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Abstract

Inspired by the Kantorovich formulation of optimal transport distance between probability measures on a

metric space, Gromov-Wasserstein (GW) distances comprise a family of metrics on the space of isomorphism

classes of metric measure spaces. In previous work, the authors introduced a variant of this construction which

was inspired by the original Monge formulation of optimal transport; elements of the resulting family are referred

to Gromov-Monge (GM) distances. These GM distances, and related ideas, have since become a subject of

interest from both theoretical and applications-oriented perspectives. In this note, we establish several theoretical

properties of GM distances, focusing on comparisons between GM and GW distances. In particular, we show

that GM and GW distances are equal for non-atomic metric measure spaces. We also consider variants of GM

distance, such as a Monge version of Sturm’s Lp-transportion distance, and give precise comparisons to GW

distance. Finally, we establish bi-Hölder equivalence between GM distance and an isometry-invariant Monge

optimal transport distance between Euclidean metric measure spaces that has been utilized in shape and image

analysis applications.

1 Introduction

Gromov-Wasserstein (GW) distance is a metric which allows one to compare probability measures defined over

different metric spaces. This is a task which is necessary in many applications in shape analysis and machine

learning, and GW distance has consequently become popular in these fields; see [35, 3, 12, 46, 17, 21], among

many others. A primary reason for the usefulness of this framework is that computation of GW distance involves

finding a soft correspondence between points of the two metric spaces being compared (more precisely, a proba-

bility coupling; see below), which gives a meaningful registration of the spaces for downstream analysis. On the

other hand, it is sometimes desirable to require an exact point registration (i.e., a function) between the spaces,

and this led us to define a variant of GW distance, called Gromov-Monge (GM) distance, in our previous paper

[33]. Roughly, GM defines an optimization problem with the same objective as GW, but restricts the feasible set

from soft correspondences to exact correspondences, so that GW f GM, in general. The GM distance, and related

ideas, have since appeared in both theoretical and applied contexts [42, 38, 22, 26, 47] (see Section 2.3 for a

detailed literature review). The purpose of the present paper is to collect some results on GM distance which have

not appeared elsewhere1. The overarching theme is to address the following main question: what are conditions

on the metric spaces/measures being compared which imply that their GW and GM distances agree?

In order to describe our results, we now introduce some precise definitions. A metric measure space (mm-

space) is a triple X = (X, dX , µX) such that (X, dX) is a metric space and µX is a fully supported Borel

probability measure on X . For p * [1,>), the Gromov-Wasserstein p-distance between two such structures X
and Y is given by

GWp(X ,Y) := inf
Ã

(

∫∫

(X×Y )2
|dX(x, x2)2 dY (y, y

2)|pÃ(dx× dy)Ã(dx2 × dy2)

)
1
p

,

where the infimum is over couplings of µX and µY ; that is, joint probability measures Ã onX×Y whose marginals

are µX and µY . This defines a metric on the space of mm-spaces up to a suitable notion of isomorphism, and

extends in a natural way to p = >. As it is defined as an optimization problem over the space of couplings,

1Some of these results appeared in early versions of the arXiv version of our paper [33], but were removed from the published version for

the sake of brevity.
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GW distance is reminiscent of Kantorovich’s formulation of optimal transport, which gives rise to Wasserstein p-

distances (see [44, 34] for general references on optimal transport theory). If we instead extend Monge’s original

formulation of optimal transport, we are led to the notion of Gromov-Monge p-distance,

GMp(X ,Y) := inf
Ç

(∫∫

X×X

|dX(x, x2)2 dY (Ç(x), Ç(x
2))|pµX(dx)µX (dx2)

)
1
p

,

where the infimum is now over functions Ç : X ³ Y which push the measure µX forward to µY . It is straight-

forward to show that GWp(X ,Y) f GMp(X ,Y), in general (Remark 2.10).

The results of this paper explore connections between GW and GM distances (and related constructions)

under various assumptions on the spaces being compared. In fact, we work in the more general setting of measure

networks; that is, triples X = (X,ËX , µX) where the network function ËX : X × X ³ R is an arbitrary

measurable map (Definition 2.1). Our main contributions are:

• We show that GMp(X ,Y) = GWp(X ,Y) for measure networks with non-atomic probability measures

(Theorem 2). This generalizes a result in the recent paper [25] and is analogous to results which show the

equivalence of Kantorovich and Monge (classical) optimal transport for non-atomic measures [5, 36]. This

is also related to a growing body of work which seeks to characterize classes of measure networks where

GWp is realized by a Monge map [40, 42, 38]; in particular, recent work of Dumont, Lacombe and Vialard

gives a complete solution for certain measure networks over Euclidean spaces [22]. This line of work is

inspired by a famous result of Brenier for classical optimal transport [10].

• For measure networks over finite, uniformly distributed probability spaces with symmetric positive definite

network functions, we show GM2 = GW2 (Proposition 3.8); in particular, GW2 is always realized by a

Monge map in this setting. This has applications to, e.g., graph analysis, whereË can be the heat kernel. Our

result is in the spirit of a result in [42], which applies to conditionally negative definite network functions.

• In the mm-space setting, we show that GWp is equal to a variant of GMp which allows for a certain notion

of mass splitting (Theorem 3). This refines various observations about GW distance that have appeared

previously [40, 18, 16].

• We define an alternate version of GM distance for mm-spaces based on embeddings into a common ambient

space, in analogy with Sturm’s Lp-transportation distance [39], and show that the embedding GM distance

and Sturm’s distance coincide for non-atomic mm-spaces (Theorem 4). Moreover, we show that the GM (as

defined above) gives a lower bound on the embedding version, in general (Theorem 5).

• Previous works in shape and image analysis consider isometry-invariant versions of Monge optimal trans-

port [24, 9, 1]. We show that isometry-invariant Monge distance for Euclidean mm-spaces is bi-Hölder

equivalent to the embedding formulation of GM distance (Theorem 6).

The structure of the paper is as follows. In Section 2, we give the necessary background definitions and survey

recent literature. Section 3 presents results on equivalence of GW and GM distances for certain classes of measure

networks. Finally, in Section 4, we introduce the embedding formulation of GM distance, give comparison results

with the corresponding GW version and show bi-Hölder equivalence with isometry-invariant Monge distances for

Euclidean spaces.

2 Gromov-Wasserstein and Gromov-Monge Distances

This section introduces our basic notation and gives precise definitions of various optimal transport-based dis-

tances.

2.1 Measure Networks and Metric Measure Spaces

As was described above, the original work in Gromov-Wasserstein (GW) distances [30] concerned comparison of

mm-spaces, but the purview of the theory has since been extended [15, 41, 20, 14]. In this paper, we will work in

the following setting, borrowing terminology from [15].

Definition 2.1. A measure network (m-net) is a triple X = (X,ËX , µX) such that X is a separable and com-

pletely metrizable topological space (or Polish space), µX is a fully-supported Borel probability measure and

ËX : X ×X ³ R is a measurable function, which we refer to as the network function. We use N to denote the

class of measure networks.
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In the case that the network function is a metric on X , we will typically denote it as dX , we will assume that

dX generates the topology of X and we will refer to the triple X = (X, dX , µX) as a metric measure space

(mm-space). We denote the class of mm-spaces by M.

Examples 2.2. There are many useful examples of m-nets which are not mm-spaces. Here are a few:

• It is frequently useful to consider network functions which satisfy a subset of the metric axioms. For instance,

a pseudo-metric is a function ËX : X × X ³ R satisfying all of the metric axioms, besides allowing

ËX(x, x2) = 0 for x 6= x2. Pseudo-metric measure spaces arise naturally as elements of the completion of

the space of metric measure spaces with respect to Gromov-Wasserstein distances [40].

• A graph G = (V,E) with (finite) vertex set V and edge set E can be represented as an m-net by setting

X = V , taking µX to be uniform and defining Ë(x, x2) * {0, 1} to be 1 if and only if {x, x2} * E [45].

• The previous example can be generalized by taking Ë to be some other graph kernel, such as the graph

Laplacian or a heat kernel [19].

There are two notions of equivalence of measure networks which are relevant to the GW framework. We recall

that a measurable function Ç : X ³ Y between measure spaces (X,µX) and (Y, µY ) is measure-preserving if

Ç#µX = µY , where Ç#µX(A) := µX(Ç21(A)), for any measurableA ¢ Y .

Definition 2.3. Let X and Y be m-nets. A strong isomorphism from X to Y is a measure-preserving bijective map

Ç : X ³ Y with measure-preserving inverse, such that ËY (Ç(x), Ç(x
2)) = ËX(x, x2) for all (x, x2) * X ×X .

Definition 2.4. Measure networks X and Y are weakly isomorphic if there exists a Borel probability space

(Z, µZ), together with measure-preserving maps ÇX : Z ³ X and ÇY : Z ³ Y such that ËX(ÇX(z), ÇX(z2)) =
ËY (ÇY (z), ÇY (z

2)) holds for µZ · µZ -almost every (z, z2) * Z × Z .

Trivially, if X and Y are strongly isomorphic then they are weakly isomorphic. The converse holds if X and

Y are mm-spaces, but not in general (see Theorem 1 below).

2.2 Distances Between Measures and Measure Networks

Optimal transport distances are defined in terms of certain joint probability measures called couplings, which we

now recall.

Definition 2.5. Let (X,µX) and (Y, µY ) be probability spaces. A coupling of µX and µY is a probability measure

Ã on X × Y whose marginals are µX and µY , respectively. That is, let ÃX : X × Y ³ X and ÃY : X × Y ³ Y
be coordinate projections; then a coupling satisfies (ÃX)#Ã = µX and (ÃY )#Ã = µY . The collection of all

couplings of µX and µY will be denoted C(µX , µY ).
For a measure-preserving map Ç : X ³ Y , let idX × Ç : X ³ X × Y be defined by (idX × Ç)(x, x2) =

(x, Ç(x2)). We define the coupling induced by Ç to be ÃÇ := (idX × Ç)#µX * C(µX , µY ). Let T (µX , µY )
denote the collection of all measure-preserving mappings from (X,µX) to (Y, µY ) and let

T#(µX , µY ) := {ÃÇ | Ç * T (µX , µY )} ¢ C(µX , µY )

denote the set of couplings induced by measure-preserving mappings.

Remark 2.6. The set C(µX , µY ) is always nonempty, since it contains the product measure µX · µY . However,

the set T (µX , µY ) (or T#(µX , µY )) can be empty. For example, if µX is a Dirac measure on a single point and

µY is a sum of Dirac measures 1
2 (·y + ·y2) for y 6= y2, then there is no measure-preserving map Ç : X ³ Y .

With the notion of coupling in hand, we can now define some classical optimal transport distances between

measures over the same metric space. We do so in the setting of metric spaces, since this level of generality will

be sufficient for our purposes. For background on classical optimal transport, see, e.g., [44]. In the following, we

allow our distances to take the value >; that is, they may be extended metrics.

Definition 2.7. Let (X, dX) be a metric space and let µ and ¿ be Borel probability measures on X . The Wasser-

stein p-distance is defined for p * [1,>) by

Wp(µ, ¿)
p := inf

Ã*C(µ,¿)

∫

X×X

dX(x, x2)pÃ(dx × dx2) = inf
Ã*C(µ,¿)

‖dX‖pLp(Ã)
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and for p = > by

W>(µ, ¿) := inf
Ã*C(µ,¿)

sup{dX(x, x2) | (x, x2) * supp(Ã)} = inf
Ã*C(µ,¿)

‖dX‖L>(supp(Ã)),

where supp(Ã) is the support of Ã.

We likewise define the Monge p-distance by restricting the feasible set of couplings; that is,

Mp(µ, ¿) :=

{

infÃ*T#(µ,¿) ‖dX‖Lp(Ã) p <>
infÃ*T#(µ,¿) ‖dX‖L>(supp(Ã)) p = >,

where we take the infimum over the empty set to be infinity.

When the underlying metric space needs to emphasized, we will write WX
p = Wp and MX

p = Mp.

These distances have analogues which measure the distance between pairs of mm-spaces or measure networks.

Since the underlying spaces are allowed to vary, we need to measure the quality of a coupling in a relative manner,

leading to the following definition.

Definition 2.8. Let X and Y be measure networks and p * [1,>). The p-distortion of a coupling Ã * C(µX , µY )
is

disp(Ã)
p = disp,X ,Y(Ã)

p :=

∫∫

(X×Y )2
|ËX(x, x2)2 ËY (y, y

2)|
p
Ã(dx × dy)Ã(dx2 × dy2)

= ‖ËX 2 ËY ‖
p
Lp(Ã·Ã).

Similarly, for p = >, we define

dis>(Ã) = dis>,X ,Y(Ã) := sup{|ËX(x, x2)2 ËY (y, y
2)| | (x, y), (x2, y2) * supp(Ã)}.

We define the p-distortion of a measure-preserving map Ç * T (µX , µY ) to be disp(Ç) = disp(ÃÇ), with ÃÇ
as in Definition 2.5. The expression for the distortion simplifies in the p <> case as

disp(Ç)
p =

∫∫

X×X

|ËX(x, x2)2 ËY (Ç(x), Ç(x
2))|

p
µX(dx)µX(dx2),

and similarly in the p = > case.

Finally, we define our distances between measure networks. These agree in the mm-space setting with the

definitions given in the introduction.

Definition 2.9. For p * [1,>], the Gromov-Wasserstein p-distance is the function GWp : N × N ³ R * {>}
defined by

GWp(X ,Y) := inf
Ã*C(µX ,µY )

disp(Ã).

The Gromov-Monge p-distance is the function GMp : N× N ³ R * {>} defined by

GMp(X ,Y) := inf
Ç*T (µX ,µY )

disp(Ç) = inf
ÃÇ*T#(µX ,µY )

disp(ÃÇ),

where we once again declare the infimum over the empty set to be infinity.

Remark 2.10. Since GWp involves optimization over a larger set of couplings than GMp, the inequality

GWp(X ,Y) f GMp(X ,Y) always holds.

Remark 2.11. The infimum in the definition of GWp is actually a minimum. This is proved in [15, Theorem 2.2]

for m-nets whose network functions are bounded and whose measures are fully supported, and in [40, Lemma

1.7] for m-nets whose network functions are metrics, i.e., for mm-spaces (without any boundedness or support

assumptions). Working through the proofs, one sees that the various assumptions are not necessary, and the result

goes through in the general setting of Definition 2.1.

In this paper, we consider m-nets with potentially unbounded network functions, meaning that GWp is not

guaranteed, in general, to be finite. It is sometimes useful to restrict to subspaces of m-nets with additional control

on the network functions. It is straightforward to see that GWp is finite when restricted to Np × Np, where Np is

as defined below.
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Definition 2.12. For p * [1,>) and an m-net X , define the p-size of X , sizep(X ) * R * {>}, by

sizep(X )p :=

∫∫

X×X

|ËX(x, x2)|pµX(dx)µX (dx2).

Similarly, let

size>(X ) := sup
x,x2*X

|ËX(x, x2)|.

We denote the class of m-nets (respectively, mm-spaces) X with sizep(X ) <> by Np (respectively, Mp).

Remark 2.13. The terminology above is used in, e.g., [40]. In the setting of mm-spaces, sizep(X ) is sometimes

referred to as the p-diameter of X . It appears in certain estimates of GW distance—see [32, Theorem 5.1]. In

particular, letting 7 denote the 1-point mm-space,

GWp(X , 7) = sizep(X ) = GMp(X , 7),

where the first equality appears in [32, Theorem 5.1 (f)] and the second follows because the unique coupling of X
and 7 is induced by a measure-preserving map.

The following theorem summarizes some basic results on metric properties of GM and GW distances in the

literature. We recall some terminology from metric geometry. For a set Z , a function d : Z × Z ³ R * {>} is

a Lawvere metric if it satisfies the triangle inequality and d(z, z) = 0 for all z * Z—this terminology refers to

classic work of Lawvere, which characterizes such structures in the language of enriched category theory [27]. A

Lawvere metric is a pseudometric if it is, in addition, finite-valued and symmetric (i.e., it satisfies the axioms of

a metric, except it is possible that d(z, z2) = 0 for z 6= z2), as in Example 2.2.

Theorem 1. Let p * [1,>].

• On the space Mp, the Gromov-Wasserstein p-distance defines a pseudometric such that GWp(X ,Y) = 0 if

and only if X and Y are strongly isomorphic [30, 40].

• On the space M, the Gromov-Monge p-distance defines a Lawvere metric such that GMp(X ,Y) = 0 if and

only if X and Y are strongly isomorphic. It may take the value > even on Mp [33].

• On the space Np, the Gromov-Wasserstein p-distance defines a pseudometric such that GWp(X ,Y) = 0 if

and only if X and Y are weakly isomorphic [15].

Remark 2.14. Let us comment on some subtleties of the results referenced in Theorem 1. When GWp was first

introduced, it was shown to define a metric up to strong isomorphism on the space of compact mm-spaces [30,

Proposition 6]. This was later extended to Mp in [40, Proposition 1.12]; the proof is essentially the same as in the

compact case. The case of GWp for m-nets was formalized in [15], where it was shown to define a metric on N>

(m-nets with bounded network functions), considered up to weak isomorphism; going through the proof there, one

sees that it extends immediately to Np. Similarly, [33, Theorem 3] shows that GMp defines a Lawvere metric on

the space of strong isomorphism classes of compact mm-spaces, but the proof extends to all of M without change.

The metric properties for GMp on the space of measure networks are more subtle.

Proposition 2.15. On the space N, GMp defines a Lawvere metric such that if GMp(X ,Y) = 0 then X and Y
are weakly isomorphic and if X and Y are strongly isomorphic, then GMp(X ,Y) = 0. However, it is possible for

weakly isomorphic X and Y to have GMp(X ,Y) > 0.

Proof. That GMp(X ,X ) = 0 is obvious and the proof of the triangle inequality follows as in the mm-space

case [33], hence GMp is a Lawvere metric. By Remark 2.10, GMp(X ,Y) = 0 implies GWp(X ,Y) = 0,

hence X and Y are weakly isomorphic. It is also easy to show that if X and Y are strongly isomorphic, then

GMp(X ,Y) = 0.

It remains to show that weak isomorphism of X and Y does not necessarily imply GMp(X ,Y) = 0. This can

be done by example: takeX = {x} with uniform measure and ËX identically zero, and Y = {y, y2} with uniform

measure and ËY identically zero. It follows by a (trivial) computation that GWp(X ,Y) = 0, hence X and Y are

weakly isomorphic, but the set of measure preserving maps T (µX , µY ) is empty, hence GMp(X ,Y) = >.
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Example 2.16. With slightly more work, one can construct weakly isomorphic spaces X and Y such that

GMp(X ,Y) is finite but nonzero. Indeed, take

X = {x, x2, x22}, µX(x) =
1

2
, µX(x2) = µX(x22) =

1

4
, ËX =

x x2 x22
( )1 0 0 x
0 0 0 x2

0 0 0 x22

and

Y = {y, y2, y22}, µY (y) = µY (y
2) =

1

4
, µY (y

22) =
1

2
, ËY =

y y2 y22
( )1 1 0 y
1 1 0 y2

0 0 0 y22
.

Then one can show thatX and Y are weakly isomorphic, but both of the two possible preserving maps Ç : X ³ Y
have positive distortion.

In Section 3, we give more precise comparisons between Gromov-Wasserstein and Gromov-Monge distances

under additional assumptions on the measure networks.

2.3 Related Work

We defined Gromov-Monge distances between mm-spaces in our previous paper [33]. There, the focus was on

restrictions to various subcategories of mm-spaces, and GM distances were mainly used as a framing device to

motivate certain inverse problems for mm-spaces. Gromov-Monge distances have since arisen in theoretical and

applied contexts, and we survey those appearances here.

Several articles consider the following problem, which is inspired by the well known work of Brenier in the

classical optimal transport setting [10].

Problem 2.17 (Monge Map Problem for GW). Given a class of measure networks, determine whether Gromov-

Wasserstein distance between any two elements is realized by a Monge map. That is, for a class C of measure

networks, we would like to show whether or not it is the case that for all X ,Y * C, there exists Ç * T (µX , µY )
such that GWp(X ,Y) = disp(Ç) (for some p * [1,>]).

Finding a class of mm-spaces with an affirmative answer to Problem 2.17 was first posed by Sturm as a

“Challenge” in [40, Challenge 3.6]. Moreover, [40, Challenge 5.27]) asks one to solve the problem specifically

for the class of finite mm-spaces of fixed cardinality, with uniform measures. The first solution to Problem 2.17

appears as [40, Theorem 9.21] for the class of measure networksX withX ¢ R
n, ËX(x, x2) = ‖x2x2‖2 (squared

Euclidean distance) and µX absolutely continuous with respect to Lebesgue measure and rotationally invariant.

This result, and all other results described in the remainder of this subsection, are valid for GW2, specifically.

A solution to the Monge map problem for the class measure networks X with X a finite subset of the real line

of some fixed finite cardinality, ËX(x, x2) = |x2 x2|2 and µX uniform was proposed in [43], with a view toward

a “sliced” approximation of GW distance (similar to sliced Wasserstein distances [8]). In particular, it was

claimed that the optimal Monge map is always order-preserving or order-reversing. However, a counterexample

to this stronger claim was recently demonstrated [6]. The solution to Problem 2.17 nonetheless holds in this

setting, and was shown in the thesis of Vayer to also hold for higher-dimensional finite Euclidean mm-spaces [42,

Theorem 4.1.2]. That is, for the class of mm-spaces X with X a subset of a Euclidean space (of arbitrary finite

dimension) of fixed finite cardinality, ËX(x, x2) = ‖x2 x2‖2 and µX uniform, it was shown that GW distance is

always realized by a permutation (i.e., a Monge map).

In [42], Vayer also considered Euclidean measure networks whose measures are assumed to be compactly sup-

ported and to have density with respect to Lebesgue measure, and whose network functions are squared Euclidean

distance—we refer to this as the quadratic Euclidean class—and Euclidean measure networks whose network

functions are (standard) inner products—we refer to this as the inner product Euclidean class. Vayer proves

the existence of Monge maps under additional assumptions (the existence of an optimal coupling with certain

properties) in both of these classes [42, Theorem 4.2.3 and Proposition 4.2.4]. Recently, general detailed solutions

to Problem 2.17 were obtained in the quadratic and inner product Euclidean classes by Dumont, Lacombe, and

Vialard in [22, Theorems 3.2 and 3.6], as consequences of technical theorems on existence of Monge maps for op-

timal transport costs defined by submersions. Finally, in [38], Salmona, Delon and Desolneux study GW distances

between measure networks in the quadratic and inner product Euclidean classes whose measures are Gaussians.
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An explicit formula is derived in the inner product class [38, Proposition 4.1] and it is shown that if one restricts

the feasible set of couplings to those couplings which are themselves Gaussian, the same solution is optimal in the

quadratic class [38, Theorem 4.1].

Gromov-Monge distances, or closely related variants, have recently appeared in the machine learning litera-

ture. In [26], the GM distance is symmetrized by defining a new distance, called Reversible Gromov-Monge

(RGM) distance, which involves optimization over a pair of measure-preserving maps satisfying a certain con-

sistency condition. In particular, one always has GM2(X ,Y) f RGM(X ,Y). Several theoretical properties of

RGM distance are derived, and applications to simulation-based inference are described, where the idea is to use

optimal measure-preserving maps to design transform samplers. Similarly, a two-map variant of GM distance is

introduced in [47], where the main distinction from RGM is the inclusion of a term which penalizes the maps

according to how far they are from being inverses to one another. A benefit of GM-type distances, which is taken

advantage of in both [26] and [47], is that the spaces of admissible mappings can be parameterized as neural net-

works. Learning optimal measure-preserving maps can then take advantage of efficient neural network training

algorithms.

Finally, we note that isometry-invariant versions of Monge distance have appeared in the literature previously

in the context of registering images [24] and anatomical surfaces [9, 1]. We show in Section 4.3 that these metrics

are bi-Hölder equivalent to an alternative version of GM distance, as defined in Section 4.1. More details on these

isometry-invariant metrics and their connections to GM distances are provided below in Remark 4.5.

3 Comparisons Between Gromov-Monge and Gromov-Wasserstein Dis-

tances

A natural relaxation of the Monge Map Problem 2.17 is:

Problem 3.1 (Equality of GW and GM). Given a class of measure networks C, determine whether GWp(X ,Y) =
GMp(X ,Y) for all X ,Y * C.

This is indeed a relaxation of Problem 2.17; if there exists a measure-preserving map Ç : X ³ Y such

that GWp(X ,Y) = disp(Ç), then GWp(X ,Y) g GMp(X ,Y) and Remark 2.10 implies that this is actually an

equality. This section treats Problem 3.1 and other related problems.

3.1 Non-Atomic Spaces

We first address the question of equality of Gromov-Wasserstein and Gromov-Monge distances in the setting of

non-atomic spaces—recall that a measure is non-atomic if it assigns zero mass to any singleton.

Theorem 2. Let X and Y be measure networks in Np such that µX and µY are non-atomic. Then, for p * [1,>),
GMp(X ,Y) = GWp(X ,Y).

This result is analogous to a theorem of Pratelli [36], who showed equality of Wasserstein and Monge optimal

transport for nonatomic measures when the underlying cost is assumed to be continuous, generalizing a result

of Ambrosio [5, Theorem 2.1] (remarkably, Pratelli’s theorem allows for unbounded costs, which can even take

the value >). Our theorem generalizes recent work of Hur, Guo and Liang [25], which shows equality of GW2

and GM2 for non-atomic measure networks with continuous and bounded network functions whose underlying

spaces are subsets of R
d (this follows by combining Theorem 3 and Proposition 1 of [25]). Notably, we make

no continuity or boundedness assumption on network functions in Theorem 2. In [26, Theorem 5.5], from the

published version of [25], the authors give a refinement of Theorem 2, at a similar level of generality, citing a

preprint version of the present paper as an inspiration for the proof of their result.

Let I = [0, 1] and let » denote Lebesgue measure, restricted to I . We will consider the product measure

space (I2, »2) = (I × I, » · »). The strategy of the proof is to transform the general problem into the simpler

subproblem on the class of measure networks of the form (I2, Ë, »2), via a classical isomorphism theorem. Such

a strategy was proposed by Gangbo in [23, Proposition A.3] to prove equality of Wasserstein and Monge distances

in the classical optimal transport setting. However, Pratelli observes in [36, Section 1.2] that such an approach

cannot work in general, due to the fact that the maps appearing in the isomorphism theorem may be discontinuous.

We will show that this lack of continuity is no longer a problem in the GW/GM setting, leading to a relatively

simpler proof than the classical optimal transport results [5, 36]. We will require a few lemmas.

Lemma 3.2. Let X be a measure network with non-atomic probability measure µX . Then there exists a measure

network IX = (I2, ËX
I2 , »2) which is strongly isomorphic to X .

7



Proof. It is a standard fact of measure theory that, since (X,µX) is a Polish space with non-atomic probability

measure, there exists a measure-preserving bijection Ç : I ³ X (with respect to » and µX ) such that its inverse

is also measure-preserving (i.e., Ç is a measure space isomorphism) [37, Ch. 15, Theorem 16]. Likewise, we have

a measure space isomorphism Ë : I ³ I2, with respect to » and »2. Then Ç := Ç ç Ë21 : I2 ³ X is a measure

space isomorphism with respect to »2 and µX . We then define

ËX
I2(s, t) := ËX(Ç(s), Ç(t))

for s, t * I . Then Ç is a strong isomorphism, by definition.

Remark 3.3. Following the proof of Lemma 3.2, one sees that we could have alternatively identified X strongly

isomorphically with a measure network of the form (I, ËX
I , »)—indeed, this is a common method for parameteriz-

ing m-nets or mm-spaces (see [15, Section 2.5.1] or [40, Lemma 5.3]). The reason for modeling our spaces over

the square (I2, »2) is so that we can apply a technical lemma (Lemma 3.5), as is further explained in Remark 3.6.

The next result then follows by Theorem 1 and Proposition 2.15 (in particular, the triangle inequalities and the

identification of strongly isomorphic spaces under both GWp and GMp).

Lemma 3.4. Let X and Y be Polish measure networks with non-atomic probability measures, and let IX and IY
be as in Lemma 3.2. Then GWp(X ,Y) = GWp(IX , IY) and GMp(X ,Y) = GMp(IX , IY).

The following is a special case of [11, Theorem 1.1 (i)].

Lemma 3.5 ([11]). For any Ã * C(»2, »2), there exists a sequence of measure-perserving maps Çm : I2 ³ I2

such that (idI2 × Çm)#»
2 converges weakly to Ã.

Remark 3.6. In the original work of Brenier and Gangbo [11], the result was stated for approximation of cou-

plings over the cube Id for d g 2, as this is the general setting for other results in that paper. This is the reason

that we have chosen to identify an arbitrary m-net X with an m-net IX over the square (I2, »2) in Lemma 3.2,

rather than over the interval (I, ») (see Remark 3.3). In fact, checking the details of the proof of [11, Theorem

1.1] one sees that it applies also to the d = 1 case (i.e., to (I, »)). However, in order to give a precise reference,

we have opted to work with the d = 2 case.

Proof of Theorem 2. It suffices to consider the case of measure networks I = (I2, Ë, »2) and I 2 = (I2, Ë2, »2)
Np. Indeed, if the result holds for measure networks over (I2, »2), then for general non-atomic measure networks

X and Y , one has

GWp(X ,Y) = GWp(IX , IY) = GMp(IX , IY) = GMp(X ,Y),

by Lemma 3.4.

Let Ã be an optimal coupling for I and I 2 (see Remark 2.11). By Lemma 3.5, there is a sequence of measure-

preserving maps Çm : I2 ³ I2 such that Ãm := (idI2 × Çm)#
m³>
2222³ Ã, in the weak topology. It is proved

in [15, Lemma 2.3] that the distortion function disp is continuous in the weak topology, when it is defined with

respect to measure networks in N>. The same proof goes through for measure networks in Np, so we have

GMp(I, I
2) f lim

m³>
disp(Ãm) = disp(Ã) = GWp(I, I

2).

By the general bound GWp(I, I 2) f GMp(I, I 2) (Remark 2.10), this shows GWp(I, I 2) = GMp(I, I 2) and

completes the proof of the theorem.

3.2 Discrete Spaces

We now consider the scenario which is the “opposite” of the non-atomic setting: finite spaces with discrete mea-

sures. For this subsection, let Cfin denote the class of measure networks X finite and µX uniform; we put no

additional restriction on network functions at this point. We begin with a simple structural result, characterizing

infinite values and asymmetry for Gromov-Monge distances.

Proposition 3.7. Let X ,Y * Cfin with |X | = m and |Y | = n. Then GMp(X ,Y) < > if and only if n divides

m. In the case m = n, GMp(X ,Y) = GMp(Y,X ) <>.

Proof. Suppose that n divides m, say m = kn. Then any function Ç : X ³ Y whose fibers all have cardinality

k is a measure-preserving map; in particular, T (µX , µY ) 6= ', so GMp(X ,Y) < >. Conversely, let Ç : X ³ Y
be a measure-preserving map. For any y * Y , we have

1

n
= µY (y) = µX(Ç21(y)) = |Ç21(y)|

1

m
,
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hence m = |Ç21(y)|n.

If m = n, then the measure preserving maps are exactly the bijections Ç : X ³ Y , and

disp,X ,Y(Ç) = disp,Y,X (Ç21) <>.

In light of the previous result, it is natural to restrict our attention to the subclass Cn consisting of X * Cfin of

fixed cardinality, |X | = n. As was stated in Section 2.3, Problem 2.17 has been solved by Vayer in the subclass of

Cn consisting of measure networks X withX ¢ R
d (for some arbitrary dimension d) and ËX(x, x2) = ‖x2x2‖2:

in this subclass, GW 2-distance is realized by a Monge map (i.e., a permutation) [42, Theorem 4.1.2]. The

proof uses ideas of [29] and, in particular, relies on the observation that squared Euclidean distance matrices are

conditionally negative definite. We now prove a similar result for the subclass of Cn consisting of m-nets with

symmetric positive definite network functions. That is, for X * Cn, we pick an ordering (x1, . . . , xn) of X and

consider the network function as a matrix ËX * R
n×n by setting ËX(i, j) = ËX(xi, xj) (see Example 2.16). We

say that ËX if symmetric positive definite if it is symmetric positive definite as a matrix.

Proposition 3.8. For any n * Z>0, consider X ,Y * Cn such that their network functions are symmetric positive

definite. Then GW2(X ,Y) is realized by a measure-preserving map.

As an example of a natural symmetric positive definite network function, consider a graph with vertex set X ,

µX uniform and ËX given by the heat kernel exp(2tL) for some parameter t > 0, where L is the graph Laplacian

matrix. The idea of the proof comes from [19, Theorem 2], which specifically considers graph heat kernels, and

[4, Lemma 4.3], which offers a similar computation in the setting of cosine similarity matrices; neither of these

results make the connection to Monge maps, although the former derives a bound on sparsity of optimal couplings.

Proof. As above, consider ËX and ËY as matrices in R
n×n. Likewise, we consider probability measures as

column vectors µX , µY * R
n (specifically, they are both equal to the column vector with all entries equal to 1

n ).

Since it is symmetric positive definite, ËX admits a Cholesky decomposition ËX = UT
XUX . Let ËY = V T

Y VY be

defined similarly.

A coupling of µX and µY can be considered as a matrix Ã * R
n×n whose row and column sums agree with

µX and µY , respectively. We can express the distortion of Ã as

dis2(Ã)
2 =

∑

i,j,k,3

(ËX(i, k)2 ËY (j, 3))
2Ã(i, j)Ã(k, 3)

=
∑

i,j,k,3

ËX(i, k)2Ã(i, j)Ã(k, 3) +
∑

i,j,k,3

ËY (j, 3)
2Ã(i, j)Ã(k, 3)

2 2
∑

i,j,k,3

ËX(i, k)ËY (j, 3)Ã(i, j)Ã(k, 3)

=
∑

i,k

ËX(i, k)2µX(i)µX(k) +
∑

j,3

ËY (j, 3)
2µY (j)µY (3)

2 2
∑

i,j,k,3

ËX(i, k)ËY (j, 3)Ã(i, j)Ã(k, 3).

Since the first two terms do not depend on Ã, minimizing dis2(Ã)
2 is equivalent to maximizing the quanity

∑

i,j,k,3 ËX(i, k)ËY (j, 3)Ã(i, j)Ã(k, 3) over all couplings Ã. Let 〈·, ·〉 denote the Frobenius inner product on

R
n×n and ‖ · ‖ the associated norm. Then our object is to maximize

∑

i,j,k,3

ËX(i, k)ËY (j, 3)Ã(i, j)Ã(k, 3) = 〈ËXÃ, ÃËY 〉 =
〈

UT
XUXÃ, ÃV

T
Y VY

〉

=
〈

UXÃV
T
Y , UXÃV

T
Y

〉

= ‖UXÃV
T
Y ‖2.

The function Ã 7³ ‖UXÃV
T
X ‖2 is a convex function on R

n×n. Moreover, considered as a space of matrices, the

set of couplings C(µX , µY ) is given by

C(µX , µY ) =

ù

ú

û

Ã * R
n×n |

∑

i

Ã(i, j) =
∑

j

Ã(i, j) =
1

n
and Ã(i, j) g 0 " i, j

ü

ý

þ

;
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that is, it is a rescaling of the set of bistochatic matrices by a factor of 1
n . By Birkhoff’s theorem, C(µX , µY ) is the

convex hull of the set of scaled (by 1
n ) permutation matrices. These correspond to couplings which are induced by

measure-preserving mappings X ³ Y . By standard optimization theory, the convex function Ã 7³ ‖UXÃV
T
X ‖ is

always maximized at an extremal point of its constraint polytope [7]. This proves the claim.

3.3 The General Metric Measure Space Setting

We consider a variant of Gromov-Monge distance on the class of mm-spaces which allows for a certain notion of

mass splitting.

Definition 3.9. Let (X, dX) be a metric space, let Z be a set and let Ç : Z ³ X be a function. The associated

pullback pseudometric is the function Ç7dX : Z × Z ³ R defined by

(Ç7dX)(z, z2) = dX(Ç(z), Ç(z2)).

It is easy to check that Ç7dX indeed satisfies the axioms of a pseudometric.

Definition 3.10. Let X be an mm-space. A mass splitting of X is a measure network Z such that there exists a

measure-preserving map Ã : Z ³ X with the property that ËZ = Ã7dX .

Theorem 3. Let X and Y be metric measure spaces. Then

GWp(X ,Y) = inf
Z

GMp(Z,Y),

where the infimum is taken over mass-splittings of X .

Similar ideas of splitting mass to realize Gromov-Wasserstein distance through Monge maps were employed in

[18] to construct explicit geodesics between networks in a shape analysis setting. The algorithm used in [18] is an

implementation of the geodesic characterization first obtained in [40, Theorem 3.1]. The result is also reminiscent

of [16, Proposition 2.7.5], which considers a similar characterization of a Gromov-Hausdorff-like distance on the

space of networks (without measures).

Example 3.11. To illustrate the idea of the theorem with a simple example, consider the space X consisting of

a single point and the space Y consisting of two points Y = {y1, y2} with dY (y1, y2) = 1 and with uniform

weights. The Gromov-Wasserstein p-distance between the spaces is realized by the unique coupling Ã satisfying

Ã((x, yj)) =
1
2 so that GWp(X ,Y) =

1
21/p

, while GMp(X ,Y) = > since T (µX , µY ) = '. On the other hand,

consider the mass splitting Z with Z = {z1, z2}, ËZ(z1, z2) = 0 and with uniform weights. It is easy to check

that Z is a mass-splitting of X with Ã(zj) = x. Moreover, GMp(Z,Y) =
1

21/p
and this quantity is realized by the

measure-preserving map Ç(zj) = yj . This general setup is illustrated by the following diagram:

Z

X Y

Ã
Ç

Proof of Theorem 3. Given a measure coupling Ã of µX and µY , define a mass splitting Z by setting Z =
supp(Ã) ¢ X × Y , µZ = Ã, Ã = ÃX |Z (with ÃX : X × Y ³ X denoting projection onto the first coordinate)

and ËZ = Ã7dX . Then Ç = ÃY |Z : Z ³ Y (with ÃY : X × Y ³ Y the projection map) is a measure-preserving

map with

disp,Z,Y(Ç)
p =

∫∫

Z×Z

|ËZ(z, z
2)2 dY (Ç(z), Ç(z

2))|pµZ(dz)µZ(dz
2)

=

∫∫

(X×Y )2
|dX(x, x2)2 dY (y, y

2)|pÃ(dx× dy)Ã(dx2 × dy2) = disp,X ,Y(Ã)
p.

We conclude that

GWp(X ,Y) g inf
Z

GMp(Z,Y).

Conversely, let Z = (Z, ËZ , µZ) be a mass splitting of X , with measure-preserving map Ã : Z ³ X such

that ËZ = Ã7dX , and let Ç : Z ³ Y be a measure-preserving map (we assume that one exists; otherwise, the

desired inequality GWp(X ,Y) f GMp(Z,Y) follows trivially). We define a probability measure Ã onX ×Y as

Ã = (Ã× Ç)#µZ . Then Ã defines a measure coupling of µX and µY . Indeed,

(ÃX)#Ã = (ÃX)#(Ã× Ç)#µZ = (ÃX ç (Ã× Ç))#µZ = Ã#µZ = µX ,
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and, by a similar argument, we also have (ÃY )#Ã = µY . Consider the following calculation (we suppress all

function arguments to condense notation):

∫∫

(X×Y )2
|dX 2 dY |

pÃ · Ã =

∫∫

(X×Y )2
|dX 2 dY |

p(Ã× Ç)#µZ · (Ã× Ç)#µZ

=

∫∫

(X×Y )2
|dX 2 dY |

p ((Ã× Ç)× (Ã× Ç))# µZ · µZ (1)

=

∫∫

Z×Z

|dX ç (Ã× Ã)2 dY ç (Ç× Ç)|pµZ · µZ (2)

=

∫∫

Z×Z

|ËZ 2 dY ç (Ç× Ç)|pµZ · µZ . (3)

Equality (1) follows from the fact that (Ã × Ç)#µZ · (Ã × Ç)#µZ and ((Ã × Ç) × (Ã × Ç))#µZ · µZ define

equivalent measures on (X × Y )2 and (2) and (3) both follow from the change-of-variables formula, with the

latter also using dX ç (Ã× Ã) = ËZ . This calculation shows that

GWp(X ,Y) f inf
Z

GMp(Z,Y)

and the proof is therefore complete.

4 An Embedding Formulation of Gromov-Monge Distance

In this section, we restrict our attention to mm-spaces (rather than general m-nets) and study alternative notions of

distance between them.

4.1 Gromov-Monge Distances from Joint Embeddings

In [39], Sturm defined an alternative metric for comparing mm-spaces, which is analogous to the embedding

formulation of Gromov-Hausdorff distance. For mm-spaces X and Y , let

GWem
p (X ,Y) := inf

Z,ÇX ,ÇY

WZ
p ((ÇX )#µX , (ÇY )#µY ),

where the infimum is taken over all isometric embeddings ÇX : X ³ Z and ÇY : Y ³ Z into some metric space

Z and WZ
p is the usual Wasserstein p-distance between probability measures on Z . We analogously define a new

extended quasi-metric GMem
p on the space of mm-spaces by

GMem
p (X ,Y) := inf

Z,ÇX ,ÇY

MZ
p ((ÇX)#µX , (ÇY )#µY ),

where the infimum is once again taken over isometric embeddings into a common ambient metric space.

Theorem 4. Let X and Y be mm-spaces with non-atomic probability measures. Then for p * [1,>),
GWem

p (X ,Y) = GMem
p (X ,Y).

Proof. Clearly, GWem
p f GMem

p holds in general; in particular, if GWem
p (X ,Y) = > (which is possible with-

out any boundedness assumption on the mm-spaces) then GMem
p (X ,Y) = > as well. Assume, then, that

GWem
p (X ,Y) is finite, and let ÇX : X ³ Z and ÇY : Y ³ Z be isometric embeddings into some metric

space (Z, dZ). It follows from [39, Lemma 3.3 (ii)] that, in the context of computing GWem
p , we may assume

without loss of generality that (Z, dZ) is complete and separable—that is, we can restrict the definition to the

infimum of embeddings into such spaces without changing the value of the metric. The same proof applies to

show that this can be assumed without loss of generality in the context of computing GMem
p . Since the push-

forwards (ÇX)#µX and (ÇY )#µY are nonatomic (this follows by injectivity and the assumption that the orig-

inal measures were nonatomic) and the function Z × Z ³ R defined by (z, z2) 7³ dZ(z, z
2)p is continuous,

Pratelli’s result [36, Theorem B] implies that WZ
p ((ÇX )#µX , (ÇY )#µY ) = MZ

p ((ÇX)#µX , (ÇY )#µY ). Be-

cause this equality holds for every choice of Z, ÇX , ÇY , passing to the infimum over such embeddings yields

GWem
p (X ,Y) = GMem

p (X ,Y).
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4.2 Comparing Gromov-Monge Distances

Here, we show that the two notions of Gromov-Monge distance considered in this paper are comparable for

arbitrary mm-spaces, but are not equivalent in general. The following is a Gromov-Monge version of [32, Theorem

5.1(g)].

Theorem 5. For mm-spaces X and Y and for any p * [1,>],

1

2
GMp(X ,Y) f GMem

p (X ,Y). (4)

In the case that p = >, we have
1

2
GM>(X ,Y) = GMem

> (X ,Y). (5)

Proof. If GMem
p (X ,Y) = > then (4) is trivially satisfied, so let us assume that GMem

p (X ,Y) <>. To prove that

(4) holds under this assumption, we will show that wheneverGMem
p (X ,Y) < r, there exists Ç * T (µX , µY ) such

that ‖dX2dY ‖Lp(ÃÇ·ÃÇ) f 2r. If GMem
p (X ,Y) < r then we can find isometries ÇX : X ³ Z and ÇY : Y ³ Z

into a metric space Z such that MZ
p ((ÇX)#µX , (ÇY )#µY ) < r. We may as well assume that X,Y ¢ Z and that

µX and µY are measures on Z with supp(µX) = X and supp(µY ) = Y . By definition of MZ
p , there exists

Ç * T (µX , µY ) such that ‖dZ‖Lp(ÃÇ) < r. Now note that for all x, x2 * X , the triangle inequality in Z implies

that

|dZ(x, x
2)2 dZ(Ç(x), Ç(x

2))| f dZ(x, Ç(x)) + dZ(x
2, Ç(x2)).

Putting this together with the triangle inequality for the Lp norm, we have

‖dX 2 dY ‖Lp(ÃÇ·ÃÇ) f 2‖dZ‖Lp(ÃÇ) < 2r.

This establishes (4).

Now we wish to show that 1
2GM>(X ,Y) g GMem

> (X ,Y). If GM>(X ,Y) = > then we are done, so

assume not. Let Ç0 : X ³ Y be any measure preserving map with

‖dX 2 dY ‖L>(supp(ÃÇ0
·ÃÇ0

)) = sup
x,x2*X

|dX(x, x2)2 dY (Ç0(x), Ç0(x
2))| = 2r.

The claim follows if we are able to construct a metric space (Z, dZ) and isometric embeddings ÇX and ÇY such

that MZ
>((ÇX )#µX , (ÇY )#µY ) f r. Let Z denote the disjoint union of X and Y and define a metric dZ on Z by

setting dZ |X×X = dX , dZ |Y×Y = dY and

dZ(x, y) = dZ(y, x) = inf
x2*X

{dX(x, x2) + r + dY (Ç0(x
2), y)}

for any x * X and y * Y . Then

MZ
>(µX , µY ) = inf

Ç*T (µX ,µY )
sup
x*X

dZ(x, Ç(x)) f sup
x*X

dZ(x, Ç0(x))

= sup
x*X

inf
x2*X

{dX(x, x2) + r + dY (Ç0(x
2), Ç0(x))} = r.

This completes the proof.

Example 4.1 (GMp and GMem
p are Not BiLipschitz Equivalent). Consider the family of mm-spaces ∆n. Each

∆n consists of the spaceXn = {1, . . . , n} with metric dn(i, j) = 12·ij and measure ¿n defined by ¿n(i) = 1/n.

For p <>,

GMem
p (∆2n,∆n) g GWem

p (∆2n,∆n) g
1

4
,

where the former bound holds generally and the latter is shown in [32, Claim 5.3]. On the other hand, for p <>,

GMp(∆2n,∆n) = 1/(2n)1/p. This follows from the fact that T (¿2n, ¿n) is simply the set of 2-to-1 maps from

{1, . . . , 2n} to {1, . . . , n} and all such maps have the same Monge cost, so that the quantity is obtained by a

direct calculation. It follows that GMp and GMem
p are not bi-Lipschitz equivalent for any p * [1,>).

Example 4.2 (Tightness of the Inequality). We now show, by example, that the factor of 1
2 in (4) cannot be

improved. The analysis provided here is similar to that of [32, Remark 5.14].
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Using the notation of Example 4.1, consider the spaces ∆n and ∆1 j 7 (the latter is the one point mm-space).

The distance GMp(∆n, 7) is the p-size of ∆n (see Remark 2.13), which is given explicitly by

GMp(∆n, 7) =

û

ý

n
∑

i,j=1

dn(i, j)
p ·

1

n2

þ

ø

1/p

=

û

ý

∑

i6=j

1p ·
1

n2

þ

ø

1/p

=

(

n(n2 1) ·
1

n2

)1/p

=

(

12
1

n

)1/p

(this agrees with the more general formula given in [32, Remark 5.17]). On the other hand, we claim that

GMem
p (∆n, 7) = 1

2 for all n. We then have that, for any c < 2, one can take n sufficently large so that

GMp(∆n, 7) > c ·GMem
p (∆n, 7), which shows that the inequality (4) is tight.

It remains to derive the value of GMem
p (∆n, 7). In this setting, any isometric embeddings of ∆n and 7 into

a common metric space amount to choosing distances ³i between i * ∆n and the single point x. Given such a

choice ~³ = (³1, . . . , ³n), the Monge distance between the pushforward measures is given by

(

n
∑

i=1

³p
i ·

1

n

)1/p

=
1

n1/p
‖~³‖p,

where ‖ · ‖p is the standard 3p-norm on R
n. It follows that

GMem
p (∆n, 7) = inf

~³

1

n1/p
‖~³‖p,

where the entries of ~³ are subject to constraints which guarantee a valid metric. Namely, we must have ³i > 0
for all i, as well as ³i 2 ³j f 1 = dn(i, j) f ³i + ³j for all i 6= j. In particular, the constraints of the form

1 f ³i + ³j with i < j imply that

(

n

2

)

=
∑

i<j

1 f
∑

i<j

(³i + ³j) = (n2 1)
∑

i

³i = (n2 1)‖~³‖1,

whence we obtain, for all p g 1,
1

2
f

1

n
‖~³‖1 f

1

n1/p
‖~³‖p,

where the first inequality follows from the discussion above and the second is the generalized means inequality.

Therefore, GMem
p (∆n, 7) g

1
2 holds for all p g 1. On the other hand, the constant vector ~³ = (1/2, . . . , 1/2)

gives a valid metric and realizes this lower bound, so that GMem
p (∆n, 7) =

1
2 .

Remark 4.3. Example 4.2 also shows that the inequality 1
2GWp(X ,Y) f GWem

p (X ,Y) from [32, Theorem

5.1(g)] (note the slightly different normalization convention used there) is tight, since it is not hard to see that

GWp(∆n, 7) = GMp(∆n, 7) and GWem
p (∆n, 7) = GMem

p (∆n, 7). It was previously only shown in [32, Remark

5.14] that this is not an equality, in general.

4.3 Gromov-Monge Distances for Euclidean Spaces

A Euclidean mm-space is an mm-space X such that X ¢ R
n for some n and dX is the restriction of Euclidean

distance (and µX is a Borel measure with respect to the subspace topology). For Euclidean mm-spaces X and Y
with the same ambient space R

n, we can consider the isometry-invariant Monge p-distance

MR
n,iso

p (X ,Y) = inf
T*E(n)

(

inf
Ç*T (µX ,µY )

∫

X

‖T (x)2 Ç(x)‖pµX(dx)

)1/p

,

where we use E(n) to denote the group of Euclidean isometries of R
n and ‖ · ‖ for the Euclidean norm. Fixing

R
n as the ambient Euclidean space, unless specified otherwise, we use the cleaner notation Miso

p = MR
n,iso

p .

Theorem 6. Let X and Y be Euclidean mm-spaces in the same ambient space R
n, let p g 1 and let M =

max{diam(X), diam(Y )}. Then

GMem
p (X ,Y) f Miso

p (X ,Y) fM3/4 · cn ·
(

GMem
p (X ,Y)

)1/4
,

where cn is a constant depending only on n.
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The theorem is analogous to [31, Theorem 4], which compares GWem
p and isometry-invariant Wasserstein

distance for Euclidean spaces. The proof of the theorem is essentially the same, with the main difference being

the use of the following technical lemma, which is a variation of [31, Lemma 2], specialized to the Monge setting.

Recall that a correspondence between sets X and Y is a subset R ¢ X × Y such that the coordinate projections

satisfy ÃX(R) = X and ÃY (R) = Y . We use R(X,Y ) to denote the set of correspondences between X and Y .

Observe that the theorem is only interesting if the quantity M is finite, so we state the following result with this

assumption.

Lemma 4.4. Let X and Y be bounded mm-spaces and let M = max{diam(X), diam(Y )}. If

GMem
p (X ,Y) f ë ·M

for ë f 1, then there exist Xë ¢ X , Yë ¢ Y , Rë * R(Xë, Yë), and a measure-preserving map Ç : X ³ Y
satisfying Ç(Xë) = Yë such that

min{µX(Xë), µY (Yë), ÃÇ(Rë)} g 12 ëp/2 (6)

and

sup
(x,y),(x2,y2)*Rë

|dX(x, x2)2 dY (y, y
2)| f ë1/2M. (7)

Proof. Without loss of generality, suppose that X and Y are subsets of an ambient metric space (Z, dZ) and let

Ç * T (µX , µY ) such that
∫

Z

dZ(z, Ç(z))
pµX(dz) f ëpMp.

Define a subset Rë ¢ X × Y by

Rë = {(x, y) * X × Y | y = Ç(x) and dZ(x, y) f ë1/2M/2}.

We then define Xë = ÃX(Rë) and Yë = ÃY (Rë), so that Rë * R(Xë, Yë). Also note that Ç(Xë) = Yë. A short

calculation using the triangle inequality shows that Rë satisfies (7). Moreover,

ëpMp g

∫

Z

dZ(z, Ç(z))
pµX(dz) g

∫

X\Xë

dZ(z, Ç(z))
pµX(dz) g ëp/2MpµX(X \Xë).

Rearranging, we obtain µX(Xë) g 12 ëp/2. Since Yë = Ç(Xë) and Ç is measure-preserving, µY (Yë) g 12 ëp/2

as well. Finally, we have

ÃÇ(Rë) = (idX × Ç)#µX(Rë) = µX

(

(idX × Ç)21(Rë)
)

= µX(Xë),

and (6) is satisfied.

Proof of Theorem 6. The inequality on the left is obvious, so let us consider the inequality on the right, under the

assumption that X and Y are bounded (as this is the only interesting case). If either quantity is infinite, then both

are, so assume not. It is easy to show that

GMem
p (X ,Y) fM = max{diam(X), diam(Y )}.

We therefore suppose, without loss of generality, that GMem
p (X ,Y) = ëM for some ë f 1. Let Xë, Yë, Ç and Rë

be as in Lemma 4.4 and let Rc
ë = (X × Y ) \ Rë. The condition (7) on Rë implies that the Gromov-Hausdorff

distance between Xë and Yë is bounded above by ë1/2M/2 (see [13, 7.3.25]). In turn, [13, Corollary 7.3.28] says

that this implies that there exists a (ë1/2M)-isometry Ë : Xë ³ Yë; that is, Ë satisfies

sup
x,x2*Xë

|dX(x, x2)2 dY (Ë(x), Ë(x
2))| f ë1/2M

and that Ë(Xë) is a (ë1/2M)-net for Yë (i.e., for every y * Yë there is an x * Xë such that dY (Ë(x), y) f ë1/2M ).

We apply [2, Theorem 2.2] to conclude that there is an isometry T * E(n) such that supx*Xë
‖T (x)2 Ë(x)‖ f

ë1/4 · an ·M , where an is a constant depending only on n.
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Applying the triangle inequality and the general inequality (a+ b)p f 2p21(ap+ bp) (for a, b g 0 and p g 1),

we have

Miso
p (X ,Y)p f

∫

Rc
ë

‖T (x)2 y‖pÃÇ(dx× dy) (8)

+ 2p21

∫

Rë

‖T (x)2 Ë(x)‖pÃÇ(dx × dy) (9)

+ 2p21

∫

Rë

‖Ë(x)2 y‖pÃÇ(dx× dy). (10)

We bound each term separately. First note that

‖T (x)2 y‖p f 2p21(‖T (x)‖p + ‖y‖p) f 2pmax

{

max
x

‖T (x)‖p,max
y

‖y‖p
}

= (2M)p,

where we have used isometry invariance of Miso
p to assume without loss of generality that the circumcenters of X

and Y are at the origin in order to obtain the last equality. This implies that

(8) f (2M)pÃÇ(R
c
ë) f 2p ·Mp · ëp/2.

The bounds on (9) and (10) follow from our assumptions on Ë:

(9) f 2p21 · sup
x*Xë

‖T (x)2 Ë(x)‖p · ÃÇ(Rë) f 2p21 · ëp/4 · apn ·Mp

and

(10) f 2p21 · max
(x,y)*Rë

‖Ë(x)2 y‖pÃÇ(Rë) f 2p21 · ëp/2 ·Mp,

where we have used that Ë(Xë) is a (ë1/2M)-net. Combining these estimates, we conclude

Miso
p (X ,Y)p f 2pMp(ëp/2 + apnë

p/4/2 + ëp/2/2) fMpëp/4 · 2p(3/2 + apn/2).

Taking cn = 3 + 2an g 2 · (3/2 + apn/2)
1/p (to get a constant which only depends on n), we have

Miso
p (X ,Y) f cn ·M · ë1/4 = cn ·M3/4 ·GMem

p (X ,Y)1/4.

Remark 4.5. We now explain connections between embedded GM distances and some metrics which have previ-

ously appeared in the literature.

The continuous Procrustes distance between embedded surfaces in R
3 was introduced in [9], where it was

used to classify anatomical surfaces (in particular, shapes of primate teeth). The effectiveness at classification

of this metric was shown to be roughly on par with that of a trained morphologist. The idea of the continuous

Procrustes distance is to compare surfaces by simultaneously registering over rigid motions while looking for

optimal measure-preserving maps between them. Theoretical aspects of this metric are studied in [1], where it is

shown that optimal mappings are close to being conformal. The continuous Procrustes distance can be viewed

as MR
3,iso

2 , under the additional constraint that measure-preserving maps must also be continuous. A similar

constraint on admissible maps can be made in the GMem
p -distance. Theorem 6 (or the corresponding version

under an additional constraint) gives an equivalence between embedded GM distance and continuous Procrustes

distance.

A metric similar to the continuous Procrustes metric is studied in [24] for applications to 2D image registra-

tion. In our terminology, the metric of [24] is MR
2,iso

2 , under the additional constraint that measure-preserving

maps are smooth diffeomorphisms. Once again, (a slight variant) of Theorem 6 shows the equivalence of this

metric with a restricted version of embedded GM distance.

Remark 4.6. A natural question is whether the inequalities in Theorem 6 are tight; in particular, can the exponent

on the right hand side be improved? There has been some progress on the corresponding problem comparing

isometry-invariant Hausdorff distance with Gromov-Hausdorff distance between Euclidean sets—it is shown in

[31, Theorem 2] that the isometry-invariant Hausdorff distance between compact subsets X,Y ¢ R
n is bounded

above by c2n ·max{diam(X), diam(Y )}1/2 ·GH(X,Y )1/2, where GH denotes Gromov-Hausdorff distance and

c2n is positive a constant depending only on n. An example constructed in [31] shows that the exponent 1
2 on the

Gromov-Hausdorff distance cannot be improved (namely, it cannot be made larger). More recently, it has been

shown that for finite subsets of the real line X,Y ¢ R, isometry-invariant Hausdorff distance is bounded above

by 5
4GH(X,Y ) [28, Theorem 3.2], and that this bound is tight [28, Theorem 3.10]. Optimality of the bounds in

the Gromov-Wasserstein or Gromov-Monge settings has seen less progress, and we leave these as open questions.
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