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ABSTRACT
The dynamics of colonizing populations may be strongly influenced by both extrinsic (e.g., climate and competition) and intrinsic 
(e.g., density) forces as well as demographic and environmental stochasticity. Understanding the impacts of these effects is cru-
cial for predicting range expansions, trailing edge dynamics, and the viability of rare species, but the general importance of each 
of these forces remains unclear. Here, we assemble establishment time and spatial locations of most individuals that have reached 
maturity in six isolated, establishing populations of two pine species. These data allow us to quantify the relative importance of 
multiple factors in controlling growth of these populations. We found that climate, density, site, and demographic stochasticity 
were of varying importance both within and across species, but that no driver appeared to dominate dynamics across all popu-
lations and time periods. Indeed, exclusion of any one of these effects greatly reduced predictive power of our population growth 
models. Given the similarity in the abiotic characteristics of these sites, the varying importance of these classes of effects was 
surprising but speaks to the need to consider multiple effects when predicting the dynamics of small and colonizing populations.

1   |   Introduction

Dating to the controversy between Andrewartha and Birch and 
Nicholson (Andrewartha and Birch  1954; Cold Spring Harbor 
Symposium 22  1957), ecologists have debated the roles of ex-
trinsic versus intrinsic forces in shaping population dynamics, 
a question that continues to this day (Adler et al. 2018; Thibaut 
and Connolly  2020). The classic posing of this issue involved 
the roles of density dependence, as an intrinsic force, versus cli-
mate variation, as an extrinsic force, in governing changes in 
population numbers. More recent treatments also consider the 
roles of demographic and genetic stochasticity as forces that can 
drive changing numbers, including the differential effects of 
stochasticity at low versus high population sizes (Lande 1998a, 
1998b; Palstra and Ruzzante  2008). In addition, interspecific 

interactions are often also regarded as extrinsic drivers (Kaplan 
and Denno 2007), along with climate and other abiotic effects. In 
this formulation, three separate classes of effects that can drive 
dynamics are distinguished: (1) extrinsic drivers that include 
climatic and biotic fluctuations that occur without feedback 
from the focal population density (i.e., environmental stochas-
ticity); (2) variation that occurs as an inevitable consequence of 
low numbers (i.e., demographic stochasticity); and (3) variation 
due to predictable effects of density on vital rates that result in 
changing, density-dependent growth rates. Obviously, there is 
also potential for multiple, complex interactions between these 
effects (Miller 1995; Song and Corlett 2021).

Understanding the importance of different drivers of dynam-
ics for small populations is of interest for several reasons. First 
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is the simple need to understand what factors are most critical 
in driving natural population numbers. Second is the desire 
to predict the dynamics of species of concern for either con-
servation reasons or resource extraction. A particular ques-
tion here is how to predict future trends from often limited 
data on past numbers. A final and related issue concerns the 
forces that predict growth, stagnation, or extinction of colo-
nizing populations, which are, of necessity, small when they 
are founded. The dynamics of colonizing populations has long 
been of interest in invasion ecology but is now also central to 
the prediction of shifting ranges of native species that must 
colonize new terrain to keep pace with climate change (Loarie 
et al. 2009; Hockey et al. 2011). In general, if intrinsic forces 
predominantly shape population growth rates, we expect pop-
ulation dynamics to be more predictable, since similar popu-
lations should follow similar trajectories that will be largely 
unaffected by outside forcings. Conversely, strong effects of 
extrinsic drivers or demographic stochasticity are expected 
to make population numbers more difficult to accurately 
forecast.

Multiple studies have attempted to either theoretically address 
the contributions of these forces to population dynamics or to 
analyze their effects in real or model systems. A major theme 
in this literature involves the detection of density dependence, 
which has often relied on analysis of time-series data (Pollard, 
Lakhani, and Rothery  1987; Turchin  1990), although purely 
theoretical analyses have also been of considerable impor-
tance (Goodman  1984; Lande  1993, 1998c). The role of den-
sity dependence has been investigated in model lab systems 
(Joshi, Wu, and Mueller  1998; Mueller, Gonzalez-Candelas, 
and Sweet 1991), and natural populations systems (Moorcroft 
et al. 1996; Vucetich and Peterson 2004). Another theme, pio-
neered by Andrewartha and Birch, has been the analysis of the 
effects of environmental fluctuations on population dynamics 
(e.g., Dennis and Otten 2000; Melbourne and Hastings 2008). 
And of course, combined analyses have sought to disentangle 
the relative effects of density dependence, demographic sto-
chasticity, and abiotic drivers, with varying degrees of support 
shown for each of these mechanisms (e.g., Bakker et al. 2009; 
Fromentin et al. 2001).

Despite this long-standing attention, efforts to judge the compar-
ative strength of these mechanisms in shaping long-term popu-
lation dynamics are still sparse (Brook and Bradshaw 2006), in 
part due to the need for long-term data on entire populations to 
most directly compare these effects. In addition, to powerfully 
test for density dependence, one should ideally have data across 
a range of population densities—a tall order for most studies of 
natural populations.

Here, we use data on isolated populations of two long-lived pine 
trees to quantify the extrinsic (e.g., climate) versus intrinsic 
forces (e.g., density dependence) in shaping dynamics of small 
and still-growing populations. Our work uses the ages and spa-
tial locations of reproductive individuals from initial coloniza-
tion to the present for four isolated Pinus ponderosa and two 
isolated Pinus flexilis populations in the Bighorn Basin in north 
central Wyoming. Past work on a subset of these data has shown 
that the establishment of trees in these populations has been 
highly variable over time, with dynamics that do not closely 

follow simple patterns of exponential or logistic growth, but also 
did not appear to be driven in a simple or consistent way by cli-
mate variation (Lesser 2012). The advantage of this system is 
that high individual longevity and the relative youth of the pop-
ulations (~400–500 years) mean that the majority of trees that 
have reached reproductive size are still alive and can be sampled 
for most of the populations. In addition, dendrochronological 
methods allow us to precisely age each individual. Substantial 
post-establishment mortality is unlikely to have occurred in 
any of the six populations; evidence of mortality is observable 
in this system for long periods of time due to the dryness and 
low fire regimes in the region (Lesser and Jackson 2012, pers. 
obs.). Thus, the data on each population encompass population 
establishment and growth—a period of dynamic change in pop-
ulations and also one that is of key applied importance. Given 
low adult mortality, our focus is on the combined processes of 
reproduction, seed establishment, and survival to a size large 
enough to be seen in dendroecological analyses of the extant 
populations. The ability to see all adults of a population allows 
us to directly test the effects of different demographic drivers 
over long periods. Additionally, being able to test for density de-
pendence and climate effects in separate populations that share 
similar abiotic settings allows us to examine how general the 
strength of different drivers is in shaping population dynamics.

We conduct analyses of the spatial and temporal patterns in 
establishment of each population to address three general 
questions: (1) Are population growth predictions based on ei-
ther density-dependent effects or climate effects alone able to 
predict dynamics over ~400 years of population change? (2) To 
what degree has demographic stochasticity shaped dynamics of 
these new populations, and does consideration of stochasticity 
improve our predictions of population growth? (3) How well do 
patterns of effects generalize across populations or even species? 
In addition to these basic questions, we also conducted spatial 
analyses to ask if establishment patterns suggested either posi-
tive or negative density dependence.

2   |   Methods—Data Collection

2.1   |   Field Data

The four disjunct populations of Pinus ponderosa (ponderosa 
pine) that we studied co-occur with populations of Pinus flex-
ilis (limber pine), and habitats for both species are similar. We 
surveyed each of the four P. ponderosa populations and two of 
the four co-occurring P. flexilis populations for a total of six pop-
ulations. We will refer to each population using PF for P. flexilis 
and PP for P. ponderosa, followed by the site name as subscript. 
Both species are slow-growing, widely distributed, and wind-
pollinated. While these two species vary in elevational range 
and climate tolerance across their broader geographic range, 
they overlap here (1450–2050 masl; Figure S11) and are likely 
both constrained by the extreme aridity of the landscape, which 
is otherwise dominated by Juniperus spp. Limber pine seeds are 
primarily dispersed by small mammals and Clark's nutcrack-
ers (Nucifraga columbiana), while ponderosa pines are wind 
dispersed, although animal caches of ponderosa pine seeds 
are known to increase probability of establishment (Vander 
Wall 2008).
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We've confirmed the isolation of these populations with both per-
sonal observations and with broader occurrence databases and 
herbarium records. GBIF data shows only 2 and 12 other docu-
mented occurrence sites of P. ponderosa and P. flexilis, respec-
tively, in the Bighorn Basin—an area that spans ~10,000 mile2 
(GBIF  2024). In addition to searching GBIF, we also searched 
herbarium records, and no additional records were found. While 
we cannot rule out the possibility of other small populations in 
this area, we feel confident that treating these populations as 
examples of isolated, colonizing populations is appropriate. In 
continuous populations of P. flexilis in northern Colorado, viable 
pollen exchange occasionally exceeded 500 m; pollen movement 
on the order of tens to a hundred kilometers likely occurs but 
is rare in this system (Schuster and Mitton 2000). Seed move-
ment is generally more constrained; most winged Pinus seeds 
fall within tens of meters of their parent, though far greater dis-
tances are occasionally observed (Vander Wall  2023). Clark's 
nutcracker is known to be a long-distance disperser of seeds, but 
this species is not common in this area (15 documented occur-
rences in Bighorn Basin; GBIF 2024), and the distances between 
our populations are on par with the tail end of dispersal distance 
estimates via Clark's nutcracker in other systems (32 km; Lorenz 
et al. 2011). No other Pinus individuals were found within 15 km 
of the outermost trees, and generally far greater isolation than 
this (Lesser, pers. obs., Figure S9). However, parentage analy-
ses on these P. ponderosa populations showed that all of the first 
individuals originated from long-distance dispersal events, and 
29%–70% of individuals were not assigned to at least one local 
parent at 50% confidence level (Lesser 2013). Thus, outside gene 
flow was likely crucial to population initiation and growth.

At all sites, Ponderosa pines were initially censused and cored 
between 2006 and 2008, and virtually all were re-GPSed in 
2016–2017 to obtain more accurate positions. Limber pines 
were censused in 2016 and 2017. Each tree was georeferenced 
with a handheld GPS, and two cores were taken from every 
tree. After post-processing, most positions were accurate to 
+/− 50 cm. Cores were mounted, sanded, and scanned for ring 
counts using WinDENDRO (Regent Instruments 2008). Cores 
were cross-dated using skeleton plotting and correlation anal-
ysis, and ages were then adjusted for coring height (see Lesser 
and Jackson  2012 for more detail). The field data consist of 
spatial locations and ages of all surviving mature individuals. 
Recruitment dates were binned into decades to acknowledge un-
certainty in exact ages. While we can reconstruct recruitment 
dates from the subset of individuals that survived to adulthood, 
we do not have data on seedling recruitment pulses or survival 
rates of young trees, which have been shown to play a role in 
other expanding limber pine populations (Millar et al. 2015). At 
five of the six populations, every individual tree was surveyed. 
One population, PFANCHOR, had more limited sampling than the 
others (see Table  S1 for location and size of each population), 
where a new ranch owner forbade fieldwork on their land. The 
unsurveyed area at PFANCHOR comprised ~50% of the habitat 
area, and ~40% of the population.

No dead adult trees were found in three of the six populations 
(PPCASTLE, PPCOTTON, PPGRASS), and four dead trees (1.5% of the 
population) were found at PFCASTLE. 8 out of 397 trees (2% of 
the population) at PFANCHOR died before 1970. 38 additional dead 
trees were found but unidentified to species, belonging to either 

PPANCHOR or PFANCHOR. All dead trees were excluded from anal-
yses because of uncertainty in dating years of establishment and 
death. Large numbers of already dead mature trees that are now 
undetectable are unlikely given the aridity of the landscape, nor 
did we detect evidence of beetle kill, but we added a “time since 
population initiation” effect to check for any evidence of dis-
appearing adults in preliminary analyses. These models using 
adult numbers as predictors are estimating per capita reproduc-
tion and establishment. Recruitment should be underestimated 
in earlier years if there is cryptic mortality, so a “time” variable 
with a negative coefficient estimate would suggest a “ghost of 
trees past” effect. The coefficients for a time variable for top 
population models ranged from 1.57 to 4.28, so we concluded 
that cryptic early mortality is unlikely, and excluded the variable 
from further analyses.

2.2   |   Climate Data

We obtained estimates of reconstructed historical precipitation 
data from Cook et al. (2008), which are given as annual estimates 
for 10° × 10° (lat/long) grid points across North America from 
years 0 to 2006 CE. We obtained reconstructed historical surface 
air temperature data from Trouet et al. (2014), which span 1470–
1970 CE and utilize pollen record data for reconstruction. We 
averaged estimates over 10-year increments to obtain decadal 
temperature and precipitation values for our analyses. These 
two datasets were chosen because they provided the smallest 
grid size and because the reconstructions encompassed the en-
tire time span for our population data. Annual temperature and 
precipitation data from these sources are the same for all of our 
populations, as all populations fall within the same grid cell. 
We truncated the population and climate data to not include 
information after 1970, as this means we had both complete 
single-source precipitation and temperature data, and because 
our data—which span from the year 1470 onwards—is only a 
record of trees that survived to maturity (at least 50 years old; see 
Methods for detail). Inclusion of data from establishment events 
post-1970 would introduce a subset of data on young trees that 
may not survive to maturity and are thus not comparable to the 
sample of trees in the more distant past.

3   |   Methods—Modeling

We use a combination of modeling approaches to disentangle the 
effect of different forcings on population growth, each of which 
are outlined below in greater detail, but summarized here first 
to provide an overview: First, we use generalized linear mod-
els to fit predictive models of population growth through time 
for each population (site), and for each species together with site 
as a fixed effect. To judge the relative importance of different 
predictors, we ran each of these models excluding either climate 
predictors, density effects, or fixed effects of site. To exclude 
density effects, we needed to use MCMC methods, fit in JAGS, 
to force the density effect to be a constant function of the num-
ber of adult trees. Next, we used point pattern analyses to look 
for evidence of facilitative or competitive effects where trees es-
tablished relative to neighbors. We constructed a measure that 
we refer to as “effective area” which estimates the amount of 
available suitable habitat for establishment to see whether such 
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a measure is a more useful predictor of new recruits than den-
sity alone. Last, we used the top predictive models from our first 
steps to run simulations reconstructing the population dynam-
ics for each population to investigate the role of demographic 
stochasticity and the predictive accuracy when different classes 
of effects are left out of the fitted models.

3.1   |   Predictive Models of Establishment—
Population Models

Separately for each population, we fit a series of alternative neg-
ative binomial models (function glm.nb, package MASS in R, 
Ripley et al. 2024) with a log link function to predict the number 
of recruits established per decade. All models included the num-
ber of mature trees in the decade of establishment as a predic-
tor. Trees were considered mature after they reached 50 years of 
age, which is roughly the time that both species begin to produce 
substantial numbers of cones with viable seeds (Johnson 2001). 
Though P. ponderosa can bear cones as early as 7 years of age, 
most viable seeds are produced from trees 60 or older (Oliver 
and Ryker 1990). P. flexilis also begins cone production around 
50 years. To test whether a 50-year criteria was reasonable, we 
re-ran top models to test the effect of using different estimates 
for maturity ranging from 10 to 100 years. In two of the six pop-
ulations, using 50 years as a cutoff for mature trees was the best 
(judged by AICc and R2 values). For the other four populations, 
the models with a higher cutoff estimate had the lowest AICc 
(between 70 and 100 years). However, delta AICc values between 
models with the best and a 50-year criteria were < 2 in all but 
one case. In those four populations, the differences in pseudo 
r2 values were also very small (0.003–0.07) so we used 50 as a 
consistent cutoff for all populations.

To construct models that allow a clear ecological interpretation, 
we included the number of mature trees (MT) and the natural 
logarithm of the number of mature trees (ln(MT)) into the lin-
ear predictor function. With a log link function all explanatory 
variables are exponentiated, so ln(MT) represents linear scaling 
of recruits to mature trees if its coefficient is ~1, while a coeffi-
cient less than or greater than 1 indicates negative or positive 
density dependence, respectively. The unlogged density term, 
MT, is exponentiated like all other predictive terms in the model 
and adds more flexible negative density dependence, such that 
with higher MT, the model can predict declining recruits (as op-
posed to just slower increases). With the log link function and 
a coefficient for ln(MT) = 1, these two terms result in a Ricker 
model growth function for recruit production (see Appendix A 
for more detail). It is also a more flexible and biologically inter-
pretable functional form than is a quadratic relationship.

In all models, possible climate variables included the average an-
nual precipitation and temperature values for the establishment 
decade and each of the two decades following (referred to below 
as the first, second, and third decade), reflecting the need for 
favorable conditions for young trees to survive several decades 
to establish and later be seen in our 21st century surveys. We ran 
all possible combinations of terms in these fairly simple models 
with dredge (package MuMin in R, Barton 2023) and tabulate re-
sults for all models that in sum include 90% of the AICc weights 
for each population. Only the top model in each category was 

used for subsequent population simulations. To test the predic-
tive importance of different classes of effects, we also identified 
the best fit models that did not include any climate effects and 
the best ones that omitted nonlinear density effects.

To estimate models that did not include nonlinear density ef-
fects, we used JAGS (packages rjags and runjags in R, Denwood 
and Plummer 2023, Plummer, Stukalov, and Denwood 2023) so 
that we could most easily constrain the coefficient of ln(MT) to 
one. We note that the coefficient estimates from glm.nb and our 
unconstrained JAGS models were nearly equivalent. We used 
the dic function in rjags to judge JAGS model fit. We refer to all 
these separately fit population models as “population models.” 
See Supporting Information methods for more detail on JAGS 
models.

3.2   |   Predictive Models of Establishment—
Species-Wide Models

To judge how divergent the effects of various factors were for 
each population, we also constructed models for all populations 
of each species with all terms described above plus two-way in-
teractions between populations as a fixed categorical effect and 
each other term in the model (climate variables and number 
of mature trees). Again we used dredge to find the top models 
(judged by AICc) given all possible combinations of terms de-
scribed above. We refer to these as “species-wide” models and 
contrast their results with the best species-wide models that 
eliminate either climate, density dependence (using JAGS mod-
els), or site effects.

To summarize: for each of the six populations, possible explana-
tory variables included the number of mature trees (MT) and its 
natural logarithm (ln(MT)), climate variables (first, second, and 
third decade post-establishment temperature and precipitation 
data), and interactions between density and climate variables. 
These are referred to as “population models.” We then pooled 
each species' data and added a fixed effect of “site” as a possible 
explanatory variable, climate and density variables described 
above, and possible interactions between site and density vari-
ables with climate. These models are referred to as “species-
wide” models.

3.3   |   Spatial Analyses

Given that trees are stationary, overall population numbers may 
be less informative about density than local scales, so we also 
conducted analyses to examine spatial patterning during estab-
lishment. These analyses were used both to test for the need to 
incorporate fine-scale spatial information into our other results, 
as well as to better understand the interplay between positive 
and negative density dependence in recruitment dynamics. 
First, we looked for trends in how closely recruits established 
mature trees through time. We used pair-join analyses (also 
called pair-correlation analyses) to determine the regularity of 
spatial pattern at different spatial scales to test for positive (i.e., 
facilitative interactions) or negative (i.e., competitive) associa-
tion (Diggle 2014). Negative density dependence at these smaller 
scales would manifest as overdispersion in establishment 
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locations, such that there are fewer than expected recruits es-
tablishing close to existing trees. Though these analyses cannot 
disentangle the exact nature of small-scale interactions, facil-
itative effects could include clustering of high-quality patches 
for seedling establishment, nurse object availability, or mycor-
rhizal associations (Brodersen et al. 2019, Marsh, Blankinship, 
and Hurteau 2023, Ouzts et al. 2015), which have been shown to 
increase seedling survival in other systems.

Then, we constructed a measure we refer to as “effective area,” 
which is a proxy for the amount of habitat available for establish-
ment in each decade for each population. Effective area is the 
amount of suitable, unoccupied area likely to support recruits; 
it is a measure that considers both total available area within 
the delineated habitat boundaries and weights that area by how 
likely establishment is at different distances from existing ma-
ture trees. We established this weighting function by first divid-
ing the landscape area into 0.5 m × 0.5 m pixels. We calculated 
the probability density of distances from each available (unoccu-
pied) pixel to each tree on the landscape for each decade, sepa-
rately for each species. We then weighted this density kernel by 
multiplying the magnitude of the probability density function 
value of these distances by the density of observed establishment 
distances.

Effective area tends to increase as the number of mature trees 
increases, but then can level off as there is less area suitably far 
from established trees (Figure  S4). Areas proximate to adults 
may be more suitable for establishment because adults provide 
shade, mycorrhizae networks, or simply because successful indi-
viduals have survived and grown in that beneficial microhabitat 
for other reasons which may also be amenable to new recruits. 
To test whether effective area is a markedly better measure of 
local density effects, including negative density dependence, 
that is number of mature trees, we replaced mature adults with 
effective area in our establishment models and compared their 
predictive power. Detailed methods and results of our spatial 
analyses are in supplemental Appendix A. While these spatial 
analyses give insight into interactions between trees, we did not 
find that use of effective area significantly improved the pre-
dictive accuracy of establishment models over the use of total 
mature trees, nor did it alter the general results we find using 
mature tree numbers rather than effective area. Therefore, we 
do not present simulation model results based on these spatial 
models in the main text (see Figure S6, Tables S13–S20 for EA 
results).

3.4   |   Stochastic Simulations

To compare the predictive accuracy of models that use or omit 
different classes of effects, we used each of the classes of models 
described above (the top models for population and species-wide 
models, and those eliminating different classes of effects) to sim-
ulate the age distribution and size of pine populations over time. 
We initiated each simulation with the first year that a single 
tree became mature in each population, also including any ex-
isting juvenile trees present at that time. We then used decadal 
climate data and the simulated number of reproductive trees to 
predict recruitment through time; in each year we generated a 
number of recruits based on this mean (and the model-predicted 

dispersion, which is the inverse of variance) using a negative 
binomial random number generator (R function rnbinom). We 
constrained the rnbinom estimate to be no > 3× the mean re-
cruitment estimate (this corresponded to at least the 0.92 quan-
tile value for a negative binomial, and generally > 0.98 quantile 
value across all estimates per population per year). This proce-
dure incorporates the effects of demographic stochasticity on 
recruitment. We ran the simulation 500 times for each popula-
tion and model type. To remove the effect of demographic sto-
chasticity, we also generated predictions using the non-integer 
estimates of mean recruits per decade, iterating the number of 
average expected recruits per decade into the future. To further 
examine the effects of increased demographic stochasticity and 
altered dynamics at the very low numbers seen early in estab-
lishment, we also ran our base simulations starting in the first 
decade when five mature trees were present to see how well the 
model simulations could predict dynamics if we eliminated the 
initial periods of very low numbers and often slow population 
growth.

We took two approaches to compare the predictive accuracy of 
these simulations. First, we used the proportional deviation of 
each decades' median model prediction from the observed num-
ber of trees. Second, we determined the fraction of decades that 
each population's true numbers were outside the 90% simulation 
envelope of a given model's predictions.

All analyses were run using R version 4.3.2 (R Core Team 2023).

4   |   Results

4.1   |   Establishment patterns across time and space

All populations experienced a long initial colonization period 
with very little recruitment, followed by increasing numbers 
until the present (Figure 1; figure 2 in Lesser and Jackson 2012). 
In spite of these similarities, the populations did not show highly 
correlated growth and also varied substantially in their recruit-
ment rates across time (Figure S1, Table S2). The two pairs of co-
occurring species also showed substantially different patterns of 
growth (Figure 1), suggesting that shared external drivers and 
local habitat features affected each species differently. We saw 
no evidence of masting events in the recruitment rate seen in 
these populations.

Density functions of establishment distances show that recruits 
disproportionately establish close to mature trees when com-
pared to all available suitable habitat (Figure  2). However, re-
cruits rarely established extremely close to adults; the nearest 
recruit was virtually always > 2 m away and the majority (66%) 
of establishment distances were between 5 and 100 m from the 
nearest mature tree, suggesting that either dispersal limitation, 
positive density dependence, perhaps due to mycorrhizal rela-
tions (Habte, Miyasaka, and Matsuyama 2001), or both can limit 
establishment on the far side, and competitive or exclusionary 
effects may limit recruitment at close distances to mature trees. 
Other small-scale microhabitat effects, such as aspect, soil 
conditions, and shade availability likely also influence spatial 
patterns of establishment. The species were similar in modal es-
tablishment distance, with PP at 11 m, and PF at 9 m. The 95th 
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6 of 15 Ecology and Evolution, 2024

FIGURE 1    |    (a) Relative population sizes from population initiation until 1970. Curves show total population sizes, including juvenile and mature 
trees. (b) Local spatial arrangements of each population. See main text for habitat delineation. Scale bar from high to low density is relative to the 
maximum density value in each panel.

FIGURE 2    |    Density distributions of establishment distances to the nearest mature tree at the time of establishment (shown above the x-axis) ver-
sus distributions of distances to the nearest mature tree from each point within the entire defined landscape area (available distances, shown below 
the x-axis) for each population. Note the log2 scaling. Recruitment is markedly higher close to mature trees than far away, but few recruits establish 
extremely close to established individuals. See text for details on landscape delineation. PF populations shown in left panel and PP populations on 
the right. The density of available distances is shown for 1970, and all trees that recruited prior to 1970 are included in the density of establishment 
distances.
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percentile establishment distances were 204 m for PF and 303 m 
for PP.

Quantile regressions show that establishment distances de-
creased through time for most populations (Figure S2). However, 
the majority of these decreases were due to reductions in the 
long tail of establishment distances. The 80th percentile estab-
lishment distances decreased most rapidly, presumably because 
the maximum possible establishment distance becomes con-
strained by the number and distribution of mature trees as they 
fill in the limited suitable habitat at each site. In contrast, the 
50th (median) and the 20th percentile predictions did not vary 
strongly over time, suggesting relatively constant close-range es-
tablishment constraints even as populations grew.

4.2   |   Population models—P. ponderosa

All four P. ponderosa population models show support for 
density dependence on establishment numbers through time, 
where the coefficient of ln(MT) < 1 in all top models, and neg-
ative effects of MT in PPCOTTON and PPGRASS models (Table 1; 
Tables S3–S6). Support for climate variables was mixed across 
populations (Table  1). PPCOTTON showed support for zero or 
one climate variable in all top models, PPGRASS and PPCASTLE 
models most often included one climate variable (but a mi-
nority included zero or two), and top PPANCHOR models gener-
ally showed support for four climate variables (Tables S3–S6). 
Overall, there was support for some combination of tempera-
ture and precipitation variables, but with different decadal 
climate variables supported for different populations, and in-
consistent coefficient signs for both precipitation and tempera-
ture both within and across population models (Figure 3). In 
spite of these differences between populations, models that in-
cluded climate were generally supported over no climate mod-
els for three of the four populations, with delta AICc values 
of 0.846–8.64 between the best model and the best no-climate 
model. Similarly, models that included nonlinear density 
dependence (coefficient of ln(MT) ≠ 1) were supported over 
models in which the coefficient of ln(MT) = 1, with delta DIC 
values of 3.08–28.44 (Table S23). For all four populations, the 
fitted coefficient estimate was < 1 (Table S11), indicating non-
linearly declining ratios of recruits to mature trees over time 
(negative density dependence).

4.3   |   Population Models—P. flexilis

Both population models showed positive effects of ln(MT), 
while PFCASTLE models also showed support for a positive MT ef-
fect (Tables S7 and S8). The two PF populations showed support 
for climate effects, with top models including 1–4 climate vari-
ables, with the exception of one of the top models at PFCASTLE 
which included no climate effects. Precipitation effects were 
mostly positive, and temperature effects mostly negative. The 
top models that included climate were again supported over no 
climate models, with delta AICc values of 0.27 (PF CASTLE) and 
15.15 (PF ANCHOR) between the best model and best no-climate 
model. At PFCASTLE, models without density were marginally 
supported (delta DIC = 0.99), and the coefficient estimate was 
< 1, indicating negative density dependence. At PFANCHOR mod-
els with density were strongly supported (delta DIC = 10.73), 
and the coefficient estimate was > 1, indicating positive density 
dependence, or an increasing ratio of recruits to mature trees 
through time.

4.4   |   Population Models—Stochastic simulations

Simulations using the best-supported model for each population 
yield a fairly broad range of predicted numbers, but the median 
predicted size in each year generally tracked actual population 
numbers well (Figure  4). Notably, stochastic simulations pro-
duced much broader ranges of estimates for Pinus flexilis popu-
lations. Though many simulations tended to either consistently 
under or overpredict population growth for a given population, 
the predictions of actual population numbers were generally 
well matched by the median simulation estimates.

Omission of stochasticity substantially degraded predictive ac-
curacy by over-estimating population growth at PPCOTTON and 
PFCASTLE (Figure  4), and omission of density effects led to a 
underestimation of growth for most populations (Figure  5b). 
Omitting density dependence increased the mean proportional 
deviation from observed numbers by 30%–284% over that for the 
best models (Figure 5b).

Population models deviated more dramatically from omission 
of density variables than from climate variables, but removal 
of climate effects nonetheless increased mean deviations from 

TABLE 1    |    Top models of establishment for each population judged by AICc.

Population Intercept

# 
mature 

trees 
(MT) ln(MT)

1st 
decade 
precip

1st 
decade 
temp

2nd 
decade 
precip

2nd 
decade 
temp

3rd 
decade 
precip

3rd 
decade 
temp df Weight

PPCASTLE −0.127 0.499 −0.275 4 0.0546

PPANCHOR −0.454 0.748 0.387 −0.146 0.204 −0.282 7 0.1238

PPCOTTON −0.027 −0.003 0.795 4 0.0245

PPGRASS −0.342 −0.048 0.623 0.293 5 0.0413

PPCASTLE −0.701 0.038 0.264 0.140 5 0.0278

PPANCHOR −1.212 1.488 0.267 −0.439 −0.858 6 0.0272

Note: See text for descriptions of possible predictor variables.
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8 of 15 Ecology and Evolution, 2024

those of the top overall model by 1.40%–67%, with the exception 
of PPCOTTON where no climate variables were included in the top 
model (Figure 5).

For some populations, there was virtually no effect of omitting 
the randomness inherent in recruitment events (e.g., PPCOTTON, 
PFANCHOR), but for the others, non-stochastic models resulted 
in substantial overestimation in the first century or so (e.g., 
PPGRASS) (Figure  4). However, most proportional deviations 
after excluding early years with < 5 trees more closely tracked 
population growth (Figures 5b and 6a). Models that did not use 
the earliest, lowest-density data performed extremely well, bet-
ter than the median predictions of the best fit model using all 
data with the exception of PFANCHOR (Figure S5). This improve-
ment is likely due to the omission of data when the populations 
were most influenced by demographic stochasticity and possibly 
pollen limitation.

In the same population, the same class of effect can have dif-
ferent importance through time (Figure 5). At PPGRASS, for ex-
ample, while all models performed worse in the first century 

post-colonization than the second, exclusion of climate or sto-
chasticity initially led to larger deviations than density effects, 
which mattered far more for predicting dynamics in the second 
century. Non-stochastic models tended to perform worse in the 
first hundred years for each population, while density and cli-
mate effects tended to matter more for accurately predicting dy-
namics as population sizes increased (Figures 5 and 6a). At all 
sites, proportional deviations for models that excluded different 
effects decreased through time, suggesting that larger popula-
tion numbers may be more resilient to fluctuations in climate, 
stochastic variation, or density effects, as exclusion of any of 
these mattered more in the first century following colonization 
than most decades afterwards (Figure 5b).

To judge the consistency of causal effects across populations, 
we also reran the best model for each of the six populations 
to generate standardized coefficients for each included effect 
(Figure 3). These show that while density effects were quite 
consistent, the strength, identity, and direction of climatic fac-
tors included in the models were highly variable across popu-
lations (Figure 3).

FIGURE 3    |    Standardized coefficient estimates and SD for all top population models. Non-climate variables in top panel, and climate variables are 
shown in the bottom panel. Climate variables are annual averages (i.e., 20 year. temp temperature in second decade post-establishment).
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4.5   |   Species-Wide Models

Species-wide models for PP showed strong and consistent support 
for # of mature trees, MT, and ln(MT), both positive, as well as 
the categorical population effect (Table 2 and Table S9). We also 

found strong support for interactions between population and MT, 
and support for a population by third decade temperature effect. 
Though no climate variables were present in the top model, all 
other models with AICc weight > 0.01 included one or two climate 
variables. We found no strong support for climate by population 

FIGURE 4    |    Results of stochastic simulations for the best-supported population model (our “population models,” Tables S3–S8). Plots show the 
number of mature trees at each time step. Simulation results are from 500 runs. Note that we ended the simulations at 1950 because our complete 
climate data only extend to 1970, and predictor variables for some populations included third-decade post-establishment climate data. See Methods 
for details. The median value of all stochastic simulations is shown in red. The non-stochastic simulation is dotted, and actual population numbers 
are in black. Gray lines show the results of individual runs.
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interactions, suggesting similar climate effects across populations, 
a result in conflict with the population-specific models.

The PF species-wide models included a negative effect of MT 
and a positive ln(MT) term, and all included a population term 
(Table S10). All top models also include an interaction between 
population and both density terms. The fitted coefficient esti-
mate was 0.72 for PP, indicating declining numbers of recruits 
per adult tree through time (negative density dependence), and 
1.73 for PF, indicating positive density dependence (Table S24). 
Models that included non-proportional effects of mature trees 
(coefficient of ln(MT) ≠ 1) were always supported over models 
without these effects, with delta DIC values of 1.13 (PP) and 
16.06 (PF).

The PF species-wide models showed support for more climate 
variables compared to PP—all top models include first and third 

decade temperature (negative effects) and mixed support for 
first decade precipitation (positive effect). We also saw strong 
support for population by third decade temperature interaction 
and mixed support for interactions between population term and 
first decade temperature and precipitation. The top PP models 
show inconsistent support for climate effects and primarily in-
cluded negative effects of second- or third-decade temperature.

Finally, we tested the effects of site differences on predictive 
power by using our top species-wide models to simulate growth 
and including/excluding population as a fixed effect along with 
any of its interactions. As with the single population models, 
relative importance of different classes of predictors substan-
tially differed between populations. For example, removal of 
climate and density was most detrimental to model predictions 
at PFANCHOR while removal of site effects worsened PFCASTLE 
predictions most severely (Figure 6b, Figure S3b).

FIGURE 5    |    (a) Median predictions of all classes of stochastic population models. Actual data shown in black, with median of simulations using 
the best model for each population shown in red, using the top model initiated after five trees were present shown in green, the top model without 
climate variables in blue, without density in orange, and non-stochastic predictions shown in yellow. (b) Annual proportional deviations ([model 
predicted total number of trees − observed]/observed) for each type of model.
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Across the board, exclusion of site had a substantial influence 
on model predictions. The best-supported simulations using 
species-wide models without a fixed effect of site (or any site in-
teraction terms) performed markedly worse than both the top 
species-wide and top population models. Models without any 
site effects increased mean absolute errors by 10%–186% over top 
models (Table S22). Effects on model performance of excluding 
climate, density dependence, or stochasticity, while including 
site effects, were similar to those seen in the individual popu-
lation models, with mostly strong effects from removal of any 
class of effects (Figure S3b, Table S22).

5   |   Discussion

Ecologists have recognized the importance of density depen-
dence, climate, and stochasticity on population growth, but the 
relative importance of each has been subject to continued debate. 
Recently, the need to predict range shifts and population per-
sistence—processes which require successful colonization and 
subsequent population growth—has been a focus of numerous 

studies, and most of this work heavily relies on past and pro-
jected climate data to predict future population dynamics. For 
example, widely used species distribution models (SDMs) gener-
ally use a species' climatic niche to project its future distribution 
without accounting for intrinsic drivers such as stochasticity, or 
intraspecific differences across populations (but see DeMarche, 
Doak, and Morris 2019, Chardon et al. 2020), and also hinge on 
reliable predictions of climate effects on population dynamics. 
Despite the spatially explicit nature of the range shift litera-
ture, few studies incorporate within-population density effects 
or population dynamics into predictive models (DeMarche, 
Doak, and Morris  2017). Here, we test for the generalizability 
and relative importance of intrinsic and extrinsic drivers across 
space and time and find that successful prediction of dynam-
ics relies on inclusion of climate, density, and stochasticity, with 
their relative importance varying in idiosyncratic ways between 
populations. Though the two species here vary in their climate 
tolerance across their broader range, they coexist in a narrow 
elevational band in our study area and are likely both limited 
by the severe, arid climate, and interspecific competition. Given 
their overlapping climate and habitat, as well as the relative 

FIGURE 6    |    Boxplots of proportional deviations from the top model predictions after 5 adult trees were present to actual population numbers for 
(a) population models and (b) species-wide models. Deviations from median stochastic simulations that used best population model (red), best model 
fit with only data from when 5 adult trees were present in each population for population models (green), top model without climate variables (blue), 
without density variables (orange), non-stochastic model (yellow), and species-wide models without a fixed site effect (pink).
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proximity of the populations to one another, the variation in the 
drivers and resulting population dynamics was surprising, es-
pecially for long-lived organisms that are often buffered against 
more transient environmental effects.

While all of our studied populations grew from a few initial re-
cruits to substantial numbers over the study period, at a finer 
scale the population trajectories of our six focal populations 
shared few commonalities, with low correlations in establish-
ment rates through time. Most populations, unsurprisingly, 
experienced several decades of low numbers and close to zero 
growth before a period of more rapid increase in numbers. 
However, the length of this early low-growth period varied dra-
matically between populations; PFANCHOR persisted with < 5 
individuals for nearly 200 years after colonization, while other 
populations broke through this small number barrier after four 
or five decades. Pollen limitation and lack of available seed, 
as well as local inbreeding may have prevented early growth 
until enough individuals dispersed into the region. Lesser and 
Jackson  2013 showed that age at first reproduction decreased 
through time, demonstrating that age and/or tree size was not 
inhibiting successful reproduction during the early decades fol-
lowing population establishment, strengthening the argument 
that in these early years, inbreeding and/or Allee effects may 
play a strong role in limiting reproduction (in conjunction with 
more favorable climate in later years, which also may have in-
creased growth rates and decreased age at first reproduction). 
Notably, important seed dispersers (i.e., N. columbiana) are 
increasingly likely to visit populations as the abundance and 
reliability of seed set increases; thus, once these populations 
reached a critical size, local and foreign seed dispersal volume 
may also have increased and helped overcome early genetic con-
straints. Future work could consider genetic diversity within 
and between populations to assess whether genetic variation is 
constraining population growth in these isolated areas.

After periods of roughly exponential growth, increases in four of 
the six populations have slowed, with final population numbers 
ranging from ~70 to 800 individuals. The final density of each 
population was also quite different, ranging from ~4 to 50 trees 
per km2 (Figure S10), though it should be noted that this is par-
tially an artifact of the way we delineated habitat; some popula-
tions have yet to colonize portions of supposed available habitat. 
In addition, the habitat areas are topographically complex and 
may differ in the fraction of total area that provides suitable es-
tablishment sites in ways we could not quantify.

This lack of temporal correlation in growth dynamics contrasts 
with the very similar spatial structuring within populations. 
Pair-join analyses show strong clustering of individuals across a 
range of spatial scales both within and between species, where 
both species were censused, as well as between recruits and 
mature trees (Figures S7 and S8). At all populations, we found 
evidence of clustering but very little dis-association, suggesting 
that at both historical and current numbers, positive density de-
pendence and/or dispersal limitation has played a role in estab-
lishment distances, as well as number of establishment events. 
Recruits most often established very close to mature trees, 
though they are able to disperse much further. This suggests 
either that existing adults occupied the most favorable micro-
sites or that proximity to adults offers shelter or perhaps shared T
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microbial networks (Habte, Miyasaka, and Matsuyama  2001), 
and not a lack of dispersal ability. Despite positive association of 
recruits to mature trees, recruits rarely established closer than 
2 m from the nearest mature tree, likely due to direct resource 
competition of closely adjacent individuals.

We also found strong support for the role of climate on estab-
lishment and population growth. Temperature effects were 
somewhat inconsistent between populations—sometimes in-
fluencing recruitment positively and sometimes negatively. 
Even within populations, temperatures in the first decade after 
establishment versus the second or third decade had different 
effects, suggesting that optimal conditions for recruitment may 
not be the same for early survival and growth in the subsequent 
two decades and that optimal conditions varied between popu-
lations and species. Precipitation variables were similarly vari-
able, though they more often had positive effects. Despite this 
variation, comparison of top models with and without climate 
variables shows that climate played a substantial role in shap-
ing dynamics in five of the six populations. While some of these 
effects may be driven by local site characteristics, we note that 
models for PFANCHOR and PPANCHOR, which share the same site, 
showed support for different climate variables as well as shared 
climate variables with opposite effects. Similarly, the two Castle 
populations showed support for different climate variables. 
Together, these results suggest that even in shared conditions at 
smaller scales, the two species differ in their necessary recruit-
ment conditions. The temporal resolution of the available cli-
mate reconstructions is not fine enough to capture rare, severe 
climate events, or extreme conditions that limit seedling sur-
vival or contribute to juvenile mortality, but even the relatively 
coarse reconstructions do indicate that climate is a meaningful 
driver of population growth in this system. Notably, differential 
responses between similar populations are not attributable to 
any obvious slope angle, aspect, soil composition, or elevational 
differences, though there is some spatial separation between 
species at shared sites (Figure S11).

Like climate, density dependence was necessary to produce 
models with reasonable predictive accuracy for most popula-
tions The loss of predictive power from removing density effects 
was large for most populations, and unsurprisingly, generally 
had a larger effect as population size increased (Figure 5). All 
top population models included a positive linear density ef-
fect (ln(MT)), though the coefficient value ranged from 0.26 
(PFCASTLE) to 1.49 (PFANCHOR). All populations except PFANCHOR 
showed signs of declining numbers of recruits per adult over 
time (negative density dependence; Table  S11). This could be 
due to unaccounted for effects of mature trees in the uncen-
sused habitat area for this population. The nonlinear density 
term (MT) was consistently supported in only three of the six 
top population models. This term was negative for PPGRASS and 
PPCOTTON, suggesting negative density dependence, and positive 
at PFCASTLE, suggesting continuing and nonlinear positive den-
sity dependence (Table S11).

The two PF populations studied reached similar densities to 
(and co-occur with) the PP populations, and the ecology of the 
two species is similar. Given this, we also tested for overall 
density effects by including a term in our models for the total 
number of trees of both species in sites where both populations 

were censused. These models had far less predictive power than 
species-specific density alone. This result, together with low cor-
relations in growth in the two pairs of populations that share the 
same site, suggests that the presence of coexisting species plays 
little role in altering population dynamics for these populations.

Site effects were also important for both species; species-wide 
models that tried to predict general effects of density and cli-
mate, even with a fixed effect of site, led to considerably worse 
predictions of population trajectories than our population mod-
els. On one hand, this is hardly surprising, but most efforts to 
project future numbers or population spread do so from limited 
data on one or a handful of existing populations. This is par-
ticularly worrisome, as the effects of ignoring site were among 
the largest effects we saw (Figure S3). Careful characterization 
of cryptic microhabitat effects that are site-specific might offer 
more concrete explanations for differential responses of popu-
lations to shared climate drivers. In particular, a study inves-
tigating microhabitat characteristics that might influence both 
recruitment and survival rates might help explain the mecha-
nisms behind small-scale spatial patterns in recruitment and 
larger-scale population dynamics.

The role of demographic stochasticity in shaping each popula-
tion's dynamics was investigated by comparing stochastic and 
non-stochastic simulations. Though the 90% confidence inter-
vals generated by stochastic simulations produced a wide range 
of ending population numbers, especially for PF populations, the 
median of these stochastic simulations generally looked similar 
to the non-stochastic simulations (Figure 4). Median stochastic 
estimates performed similarly to non-stochastic estimates and 
were most often over- or under-predicting actual population 
numbers in the same direction. The envelope containing the 500 
stochastic simulations contained the observed population trajec-
tories for five of our six populations throughout the population 
history, and the sixth (PPGRASS) was within the interval for the 
~2/3 of its history, including the latest periods. In a different test 
of how demographic stochasticity can influence the process of 
fitting and predicting dynamics, we saw much-improved predic-
tions when we excluded early years with fewer than five ma-
ture trees present. This implies that while the earliest period of 
population growth and establishment are crucial for eventual 
numbers and dynamics, they may be extremely difficult to pre-
dict in practice. This may be due both to the greater effects of 
demographic stochasticity in small populations, as well as the 
likelihood that different processes are present at low numbers 
(Lande 1993; Kelly et al. 2021).

Notably, early lags in population growth at all populations 
were difficult to predict and varied widely, with some popu-
lations breaking through this early barrier relatively quickly 
(< 50 years) and others doing so much more slowly (> 150 years). 
This variation is unlikely to be driven by diverging climate ef-
fects, since all the populations occur within the same general 
biogeographic and climatic region. Though we were able to pre-
dict population dynamics well after five trees established, that 
still leaves decades or even centuries of uncertainty, which is a 
large window given the velocity of climate and land use change 
in many areas. This pattern very likely exists for many coloniz-
ing populations, which could make accurate prediction of new 
population growth or range expansions difficult.
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Taken together, density, climate, and site effects collectively were 
able to predict population growth relatively accurately, especially 
when initiating models only after five mature trees were present. 
Removal of any one of these effects worsened model predictions to 
varying degrees for each population. We do not find that any one 
class of effect had a predominant impact or that any could gener-
ally be ignored. The two species we examined responded to shared 
effects in unequal and even opposing ways, despite occupying the 
same landscape with shared climate and density effects. In some 
sense, this conclusion is a surprise for our populations. All are rel-
atively sparse, and their growth trajectories do not show striking 
effects of density dependence. Furthermore, many demographic 
studies of similarly long-lived, slowly growing populations have 
ignored one or more of the factors we address here, especially den-
sity dependence and demographic stochasticity. One might suspect 
that climate is the chief driver of long-term population dynamics, 
but our analyses suggest that interspecific interactions and spatial 
and temporal density effects are equally vital to accurate forecasts. 
This work suggests that greater care be taken to address these com-
plications when possible and caution in creating predictions when 
we are unable to estimate these effects.
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