y is a subset R C X x Y such that the coordinate projections
satisfy px (R) = X and py (R) =Y. We use R(X,Y) to denote the set of correspondences between X and Y.
Observe that the theorem is only interesting if the quantity M is finite, so we state the following result with this
assumption.

Lemma 4.4. Let X and Y be bounded mm-spaces and let M = max{diam(X), diam(Y")}. If
CME™(X, V) < - M

for e < 1, then there exist X, C X, Y. C Y, R. € R(X.,Y.), and a measure-preserving map ¢ : X —'Y
satisfying ¢(X.) = Y. such that

min{jux (Xo), py (Y0), ms (R} 2 1 - e/ (®)

and
sup  |dx(x,2") —dy(y,y')| < €'/*M. (7
(Z,y),(Z’,y’)ERS

Proof. Without loss of generality, suppose that X and Y are subsets of an ambient metric space (Z, dz) and let
¢ € T (ux, py) such that

/Zdz(z,qb(z))pux(dz) < P MP.
Define a subset R, C X x Y by
R ={(z,y) € X x Y | y = ¢(x) and dz(z,y) < ¢'/*M/2}.
We then define X, = px(R.) and Y. = py(R,), so that R, € R(X,,Y,). Also note that ¢(X.) = Y. A short

calculation using the triangle inequality shows that 2, satisfies (7). Moreover,

o2 > [ dgte o)tz > [ A0 P (d2) 2 M (X X

Rearranging, we obtain px (X.) > 1 — €P/2 Since Y, = ¢(X) and ¢ is measure-preserving, py (Ye) > 1 — P/
as well. Finally, we have

To(Re) = (idx x ¢)gpx(Re) = px ((idx x ¢) " (Re)) = px (Xo),
and (6) is satisfied. ([l

Proof of Theorem 6. The inequality on the left is obvious, so let us consider the inequality on the right, under the
assumption that X and ) are bounded (as this is the only interesting case). If either quantity is infinite, then both
are, so assume not. It is easy to show that

GM,™(X,Y) < M = max{diam(X), diam(Y")}.

We therefore suppose, without loss of generality, that GM;‘“(X ,YV) = eM forsome e < 1. Let X, Y;, ¢ and R,
be as in Lemma 4.4 and let R¢ = (X x Y) \ R.. The condition (7) on R, implies that the Gromov-Hausdorff
distance between X and Y, is bounded above by 61/2M/2 (see [13, 7.3.25]). In turn, [13, Corollary 7.3.28] says
that this implies that there exists a (e!/2M)-isometry ¢ : X. — Y,; that is, 1 satisfies

sup |dx (z,a') — dy (¢ (@), (")) < /2M

z,x'e€Xc

and that (X ) is a (¢'/2M)-net for Y, (i.e., forevery y € Y, thereis an z € X_ such that dy (¢(z),y) < €'/2M).
We apply [2, Theorem 2.2] to conclude that there is an isometry 7" € E(n) such that sup,c x_||T'(z) — ¥ (z)[| <
€'/ . a, - M, where a,, is a constant depending only on 7.
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Applying the triangle inequality and the general inequality (a + b)? < 2P~1(a? +bP) (fora,b > Oand p > 1),
we have

M < [T gl ®
Re
4ort / IT(2) — $(x) [P (da x dy) ©
R,
4ot /R () — y|[Pm(da x dy). (10)

We bound each term separately. First note that
|17 (x) =yl < 2°7 (1T (2)]|” + [lyl|”) < 2P max {mgXIT(w)Ip,m;LX IIyllp} = (2M)?”,

where we have used isometry invariance of MipSO to assume without loss of generality that the circumcenters of X
and Y are at the origin in order to obtain the last equality. This implies that

(8) < (2M)Pr4(RE) < 2P - MP - €P/2,
The bounds on (9) and (10) follow from our assumptions on

©) <277 sup || T(x) — (@) |7 - mp(Re) < 207 P/ -al - MP
reX,

and
(10) <2071 max |yh(z) — y|[Pme(Re) < 2P - €72 MP,
(z,y)€R.

where we have used that ¢)(X,) is a (¢'/2M)-net. Combining these estimates, we conclude
is /2 /4 2 4.
MEC(X, V)P < 2P MP(eP/? + abeP/* 2+ €P/2 /2) < MPeP/* . 2P(3/2 + o, /2).
Taking ¢, = 3 4 2a,, > 2 - (3/2 + a?/2)"/? (to get a constant which only depends on n), we have
iso 1/4 _ 3/4 em 1/4
MEC(X, V) < e M- e/t = ¢, - M3/* GME™ (X, V)4,
(|

Remark 4.5. We now explain connections between embedded GM distances and some metrics which have previ-
ously appeared in the literature.

The continuous Procrustes distance between embedded surfaces in R3 was introduced in [9], where it was
used to classify anatomical surfaces (in particular, shapes of primate teeth). The effectiveness at classification
of this metric was shown to be roughly on par with that of a trained morphologist. The idea of the continuous
Procrustes distance is to compare surfaces by simultaneously registering over rigid motions while looking for
optimal measure-preserving maps between them. Theoretical aspects of this metric are studied in [1], where it is
shown that optimal mappings are close to being conformal. The continuous Procrustes distance can be viewed

as M"; S’iso, under the additional constraint that measure-preserving maps must also be continuous. A similar
constraint on admissible maps can be made in the GMf,m-distance. Theorem 6 (or the corresponding version
under an additional constraint) gives an equivalence between embedded GM distance and continuous Procrustes
distance.

A metric similar to the continuous Procrustes metric is studied in [24] for applications to 2D image registra-
tion. In our terminology, the metric of [24] is ME 2’iso, under the additional constraint that measure-preserving
maps are smooth diffeomorphisms. Once again, (a slight variant) of Theorem 6 shows the equivalence of this
metric with a restricted version of embedded GM distance.

Remark 4.6. A natural question is whether the inequalities in Theorem 6 are tight; in particular, can the exponent
on the right hand side be improved? There has been some progress on the corresponding problem comparing
isometry-invariant Hausdorff distance with Gromov-Hausdorff distance between Euclidean sets—it is shown in
[31, Theorem 2] that the isometry-invariant Hausdorff distance between compact subsets X, Y C R" is bounded
above by ¢!, - max{diam(X), diam(Y)}'/? - GH(X,Y)2, where GH denotes Gromov-Hausdorff distance and
¢, is positive a constant depending only on n. An example constructed in [31] shows that the exponent % on the
Gromov-Hausdorff distance cannot be improved (namely, it cannot be made larger). More recently, it has been
shown that for finite subsets of the real line X,Y C R, isometry-invariant Hausdorff distance is bounded above
by %GH(X7 Y') [28, Theorem 3.2], and that this bound is tight [28, Theorem 3.10]. Optimality of the bounds in
the Gromov-Wasserstein or Gromov-Monge settings has seen less progress, and we leave these as open questions.
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