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SUMMARY

Each view of our environment captures only a subset of our immersive surroundings. Yet, our visual experi-
ence feels seamless. A puzzle for human neuroscience is to determine what cognitive mechanisms enable us
to overcome our limited field of view and efficiently anticipate new views as we sample our visual surround-
ings. Here, we tested whether memory-based predictions of upcoming scene views facilitate efficient
perceptual judgments across head turns. We tested this hypothesis using immersive, head-mounted virtual
reality (VR). After learning a set of immersive real-world environments, participants (n = 101 across 4 exper-
iments) were briefly primed with a single view from a studied environment and then turned left or right to make
a perceptual judgment about an adjacent scene view. We found that participants’ perceptual judgments were
faster when they were primed with images from the same (vs. neutral or different) environments. Importantly,
priming required memory: it only occurred in learned (vs. novel) environments, where the link between adja-
cent scene views was known. Further, consistent with a role in supporting active vision, priming only
occurred in the direction of planned head turns and only benefited judgments for scene views presented
in their learned spatiotopic positions. Taken together, we propose that memory-based predictions facilitate
rapid perception across large-scale visual actions, such as head and body movements, and may be critical

for efficient behavior in complex immersive environments.

INTRODUCTION

Humans constantly make predictions to support ongoing
behavior: we predict what will be inside our mailbox, which peo-
ple will be in the room we are entering, and whether there is time
to get through a yellow light. These predictions are often shaped
by our memories of past experiences.’ In traditional studies of
memory-based predictions, participants learn associations be-
tween stimuli presented sequentially on a screen and are trained
to predict upcoming target images (e.g., expect C, given A
and B).?”" Once learned, these associations facilitate sensory
processing of upcoming stimuli, speeding detection®® and
improving recognition of anticipated percepts.'®'" However,
despite their presumed importance in everyday cognition, the
content and form of memory-based predictions during natural-
istic, active vision are unclear. As we look around the world,
exchanging visual content in the current view for content in the
next, what information is predicted across head turns?

Several lines of evidence suggest that the visual system pre-
dicts the perceptual consequences of small-scale visual actions
(i.e., saccades). During saccades, associations between foveal
and peripheral percepts support perceptual continuity. For
instance, before a saccade to a target stimulus, the pre-saccadic
center of gaze already shows enhanced sensitivity to the post-
saccadic target’s stimulus features, linking processing of the

current view to the upcoming one.’> Memory for a previously
foveal percept also influences peripheral vision. For example,
past work has shown that the percept of a stimulus in the periph-
ery can become biased to resemble the same stimulus’ foveal
percept.'>'* These behavioral findings align closely with neural
recordings. For example, cells in monkey retinotopic cortex
anticipate the visual consequences of saccades by preemptively
responding to objects that will fall into their receptive fields
following a saccade.’>~'® Compatible evidence for this phenom-
enon—termed “predictive remapping”'®—has also been identi-
fied in human neuroimaging'®?" and behavior.?>?° So, the vi-
sual system clearly predicts the consequences of small-scale
visual actions—i.e., saccades—but what about larger-scale be-
haviors? Prediction during saccades is relatively straightforward
because the visual information being predicted is, of course,
already available to draw from in the visual periphery. In contrast,
an open question is how predictive vision generalizes to large-
scale visual actions like head and body movements, where up-
coming visual information is fully out of view.

Two solutions could plausibly address how the brain gener-
ates predictions across head turns in immersive, real-world con-
texts. First, schema-level knowledge about the type of environ-
ment could be used to extrapolate visual content beyond the
current field of view. Scene extrapolation has been proposed
as a mechanism supporting the phenomenon of boundary

Current Biology 35, 121-130, January 6, 2025 © 2024 Elsevier Inc. 121

All rights are reserved, including those for text and data mining, Al training, and similar technologies.


mailto:annamynick@gmail.com
mailto:caroline.e.robertson@dartmouth.edu
https://doi.org/10.1016/j.cub.2024.11.024
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cub.2024.11.024&domain=pdf

¢? CellPress

A Study takes place entirelyin B
immersive head-mounted
virtual reality

Training Phase (Day 1 and 2):
Participants explore scenes
with no task

occluder

C Each scene has an open and closed view on opposite sides of the
initial view

initial closed

-180°

-90° 0° 90°

180°

Figure 1. Experimental paradigm

Current Biology

D Trial timecourse for Priming Test (Day 2)
prime
(300ms

head
target
(until response)

“Open or
ma closed?”

E Priming conditions (Experiments 1 and 2)

J

prime

Neutral

target

Same-scene

(A) Participants were fitted with virtual reality (VR) headsets, which were used throughout the study.
(B) On both days of the training phase, participants studied each real-world scene in immersive VR for 20 s, instructed to simply “look around like you normally

would.”

(C) Each scene had one open and one closed view on opposing sides of the initial facing-direction in the scene, spaced 180° apart on the horizontal axis.

(D) On day 2, participants performed a priming test in which they viewed a 300 ms prime image before turning left or right toward a target image (open or closed
view) to make a speeded perceptual (open/closed) judgment. Targets were presented until a response was made.

(E) Prime images in experiments 1 and 2 either depicted a continuous view adjacent to the target from the initial direction (same-scene), a blank gray rectangle
(neutral), or an image taken from the initial direction of a different scene (different-scene).

See also Figure S1 for full set of scene stimuli, Figure S2 for familiarity responses, Figure S3 for perceptual judgment accuracy, and Videos S1, S2, and S3 for

screen videos of training phase and priming test.

extension, whereby participants falsely report having seen a
zoomed-out version of a previously viewed scene image®®2°
(but see Bainbridge and Baker,*° Gandolfo et al.,*" and Hafri
et al.*%). Second, memory of the broader visuospatial environ-
ment could supply specific predictions about the content and
layout of upcoming views that will result from visual actions.
Indeed, recent work has shown that views from the same envi-
ronment become associated in the brain, which could support
this type of behavioral prediction.*%

Here, we sought to understand how memory supports natural-
istic scene perception across large-scale visual actions in immer-
sive environments. To do this, we developed an experimental
paradigm that used head-mounted virtual reality (VR) to examine
memory-based predictions in immersive, real-world scenes. After
learning a set of immersive real-world scenes, participants were
primed with a single scene view before head-turning to see
another view from the studied scenes and making an ecologically
relevant perceptual judgment (“could | walk into this space?”).

To preview our results, we found that memory-based predic-
tions are generated for upcoming scene views across head turns
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(experiment 1) and that these predictions depend on memory for
out-of-sight views of the current scene (experiment 2). Crucially,
these predictions appear to occur in service of action plans (ex-
periments 3 and 4), priming responses to content that is
congruent with the visual outcome of an intended head turn.
Together, our results suggest a role for memory-based predic-
tions in facilitating rapid perception as we sample the visual
world around us.

RESULTS

Upcoming scene views are primed across head turns

We first asked whether memory-based predictions are generated
for upcoming scene views across head turns inimmersive environ-
ments (experiment 1). In the training phase, participants (n = 18)
learned a set of immersive real-world scenes in VR (Figure 1A).
To facilitate faster learning, scenes depicted familiar locations
around the local university (experiment 1 familiarity per participant,
quantified by percent “yes” responses to the prompt “are you
familiar with this place in real life? [yes/no/unsure]”: M = 85.6%,
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SD =11.63%) (Figures S1 and S2). Scenes fully surrounded partic-
ipants, so that they needed to use head turns to see a scene
completely (Figure1B). On each trial (20 s), participants were sim-
ply told to naturally explore each scene (i.e., “look around like you
normally would”). Each scene featured an open view (e.g., a view
ofan open parking lot) and a closed view (e.g., a view of a building’s
facade) on either side of an initial facing direction (Figure 1C).
Importantly, participants could accurately recall the relative spatial
position of each scene view, quantified by recall accuracy for
whether a view had appeared on the left, right, or center of a scene
during the training phase (explicit memory test, M = 93.70 + 5.80
SD; t(17) = 44.17, p < 0.001, 95% confidence interval [CI] [90.81,
96.58]) (Figure S3).

After the training phase, we assessed participants’ mem-
ory-based predictions in the priming test. On each trial, partic-
ipants saw a full-field scene image (“prime”) from a studied
scene. Following the prime image, participants turned approx-
imately 90° left or right to make a perceptual judgment (open
or closed) on a second scene view (“target”) that appeared in
their periphery (Figure 1D). Participants were accurate at mak-
ing this judgment (Figure S3C; Table 2). Primes either de-
picted: (1) a view from the same scene (same-scene prime),
(2) a blank gray rectangle (neutral prime), or (3) a view from
a different scene (different-scene prime) (Figure 1E). We
considered memory retrieved in response to the prime image
the “predicted content,” and we assessed the behavioral
impact of this prediction by comparing median response
time (Figure 2A) across the priming conditions. We hypothe-
sized that if participants generate memory-based predictions
for upcoming scene views, response times would be faster af-
ter same-scene primes compared with neutral or different-
scene primes. We compared the differences across condi-
tions using linear mixed effects (LME) models with priming
condition (same-scene/neutral/different-scene) as a fixed
effect.

Our results reveal evidence for memory-based predictions
across head turns. A LME model (fixed effect: priming condition;
random effects: participant and scene) showed a significant ef-
fect of priming condition on response time (F(2, 1,908.7) =
33.78, p < 0.001, np2 = 0.03) (Figure 2B; Table S1). Critically,
perceptual judgments were faster after same-scene primes
compared with neutral primes (t(17) = —2.77,p=0.01 x 3 tests =
Peorr = 0.04, d = —0.43, 95% CI [-0.07, —0.01]) and were slower
after different-scene primes compared with neutral primes
(t(17) = —=3.37, pcorr = 0.01, d = 0.57, 95% CI [-0.08, —0.02]).
This priming effect (same-scene < neutral) also replicated across
three pilot datasets (Figure S4). Interestingly, priming was also
observed in scenes that were reported as unfamiliar during the
day 1 training phase (t(102) = —2.79, p = 0.006, d = —0.27,
95% CI [-0.08, —0.01]) (Figure S2C), suggesting that scenes
learned in virtual environments can support memory-based pre-
diction without real-world scene experience. Taken together,
these results demonstrate that upcoming scene views are
primed across head turns in familiar environments.

Motor response preparation does not account for
priming effect

This priming effect seems to suggest that predictions are gener-
ated based on memory for the visual content of the upcoming
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scene view. An alternative interpretation, however, is that partic-
ipants learned to associate each prime view with a motor
response (e.g., “if | turn left, I'll press the ‘open’ button, if | turn
right, the I'll press the ‘closed button’”) without actually predict-
ing the visual content of the upcoming view. To rule out this pos-
sibility, we examined trials from the different-scene condition, in
which the prime and target scene either resulted in “motor-
matched” trials because they had matched layouts (e.g., were
both open on the left, closed on the right) or “motor-mis-
matched” trials because they had mismatched layouts (e.g.,
the prime was closed on the right, the target was open on the
right) (Figure 2C). If participants had learned to associate each
prime view with a motor response plan instead of generating a
visual prediction, motor-matched primes should evoke the cor-
rect motor plan (albeit the wrong visual prediction), resulting in
faster response times for motor-matched than motor-mis-
matched trials. Instead, a paired t test revealed no difference in
response time between motor-matched and -mismatched trials
(t(17)=1.52,p =0.146, 95% CI [-0.01, 0.06]) (Figure 2D). Indeed,
the data in fact trend in the opposite direction, with numerically
faster responses in motor-mismatched trials. Taken together,
this suggests that information about upcoming visual con-
tent—rather than just a motor response—was primed across
head turns.

Priming relies on memory for immersive environments
We next tested whether priming across head turns requires
memory for the specific scene or whether predictive informa-
tion arises from scene extrapolation (akin to boundary exten-
sion).?” To do this, in experiment 2, we invited a new set of par-
ticipants (n = 20) to perform the same priming test as in
experiment 1, but this time on a set of novel, unfamiliar scenes
with no training phase (Figure S5 for scene images; Table 1). We
then calculated the priming effect (same-scene vs. neutral vs.
different-scene) in experiment 2 (unfamiliar scenes) and
compared the extent of the priming effect with the effect in
experiment 1 (familiar scenes). Experiment 2 participants
were accurate at making open/closed judgments (Figure S3C;
Table 2). To measure the extent of priming, we compared
response times across the three conditions using a LME model.
This analysis revealed that there was no difference in response
times across priming conditions in experiment 2 alone (LME
model: F(2, 1,889.9) = 0.70, p = 0.49, np2 = 0.0007) (Figure 2E;
Table S1), suggesting that no predictive information was avail-
able to speed up perceptual judgments. Next, we compared
response times for unfamiliar scenes with those for familiar
scenes (i.e., response times from experiment 1), using a LME
model with priming condition and experiment (experiment
1/experiment 2) as fixed effects (participant and scene as
random effects). Overall, response times were slower for unfa-
miliar scenes (main effect of experiment: F(1, 42.7) = 15.72,
p <0.001, np2 =0.27). Critically, there was a significant interac-
tion between experiment and priming condition (F(2, 3,861.5) =
19.012, p < 0.001, T]p2 = 0.001), indicating that familiarity with a
scene is required for priming across head turns. Together, our
results indicate that behavioral priming across head turns re-
quires memory-based prediction and does not arise from scene
extrapolation.
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Figure 2. Same-scene primes facilitate faster perceptual judgments in familiar (but not unfamiliar) scenes

(A) Example participant’s data depicting head angle on the horizontal plane across a trial. Each line depicts head angle on the horizontal plane (yaw) for one trial
from target onset. Each open circle marks the (time, head angle) of the participant at the time of the perceptual judgment.

(B) We compared median response times for perceptual judgments across priming conditions in experiment 1 (n = 18). Compared with neutral primes, same-
scene primes quickened response times and different-scene primes slowed response times. Connected points represent the same participant across
conditions.

(C) Different-scene trials (experiment 1) either contained (1) a prime and target with matching layouts (e.g., both open on the left, closed on the right), in which the
prime would evoke the correct motor plan (motor matched), or (2) mismatched layouts (e.g., prime open on the left, target open on the right) in which the prime
would evoke the wrong motor plan (motor mismatched).

(D) Response times in different-scene motor-matched trials and motor-mismatched trials do not differ. Each participant’s median response time was calculated
for motor-matched vs. motor-mismatched trials (paired t test). Connected points represent the same participant across bars.

(E) There was no difference in median response times for perceptual judgments across priming conditions in experiment 2 (n = 20), which contained unfamiliar
scenes. Connected points represent the same participant across conditions.

Forall plots, *p < 0.05, **p < 0.01, **p < 0.001 difference between median response time for indicated priming conditions (Bonferroni-corrected paired t tests);
n.s., not significant.

See also Figure S2 for familiarity responses, Figure S3 and Table S3 for priming test accuracy, Figure S4 for replication of experiment 1 priming effect (same-
scene vs. neutral), Figure S5 for experiment 2 scene stimuli, Tables S1 and S2 for additional analysis, and Video S1 for screen videos of training phase and
priming test.

Action plans bias direction of priming turn right to see whether | can safely change lanes in traffic).>%°

So far, the results of experiments 1 and 2 suggest that memory- Do endogenous action plans exaggerate the extent of memory-
based predictions support efficient scene perception across based predictions across head turns?

head turns. In both of these experiments, an exogenous cue (a To test this, in experiment 3, we asked whether predictions are
target appearing in the periphery) alerted participants to where  biased in the direction of intended action plans or whether pre-
they should look next. But most often in real-world contexts, dictions are generated for all scene views surrounding the cur-
an endogenous action plan directs where we look (e.g., | head rent one, regardless of action plans. Participants (n = 26)

124 Current Biology 35, 121-130, January 6, 2025
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Table 1. Overview of experiments

# Scene view Explicit
# Priming Priming test Condition repetitions by memory # Participants # Participants
- # Days Scenes testtrials conditions split (%)  condition Neutral type test collected included
Experiment 1 2 local 144 same-scene 50 2 blank gray  yes 26 18
university neutral 25 1
different-scene 25 1
Experiment 2 1 unfamiliar 144 same-scene 50 1 blank gray no 24 20
locations neutral 25 <1
different-scene 25 <1
Experiment 3 2 local 216 same-scene, 50 8 scrambled no 46 26
university valid arrow
neutral, valid 16.7 1
arrow
same-scene, 16.7 1
invalid arrow
neutral, invalid 16.7 1
arrow
Experiment 4 2 local 144 same-scene 50 2 blank gray yes 44 37
university spatially
congruent
neutral 25 1
same-scene 25 1
spatially
displaced
Pilot A 2 local 108 same-scene 66.6 2 blank gray  yes 23 18
university neutral 33.3 1
Pilot B 2 local 108 same-scene 66.6 2 scrambled  yes 31 21
university neutral 33.3 1
Pilot C 2 local 108 same-scene 66.6 2 scrambled  yes 28 22
university neutral 33.3 1

completed a version of our priming test using the same familiar
stimulus set as in experiment 1, in which a brief left or right arrow
(300 ms) preceded the prime images (same-scene or neutral)
(Figure 3A), indicating a direction to plan a head turn in. Arrows
correctly indicated the upcoming target location (“valid arrow”)
on two-thirds of trials and were incorrect (“invalid arrow”) in
the remaining one-third of trials. If predictions serve intended ac-
tion plans, a planned head turn should strengthen the extent of
priming in the intended —but not unintended —direction.

Our results were consistent with this hypothesis. As in previ-
ous experiments, participants were accurate at making open/
closed judgments (Figure S3C; Tables 2 and S3). We observed
both a main effect of priming condition (same-scene/neutral)
(LME model: F(1, 4,405.8) = 35.16, p < 0.001, an = 0.008) and
arrow condition (valid/invalid) (F(1, 4,406.7) = 64.98, p < 0.001,
Tlp2 = 0.01) on response time. Critically, the priming effect was
stronger in the direction of intended head turns, evidenced by
a significant interaction between priming condition (same-
scene/neutral) and arrow condition (valid/invalid) (F(1,
4,405.9) =9.32, p = 0.002, Tlp2 =0.002). Post hoc tests indicated
that same-scene primes resulted in faster response times than
neutral primes in trials with valid arrows (t(25) = —4.26, pcorr =
0.002, d = —-0.29, 95% CI [-0.07, —0.02]) but not invalid arrows
(t(25) = —0.65, pcorr = 1, d = 0.07, 95% CI [-0.04, 0.02])

(Figure 3B; Figure S6). This finding suggests that memory-based
predictions are coordinated with planned actions to facilitate
efficient perceptual judgments in immersive environments.

Action plans dictate primed content
Finally, we turned to the content of the memory-based predic-
tion—is the content of a memory-based prediction determined
by an agent’s planned actions (i.e., head-turn direction) within
a spatial environment? Using the priming test structure estab-
lished in experiments 1 and 2 (i.e., no arrow cue), in experiment
4 (n = 37), we introduced a new priming condition (the “same-
scene spatially displaced” condition) in which the prime and
target were drawn from the same scene but the target image de-
picted the view 180° opposite the expected one (e.g., the
scene’s left view, presented where the right view should appear
in space) (Figure 4A). This created a conflict between an action
(e.g., right head turn) and the predicted visual consequence of
that action (e.g., left scene view instead of right scene view). If
the content of memory-based predictions were determined by
an agent’s action in a spatial environment, then priming should
remain intact for same-scene (spatially congruent) trials but
should be disrupted for same-scene spatially displaced ones.
Consistent with our hypothesis that an agent’s actions withinan
immersive environment determine the content of memory-based
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Table 2. Overview of priming test accuracy (experiments 1-4)

Mean Repeated- Post hoc
accuracy measures pairwise  Condition
- (SD) (%) ANOVA sig df F p npz t tests comparison sig df t p?
Experiment 1 91.44 (4.88) - n.s. (2,34) 0.92 0.41 0.05 - - - - - -
Experiment 2 90.42 (4.34) - ** (2,38) 6.01 0.005 024 - same-scene Vs. ns. 19 -0.72 1
neutral
same-scene Vvs. * 19 3.23 0.013
different-scene
neutral vs. * 19 2.77 0.036
different-scene
Experiment 3 88.43 (5.35) - n.s. (1,25 0.02 0.89 8e-5 - - - - - -
Experiment 4 91.12 (0.05) - *** (1.65,69.31) 9.41 p<0.001 021 - same-scene Vs. * 36 3.20 0.009
neutral
same-scene ns. 36 -1.19 0.73
spatially congruent
Vs. same-scene
spatially displaced
neutral vs. ** 36 —3.50 0.004

same-scene
spatially displaced

Results from repeated-measures ANOVA and post hoc t tests evaluating differences in priming test open/closed accuracy between priming condi-
tions. Sig, significance for indicated statistical test; “o < 0.05, *p < 0.01, ***p < 0.001. df, degree(s) of freedom.

%p values after Bonferroni correction.

predictions, we found a significant effect of priming condition on
response time (LME model: F(2, 3,811.9) =14.66, p < 0.001, np2 =
0.008) (Figure 4B; Table S1), whereby same-scene spatially
congruent primes sped response time compared with neutral
ones (t(36) = —2.11, p = 0.04, d = —0.21, 95% CI [-0.05,
—0.001]), replicating the priming effect observed in experiments
1 and 3. Critically, same-scene spatially displaced trials elicited
slower response times than same-scene spatially congruent trials
(t(36)=—2.14,p =0.04,d = —0.28, 95% CI[-0.07, —0.002]), sug-
gesting that the conflict between visual action and visual outcome
disrupted memory-based predictions across head turns. Taken
together, these results argue for amechanism by which predicted
content may be mapped to the spatial scaffold of a scene based
on an agents’ action in that environment.

DISCUSSION

Here, we show that memory-based predictions of upcoming,
out-of-sight scene views prime perception of those views across
head turns to enable rapid, ecologically relevant perceptual
judgments. This priming only occurs in familiar scenes, showing
that it depends on memory for the out-of-sight content. Further,
priming is skewed in the direction of planned head turns, under-
scoring its utility for active vision. Based on these results, we
propose that memory-based predictions likely enable us to over-
come our limited field of view by supporting efficient perception
across large-scale visual actions.

Our work advances our understanding of how predictive pro-
cesses influence perception across large-scale visual actions
by showing that memory-based predictions are generated
for upcoming scene views across head turns in immersive envi-
ronments (experiments 1-4). Importantly, we identify evidence of
upcoming scene view prediction in three separate experiments:

126 Current Biology 35, 121-130, January 6, 2025

experiment 1, experiment 3 (valid trials), and experiment 4
showed faster responses to expected (same-scene) scene views
than unexpected (different-scene) or unpredictable (neutral)
ones. Previous studies of predictive vision have primarily used
basic stimuli (e.g., oriented gratings or single objects) to examine
small-scale visual actions like saccades within a single field of
view. In these contexts, others have found evidence for predic-
tive vision in foveal and peripheral vision.'>™'” For example,
before making a saccade, the center of gaze becomes more sen-
sitive to the visual features of the stimulus that the saccade will
bring into view.'? Likewise, across saccades, the appearances
of peripheral objects become biased toward their associated
foveal percepts, which is thought to smooth the transition be-
tween low-acuity peripheral vision and high-acuity foveal
vision."®'* Interestingly, saccades are necessary to evoke this
predictive bias—biased perception does not occur for percepts
that become associated without a saccade, ' which mirrors our
finding that intended actions modulate the extent of priming
(experiment 3). However, prediction across saccades differs
fundamentally from predictions across head turns: across sac-
cades, information in the periphery can be used to inform predic-
tions, ' whereas head turns often bring new information into the
field of view and should therefore require additional information
to inform predictions. Indeed, our results indicate that, in immer-
sive contexts, memory supports predictions of upcoming scene
views across head turns. Thus, an open question is the degree of
overlap between the cognitive mechanisms underpinning pre-
dictions across saccades (operating within a field of view) vs.
across large-scale visual actions like head turns (operating
across many fields of view).

Our finding that priming occurs across head turns in familiar
(but not unfamiliar) scenes suggests the existence of a mem-
ory-dependent cognitive mechanism that supports efficient
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A Experiment 3: Head turns are B  Priming is biased in the direction of an Figure 3. Priming is biased in the direction of
planned in a given direction intended head turn intended head turns

1.7 i & (A) On each trial of experiment 3, participants

(;0'6‘:]‘;"8) — s, saw an arrow indicating a direction to plan a

15 o head turn in, followed by a prime and target.

Arrows were either valid (i.e., correctly indi-
cated the location of the upcoming target) or
invalid.

(B) Median response times for perceptual
judgments across priming conditions in experi-
ment 3 (n = 26) were only faster in same-scene
compared with neutral primes when preceded
by a valid arrow. Connected points represent
the same participant across conditions. * p <
0.05, * p < 0.01, ™ p < 0.001 difference
between median response time for indicated
priming conditions (Bonferroni-corrected paired
t tests unless otherwise noted). LME indicates the interaction between arrow condition and priming condition using a linear mixed effects model.

13

head target

turn - (until response) 11

Response time (s)

0.9

0.7

Same- Neutral Same- Neutral
scene scene

valid arrow invalid arrow

See also Figure S6, Tables S1 and S2 for additional analysis, and Video S1 for screen videos of training phase and priming test.

visual perception across head turns. This memory-dependent
mechanism likely differs fundamentally from two known phe-
nomena that occur robustly in response to unfamiliar im-
ages—boundary extension and scene layout extrapola-
tion®"°—which both indicate that out-of-sight information
can be extrapolated from a limited field of view (but see
Shafer-Skelton and Brady®). However, boundary extension
and scene layout extrapolation are inherently different from pre-
dictions across large-scale visual actions like head turns: both
operate only within a small spatial window around the
scene.?”*” Thus, our findings likely complement the cognitive
phenomena of boundary extension or scene layout extrapola-
tion, contributing instead to a growing body of literature
showing that memory is leveraged to proactively support
behavior.2*'"*> We hypothesize that this cognitive mecha-
nism, memory-based scene view prediction, could arise from
associations in the brain between scene views sampled from
the same environment during learning.®*>*

The present work describes evidence for a predictive process
in which visual predictions of upcoming scene views are gener-
ated to support active vision. Importantly, our results also argue
against the alternative interpretation that prime images elicited
simple motor predictions or response biases (e.g., “if | turn left,
I’ll press the ‘open’ button”). Using data from different-scene tri-
als (experiment 1), we examined trials where the prime and target
had matching spatial layouts, such that the prime would evoke
the correct motor plan but the wrong visual prediction (motor-
matched trials). Critically, these trials were no faster than trials
with mismatched layouts (wrong motor plan, wrong visual pre-
diction), indicating that preparing a motor response alone is
not sufficient to account for the same-scene priming effect we
observe across our experiments. Relatedly, though our decision
to exclude trials where participants head-turned before the
target presentation led to a relatively high exclusion rate in exper-
iment 3 (36.5% of trials), this choice also bolsters the likelihood
that the priming effect observed could be attributed to a lingering
mnemonic representation, decoupled from a motor one. Taken
together, our results suggest that participants are predicting
the specific visual content of an upcoming scene view—not
just preparing an open/closed motor response—across head
turns.

An interesting question for future study is the extent to which
attentional shifts and visual predictions interact across large-
scale visual actions. In experiment 3, the arrow cues preceding
the prime image could have caused participants to prepare an
attentional shift in working memory in advance of the head
turn, consistent with past work showing that attentional shifts
precede visual actions.*®*® This likely attention shift aligns
with—and adds to—the idea that visual predictions are prepared
across head turns.

Across two separate studies, we provide evidence that mem-
ory-based predictions are generated for upcoming scene views
across head turns. In these studies, presenting an incongruent
prime view, as in the neutral and different-scene (experiments 1
and 3) conditions, creates a visual discontinuity between the
prime and target image that does not exist in same-scene trials,
where prime and target are contiguous views from the same
scene. Such a discontinuity could slow response times, account-
ing for the response time difference between same-scene and
discontinuous trials in experiments 1 and 3. However, our results
argue against the impact of this potential: we found no difference
in response time between the same-scene vs. neutral or different-
scene conditions in experiment 2 (unfamiliar scenes), which also
contain this visual discontinuity. Thus, the results of experiment
2 suggest that a violation of the predicted (remembered) scene
view, rather than visual discontinuity between the prime and target
images, likely underpins the priming effect observed in this study.

The current paradigm tackles a key challenge for memory-
based predictions during active vision: the fact that perception
and memory often operate in distinct spatial reference frames.*°
For example, consider a seated agent who places a cup of coffee
on her desk—centering the cup on her retina—before turning to
her left to work on a computer monitor. For the memory of the
location of the coffee cup to be useful after the agent looks
away, she needs to convert the coffee cup’s position from retino-
topic to spatiotopic coordinates—otherwise, she risks acciden-
tally spilling the coffee while reaching for other items on the desk.
Importantly, because memory-based predictions have primarily
been studied in screen-based contexts,? *%°°052 it was previ-
ously unknown whether they are in fact implemented in a spatio-
topic reference frame. Our findings show that memory-based
predictions are mapped to the spatial coordinate frame of the

Current Biology 35, 121-130, January 6, 2025 127



¢? CellPress

Same-scene, spatially displaced 1.5
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immediate global environment. This aligns with recent VR
studies indicating that objects maintained in immersive working
memory are primarily remembered based on their location in the
environment’s global coordinate frame (rather than on their
egocentric position relative to the viewer during encod-
ing).*®>3** A noteworthy question is whether memory-based vi-
sual predictions also map on to the broader, global coordinate
frame when agents translate through their environment rather
than simply turning in one discrete location as we have studied
here. This question remains an intriguing one for future study.
Together with our findings, VR studies underscore the role of
memory in supporting ecologically relevant perceptual judg-
ments’** and highlight the promise of head-mounted VR as a
tool for studying how perceptual information is represented—
and predicted —during naturalistic, active perception.®*°>-°7

To conclude, here we developed a novel VR priming paradigm
to investigate the role of memory-based predictions during natu-
ralistic behavior. Our results indicate that memory-based predic-
tions of upcoming scene views enable rapid perceptual judg-
ments across head turns. We propose that memory-based
predictions may be used to overcome our limited field of view
by facilitating visual perception across large-scale visual actions
(head turns and body movements). Future work should aim to
understand how memory-based predictions retain their spatial
structure, perhaps through interplay between the perceptual
and head-direction systems.
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Figure 4. Action dictates primed content

(A) Experiment 4 (n = 37) contained same-scene
spatially displaced trials in which the prime and
target were drawn from the same scene, but the
target was presented 180° opposite its learned
location in 360° space.

S -t
W Samescene g oo me-scene spatially displaced primes showed

spatially o ’
congruent no priming effect relative to neutral. Connected
points represent the same participant across con-
B Neutral ditions. * p < 0.05 difference between median
response time for indicated priming conditions
Safme-scene (paired t tests).
spatially See also Tables S1 and S2 for additional analysis
displaced and Videos S1 and S2 for screen videos of training
phase and priming test.
ACKNOWLEDGMENTS

This work was supported by grants from the National Institute of Mental Health
(RO1MH130529) and the National Science Foundation (2144700) to C.E.R.. We
thank V. Stéermer and B. Duchaine for helpful comments and discussion.

AUTHOR CONTRIBUTIONS

C.E.R. and A.M. designed research; A.M. and T.L.B. developed software;
AM., AJ., and A.B. performed research; A.M. analyzed data; A.M., C.E.R.,
and A.S. wrote the paper.

DECLARATION OF INTERESTS

The authors declare no competing interests.

DECLARATION OF GENERATIVE Al AND AI-ASSISTED
TECHNOLOGIES IN THE WRITING PROCESS

During the preparation of this work the authors used ChatGPT in order to
improve the clarity of select sentences and phrases. After using this tool/ser-
vice, the authors reviewed and edited the content as needed and take full re-
sponsibility for the content of the publication.

STARXMETHODS

Detailed methods are provided in the online version of this paper and include
the following:

o KEY RESOURCES TABLE
o EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS
e METHOD DETAILS
o Hardware
o Stimuli
o Procedure
o QUANTIFICATION AND STATISTICAL ANALYSIS
o Inclusion Criteria
o Statistics

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
cub.2024.11.024.

Received: January 10, 2024
Revised: July 23, 2024
Accepted: November 14, 2024
Published: December 17, 2024


mailto:annamynick@gmail.com
https://doi.org/10.6084/m9.figshare.27655014
https://doi.org/10.6084/m9.figshare.27655014
https://doi.org/10.6084/m9.figshare.27679719
https://doi.org/10.1016/j.cub.2024.11.024
https://doi.org/10.1016/j.cub.2024.11.024

Current Biology

REFERENCES

1.

10.

11.

12.

13.

14

15.

16.

17.

18.

19.

20.

Rust, N.C., and Palmer, S.E. (2021). Remembering the Past to See the
Future. Annu. Rev. Vis. Sci. 7, 349-365. https://doi.org/10.1146/an-
nurev-vision-093019-112249.

. Hindy, N.C., Ng, F.Y., and Turk-Browne, N.B. (2016). Linking pattern

completion in the hippocampus to predictive coding in visual cortex.
Nat. Neurosci. 19, 665-667. https://doi.org/10.1038/nn.4284.

. Kok, P., Rait, LI, and Turk-Browne, N.B. (2020). Content-based

Dissociation of Hippocampal Involvement in Prediction. J. Cogn.
Neurosci. 32, 527-545. https://doi.org/10.1162/jocn_a_01509.

. Kok, P., and Turk-Browne, N.B. (2018). Associative Prediction of Visual

Shape in the Hippocampus. J. Neurosci. 38, 6888-6899. https://doi.org/
10.1523/JNEUROSCI.0163-18.2018.

. Turk-Browne, N.B., Scholl, B.J., Johnson, M.K., and Chun, M.M. (2010).

Implicit Perceptual Anticipation Triggered by Statistical Learning.
J. Neurosci. 30, 11177-11187. https://doi.org/10.1523/JNEUROSCI.
0858-10.2010.

. Olson, I.R., and Chun, M.M. (2001). Temporal contextual cuing of visual

attention. J. Exp. Psychol. Learn. Mem. Cogn. 27, 1299-1313. https://
doi.org/10.1037/0278-7393.27.5.1299.

. Nissen, M.J., and Bullemer, P. (1987). Attentional requirements of learning:

evidence from performance measures. Cogn. Psychol. 19, 1-32. https://
doi.org/10.1016/0010-0285(87)90002-8.

. Cravo, A.M., Rohenkohl, G., Santos, K.M., and Nobre, A.C. (2017).

Temporal Anticipation Based on Memory. J. Cogn. Neurosci. 29,
2081-2089.

. Stokes, M.G., Atherton, K., Patai, E.Z., and Nobre, A.C. (2012). Long-term

memory prepares neural activity for perception. Proc. Natl. Acad. Sci. USA
109, E360-E367. https://doi.org/10.1073/pnas.1108555108.

Chun, M.M., and Jiang, Y. (1998). Contextual Cueing: Implicit Learning and
Memory of Visual Context Guides Spatial Attention. Cogn. Psychol. 36,
28-71. https://doi.org/10.1006/cogp.1998.0681.

Jaramillo, S., and Zador, A. (2010). Auditory cortex mediates the percep-
tual effects of acoustic temporal expectation. Nat. Neurosci. 14, 246-251.
https://doi.org/10.1038/npre.2010.5139.1.

Kroell, L.M., and Rolfs, M. (2022). Foveal vision anticipates defining fea-
tures of eye movement targets. elife 77, e78106. https://doi.org/10.
7554/eLife.78106.

Herwig, A., and Schneider, W.X. (2014). Predicting object features across
saccades: Evidence from object recognition and visual search. J. Exp.
Psychol. Gen. 143, 1903-1922. https://doi.org/10.1037/a0036781.

. Osterbrink, C., and Herwig, A. (2021). Prediction of complex stimuli across

saccades. J. Vis. 21, 10. https://doi.org/10.1167/jov.21.2.10.

Duhamel, J.R., Colby, C.L., and Goldberg, M.E. (1992). The Updating of
the Representation of Visual Space in Parietal Cortex by Intended Eye
Movements. Science 255, 90-92. https://doi.org/10.1126/science.
1553535.

Umeno, M.M., and Goldberg, M.E. (1997). Spatial Processing in the
Monkey Frontal Eye Field. |. Predictive Visual Responses.
J. Neurophysiol. 78, 1373-1383. https://doi.org/10.1152/jn.1997.78.
3.1373.

Walker, M.F., Fitzgibbon, E.J., and Goldberg, M.E. (1995). Neurons in the
monkey superior colliculus predict the visual result of impending saccadic
eye movements. J. Neurophysiol. 73, 1988-2003. https://doi.org/10.1152/
in.1995.73.5.1988.

Denagamage, S., Morton, M.P., and Nandy, A.S. (2024). Widespread
Receptive Field Remapping in Early Visual Cortex. Preprint at bioRxiv.
Merriam, E.P., Genovese, C.R., and Colby, C.L. (2007). Remapping in
Human Visual Cortex. J. Neurophysiol. 97, 1738-1755. https://doi.org/
10.1152/jn.00189.2006.

Parks, N.A., and Corballis, P.M. (2010). Human transsaccadic visual pro-
cessing: Presaccadic remapping and postsaccadic updating.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

¢? CellPress

Neuropsychologia 48, 3451-3458. https://doi.org/10.1016/j.neuropsy-
chologia.2010.07.028.

Parks, N.A., and Corballis, P.M. (2008). Electrophysiological correlates of
presaccadic remapping in humans. Psychophysiology 45, 776-783.
https://doi.org/10.1111/j.1469-8986.2008.00669.x.

He, D., Mo, C., and Fang, F. (2017). Predictive feature remapping before
saccadic eye movements. J. Vis. 17, 14. https://doi.org/10.1167/17.5.14.

He, T., Fritsche, M., and De Lange, F.P. (2018). Predictive remapping of vi-
sual features beyond saccadic targets. J. Vis. 18, 20. https://doi.org/10.
1167/18.13.20.

Melcher, D. (2007). Predictive remapping of visual features precedes
saccadic eye movements. Nat. Neurosci. 70, 903-907. https://doi.org/
10.1038/nn1917.

Rolfs, M., Jonikaitis, D., Deubel, H., and Cavanagh, P. (2011). Predictive
remapping of attention across eye movements. Nat. Neurosci. 74,
252-256. https://doi.org/10.1038/nn.2711.

Chadwick, M.J., Mullally, S.L., and Maguire, E.A. (2013). The hippocam-
pus extrapolates beyond the view in scenes: An fMRI study of boundary
extension. Cortex 49, 2067-2079. https://doi.org/10.1016/j.cortex.2012.
11.010.

Intraub, H., and Richardson, M. (1989). Wide-Angle Memories of Close-Up
Scenes. J. Exp. Psychol. Learn. Mem. Cogn. 15, 179-187.

Mullally, S.L., Intraub, H., and Maguire, E.A. (2012). Attenuated Boundary
Extension Produces a Paradoxical Memory Advantage in Amnesic
Patients. Curr. Biol. 22, 261-268. https://doi.org/10.1016/j.cub.2012.
01.001.

Park, S., Intraub, H., Yi, D.-J., Widders, D., and Chun, M.M. (2007). Beyond
the Edges of a View: Boundary Extension in Human Scene-Selective
Visual Cortex. Neuron 54, 335-342. https://doi.org/10.1016/j.neuron.
2007.04.006.

Bainbridge, W.A., and Baker, C.1. (2020). Boundaries Extend and Contract
in Scene Memory Depending on Image Properties. Curr. Biol. 30, 537-
543.e3. https://doi.org/10.1016/j.cub.2019.12.004.

Gandolfo, M., Nagele, H., and Peelen, M.V. (2023). Predictive Processing
of Scene Layout Depends on Naturalistic Depth of Field. Psychol. Sci. 34,
394-405.

Hafri, A., Wadhwa, S., and Bonner, M.F. (2022). Perceived Distance Alters
Memory for Scene Boundaries. Psychol. Sci. 33, 2040-2058.

Berens, S.C., Joensen, B.H., and Horner, A.J. (2021). Tracking the
Emergence of Location-based Spatial Representations in Human
Scene-Selective Cortex. J. Cogn. Neurosci. 33, 445-462. https://doi.
org/10.1162/jocn_a_01654.

Robertson, C.E., Hermann, K.L., Mynick, A., Kravitz, D.J., and Kanwisher,
N. (2016). Neural Representations Integrate the Current Field of View with
the Remembered 360° Panorama in Scene-Selective Cortex. Curr. Biol.
26, 2463-2468. https://doi.org/10.1016/j.cub.2016.07.002.

Matthis, J.S., Yates, J.L., and Hayhoe, M.M. (2018). Gaze and the Control
of Foot Placement When Walking in Natural Terrain. Curr. Biol. 28, 1224—
1233.e5. https://doi.org/10.1016/j.cub.2018.03.008.

Hayhoe, M.M. (2017). Vision and Action. Annu Rev Vis Sci 3, 389-413.
https://doi.org/10.1146/annurev-vision-102016-061437.

Castelhano, M.S., and Pollatsek, A. (2010). Extrapolating spatial layout in
scene representations. Mem. Cognit. 38, 1018-1025. https://doi.org/10.
3758/MC.38.8.1018.

Sanocki, T. (2003). Representation and perception of scenic layout. Cogn.
Psychol. 47, 43-86. https://doi.org/10.1016/S0010-0285(03)00002-1.

Sanocki, T., and Epstein, W. (1997). Priming spatial layout of scenes.
Psychol. Sci. 8, 374-378.

Shafer-Skelton, A., and Brady, T.F. (2019). Scene layout priming relies pri-
marily on low-level features rather than scene layout. J. Vis. 19, 14. https://
doi.org/10.1167/19.1.14.

Current Biology 35, 121-130, January 6, 2025 129



https://doi.org/10.1146/annurev-vision-093019-112249
https://doi.org/10.1146/annurev-vision-093019-112249
https://doi.org/10.1038/nn.4284
https://doi.org/10.1162/jocn_a_01509
https://doi.org/10.1523/JNEUROSCI.0163-18.2018
https://doi.org/10.1523/JNEUROSCI.0163-18.2018
https://doi.org/10.1523/JNEUROSCI.0858-10.2010
https://doi.org/10.1523/JNEUROSCI.0858-10.2010
https://doi.org/10.1037/0278-7393.27.5.1299
https://doi.org/10.1037/0278-7393.27.5.1299
https://doi.org/10.1016/0010-0285(87)90002-8
https://doi.org/10.1016/0010-0285(87)90002-8
http://refhub.elsevier.com/S0960-9822(24)01565-3/sref8
http://refhub.elsevier.com/S0960-9822(24)01565-3/sref8
http://refhub.elsevier.com/S0960-9822(24)01565-3/sref8
https://doi.org/10.1073/pnas.1108555108
https://doi.org/10.1006/cogp.1998.0681
https://doi.org/10.1038/npre.2010.5139.1
https://doi.org/10.7554/eLife.78106
https://doi.org/10.7554/eLife.78106
https://doi.org/10.1037/a0036781
https://doi.org/10.1167/jov.21.2.10
https://doi.org/10.1126/science.1553535
https://doi.org/10.1126/science.1553535
https://doi.org/10.1152/jn.1997.78.3.1373
https://doi.org/10.1152/jn.1997.78.3.1373
https://doi.org/10.1152/jn.1995.73.5.1988
https://doi.org/10.1152/jn.1995.73.5.1988
http://refhub.elsevier.com/S0960-9822(24)01565-3/sref18
http://refhub.elsevier.com/S0960-9822(24)01565-3/sref18
https://doi.org/10.1152/jn.00189.2006
https://doi.org/10.1152/jn.00189.2006
https://doi.org/10.1016/j.neuropsychologia.2010.07.028
https://doi.org/10.1016/j.neuropsychologia.2010.07.028
https://doi.org/10.1111/j.1469-8986.2008.00669.x
https://doi.org/10.1167/17.5.14
https://doi.org/10.1167/18.13.20
https://doi.org/10.1167/18.13.20
https://doi.org/10.1038/nn1917
https://doi.org/10.1038/nn1917
https://doi.org/10.1038/nn.2711
https://doi.org/10.1016/j.cortex.2012.11.010
https://doi.org/10.1016/j.cortex.2012.11.010
http://refhub.elsevier.com/S0960-9822(24)01565-3/sref27
http://refhub.elsevier.com/S0960-9822(24)01565-3/sref27
https://doi.org/10.1016/j.cub.2012.01.001
https://doi.org/10.1016/j.cub.2012.01.001
https://doi.org/10.1016/j.neuron.2007.04.006
https://doi.org/10.1016/j.neuron.2007.04.006
https://doi.org/10.1016/j.cub.2019.12.004
http://refhub.elsevier.com/S0960-9822(24)01565-3/sref31
http://refhub.elsevier.com/S0960-9822(24)01565-3/sref31
http://refhub.elsevier.com/S0960-9822(24)01565-3/sref31
http://refhub.elsevier.com/S0960-9822(24)01565-3/sref31
http://refhub.elsevier.com/S0960-9822(24)01565-3/sref32
http://refhub.elsevier.com/S0960-9822(24)01565-3/sref32
https://doi.org/10.1162/jocn_a_01654
https://doi.org/10.1162/jocn_a_01654
https://doi.org/10.1016/j.cub.2016.07.002
https://doi.org/10.1016/j.cub.2018.03.008
https://doi.org/10.1146/annurev-vision-102016-061437
https://doi.org/10.3758/MC.38.8.1018
https://doi.org/10.3758/MC.38.8.1018
https://doi.org/10.1016/S0010-0285(03)00002-1
http://refhub.elsevier.com/S0960-9822(24)01565-3/sref39
http://refhub.elsevier.com/S0960-9822(24)01565-3/sref39
https://doi.org/10.1167/19.1.14
https://doi.org/10.1167/19.1.14

¢? CellPress

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Nobre, A.C., and Stokes, M.G. (2019). Premembering Experience: A
Hierarchy of Time-Scales for Proactive Attention. Neuron 7104, 132-146.
https://doi.org/10.1016/j.neuron.2019.08.030.

Rappaport, S.J., Humphreys, G.W., and Riddoch, M.J. (2013). The attrac-
tion of yellow corn: reduced attentional constraints on coding learned
conjunctive relations. J. Exp. Psychol. Hum. Percept. Perform. 39,
1016-1031. https://doi.org/10.1037/a0032506.

Albright, T.D. (2012). On the Perception of Probable Things: Neural
Substrates of Associative Memory, Imagery, and Perception. Neuron 74,
227-245. https://doi.org/10.1016/j.neuron.2012.04.001.

Schlack, A., and Albright, T.D. (2007). Remembering Visual Motion: Neural
Correlates of Associative Plasticity and Motion Recall in Cortical Area MT.
Neuron 53, 881-890. https://doi.org/10.1016/j.neuron.2007.02.028.

de Lange, F.P., Heilbron, M., and Kok, P. (2018). How Do Expectations
Shape Perception? Trends Cogn. Sci. 22, 764-779. https://doi.org/10.
1016/j.tics.2018.06.002.

Deubel, H. (2008). The time course of presaccadic attention shifts.
Psychol. Res. 72, 630-640. https://doi.org/10.1007/s00426-008-0165-3.
Gresch, D., Boettcher, S.E.P., Van Ede, F., and Nobre, A.C. (2024). Shifting
attention between perception and working memory. Cognition 245,
105731. https://doi.org/10.1016/j.cognition.2024.105731.

Harrison, W.J., Mattingley, J.B., and Remington, R.W. (2012). Pre-
Saccadic Shifts of Visual Attention. PLoS One 7, e45670. https://doi.org/
10.1371/journal.pone.0045670.

Draschkow, D., Nobre, A.C., and van Ede, F. (2022). Multiple spatial
frames for immersive working memory. Nat. Hum. Behav. 6, 536-544.
https://doi.org/10.1038/s41562-021-01245-y.

Aitken, F., and Kok, P. (2022). Hippocampal representations switch from
errors to predictions during acquisition of predictive associations. Nat.
Commun. 13, 3294. https://doi.org/10.1038/s41467-022-31040-w.
Clarke, A., Crivelli-Decker, J., and Ranganath, C. (2022). Contextual ex-
pectations shape cortical reinstatement of sensory representations.
J. Neurosci. 42, 5956-5965. https://doi.org/10.1523/JNEUROSCI.2045-
21.2022.

Crivelli-Decker, J., Clarke, A., Park, S.A., Huffman, D.J., Boorman, E., and
Ranganath, C. (2021). Goal-centered representations in the human hippo-
campus. Nat. Commun. 74, 2946.

Thom, J.L., Nobre, A.C., Van Ede, F., and Draschkow, D. (2023). Heading
Direction Tracks Internally Directed Selective Attention in Visual Working
Memory. J. Cogn. Neurosci. 35, 856-868. https://doi.org/10.1162/
jocn_a_01976.

Van Ede, F., and Nobre, A.C. (2023). Turning Attention Inside Out: How
Working Memory Serves Behavior. Annu. Rev. Psychol. 74, 137-165.
https://doi.org/10.1146/annurev-psych-021422-041757.

130 Current Biology 35, 121-130, January 6, 2025

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Current Biology

Botch, T.L., Garcia, B.D., Choi, Y.B., Feffer, N., and Robertson, C.E.
(2023). Active visual search in naturalistic environments reflects individual
differences in classic visual search performance. Sci. Rep. 713, 631.
https://doi.org/10.1038/s41598-023-27896-7.

Cohen, M.A., Botch, T.L., and Robertson, C.E. (2020). The limits of color
awareness during active, real-world vision. Proc. Natl. Acad. Sci. USA
117, 13821-13827. https://doi.org/10.1073/pnas.1922294117.

Haskins, A.J., Mentch, J., Botch, T.L., and Robertson, C.E. (2020). Active
vision in immersive, 360° real-world environments. Sci. Rep. 70, 14304.
https://doi.org/10.1038/s41598-020-71125-4.

Hansen, N.E., Noesen, B.T., Nador, J.D., and Harel, A. (2018). The influ-
ence of behavioral relevance on the processing of global scene properties:
An ERP study. Neuropsychologia 774, 168-180. https://doi.org/10.1016/.
neuropsychologia.2018.04.040.

Harel, A., Kravitz, D.J., and Baker, C.I. (2013). Deconstructing Visual
Scenes in Cortex: Gradients of Object and Spatial Layout Information.
Cereb. Cortex 23, 947-957. https://doi.org/10.1093/cercor/bhs091.

Harel, A., Groen, L.I.A., Kravitz, D.J., Deouell, L.Y., and Baker, C.I. (2016).
The Temporal Dynamics of Scene Processing: A Multifaceted EEG
Investigation. eNeuro 3, ENEURO.0139-16.2016. https://doi.org/10.
1523/ENEURO.0139-16.2016.

Kravitz, D.J., Peng, C.S., and Baker, C.Il. (2011). Real-World Scene
Representations in High-Level Visual Cortex: It's the Spaces More Than
the Places. J. Neurosci. 37, 7322-7333. https://doi.org/10.1523/
JNEUROSCI.4588-10.2011.

Greene, M.R., and Oliva, A. (2009). Recognition of natural scenes from
global properties: Seeing the forest without representing the trees.
Cogn. Psychol. 58, 137-176. https://doi.org/10.1016/j.cogpsych.2008.
06.001.

Kuznetsova, A., Brockhoff, P.B., and Christensen, R.H.B. (2017). ImerTest
Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 82, 1-26.
https://doi.org/10.18637/jss.v082.i13.

Balota, D.A., Aschenbrenner, A.J., and Yap, M.J. (2013). Additive effects
of word frequency and stimulus quality: The influence of trial history and
data transformations. J. Exp. Psychol. Learn. Mem. Cogn. 39, 1563-
1571. https://doi.org/10.1037/20032186.

Masson, M.E.J., and Kliegl, R. (2013). Modulation of additive and interac-
tive effects in lexical decision by trial history. J. Exp. Psychol. Learn. Mem.
Cogn. 39, 898-914. https://doi.org/10.1037/20029180.

Ludecke, D., Ben-Shachar, M.S., Patil, |., Waggoner, P., and Makowski, D.
(2021). performance: An R package for assessment, comparison and
testing of statistical models. J. Open Source Softw. 6, 3139.


https://doi.org/10.1016/j.neuron.2019.08.030
https://doi.org/10.1037/a0032506
https://doi.org/10.1016/j.neuron.2012.04.001
https://doi.org/10.1016/j.neuron.2007.02.028
https://doi.org/10.1016/j.tics.2018.06.002
https://doi.org/10.1016/j.tics.2018.06.002
https://doi.org/10.1007/s00426-008-0165-3
https://doi.org/10.1016/j.cognition.2024.105731
https://doi.org/10.1371/journal.pone.0045670
https://doi.org/10.1371/journal.pone.0045670
https://doi.org/10.1038/s41562-021-01245-y
https://doi.org/10.1038/s41467-022-31040-w
https://doi.org/10.1523/JNEUROSCI.2045-21.2022
https://doi.org/10.1523/JNEUROSCI.2045-21.2022
http://refhub.elsevier.com/S0960-9822(24)01565-3/sref52
http://refhub.elsevier.com/S0960-9822(24)01565-3/sref52
http://refhub.elsevier.com/S0960-9822(24)01565-3/sref52
https://doi.org/10.1162/jocn_a_01976
https://doi.org/10.1162/jocn_a_01976
https://doi.org/10.1146/annurev-psych-021422-041757
https://doi.org/10.1038/s41598-023-27896-7
https://doi.org/10.1073/pnas.1922294117
https://doi.org/10.1038/s41598-020-71125-4
https://doi.org/10.1016/j.neuropsychologia.2018.04.040
https://doi.org/10.1016/j.neuropsychologia.2018.04.040
https://doi.org/10.1093/cercor/bhs091
https://doi.org/10.1523/ENEURO.0139-16.2016
https://doi.org/10.1523/ENEURO.0139-16.2016
https://doi.org/10.1523/JNEUROSCI.4588-10.2011
https://doi.org/10.1523/JNEUROSCI.4588-10.2011
https://doi.org/10.1016/j.cogpsych.2008.06.001
https://doi.org/10.1016/j.cogpsych.2008.06.001
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.1037/a0032186
https://doi.org/10.1037/a0029180
http://refhub.elsevier.com/S0960-9822(24)01565-3/sref66
http://refhub.elsevier.com/S0960-9822(24)01565-3/sref66
http://refhub.elsevier.com/S0960-9822(24)01565-3/sref66

Current Biology

STARXxMETHODS

KEY RESOURCES TABLE

¢? CellPress

REAGENT or RESOURCE

SOURCE

IDENTIFIER

Deposited data

Raw data

This paper; https://doi.org/10.6084/
m9.figshare.27655014
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Other
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products/quest-2/

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

140 participants were recruited across four experiments in this study. Sample size for experiments 1-2 was chosen based on pre-
vious work®*. For experiments 3-4, a power analysis based on Pilot B (see Figure S4) was conducted (power = 0.8, alpha = 0.05, effect
size = 0.56, paired, one-tailed) to determine the sample size. Adult participants were recruited from the local university or the local
community and received payment ($15/hour) or course credit for participation. Due to technical challenges of remote data collection,
age and sex were not recorded for experiment 1, however these participants indicated they were between 18-65 years old during
consent. Experiment 2 (mean age: 22.84 + 5.09 years) had 15 female and 4 male participants, and 1 participant who responded, "Pre-
fer notto say". Experiment 3 (mean age: 20.23 + 3.94 years) had 16 female and 10 male participants. Experiment 4 (mean age: 20.54 +
2.82 years) had 22 female and 15 male participants. Participants in experiments 2-4 were recruited based on the following criteria: 1)
normal or corrected-to-normal vision 2) no neurological or psychiatric conditions 3) no history of epilepsy. Participants in experiment
1 participated for course credit and completed the experiment remotely from their homes using virtual reality headsets that were
delivered to them in the mail. Participants in experiments 2 and 3 were mixed between remote testing and in-person testing at
the local university in the following amounts: experiment 2: 7 remote, 17 in-person; experiment 3: 4 remote, 42 in-person. Participants
in experiment 4 all participated in person. Remote data was collected to comply with health and safety guidelines during the COVID-
19 pandemic. There was no significant impact of remote versus in-person testing in any of the experiments (Table S3). Written con-
sent was obtained from all participants in accordance with a protocol approved by the local university Institutional Review Board. 32
participants were excluded due to data quality concerns associated with VR data collection (see inclusion criteria section below),
leaving data from 101 participants in the final analyses: 18 in experiment 1, 20 in experiment 2, 26 in experiment 3, and 37 in exper-
iment 4.

METHOD DETAILS

Hardware

This study took place entirely in head-mounted virtual reality (VR). Stimuli were displayed through head-mounted virtual reality
(Oculus Quest 2, resolution 1832x1920 per eye, approximately 97° horizontal by 93° vertical field of view, 120 Hz refresh rate) using
a project designed in Unity (www.unity3d.com) with custom scripts written in C#, and deployed to headsets using mobile device
management software ManageXR (www.managexr.com). Experimental data was transferred from the HMD to lab servers via custom
data transfer pipeline written in C# and PHP.>®
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Stimuli

Stimuli were real-world photospheres downloaded from Google Maps. The number of indoor/outdoor locations was balanced in
each experiment. In all experiments, scenes had a specific layout: each contained an open side (e.g. a field or parking lot) and a
closed side (e.g. a wall or facade) on opposite sides of an initial facing direction (i.e. separated by 180°) (Figure S1). In all experiments,
we counterbalanced the number of [open-left, closed-right] and [closed-left, open-right] scenes.

Procedure

Our study consisted of 4 experiments that each tested a specific question related to memory-based predictions in immersive envi-
ronments. All experiments used a novel, shared priming test inspired by past priming tests of associative memory®” to evaluate the
presence or absence of prediction-based facilitation of an ecologically-relevant perceptual judgment.

This specific open/closed task was chosen because (i) scene expanse judgments (open/closed) are commonly used in the scene
literature®®~°° and are thought to be a key representational dimension in scene-selective cortex,®’ (i) because open/closed judg-
ments required participants to allocate their attention broadly to the target scene image, as opposed to searching for a specific object
or detail,®? and (iii) because it was important that prime view alone could not predict the correct answer for the target image, which
ruled out other common scene properties (indoor/outdoor, scene category, manmade/natural), which tend to hold constant across all
views of a scene.

In the sections that follow, we describe the procedure for each experiment.

Experiment 1 Procedure Overview

Experiment 1 was conducted over two consecutive days. On day 1, participants studied the scenes in detail (training phase). Then,
they received instructions on distinguishing between open and closed scene views (Open/Closed Instructions). On day 2, partici-
pants performed the priming test.

Experiment 1 Training Phase

During the training phase on day 1, participants actively viewed 18 immersive photorealistic scenes taken from the area around the
local university’s campus for 20 seconds each (see Figure S1). The open/closed sides of a scene were always positioned to par-
ticipants’ left/right relative to their starting facing direction and the back-most 90° of each scene was occluded to provide a clear
sense of left/center/right in each scene. The occluder was necessary to provide a framework to subsequently probe participants’
memory for the spatial layout of each scene (see Experiment 1 Explicit Memory Test). Participants were asked to “complete this
study standing at a desk or countertop where you can comfortably reach your keypad.” For each scene, participants were in-
structed to “Look around like you normally would”. The instructions told participants that there would be a “gray wall” (occluder)
behind them in each scene, and that they only needed to explore what wasn’t blocked by the wall. After viewing each scene, they
indicated whether the scene was familiar in real life via wireless keypad (1=Yes, 2=No, 3=Unsure) (Video S3). One participant in
experiment 1 was not included in the calculation of percent familiarity (Figure S2) because of missing data due to technical chal-
lenges with remote data collection. On day 2, participants completed a refresher training phase in which they viewed the 18 scenes
again for 20 seconds each.

Experiment 1 Open/Closed Instructions

Our primary interest was participants’ ability to make an ecologically-relevant behavioral judgment: was a scene view navigable or
not. To this end, after viewing each scene on day 1, we instructed participants how to distinguish between navigable vs. non-navi-
gable (i.e., open vs. closed) scene views. Before receiving these instructions, participants were informed that open/closed judgments
would be performed in a subsequent part of the experiment. Our specific instructions for distinguishing open versus closed scene
views were: "If a snapshot shows an open space or pathway where you could walk into the scene and move forward freely, that snap-
shot is Open. If a snapshot shows something blocking your way — something that would prevent you from walking into the scene and
moving forward freely — that snapshot is Closed." (Video S2). We then showed participants several examples of open versus closed
scene views in novel, unstudied scenes. After viewing these examples, participants completed 6 open/closed judgment practice tri-
als with feedback.

On day 2, following the refresher training phase, participants were reminded of the instructions for distinguishing open versus
closed scene views using the same wording as on day 1.

Experiment 1 Priming Test

Onday 2, participants completed the priming test after the refresher Training and the Open/Closed instructions reminder. Each trial of
the priming test consisted of four events (Figure 1): 1) Prime image (110° wide, 180° tall) appears directly in front of the participant
(display time: 300 ms); 2) Target image (110° wide, 180° tall) appears to the left or right of the participant (visible in their periphery);
3) Participant turns 90° to face the target image; 4) Participant indicates whether the target is open or closed via button press on a
wireless keypad.

The key manipulation of experiment 1 was controlling whether prime image came from the same scene as the target image. To
encourage participants to use the prime image to predict the upcoming target, more trials contained same-scene primes (50% of
144 total trials) than neutral (25%) or different-scene (25%) primes. The neutral prime for this study was simply a grey screen. The
36 possible target views (drawn from 2 sides of 18 scenes) occurred twice each in the same-scene condition and once each in
the neutral condition. In the different-scene condition, the prime was drawn from each of the 18 possible scene center views two
times; the target was drawn from each of the 36 possible target views one time. The mapping between prime and target views
was randomized during trial order creation, but trial order was constant across participants.
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Before testing, participants completed 5 practice priming test trials with feedback on novel, unstudied scenes. We instructed par-
ticipants to respond as quickly as they knew the answer using a wireless keypad (4=Open, 3=Closed) operated using two fingers on
one hand, and to “make sure your fingers are ready on the keypad”. After each trial, the participants’ response time was displayed to
emphasize the importance of responding quickly. Because the open/closed task was relatively simple, and participants were highly
trained to perform it, this study focuses on differences in response time rather than accuracy across conditions.

Experiment 1 Explicit Memory Test

After the priming test, we tested participants’ explicit memory of each scene’s spatial structure. On each trial of the explicit memory
test, participants saw a 45° view from a studied scene directly in front of them. Participants then used a wireless keypad to indicate
whether that view appeared on the Left, Right, or Center of the scene during the training phase (Figure S3). Participants were tested
on each left/right/center view for each studied scene.

Experiment 2 Procedure Overview

Experiment 2 specifically investigated whether priming occurred in unfamiliar environments. For this reason, unlike experiment 1,
experiment 2 required no training phase, and took place on a single day. In experiment 2, participants first learned Open/Closed in-
structions, and then performed the priming test on unfamiliar scenes.

Experiment 2 Open/Closed Instructions

We instructed participants how to distinguish between navigable vs. non-navigable (i.e., open vs. closed) scene views in the same
way as in experiment 1. Before receiving these instructions, participants were informed that open/closed judgments would be per-
formed in a subsequent part of the experiment. As in all other experiments, our specific instructions for distinguishing open versus
closed scene views were: "If a snapshot shows an open space or pathway where you could walk into the scene and move forward
freely, that snapshot is Open. If a snapshot shows something blocking your way — something that would prevent you from walking into
the scene and moving forward freely — that snapshot is Closed." (Video S2). We then showed participants several examples of open
versus closed scene views in novel, unstudied scenes. After viewing these examples, participants completed 6 open/closed judg-
ment practice trials with feedback.

Experiment 2 Priming Test

After receiving Open/Closed instructions, participants completed the priming test. Importantly, unlike experiments 1 and 3, this
test took place on novel (unfamiliar) scenes without any training phase. Identical to experiment 1, each trial of the priming test con-
sisted of four events (Figure 1): 1) Prime image (110° wide, 180° tall) appeared directly in front of the participant (display time:
300 ms); 2) Targetimage (110° wide, 180° tall) appeared to the left or right of the participant (visible in their periphery); 3) Participant
turned 90° to face the target image; 4) Participant indicated whether the target was open or closed via button press on a wireless
keypad.

In experiment 2, the key manipulation was using unfamiliar scenes for which participants had no memory. Thus, experiment 2
prime and target images were drawn from diverse locations around the world (Figure S5). To match the condition ratios of exper-
iment 1, prime images were: same-scene primes (50% of 144 total trials), neutral (25%) or different-scene (25%) primes. The
neutral prime for this study was simply a grey screen. The 72 possible target views (drawn from 2 sides of 36 scenes) occurred
once each in the same-scene condition and were randomly split between assignment to either the neutral or different-scene con-
ditions. The mapping between prime and target views was randomized during trial order creation, but trial order was constant
across participants.

Before testing, participants completed 4 practice priming test trials with feedback on novel scenes independent from the test set.
As in all other experiments, we instructed participants to respond as quickly as they knew the answer using a wireless keypad
(4=0Open, 3=Closed) operated using two fingers on one hand, and to “make sure your fingers are ready on the keypad”. After
each trial, the participants’ response time was displayed to emphasize the importance of responding quickly.

Experiment 3 Procedure Overview

Like experiment 1, experiment 3 was conducted over two consecutive days. On day 1, participants studied the scenes in detalil
(training phase). Then, they received instructions on distinguishing between open and closed scene views (Open/Closed Instruc-
tions). On day 2, participants performed the priming test.

Experiment 3 Training Phase

As in experiment 1, during the experiment 3 training phase on day 1, participants actively viewed 18 immersive photorealistic scenes
taken from the area around the local university’s campus for 20 seconds each (see Figure S1). As in all experiments, the open/closed
sides of a scene were always positioned to participants’ left/right relative to their starting facing direction (presentation side counter-
balanced), and the back-most 90° of each scene was occluded to provide a clear sense of left/center/right in each scene. Consistent
with the training phase in experiment 1, participants were asked to “complete this study standing at a desk or countertop where you
can comfortably reach your keypad." For each scene, participants were instructed to “Look around like you normally would”. The
instructions told participants that there would be a “gray wall” (occluder) behind them in each scene, and that they only needed
to explore what wasn’t blocked by the wall. After viewing each scene, they indicated whether the scene was familiar in real life via
wireless keypad (1=Yes, 2=No, 3=Unsure). Three participants in experiment 3 were not included in the calculation of percent famil-
iarity (Figure S2) because of missing data due to technical challenges with remote data collection.

On day 2, participants completed a refresher training phase in which they viewed the 18 scenes again for 20 seconds each.
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Experiment 3 Open/Closed Instructions

As in experiment 1, on day 1, we instructed participants how to distinguish between navigable vs. non-navigable (i.e., open vs.
closed) scene views. Before receiving these instructions, participants were informed that open/closed judgments would be per-
formed in a subsequent part of the experiment. Our specific instructions for distinguishing open versus closed scene views were:
"If a snapshot shows an open space or pathway where you could walk into the scene and move forward freely, that snapshot is
Open. If a snapshot shows something blocking your way — something that would prevent you from walking into the scene and moving
forward freely — that snapshot is Closed." (Video S2). We then showed participants several examples of open versus closed scene
views in novel, unstudied scenes. After viewing these examples, participants completed 6 open/closed judgment practice trials with
feedback.

Participants were reminded of the instructions for distinguishing open versus closed scene views on day 2, following the refresher
training phase, using the same wording as on day 1.

Experiment 3 Direction-cued Priming Test
Experiment 3 tested whether priming was skewed in the direction of intended head turns. For this reason, we modified the standard
priming test (used in experiments 1 and 2) to manipulate the anticipated direction needed to turn and face the target image.

The trial sequence in experiment 3 consisted of 5 stages (Figure 3): 1) Participants saw an arrow indicating the direction to plan a
head turnin to see the target image (300 ms display time). On 2/3 of trials, the arrow correctly indicated the direction of the upcoming
target (i.e., was a valid cue), and 1/3 of trials the arrow indicated the incorrect direction (i.e., was invalid. 2). Participants then saw the
prime image (300 ms display time). 3) The target image (110° wide, 180° tall) appeared to the participants’ left or right. 4) Participants
turned 90° to face the target. 5) Participants responded using a button press.

Prime images in experiment 3 were either same-scene or neutral, resulting in four priming conditions: same-scene valid arrow
(50% of 216 trials), neutral valid arrow (16.7%), same-scene invalid arrow (16.7%) and neutral invalid arrow (16.7%). Neutral prime
images were scrambled scenes (32 x 16 grid). The scrambled neutral prime was introduced to better match the amount of visual in-
formation across priming conditions. The 36 possible target views (drawn from 2 sides of 18 scenes) occurred three times each in the
same-scene, valid arrow condition and once each in (i) same-scene, invalid arrow, (ii) different-scene, valid arrow and (jii) different-
scene, invalid arrow conditions. The mapping between prime and target views was randomized during trial order creation, but trial
order was constant across participants.

Before testing, participants completed 6 practice priming test trials with feedback on novel, unstudied scenes.

Experiment 4 Procedure Overview

Like experiments 1 and 3, experiment 4 was conducted over two consecutive days. The key manipulation in experiment 4 was intro-
ducing the “same-scene spatially displaced” condition to assess whether predicted content depended on participants’ actions
within the environment. For clarity, we called the same-scene condition (experiments 1, 2 and 3) “same-scene spatially congruent”
in experiment 4. On day 1, participants studied the scenes in detail (training phase). Then, they received instructions on distinguishing
between open and closed scene views (Open/Closed Instructions). On day 2, participants performed the priming test.
Experiment 4 Training Phase

As in experiments 1 and 3, during the experiment 4 training phase on day 1, participants actively viewed 18 immersive photorealistic
scenes taken from the area around the local university’s campus for 20 seconds each (see Figure S1). As in all experiments, the open/
closed sides of a scene were always positioned to participants’ left/right relative to their starting facing direction and the back-most
90° of each scene was occluded to provide a clear sense of left/center/right in each scene. Participants were asked to “complete this
study standing at a desk or countertop where you can comfortably reach your keypad." For each scene, participants were instructed
to “Look around like you normally would”. The instructions told participants that there would be a “gray wall” (occluder) behind them
in each scene, and that they only needed to explore what wasn’t blocked by the wall. After viewing each scene, they indicated
whether the scene was familiar in real life via wireless keypad (1=Yes, 2=No, 3=Unsure). On day 2, participants completed a refresher
training phase in which they viewed the 18 scenes again for 20 seconds each.

Experiment 4 Open/Closed Instructions

As in experiment 1, on day 1, we instructed participants how to distinguish between navigable vs. non-navigable (i.e., open vs.
closed) scene views. Before receiving these instructions, participants were informed that open/closed judgments would be per-
formed in a subsequent part of the experiment. As in all other experiments, our specific instructions for distinguishing open versus
closed scene views were: "If a snapshot shows an open space or pathway where you could walk into the scene and move forward
freely, that snapshot is Open. If a snapshot shows something blocking your way — something that would prevent you from walking into
the scene and moving forward freely — that snapshot is Closed." (Video S2). We then showed participants several examples of open
versus closed scene views in novel, unstudied scenes. After viewing these examples, participants completed 6 open/closed judg-
ment practice trials with feedback.

Experiment 4 Priming Test

Onday 2, participants completed the priming test after the refresher Training and the Open/Closed instructions reminder. Each trial of
the priming test consisted of four events (Figure 1): 1) Prime image (110° wide, 180° tall) appeared directly in front of the participant
(display time: 300 ms); 2) Target image (110° wide, 180° tall) appeared to the left or right of the participant (visible in their periphery); 3)
Participant turned 90° to face the target image; 4) Participant indicated whether the target was open or closed via button press on a
wireless keypad.
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In addition to same-scene and neutral conditions, experiment 4 introduced the same-scene spatially displaced priming condition,
in which targets were drawn from the same scene as the prime, but were presented 180° their learned spatial location. As in exper-
iment 1, to encourage participants to use the prime image to predict the upcoming target, more trials contained same-scene primes
(50% of 144 total trials) than neutral (25%) or same-scene spatially displaced (25%) primes. The neutral prime for this study was a
grey screen. The 36 possible target views (drawn from 2 sides of 18 scenes) occurred twice each in the same-scene condition and
once each in the neutral condition. The mapping between prime and target views was randomized during trial order creation, but trial
order was constant across participants.

Before testing, participants completed 5 practice priming test trials with feedback on novel, unstudied scenes. We instructed par-
ticipants to respond as quickly as they knew the answer using a wireless keypad (4=Open, 3=Closed) operated using two fingers on
one hand, and to “make sure your fingers are ready on the keypad”. After each trial, the participants’ response time was displayed to
emphasize the importance of responding quickly.

Experiment 4 Explicit Memory Test

As in experiment 1, after the priming test, we tested participants’ explicit memory of each scene’s spatial structure. On each trial of
the explicit memory test, participants saw a 45° view from a studied scene directly in front of them. Participants then used a wireless
keypad to indicate whether that view appeared on the Left, Right, or Center of the scene during the training phase (Figure S3). Par-
ticipants were tested on each left/right/center view for each studied scene.

QUANTIFICATION AND STATISTICAL ANALYSIS
We analyzed data using custom MATLAB scripts (www.mathworks.com) and custom R scripts.

Inclusion Criteria
Due to the novelty of the VR testing environment for remote testing, we applied a stringent trial-level inclusion criteria to ensure high
data quality and to ensure that data from experiments could be equated. For instance, in all experiments, participants were required
to view the prime for its entire duration (300ms) before turning to the target. However, unlike experiments 1, 2, and 4, the arrow cue in
experiment 3 enabled participants to anticipate the upcoming location of the target, which led to more trial-level exclusions caused
by participants turning before the end of the prime (despite instructions, as in all experiments, to wait for target onset). This tradeoff —
stringent inclusion criteria over more tailored task instructions in experiment 3 — was critical for ensuring that participants received
comparable instructions across experiments.
After applying these criteria, data were included in the following percentages per included participant: experiment 1: M = 74.92%,
SD =11.90%; experiment 2: 75.03%, SD = 7.07%; experiment 3: M = 79.20%, SD = 7.01%; experiment 4: M = 72.43%, SD = 8.56%.
Response time data from a priming test trial was excluded from analysis if the open/closed response was:

1. incorrect;
2. faster than 250ms, potentially indicating insufficient time spent to perform the judgment accurately;
3. outside of the participants’ mean response time + 3 standard deviations.

Trials were also excluded if:

. the headset failed to transfer head-orientation data;

. the participant turned before at least 50% of the prime image was within view;

. the participant did not turn far enough toward the target to view at least 50% of the target scene segment;

. the participant turned the wrong way (i.e. away from the target image) by more than 15 degrees following the prime (experi-
ments 1,2 and 4).

A ON =2

In experiment 3, in trials where participants turned the wrong way (i.e. away from the target image) by more than 15 degrees:

1. If the participant corrected their head turn to the correct direction, the timepoint at which the participant corrected their head
turn served as the start of the corrected trial.
2. If the timepoint at which the participant corrected their head turn could not be identified, the trial was excluded.

Finally, for a given participant, if more than 50% of trials in any priming condition were excluded or if their median response time
exceeded=+ 2 standard deviations from the group median, we removed that participant from data analysis entirely.

Statistics
For all experiments, we calculated the median response time for each priming test condition. Response times were calculated from
the appearance of the target and included the time taken to turn to face the target.

For each priming test, we used linear mixed effects models to evaluate the effect of priming condition on response time using the
‘ImerTest’®® package in R. This approach was selected to reduce the opportunity for just a subset of scenes to account for the priming
effect. In each model, we included priming condition as a fixed effect and participant and target scene identity as random effects
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(intercepts). Raw response times were transformed®*° (inverse square root) to ensure normality of residuals and homogeneity of
variance, confirmed using ‘check model’ in the ‘performance’ package in R.°° Raw (i.e. untransformed) response times yielded
the same pattern of results as the transformed data in all LMEs (Table S1). Likewise, pairwise t tests run on median transformed
response times yielded the same pattern of results as median raw response times (Table S2). To evaluate the extent of priming in
experiment 1 versus experiment 2, we added experiment as a fixed effect to our model. Where appropriate, we used two-tailed, pair-
wise Bonferroni-corrected t tests for post-hoc tests.
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