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ABSTRACT

This paper proposes a novel pre-trained framework for zero-shot
cross-domain sequential recommendation without auxiliary infor-
mation. While using auxiliary information (e.g., item descriptions)
seems promising for cross-domain transfer, a cross-domain adap-
tation of sequential recommenders can be challenging when the
target domain differs from the source domain—item descriptions
are in different languages; metadata modalities (e.g., audio, image,
and text) differ across source and target domains. If we can learn
universal item representations independent of the domain type
(e.g., groceries, movies), we can achieve zero-shot cross-domain
transfer without auxiliary information. Our critical insight is that
user interaction sequences highlight shifting user preferences via
the popularity dynamics of interacted items. We present a pre-
trained sequential recommendation framework: PREPRECc, which
utilizes a novel popularity dynamics-aware transformer architec-
ture. Through extensive experiments on five real-world datasets,
we show that PREPREC, without any auxiliary information, can
zero-shot adapt to new application domains and achieve com-
petitive performance compared to state-of-the-art sequential rec-
ommender models. In addition, we show that PREPREC comple-
ments existing sequential recommenders. With a simple post-hoc
interpolation, PREPREC improves the performance of existing se-
quential recommenders on average by 11.8% in Recall@10 and
22% in NDCG@10. We provide an anonymized implementation of
PREPREC at https://github.com/CrowdDynamicsLab/preprec.
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Figure 1: Jensen-Shannon divergence between two consecutive win-
dows (k, k + 1), where we measure the change in popularity of items
in the user’s sequence. The sampled users are from the Amazon
Office dataset. This shows that there exist temporal item popularity
shifts in user interaction sequences. We set the window size to 10
and stride to 5.

1 INTRODUCTION

Modeling sequential user behavior is critical to the success of on-
line applications such as e-commerce, video streaming, and social
media. Despite essential innovations for tackling the sequential
recommendation task [16, 22, 27, 39, 45, 47], these systems have
some limitations. Firstly, they must be trained from scratch for
each application domain because they learn domain-specific item
representations [22, 45], which is resource-consuming and limits
model reuse across domains. Even within a domain, they must be
retrained when there is a large influx of users or items to maintain
performance. Prior work tackles these limitations by incorporating
auxiliary information [7, 12, 19], e.g., item descriptions. However,
using auxiliary information can be problematic for cross-domain
transfer if item descriptions are in different languages (e.g., English
and Chinese), or if the metadata modalities (e.g., , audio, image, and
text) differ across domains.

This paper tackles a challenging cross-domain transfer setting
where we assume no access to auxiliary information. Thus, we ask:
can we build a pre-trained sequential recommender system capable
of cross-domain and cross-application transfer without ny auxiliary
information? (e.g., using the model trained for online shopping
in the US to predict the next movie a user in China will watch).
Our work is a performance baseline for cross-domain tasks; using
compatible (i.e, same language/modality) auxiliary information
across domains, can only improve the performance.

At first glance, developing pre-trained sequential recommenders
for cross-domain inference seems impossible. While we see pre-
trained language [5, 6, 30, 35, 37] and vision models [9, 13, 36] show
excellent generalizability across datasets and applications, being
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able to achieve state-of-the-art performance by just a few fine-
tuning steps [6, 30] or even without any training [5, 35] (i.e., zero-
shot transfer), there are essential differences. The representations
learned by the pre-trained language model seem universal since the
training domain and the application domain (e.g., text prediction
and generation) share the same language and vocabulary, support-
ing the effective reuse of the word representations. However, in
the cross-domain recommendation, the items are distinct across
domains in recommendation datasets (e.g., grocery items vs movies).
Therefore, forming such generalizable correspondence is nearly
impossible if we learn representations for each item within each
domain. Recent work explores pre-trained models for sequential
recommendation [7, 12, 19] within the same application (e.g., online
retail). However, they assume access to metadata of items (e.g., item
description), which is domain-dependent and is often not gener-
alizable to other domains. These models cannot learn universal
representations of items; instead, they bypass the representation
learning problem by using additional item-side information.

Our Insight: There exist item popularity shifts in the user’s
sequence, as indicated in Figure 1. The item popularity shifts can
be explained as temporal shifts in the user’s preferences. For ex-
ample, a user might be interested in buying some common office
goods such as pens, papers, and notebooks, but afterward, they
might look for other less common office goods such as a white-
board or a desk. Previous works try to learn users’ preference from
the past sequence but ignore the crucial aspect of item popularity
dynamics, which could indicate the user’s changing preferences. We
know that the marginal distribution of user and item activities are
heavy-tailed across datasets, supported by prior work in network
science [3, 4] and by experiments in recommender systems [40]. In
addition, recent work in recommender systems suggests that the
popularity dynamics of items are also crucial for predicting users’
behaviors [21].

Present Work: In this paper, we develop universal, transferable
item representations for the zero-shot, cross-domain setting based
on the popularity dynamics of items. We explicitly model the popu-
larity dynamics of items and propose a novel pre-trained sequential
recommendation framework: PREPREC. We learn universal item
representations based on their popularity dynamics instead of their
explicit item IDs or auxiliary information. We encode the relative
time interval between two consecutive interactions via relative-
time encoding and the position of each interaction in the sequence
by positional encoding. Using physical time ensures that the pre-
dictions are not anti-causal, i.e., using the future interactions to
predict the present. We propose a popularity dynamics-aware trans-
former architecture for learning universal sequence representations.
We show that it is possible to build a pre-trained sequential rec-
ommender system capable of cross-domain and cross-application
transfer without any auxiliary information. Our key contributions
are as follows:

Universal item and sequence representations: We are the first to
learn universal item and sequence representations for sequential
recommendation without any auxiliary information by exploit-
ing item popularity dynamics. In contrast, prior research learns
item representations for each item ID or through item auxiliary
information. We learn universal item representations by mod-
eling item popularity dynamics of two temporal resolutions:
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coarse and fine-grained. We learn universal sequence represen-
tations using a carefully designed popularity dynamics-aware
transformer architecture. These universal item and sequence
representations make possible pre-trained sequential recom-
mender systems capable of cross-domain and cross-application
transfer without any auxiliary information.

Zero-shot transfer without auxiliary information: We propose
a new challenging setting for pre-trained sequential recom-
mender systems: zero-shot cross-domain and cross-application
transfer without any auxiliary information. In contrast, previ-
ous pre-trained sequential recommenders requires overlapping
users [61], application-dependent auxiliary information [7, 12,
18, 19, 56], and are few-shot adapted to related domains within
the same application [18, 19, 56]. Our work establishes a per-
formance baseline for cross-domain sequential recommenders
that use compatible (i.e.,, same language/modality) auxiliary in-
formation across domains, as such metadata can only improve
the performance of cross-domain transfer.

With extensive experiments, we empirically show that PREPREC has
excellent generalizability across domains and applications. Remark-
ably, had we trained a state-of-the-art model from scratch for the
target domain, instead of zero-shot transfer using PREPREC, the max-
imum performance gain over PREPREC would have been only 4%.
In addition, we show that PREPREC is complementary to state-of-
the-art sequential recommenders and with a post-hoc interpola-
tion, PREPREC can outperform the state-of-the-art sequential rec-
ommender system on average by 11.8% in Recall@10 and 22% in
NDCG@10. We attribute the improvements to the performance
gains over long-tail items, which we show in the qualitative anal-
ysis. With this work, we set a baseline for pre-trained sequential
recommenders and show that popularity dynamics not only enable
us to build a pre-trained sequential recommender system capable
of zero-shot transfer but also significantly boost the performance
of sequential recommendation.

2 RELATED WORK

Sequential Recommendation: Sequential recommenders model
user behavior as a sequence of interactions, and aim to predict the
next item that a user will interact with. Early sequential recom-
menders adopt Markov chains [39, 42] and basic neural network ar-
chitectures [16, 17, 47, 50, 51]. With the success of Transformer [52]
in modeling sequential data [22, 27, 45]adopt the transformer archi-
tecture for sequential recommendation. Additionally, [27] considers
the timestamps of each interaction and proposes a time-aware at-
tention mechanism. [32, 46, 60] separate interaction sequences and
categorize them to show the long-term and short-term interests
of users. Temporal sequential recommenders [25, 58, 62] models
the change in users’ preferences. These works, while achieving
state-of-the-art performance, only focus on the regular sequential
recommendation and cannot transfer to other domains.
Cross-domain Recommendation: Cross-domain recommen-
dation literature leverages the information-rich domain to improve
the recommendation performance on the data-sparse domain [20,
28, 33]. However, most of these works assume user or item over-
lap [20, 28, 33, 63, 64] for effective knowledge transfer. Other cross-
domain literature focuses on the cold-start problem [8, 10, 11, 26,
29, 31, 53, 57, 64]. In addition, multi-domain recommenders [1, 43]
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leverage multi-domain data to gain insights into user preferences
and item characteristics.

Pre-trained Sequential Recommenders: Recently, pre-trained
recommenders have caught the attention of the community. ZES-
Rec [7] is capable of zero-shot sequential recommendations. How-
ever, it only works for closely related domains and requires item
metadata. PeterRec [61] requires overlapping users in both domains.
On the other hand, finetuning-based models, e.g., MISSRec [56],
UnisRec [19], and VQ-Rec [18], are not designed for zero-shot se-
quential recommendation and works within the same application
(e-commerce), and they rely on application-dependent auxiliary
information. [54] investigates the joint and marginal activity dis-
tribution of users and items, but are not suitable for the sequential
recommendation task.

To summarize, prior works on sequential recommendation fo-
cus on learning high-quality representations for each item in the
training set and are not generalizable across domains. Pre-trained
sequential recommenders are evaluated on closely related domains
and platforms and rely heavily on application-dependent auxiliary
information of items.

3 PROBLEM DEFINITION

In this section, we formally define the research problems this paper
addresses (i.e., regular sequential recommendation and zero-shot
sequential recommendation) and introduce our notations.

In sequential recommendation, denote M as the implicit feedback
matrix, U = {uy,uy, ..., u|qq) + as the set of users, V = {01, vz, ..., v}y }
as the set of items. The goal of sequential recommendation is to
learn a scoring function, that predicts the next item v, ; given a
user u ’s interaction history Sy, = {vy,1, 0,2, ..., vu,s—1}. Note that in
this paper, since we model time explicitly, we assume access to the
timestamp of each interaction, including the next item interaction.
We argue that this is a reasonable assumption since the timestamp
of the next interaction is always available in practice. For example,
if Alice logs in to Netflix, Netflix will always know when Alice logs
in and can predict the next movie for Alice. Formally, we define
the scoring function as ¥ (v?|S,, M), where t is the time of the
prediction.

Zero-shot Sequential Recommendation: Given two domains
M and M’ over U,V and U’,V’ respectively, we study the zero-
shot recommendation problem in the scenario where the domains
are different (M N M’ = @), users are disjoint (U N U’ = @), and
item sets are unique (V NV’ = @). The goal is to produce a scoring
function ¥’ without training on M’ directly. In other words, the
scoring function ¥’ has to be trained on a different interaction
matrix M. Furthermore, we assume there is no metadata associated
with users or items, which makes the problem particularly challeng-
ing but crucial to study. We want to set a baseline for pre-trained
sequential recommenders, using metadata can only improve and
simply the problem.

4 PREPREC FRAMEWORK

We first introduce the model architecture of PREPREC (§ 4.1) then the
training procedure (§ 4.2). Finally, we formally define the zero-shot
inference process (§ 4.3).
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4.1 Model Architecture

The first step of building a pre-trained sequential recommender is
to learn universal item representations. Our solution is to exploit
the item popularity statistics to learn universal item representa-
tions. We learn to represent items at a given timestamp through
the changes in their popularity histories over different periods,
i.e,, popularity dynamics. We propose a popularity dynamics-aware
Transformer architecture that obtains the representation of users’
behavior sequences through item popularity dynamics.

4.1.1 Item Popularity Encoder. We learn to represent items based
on their popularity dynamics, i.e., changes in their popularity his-
tories. Intuitively, popularity can be calculated by two horizons:
long-term and short-term. Long-term horizons reflect the overall
popularity of items, whereas short-term horizons should capture
the recent trends in the domain. For example, the long-term popu-
larity of a winter coat measures how popular is the coat in general,
while its short-term popularity reflects more temporal changes,
e.g., season, weather conditions, and fashion trends. Therefore, con-
sider an item v; that has interaction at time ¢, denoted as 2);, we

define two popularity representations for 1);: popularity pj. € RF
over a coarse period (e.g., month) and popularity h;. € RF overa
fine period (e.g., week).

To calculate p; and h;, we first calculate the popularities of 1);
over the two horizons, denoted as a§ € R* (coarse period number
of interactions) and b; € R* (fine period number of interactions).
Specifically, we calculate them as:

t
ah =3y M @M), b =cy(0f) (1)
m=1

where y € R* is a pre-defined discount factor and ¢, (v") is the
number of interactions of v over a coarse time period m. Similarly,
cb(v§) denotes the number of interactions of v; over a fine period
t. We do not impose the discounting factor when computing b;
since we want it to capture the current popularity information,
whereas a; captures the cumulative popularity of an item over a
longer horizon.

To make item popularity comparable across domains, we cal-
culate the percentiles of a’ and b’ relative to their corresponding
coarser and finer popularity distributions over all items at time ¢,
denoted as P(aj.) € R* and P(bj.) € RY, respectively.

We now encode the popularity percentiles P(a?) and P(bj.) into k
dimensional vector representations p§. and h§. respectively. Denote
the popularity encoder as E, : R* — R, which takes in a per-
centile value. Suppose given the popularity percentile P(a?) eR*
over a coarse time period t, the coarse level popularity vector rep-
resentation pj. € R is computed as follows:

pj = Ep(P(a}))
- {5} ifi=1g5)
=) i L+
0, otherwise

where | -] denotes the floor, {-} denotes the fractional part of a
number, and (pz.) i denotes the i-th index of pj., For example, if k =
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Figure 2: Model Architecture of PREPREC

11, Ep(40.1) = [0,0,0,0,0.99,0.01,0,0,0,0,0]. The interpretation of
this would be considering the 10 deciles for i € {0,1,...,9,10} as
basis vectors, and this popularity encoding as a linear combination
of the nearest (in percentile space) two basis vectors. The fine level
popularity vector is calculated identically, i.e., h§ =E, (P(b;)). In
this example, we’ve fixed the vector representation size to be 11,
but this approach is fully generalizable to other sizes and would
just require changing the multipliers in the encoding function. We
also experimented with sinuoisal encodings of the same size, but
found that the linear encoding empirically performed better.
4.1.2  Universal Item Representation. We now define the popularity
dynamics of v; at time t over the coarse period (long-term horizon)
to be P; = {p}, p?, p§_1 }, and over the fine period (short-term
horizon) as ‘H]t = {h}, h?, h;‘l }. We use t — 1 to constrain access
to future interactions and prevent information leakage, i.e., we do
not have access to the popularity statistics of v; at time ¢ if we are
at time t. For example, say an interaction happens on the second
Wednesday in February, we consider the coarser and finer time pe-
riod up until the end of January and the end of the first week in Feb-
ruary respectively. To limit computation, we constrain window sizes
m, n for P and H respectively. Formally, the coarse popularity dy-
namics of v; at time ¢ is P} = {pjfm, p§‘m+1, p;_l }, and the fine
popularity dynamics of v; at time  is 7’(; = {hj._", hz._”“, h;_l }.
Finally, we compute the embedding of item v; at time t via
the universal item representation encoder, defined as a function
8(7);. , 7{; ) that learns to encode the popularity dynamics 7’; and

7'{; into a d dimension vector representation eﬁ.. Specifically, we
have:

e\ = 8(PLHY =W (IS PO IS0 @

where || denotes the concatenation operation, and W), € RYxk(m+n)
is a learnable weight matrix.

In addition, we define ||f=_t1_mp§. = pj._’"||p§.
| ifz_tl—nhj' = h;._"”h;_'”1 ||||hj_1 The item popularity dynamics
encoder can effectively capture the popularity change of items
over different time periods. Most importantly, it does not take
explicit item IDs or auxiliary information as input to compute
the item embeddings. Instead, it learns to represent items through

™| J|p} " and
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their popularity dynamics, which is universal across domains and
applications.

4.1.3  Relative Time Interval. We also consider the time interval be-
tween two consecutive interactions when modeling sequences. Dif-
ferences in time intervals might indicate differences in the users’ be-
haviors. While previous works explore absolute time intervals [27],
different domains exhibit diverse time scales, thus making modeling
absolute time intervals ungeneralizable. Therefore, we propose to
encode relative time intervals into modeling sequences. Given an
interaction sequence Sy, = {vy,1, 91,2, ..., vy, } Of user u, we define
the time interval between vy, j and vy, j41 as ty, j = t(vy, j+1) —t(0y,j),
where t(vy, ;) is the time that user u interacts with item v, j. We
then rank the time intervals of user u. Define the rank of relative
time interval of t, ; as ry j = rank(t,, ;). The relative time inter-
val encoding of interval &, ; is then defined as Ty, ; € R?, where

T e RLXd, following the same setup in [52], is a fixed sinusoidal
encoding matrix defined as:

) i
Ti2j = sin(——),

1277 ®

i
Ti2j+1 = cos(——
1,2j+1 (sz/d)
We also tried a learnable time interval encoding, but it yielded
worse performance. We hypothesize that the sinusoidal encoding
is more generalizable across domains and the learnable encoding is
more prone to overfitting.

4.1.4  Positional Encoding. Aswe will see in § 4.1.5, the self-attention
mechanism does not take the positions of the items into account.
Therefore, following [52], we also inject a fixed positional encoding

for each position in a user’s sequence. Denote the positional em-
bedding of a position [ as P; € R%, where P € REX4. We compute

P using the same formula in Equation (3). Again, we also tried a

learnable positional encoding as presented in [22, 45], but it yielded

worse results.

4.1.5 Popularity Dynamics-Aware Transformer. We follow previous
works in sequential recommendation [22, 27, 45] and propose an
extension to the self-attention mechanism by incorporating uni-
versal item representations (§ 4.1.2), relative time intervals(§ 4.1.3),
and positional encoding (§ 4.1.4).
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Firstly, we transform the user sequence {vy,1,vy,2, .., V|8, |} for
each user u into a fixed-length sequence S, = {vy,1,04,2, ... v, L}
via truncating the oldest interactions or padding, where L is a
pre-defined hyper-parameter controlling the maximum length of
the sequence. Given a user sequence Sy, = {vy 1, vy,2, ..., Uy L}, We
compute its input matrix E; as:

t
et Tru,1 + P;

el o+ Tr,, + P2
E, = . (4)

el +Tr, +PL
e ef;,2>
and Py, Py, ..., Py are computed following the procedure in § 4.1.3
and § 4.1.4 respectively.

Multi-Head Self-Attention. We adopt a widely used multi-
head self-attention mechanism [52], i.e., Transformers. Specifically,
it consists of multiple multi-head self-attention layers (denoted as
MHALttn(-)), and point-wise feed-forward networks (FFN(-)). The
multi-head self-attention mechanism is defined as:

2, = MHAttn(E,)

MHAttn(E,) = Concat(heady, ..., headh)WO 5)
head; = Attn(E,W2, E,WK, E,W,”)

where E, is the input matrix computed from Equation (4), h is a
tunable hyper-parameter indicating the number of attention heads,
\}ViQ, WlK R Wl.V € RA%d/h are the learnable weight matrices, and
WO e R4 s also a learnable weight matrix. Attn is the attention
function and is formally defined as:

ez TL is computed from Equation (2), Ty, ;» Tr, 5> - Try g

KT
Qd v ©)

Attn(Q, K, V) = softmax(

The scale factor /d/h is used to avoid large values of the inner
product, which can lead to numerical instability.

Causality: In sequential recommendation, the prediction of the
L + 1 item should only depend on the first L items that the user
has interacted with in the past. However, the L-th output of the
multi-head self-attention layer contains all the input information.
Therefore, as in [22, 27], we do not let the model attend to the future
items by forbidding links between Q; and K (j > i) in the attention
function.

Point-Wise Feed-Forward Network: To add nonlinearity and
interactions between different embedding dimensions, we follow
previous works in sequential recommendation [22, 27, 45] and apply
the same point-wise feed-forward network to the output of each
multi-head self-attention layer. Formally, suppose the output of the
multi-head self-attention layer is z,,, the point-wise feed-forward
network is defined as:

FFN(z,) = ReLU(z,W; + b1)W> + by 7)

where Wy € R¥*4 and Wy € R9%4 are learnable weight matrices,
and b; € RY and by € RY are learnable bias vectors.

Stacking Layers: As shown in previous works [22], stacking
multiple multi-head self-attention layers and point-wise feed-forward
networks can potentially lead to overfitting and instability during
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DATASET  #USERS #ITEMS #ACTIONS AVG LENGTH DENSITY
Office 101,133 27,500 0.74M 7.3 0.03%
Tool 240,464 73,153 1.96M 8.1 0.01%
Movie 70,404 40,210 11.55M 164.2 0.41%
Music 20,539 10,121 0.66M 32.2 0.32%
Epinions 30,989 20,382 0.54M 17.5 0.09%

Table 1: Dataset statistics

the training. Therefore, we follow previous works [22, 27, 45] and
apply layer normalization [2] and residual connections to each
multi-head self-attention layer and point-wise feed-forward net-
work. Formally, we have:

g(x) = x + Dropout(g(LayerNorm(x))) (8)

g(x) is either the multi-head self-attention layer or the point-wise
feed-forward network. Therefore, for every multi-head self-attention
layer and point-wise feed-forward network, we first apply layer
normalization to the input, then apply the multi-head self-attention
layer or point-wise feed-forward network, and finally apply dropout
and add the input x to the layer output. The LayerNorm function is
defined as:

LayerNorm(x) = a © xR B 9)

Vol +e

where © denotes the element-wise product, y and o are the mean
and standard deviation of x, & and f are learnable parameters, and
€ is a small constant to avoid numerical instability.

4.1.6  Prediction. Given a sequence S, of user u as input, we denote
qu as the output of the popularity dynamics-aware transformer.
Suppose at time t*, we want to predict the likelihood of v; being the
next item in the sequence, we first compute the item representation
e5.+ from § 4.1.2. Then, we predict the score as the inner product of

qu and e§.+, formally:

§(041Su) =< quref > (10)

Note that there is no information leakage in the prediction process,
i.e, we do not assume access to the popularity statistics of v; at
time t* if we are at time t* (§ 4.1.2).

4.2 Training Procedure

Now we present how to train the PREPREC model. Similar to [22],
we adopt the binary cross entropy loss as the objective function,
formally:

)
S,eSze[1,2,..,L-1]

+ Z logo(1 - Q(U§/|Su,:z))]

J'¢Su

[log o(§(0};1Su,z))
(11)

where Sy,.z = {vy,1, 04,2, .- Vi 2 }- U;_l represents the z + 1-th item
in the sequence that happened at time ¢. We use Adam [23] as the
optimizer and train the model end-to-end. Note that compared to
previous sequential recommenders, we do not have any parameters
modeling item IDs. Essentially, we are only optimizing W), and
parameters related to the multi-head self-attention mechanism.
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S—T OFFICE TooL MovIE Music EriNIONS
Metric R@10 N@10 R@10 N@10 R@10 N@10 R@10 N@10 R@10 N@10
REFERENCE: REGULAR SEQUENTIAL RECOMMENDATION
MostPop 0.450 0.272 0.459 0.274 0.586 0.361 0.519 0.327 0.438 0.296
BERT4Rec [45] 0.541*  0.358"  0.544 0.350 0.900 0.728 0.816"  0.602*  0.702 0.512
PREPREC 0.536 0.344 0.551*  0.359" 0.908* 0.738" 0.782 0.573 0.795*  0.580*
ZERO-SHOT SEQUENTIAL RECOMMENDATION, SOURCE—TARGET
Office — — — 0.540 0.326  0.838 0.624 0.755 0.542 0.724 0.512
Tool — 0.543 0.332 — - 0.881 0.659 0.749 0.536 0.717 0.510
Movie— 0.520 0.320 0.508 0302 — — 0.811 0.600 0.751 0.537
Music— 0.503 0.310 0.496 0.312 0.836 0.636  — - 0.739 0.518

Epinions— 0.517 0.317 0.470 0.302 0.872 0.656 0.774 0517 — —

Table 2: Zero-shot recommendation results. Results for cross-domain, cross-application zero-shot transfer. ST means we
pre-train PREPREC using S$’s data (columns) and evaluate on T’s data (rows). We follow the zero-shot inference setting in § 4.3.
Reference models are trained from scratch on the target dataset. The best-performing zero-shot transfer results of each dataset
are in bold. We empirically show PREPREC achieves remarkable zero-shot generalization performance across domains.

4.3 Zero-shot Inference

Suppose we are given a pre-trained model ¥ trained on M, where
¥ is the scoring function learned from source domain M. Denote
the interaction matrix of the target domain as M’. We first compute
the popularity dynamics of each item in M’ over a coarser period
and a finer period. Then, we apply the pre-trained model ¥ to M’
and compute the prediction score as:

§(04,1S0) = F (04,15, M') (12)

Note that in this procedure, we use the pre-trained model ¥
trained on domain M’ to predict the next item o, that user v’ will
interact with in domain M’. We do not use any auxiliary informa-
tion in either domain. In addition, none of the parameters in ¥ are
updated during the zero-shot inference process.

To summarize, in this section, we showed how to develop a pre-
trained sequential recommender system based on the popularity
dynamics of items. We enforce the structure of each interaction in
the sequence by the positional encoding and introduce a relative
time encoding for modeling time intervals between two consecu-
tive interactions. In addition, we showed the training process and
formally defined the zero-shot inference procedure. In the next
section, we present experiments to evaluate PREPREC .

5 EXPERIMENTS

We present extensive experiments on five real-world datasets to
evaluate the performance of PREPREC, following the problem set-
tings in § 3. We introduce the following research questions (RQ) to
guide our experiments: (RQ1) How well can PREPREC perform on
zero-shot cross-domain and cross-application transfer? (RQ2) Why
should we model popularity dynamics in sequential recommenda-
tion? (RQ3) What affects the performance of PREPREC ?

5.1 Datasets and Preprocessing

We evaluate our proposed method on five real-world datasets across
different applications, with varying sizes, and density levels.
Amazon [34] is a series of product ratings datasets obtained from
Amazon.com, split by product categories. We consider the Office and
Tool product domains in our study. Douban [44] consists of three
datasets across different domains, collected from Douban.com, a
Chinese review website. We work with the Movie and Music datasets.
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Epinions [48, 49] is a dataset crawled from product review site
Epinions. We utilize the ratings dataset for our study.

We present dataset statistics in Table 1. We compute the density
as the ratio of the number of interactions to the number of users
times the number of items. Douban datasets (i.e., movie and music)
are the densest and have no auxiliary information available, while
the Amazon review datasets (i.e., office and tool) are the sparsest.

For fair evaluation, we follow the same preprocessing procedure
as previous works [22, 45], i.e., we binarize the explicit ratings to
implicit feedback. In addition, for each user, we sort interactions
by their timestamp and use the second most recent action for vali-
dation, the most recent action for testing, and the rest for training.

5.2 Baselines and Experimental Setup

Baselines: Our baselines (supplementary materials contain de-
tailed descriptions) include classic general recommendation models
(e.g., MostPop, BPR [38], NCF [15], LightGCN [14]) and state-of-the-
art sequential recommendation models (e.g., Caser [50], SasRec [22],
BERT4Rec [45], TiSasRec [27], CL4SRec [59]).

Following previous works [15, 22, 24, 45], we adopt the leave-
one-out evaluation method: for each user, we pair the test item with
100 unobserved items according to the user’s interaction history.
Then we rank the test item for the user among the 101 total items.
We use two standard evaluation metrics for top-k recommendation:
Recall@k (R@k) and Normalized Discounted Cumulative Gain@k
(N@k). Our model explicitly utilizes popularity information. There-
fore, we also present results where we sample the negatives based
on their popularities, i.e., popular items have higher probabilities
of being sampled as negatives. We report the average of R@k and
N@k over all the test interactions.

We use publicly available implementations for the baselines. For
fair evaluation, we set dimension size d to 50, max sequence length L
to 200, and batch size to 128 in all models. We use an Adam optimizer
and tune the learning rate in the range {107%,1073,1072} and set
the weight decay to 107>, We use the dropout regularization rate
of 0.3 for all models. We set y = 0.5 in Equation (1), whose reason
we will discuss the reason in supplement materials. We define the
coarse and fine period to be 10 and 2 days respectively, and we fix
the window size to be m = 12 and n = 4 for all datasets (§ 4.1.2).
We train PREPREC for a maximum of 80 epochs. All experiments
are conducted on a Tesla V100 using PyTorch. We repeat each
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DATASET OFFICE TooL Movie Music EpINIONS
Metric R@10 N@10 R@10 N@10 R@10 N@10 R@10 N@10 R@10 N@10
GENERAL RECOMMENDER SYSTEMS

MostPop 0.450 0.272 0.459 0.274 0.586 0.361 0.519 0.327 0.438 0.296
BPR [38] 0.457 0.289 0.363 0.216 0.747 0.477 0.646 0.434 0.568 0.397
NCF [15] 0.446 0.266 0.388 0.239 0.784 0.505 0.652 0.437 0.570 0.396
LightGCN [14] 0.465 0.293 0.463 0.275 0.793 0.512 0.665 0.447 0.575 0.396
SEQUENTIAL RECOMMENDER SYSTEMS
Caser [50] 0.512 0.334 0.496 0.297 0.891 0.701 0.796 0.576 0.674 0.475
SasRec [22] 0.539 0.354 0.536 0.337 0.918 0.749 0.816 0.599 0.705*  0.501
BERT4Rec [45] 0.541 0.358 0.544 0.350 0.900 0.728 0.816"  0.602*  0.702 0.512*
TiSasRec [27] 0.531 0.349 0.539 0.341 0.918"  0.752°  0.809 0.523 0.701 0.499
CL4SRec [59] 0.550"  0.358" 0.548*  0.352"  0.899 0.725 0.813 0.597 0.662 0.481
PrEPREC 0.536 0.344 0.551 0.359 0.908 0.738 0.782 0.573 0.795 0.580
PrREPREC A -2.5% -3.9% +1.2% +2.0% -1.1% -1.8% -1.9% -4.8% +12.7% +13.3%
INTERP 0.648 0.483 0.659 0.482 0.929 0.769 0.851 0.653 0.816 0.640
INTERP A +17.8% +34.9% +20.3% +35.0% +1.1% +2.3% +4.3% +8.5% +15.7% +25.0%

Table 3: Regular sequential recommendation results, RQ2, (§ 5.4.1). We make bold the best results and mark the best baseline
results with ’+’. INTERP represents the interpolation results between PREPREC and BERT4Rec. PREPREC A denotes the perfor-
mance difference between PREPREC and the best results among the selected baselines, similar for INTERP A. PREPREC achieves
comparable performance to the state-of-the-art sequential recommenders, with only on average 0.2% worse than the best
performing sequential recommenders in R@10 while having only a fraction of the model size (Table 5). After a simple post-hoc
interpolation, we outperform the state-of-the-art sequential recommenders by 11.8% in R@10 on average.

experiment 5 times with different random seeds and report the
average performance.

5.3 Zero-shot Transferability (RQ1)

5.3.1 Zero-shot Transfer Results. We follow the zero-shot inference
setting introduced in § 4.3 and report the results in Table 2. We also
include the results of PREPREC and the best-performing sequential
recommenders trained on the target dataset for reference. In the
zero-shot setting, PREPREC shows minimal performance reduction
in the target datasets (i.e., 6% maximum and 2% average reduction
in R@10). The best zero-shot transfer results from PREPREC only fall
short against the selected sequential recommendation baselines by
up to 4% and even outperform (by up to 6.5%) them on the Epinions
and Office. We found that PREPREC trained on douban-movie and
amazon-tools show the highest generalizability, even outperform-
ing the target-trained models on Music (0.811 vs. 0.782 on R@10).
We conjecture that this is because Movie is the largest dataset in
terms of the number of interactions. Overall, these results show
PRrEPREC ’s effectiveness in zero-shot transfer without any training
on interaction data or side information. In addition, this experiment
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0.591

b 7 e
° 7 e ' .
p

s
S

Standard Diviation of Noise o
Standard Diviation of Noise o

2

osso R .

o

9 s©
$
K

s so s o° < S

s
s S s $
5 o & & RS

Percentage of Noisy Interaction Percentage of Noisy Interaction

Figure 3: Zero-shot Transfer Results (R@10) with Gaussian noise

added to the item popularity statistics (§ 5.3.2). We find that
PRrREPREC is relatively robust to noise.
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also demonstrates that the popularity dynamics-based item and
sequence representations are generalizable across domains.

5.3.2  Robustness to Noise. We further investigate the robustness
of PREPREC to possible noise in zero-shot transfer by adding Gauss-
ian noise ~ N'(0, o) to the item popularity statistics and evaluate
the zero-shot transfer performance on Douban-Music and Epin-
ions from Douban-Movie. We randomly choose some percentage
of items in the sequence to add noise, as indicated in Figure 3. We
find that PREPREC is relatively robust to noise, maintaining robust
performance across different noise levels at 20% noised interaction.
We attribute this to the model’s ability to learn from the overall pop-
ularity dynamics, which is less affected by noise in individual item
popularity statistics. In addition, when the noise level is relatively
low, e.g., 0 < 5, even if 100% of the sequence is noised, PREPREC still
holds the performance, indicating significant item popularity shifts
exist in the sequence (Figure 1).

DATASET Music OFFICE EriniONS
Metric R@10 N@10 R@10 N@10 R@10 N@10
MostPop 0.197 0.139 0.099 0.046 0.163 0.110
SasRec [22] 0.749 0.519 0453 0.291  0.658  0.442
BERT4Rec [45] 0.747 0.519 0.461 0.299 0.655 0.456
PrEPREC 0.739  0.523 0443 0.280 0.762 0.551
PreEPREC A -1.3% +0.7% -2.2%  -6.3% +15.8% +17.2%

Table 4: Regular sequential recommendation results (§ 5.4.1)
with popularity-based negative sampling. PREPREC can learn
discriminative item and sequence representations despite
depending only on popularity statistics.

5.4 Why Popularity Dynamics? (RQ2)
PREPREC shows excellent performance in zero-shot sequential rec-
ommendation. Therefore, we ask: what is the role of popularity
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Dataser  Orrice  TooL Movie  Music EPINIONS
SasRec 1.331M  3.581M  2.044M 0.542M  1.054M
BERT4Rec 2.687M  7.233M  4.126M  1.094M  2.127M
TiSasRec 1.367M  3.617M  2.127M  0.578M  1.09M
PrepREC  0.045M  0.045M  0.045M  0.045M  0.045M

Table 5: Comparison of model sizes (i.e., number of learnable
parameters in millions) over different datasets. PREPREC is
12 to 90x smaller.

dynamics in sequential recommendation, and how much does it ex-
plain the performance of state-of-the-art sequential recommenders?
Therefore, we propose the following experiments to investigate the
importance of popularity dynamics in sequential recommendation.

5.4.1 Regular Sequential Recommendation (RQ2). We show com-
parisons of PREPREC against state-of-the-art sequential recom-
menders in the regular sequential recommendation tasks (Table 3),
i.e,, all models are trained from scratch. PREPREC achieves competi-
tive performance—within 2% in R@10 and 5% in N@10, with the
state-of-the-art baselines. On Epinions, PREPREC even outperforms
all baselines by 7.3%, particularly impressive since PREPREC has
significantly fewer model parameters (Table 5).

PREPREC explicitly models popularity information and the Most-
Pop demonstrates decent performance compared to the remaining
baselines, thus we conduct an additional experiment (Table 4) where
we sample the unobserved (negative) items based on their popu-
larity [45]. As shown in Table 4, MostPop’s performance dropped
significantly, while PREPREC shows even more competitive perfor-
mance on some datasets (e.g., Music and Epinions). This suggests
PREPREC learns discriminative item and sequence representations.

PrREPREC learns item representations through popularity dy-
namics, which is conceptually different from learning represen-
tations specific to each item ID. Therefore, we propose a simple
post-hoc interpolation to investigate how much can popularity
dynamics explain the performance of state-of-the-art sequential
recommenders. We interpolate the scores from PREPREC with the
scores from BERT4Rec as follows: Jinsp (v§|Su) =ax* QO(U;.lSu) +
(1-a) *s(vj|Sy), where ﬁo(v§ |Sy) and fj5(v;|Sy) are the scores
from PREPREC (Equation (10)) and BERT4Rec, respectively. We set
a = 0.5 for all datasets. After interpolation, the performance sig-
nificantly boosts by up to 34.9% in N@10. Gains are largest in the
medium and low-density datasets (Epinions, Amazon), indicating
that our model complements existing methods in sparse datasets
where item embeddings are less informative. Therefore, it is crucial
to consider popularity dynamics to maximize performance.
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O‘QSEplmons Regular Sequential
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Music Regular Sequential
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Figure 4: Recommendation results for different item popularity
groups (§ 5.4.2), where Group 1 represents the least popular items,
and Group 5 represents the most popular items. PREPREC achieves
better performance on long-tail items while having competitive per-

formance on popular items.
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5.4.2 Qualitative Analysis on Regular Sequential Recommendation.
We analyze the performance of PREPREC in detail. We separate
test items into equally sized groups based on their popularity in
the training set then compute the average R@10 and N@10 for
each group (Figure 4). PREPREC achieves better performance on
item group with the least interactions, i.e., long-tail items, while
the SasRec and BERT4Rec show stronger performance on popular
items. Long-tail item recommendation is a particularly challenging
task explored by many previous works [41] and requires recom-
menders able to learn high-quality representations with just a few
interactions. This corresponds to our observation that PREPREC is
more robust to data sparsity and can learn discriminative item
and sequence representations (§ 5.4.1), showing that long-tail item
recommendation can benefit from PREPREC ’s popularity dynamics-
based item representations.

5.5 What affects PREPREC performance? (RQ3)

DATASET Music OFFICE EPINIONS
Metric R@10 N@10 R@10 N@10 R@10 N@10
PrEPREC 0.782 0.573 0.536 0.344 0.795 0.580
w/o Relative Time T (§ 4.1.3) 0.734 0.514 0.541 0.334 0.782 0.562
w/o Positional P (§ 4.1.4) 0.765 0.544 0.530 0.332 0.772 0.554
w/o Popularity Dynamics $ 0.800 0.594 0.530 0.341 0.761 0.560
w/o Popularity Dynamics H 0.705 0.582 0.525 0.337 0.730 0.533
Sinuoisal Popularity Encoding  0.779 0.570 0.529 0.340 0.772 0.561

Table 6: Ablation study of PREPREC ’s different variants.

5.5.1 Ablation Study. Here, we assess the importance of different
components crucial to PREPREC, i.e., relative time encoding (§ 4.1.3),
positional encoding (§ 4.1.4), popularity encoder E;, (§ 4.1.1), and
resolutions for popularity dynamics (§ 4.1.2). We find that removing
relative time encoding T results in the largest performance drop on
both the Music and Office datasets. This suggests that the relative
time encoding is crucial for effectively capturing the popularity
dynamics. Removing positional encoding P results in a maximum
of 2.2% drop in R@10 on the Office dataset, indicating positional
encoding is important for capturing sequential information. In ad-
dition, changing E, to the non-linear sunusoidal encoding shows
worse performance on all datasets, meaning that the linear encod-
ing is more suitable for capturing the popularity dynamics. On
the music dataset, removing coarse popularity encoding ¥ results
improves the performance by 2% in R@10, while removing fine
popularity encoding H results in a 7.5% drop in R@10. This sug-
gests that the music domain is more sensitive to recent trends in
popularity. Coarse and fine popularity encodings complement each
other on other datasets.

5.5.2  Effect of discounting factor y. We examine the effect of differ-
ent preprocessing weights y used in popularity calculation (§ 4.1.1).
In particular, y = 1 corresponds to the cumulative popularity, or
in other words, at a given time period t, the overall number of
interactions up to period t. On the other hand, y = 0 corresponds
to the current popularity, or percentiles are calculated over interac-
tions just in ¢, same as bj. in Equation (1). When y = 0.5, it can be
interpreted as interactions being exponentially weighted by time,
with a half-life of 1 time period. We find that y = 0.5 outperforms
the other two settings, with the largest gains of around 12% R@10



Pre-trained Sequential Recommender

DATASET Music OFFICE EpPINIONS
Metric R@10 N@10 R@10 N@10 R@10 N@10

y = 0 (CURR-POP) 0.749 0.542 0.512 0.328 0.689 0.496

y =0.25 0.764 0.529 0.538 0.338 0.761 0.562
y = 0.5" (WEIGHTED -POP) 0.782 0.573 0.536 0.344 0.795 0.580
y =0.75 0.755 0.520 0.543 0.336 0.747 0.519

y = 1 (cumuL-POP) 0.695 0.452 0.530 0.330 0.733 0.505

Table 7: Recommendation results for varying the discounting
factor y in § 4.1.2. y = 0.5 is the default setting, denoted by
’+’. We find that y = 0.5 generally outperforms the other two
settings

and 27% N@10 over cUMUL-POP in the dense Music dataset, and
the largest gains over CURR-POP in the sparser Office (5% N@10
and 4% N@10) and Epinions (15% R@10 and 17%N@10) datasets.
We suspect this is due to cumulative measures in denser datasets
failing to capture recent trends due to the large historical presence,
while current-only measures in sparser datasets convey too little
or noisy information and lose the information of long-term trends.
CURR-POP shows decent performance on the Music dataset, suggest-
ing that Music trends might be more cyclical and thus the current
popularity is more informative.

DATASET Music OFFICE EPINIONS
Metric R@10 N@10 R@10 N@10 R@10 N@10

0.782 0.573 0.536 0.344 0.795 0.580
0.778 0.553 0.537 0.341 0.790 0.574
0.760 0.509 0.526 0.334 0.757 0.543

Fine:2 days; Coarse:10 days *
Fine:4 days; Coarse:15 days
Fine:7 days; Coarse:30 days

Table 8: Recommendation results for varying time horizons.
Fine and coarse time horizons are used for short-term and
long-term popularity dynamics respectively (§ 4.1.1).

5.5.3  Effect of Different Time Horizons. We study the effect of
different time horizons to PREPREC . We found that in general, long-
term horizons of 30 days and short-term horizons of 7 days perform
worse than the other settings. This is likely because the long-term
horizon might lead to the lack of resolutions in popularity statistics.
We also find that depending on the dataset, the effect of different
time horizons also varies. For example, both Music and Epinions
show larger performance decrease from short to long-term horizons
than Office. This could be because Music and Epinions are more
sensitive to recent trends than Office, or their data are denser in
terms of time granularity.

5.6 Fine-tune Capability

DATASET MoviE—Music TooL—OrricE TooL—EPINIONS
Metric R@10 N@10 R@10 N@10 R@10 N@10
PrEPREC 0.803 0.591 0.472 0.300 0.489 0.264
SasRec 0.815 0.599 0.437 0.290 0.433 0.245
BERT4Rec 0.816 0.602 0.407 0.249 0.433 0.255

Table 9: Recommendation results for fine-tuning PREPREC.
We fine-tune PREPREC and retrain the baselines from scratch
on the target dataset.

We also investigate PREPREC’s fine-tune capability. To ensure
target datasets are smaller than the source, we further process the
target datasets such that they are no more than 10% of the source
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datasets’ total interactions. After further processing, we follow the
same experimental setup in § 5.2. We fine-tune PREPREC and re-
train the baselines from scratch on the target dataset and report the
results in Table 9. We find that PREPREC , after fine-tuning, outper-
forms the selected baselines on Office and Epinions by up to 12.9%,
indicating that PREPREC is capable of learning from the limited data
and can be further fine-tuned to achieve better performance.

5.7 Discussion

PREPREC demonstrates the strong ability for zero-shot transfer. We
argue that PREPREC is particularly useful in the following scenarios:
1) initial sequential model when the data in the domain is sparse; 2)
backbone for developing more complex sequential recommenders
(i.e., prediction interpolation) 3) online recommendation settings.

PREPREC captures the popularity shifts in the sequence and is
complementary to state-of-the-art sequential recommenders. It is
worth noting that item popularity dynamics might not capture ev-
erything in users’ preferences, but we believe they are orthogonal
components towards capturing user preferences, which could ex-
plain why the interpolation results substantially outperform both
PrREPREC and the selected state-of-the-art baselines (Table 3).

Additionally, time granularity is also crucial for popularity dy-
namics, and sequence analysis requires careful consideration of the
time horizon. Intuitively, when the dataset time precision is less
accurate, i.e., weeks or days, we expect the performance to decrease
as the sequential information and popularity dynamics become
muddled. If the time precision in the training data increases, we can
expect more accurate user sequences and more accurate measures
of popularity dynamics. In general, time precision will not signif-
icantly impact the performance of PREPREC in most scenarios as
in practice, online platforms can record precise time data for each
user-item interaction. We will include more discussion in the arXiv
version of this paper [55].

6 CONCLUSION

In this paper, using the critical insight of popularity dynamics in the
user’s sequence, we developed a novel pre-trained sequential rec-
ommendation framework, PREPREC, for the zero-shot, cross-domain
setting without any auxiliary information. PREPREC learned trans-
ferable, universal item representations via popularity dynamics-
aware transformers. We empirically showed that PREPREC can
achieve excellent zero-shot transfer to a target domain, compa-
rable to state-of-the-art sequential recommenders trained on the
target domain. With extensive within-domain experiments, we
found performance gains of 11.8% when we interpolated PREPREC ’s
results with state-of-the-art sequential recommenders, indicating
that PREPREC is learning complementary information. We posit
that popularity dynamics are crucial for developing generalizable
sequential recommenders.

As part of future work, we plan to investigate: 1) developing
more complex sequential recommenders by using PREPREC as a
backbone (i.e., prediction interpolation and auxiliary information),
and 2) exploring online recommendation settings.
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