


execution were characterized for evaluating their 
computational overhead like time and memory usage, which is 
relevant for running the model and embedded hardware 
platforms.  

II. SYSTEM AND DATA MODEL   

A. Sensing Modality and Dataset 
As depicted in Fig 1, three wearable accelerometer sensors have 
been fitted on three parts of an infant’s body, namely, the chest 
(S1), the upper arm (S2), and the thigh (S3). Each of these 
sensors are small (i.e., 3.75×1.5×0.5 inches) and lightweight 
(approximately 55 grams). The sensors were placed in custom-
designed pockets to ensure snug fit and minimal discomfort. All 
three sensors record acceleration data with sampling rate of 
50Hz. Data from the sensors were collected from two subjects 
and for 12 hours over a period of several days. Six different 
activities including crawling, cruising, standing, sitting, 
walking, and falling were recorded for both the subjects.     

 
Fig 1: System architecture of the proposed multi-sensor framework-based 

infant activity detection system 
   The real-time acceleration data recorded by S2 and S3 are 
transmitted via a wireless network to S1. Subsequently, the data 
pre-processing and semi-supervised learning (SSL)-based 
classification process is carried out in the embedded sensor 
device S1. This is done using the combined data from all three 
sensors. The SSL model gets trained based on the real-time data 
of the infant subject, and subsequently detects three broad 
classes of infant activity states namely, moving, sedentary, and 
fall.  
 B. Pre-processing and feature engineering 

The data read by an accelerometer sensor is in a time-series. 
A single accelerometer can read motion in three-orthogonal 
directions (x, y, z). Thus, the recorded data from a single 
accelerometer is in the form of three series.    There are three 
accelerometers used for this proposed framework, so the 
classifier model will be working with 9 time series (3 
accelerometers * 3 time-series/accelerometer). The time series 
are segmented into windows of 0.5 second worth of data, which 
means 25 samples (50Hz * 0.5s) from each time series. 
Therefore, each window consists of 225 samples of data (25 
samples * 9 time-series). Each window constitutes a data point 
for the classifier model. Each datapoint is normalized by 

subtracting the mean value from the readings in each of the 9-
time series. The next step involves feature extraction of each 
datapoint. Two features from each of the 9 time-series have 
been extracted. The first one is the coefficient of variation, 
which depicts the variability of acceleration across 25 samples 
spanning the 0.5s long window. The second feature is the 
number of mean crossing points within a 0.5 second window. 
This feature physically indicates the frequency of movements 
of the subject from its mean position. Thus, each datapoint is 
represented by 18 features (2 features * 9 time-series). These 
18 features are fed into the proposed Semi-supervised learning-
based classifier for simultaneously self-training and predicting 
activities of the three classes outlined next.  
C. Class definition and distribution 
   In various types of infant movements including crawling, 
cruising, standing, sitting, walking, and falling, we aim to detect 
three broad movement classes namely, moving, sedentary, and 
fall. These classes are chosen based on the need for 
understanding infants’ ambulatory motor development. The 
collected data that is used in this work has 3600, 6067 and 632 
datapoints from the moving, sedentary and fall classes, 
respectively. Since the data was collected for infant subjects in 
their natural home setting, the data distribution across the 
classes was not uniform. A K-means clustering-based Synthetic 
Minority Oversampling Technique (SMOTE) [3] was used to 
balance the dataset after which we have 6067 datapoints from 
each of the three classes. Unless otherwise stated, this balanced 
dataset is used for all the reported work in the rest of the paper. 
D. Processing Pipeline 

   Complete processing pipeline of the proposed semi 
supervised learning framework is depicted in Fig 2. The 50 Hz 
motion data recorded by the three different sensors are 
assembled in the memory on the embedded device of sensor 1 
(S1). The 9 time series data are segmented into a 0.5 second 
window which constitutes a datapoint (episode). Each datapoint 
is normalized. Two features from each of the 9 time-series are 
extracted. The extracted features represent each episode which 
are unlabeled. Among the unlabeled episodes with identified 
features, some episodes are pre-labelled into 3 classes based on 
some extreme feature values beyond a threshold. These are 
considered pre-labelled because they can be easily identified as 
the parent of a class based on their extreme feature values 
matching to the corresponding class. These pre-labelled 
episodes are used in the SSL training phase for the cluster 
labelling step. All processing operations can be carried out on a 
lightweight embedded device with computational constraints. 
To that end, reducing the data dimension can lead to reduced 
computation and other resource loads. Popular dimensionality 
reduction techniques such as Principal Component Analysis 
(PCA) can be applied on the identified features of the unlabeled 
dataset in order to select the most discriminatory features. The 
unclassified (unlabeled) episodes with PCA-reduced feature-set 
are used by the proposed iterative semi-supervised learning 
model to self-learn and classify the movements episodes into 
the target three classes.  
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Fig 2: Processing pipeline of the proposed learning framework. 

The pre-labelled episodes cater to the labelling process in the 
semi-supervised learning environment. As the infant keeps on 
performing ambulatory activities, new undetected episodes 
keep on accumulating in the unlabeled data pool. The iterative 
semi-supervised learning model runs iteratively after a certain 
number of incoming episodes. This processing pipeline enables 
continuous improvement in the real-time infant activity 
recognition accuracy over time, with half-a-second temporal 
granularity.  

III. SEMI-SUPERVISED LEARNING-BASED MULTI-SENSOR 

INFANT ACTIVITY DETECTION FRAMEWORK 

Fig 3: Iterative semi-supervised learning framework 

   The proposed iterative semi-supervised learning framework 
[4], [5] is depicted in Fig 3. As an incoming episode (pre-
processed and normalized) (  ) defined by the reduced 
feature set arrives, it is added to the data pool (). It is also 
checked whether any of the feature values of the new incoming 
episode is beyond a certain feature boundary, that particular 
episode is added to the pre-labelled data pool (). After 
every   number of incoming episodes, the SSL training 
process takes place on the present  . The training process 
involves two steps. The first being clustering the episodes in 

  into   number of clusters. Varieties of K-means or 
Gaussian Mixture Model (GMM) clustering algorithms are 
used in this step. The   clusters are labelled using the pre-
labelled data pool (  . A population-based labelling 
technique explained in algorithm 1 has been incorporated for 
the labeling of the clusters. In the population-based labelling, 
the cluster is labelled on the basis of the highest number of pre-
labelled episodes present in that cluster. For example, if cluster 
′′  has  pre-labelled episodes from class  and   pre-
labelled episodes from class  , and if    , then cluster 
′′ gets labelled as class  . If cluster ′′ does not have the 
highest number of pre-labelled episodes class of pre-labelled 
episodes or does not have a pre-labelled episode at all, it 
remains unlabeled. Thus, all the episodes in that cluster remain 
unclassified. All the episodes belonging to a cluster get labelled 
according to the label of the cluster. 

Algorithm 1: Population-based cluster labelling algorithm 

 
   After the clusters are labelled using the population-based 
cluster labelling algorithm, the labelled clusters act as the 
trained semi-supervised classifier model. When a newly arrived 
and unlabeled episode comes in between training iterations, the 
episode is classified based on the most recently trained model, 
which are the labelled clusters. The new episode obtains the 
class label of the nearest cluster in the feature space. It can be 
seen how the model with 40 clusters expands and the 
classification accuracy improves with more incoming episodes. 
The quantitative performance of the classifier is formally 
presented in the next section.  

IV. EXPERIMENTS AND RESULTS  
   A dataset consisting of 12 hours infant activity data collected 
from 2 infant subjects over a period of several days have been 
used for validation of this proposed multi-sensor Semi-
supervised learning (SSL) framework. The movement data of 
the infant subjects were recorded from three sensors fitted on 
three parts of the infants’ body viz chest, arm and thigh as 
discussed in section III-A. Time-stamped video data was also 
recorded to get the ground truth information of the ambulatory 
activities performed by the concerned infant subject for the 
validation purpose of the learning model. The raw time-series 
data from the 3 accelerometers has been windowed and pre-
processed to extract episodes (datapoints) of 0.5 seconds length 
as mentioned in section III-B. 6 features from each 
accelerometer sensors’ data have been extracted to represent an 
episode for the proposed learning model which is mentioned in 
section III-C. The proposed learning framework discussed in 
section IV has been developed to classify among three classes 
of infant activities: moving, sedentary and fall. The degree of 
precision to classify the mentioned classes by proposed 
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framework is evaluated by means of 3 parameters: True positive 
(tp) for each class, false positive (fp) for each class and the 
overall accuracy. In order to analyze the feasibility of the 
proposed framework for a wearable embedded device, 
computational time (s) and CPU memory usage (Bytes) have 
been considered as the representation of the computational 
overheads of the framework.  
A. Pre-trained supervised learning model (benchmark) vs. 

proposed semi-supervised learning framework 
A pre-trained supervised model (Artificial Neural Network-
NN) evaluated with a 10-fold cross-validation using the data 
from the combinations of different sensors fit same dataset has 
been used as a benchmark for the proposed semi-supervised 
learning framework. The performance of the benchmark and 
the proposed learning algorithm are evaluated using data from 
the different combinations of 3 sensors. The number of input 
features to the learning model varies according to the data from 
the number of sensors used. 6 extracted features come from 
each of the sensors’ data as mentioned section III-C. Thus, there 
are 6 input features for one sensor combination, 12 features for 
2 sensors’ combination and 18 features for 3 sensors 
combination (sensor 1: on chest, sensor 2: on arm, sensor 3: on 
thigh). The NN model is trained using the hyper-parameters 
mentioned in table 1. 

TABLE 1: HYPER-PARAMETERS FOR PRE-TRAINED NN 
(SUPERVISED LEARNING) MODEL 

 
   The hyper-parameters of the proposed SSL framework 
include the number of input features. The input features in 
consistence with the number of sensors used. The SSL model 
has 40 clusters (), 15% of pre-labelled datapoints (").The 
cluster model gets trained after every 100 incoming datapoints 
(), as read by the accelerometers. K-means clustering is used 
in the training process of the proposed SSL. The class-wise tp 
and fp of both NN and the SSL (post-convergence) are depicted 
in the heatmaps in Fig 4 (a-d). Classes 1 and 2 (moving and 
sedentary) are detected with higher tp and less fp values for all 
sensor combinations in NN as compared to SSL. Both of these 
classes are detected with approximately 80-88% tp and 5-12% 
fp by a pre-trained NN model, when any combination involving 
sensor 3 (on thigh) (S3, S2+S3, S1+S3, S1+S2+S3). 

   
Fig 4: Class-wise true positive and false positive of NN and SSL. 

 With similar sensor combinations, SSL also performs better 
than the other sensor combinations for classes 1 and 2. But the 
tp (~65-75%) and fp (~12-20%) values are slightly worse 
compared to same with NN. Class 3 (Fall) is always detected 
with very high tp (around 90%) and low fp (around 1%) by both 
NN and SSL, with all the sensor combinations. Fig 5 compares 
the overall accuracy of the pre-trained NN and the proposed 
SSL frameworks. The figure shows that SSL has the best 

overall accuracy (78%) when all 3 sensors 
are used (S1+S2+S3) and the performance is 
very close to that of the pre-trained NN 
(85%). SSL also works better than other 
sensor combinations in terms of the overall 
accuracy (75%), when only sensor 3 is used. 
This overall accuracy value of SSL is also 
compared to what we get using a pre-trained 
NN (82%) with the same sensor (sensor 3). 
 
B. Impact of clustering algorithms in 
SSL with different sensor combinations 
      Fig 6 (a-d) analyzes the post-
convergence accuracy (tp, fp for classes 1-2, 

and the overall accuracy) for the proposed SSL algorithm with 
different cluster algorithms and sensor combinations. The 
clustering algorithms considered here are three variants each of 
K-means clustering and Gaussian Mixture model (GMM) [9]. 
K-means clustering methods include plain vanilla K-means 
(KM) [6], Mini-batch K-means (MBKM) [7], Bisecting K-
means (BiKM) [8] while GMM includes the different covariant 
types of the clusters viz spherical (GMMs), full (GMMf) and 
diagonal (GMMd).  
    It can be observed in Fig 6(a), Class 1 has the best tp when 3 
sensors are used all together (S1+S2+S3) along with GMMf 
clustering (around 88%). But the fp for the similar set-up is also 

# of input features 6/12/18 (based on the number of sensors)

# of hidden layers 9 hidden layers (36, 54, 108, 216, 432, 200, 
100, 50, 25 neurons respectively)

# of output classes 3
Loss function Categorical Crossentropy
Optimizer Adam
Activation function Relu (hidden layers), sigmoid (output layer)

 
Fig 6: (a)-(b) True positive; (c)-(d) False positive for classes 1 and 2 and (e) Overall accuracy for SSL using different clustering algorithms and sensor combinations. 

 
Fig 5: Overall 

accuracy of pre-
trained NN vs 
proposed SSL. 
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very high (around 30%) as shown in Fig 6(c). The tp for class 
2 is low (around 70%) and the fp is (>30%) for the same class 
(shown in Fig 6(b), (d)). BiKM and MBKM have very high tp 
(>82%) for class 2 along with low fp (<15%) when 3 sensors 
are used (S1+S2+S3) but both of their tp for class 1 is 
comparatively low ie ~67%. GMMs has a very good tp and fp 
for both class 1(tp ~78%; fp ~25%) and class 2 (tp ~82%; fp 
~20%), when all the 3 sensors are used. Class 3 has a very high 
tp (~92%) and low fp (~1%) for all the sensor combinations and 
the clustering algorithms. Thus, it can be observed that GMMs, 
MBKM and BiKM have the best overall accuracy (~80%) for 
predicting the 3 infant activity classes using motion data from 
3 sensors (as shown in Fig 6 (e)). It can also be observed that 
S3 also has a good overall accuracy (~78%) with the same 
clustering algorithms. Thus, it is quite evident that data only 
from S3 has a better prediction accuracy than any other 2 
sensors’ combinations.  
    Fig 7 (a-b) depicts that using higher number of sensors means 
higher number of input features to SSL model, thus require 
higher computational overload (computational time and CPU 
memory usage) to train 18000 datapoints. Although GMMf and 
GMMs have very high overall accuracy, the CPU memory 
usage is very high for the GMM-based clustering algorithms 
(~2-2.5KB) for all the sensor combinations. Thus, BiKM and 
MBKM seem to be a better choice as a clustering algorithm for 
the proposed SSL algorithm on a wearable device as they have 
a very good prediction accuracy (~80%) consuming 
comparatively less computational overhead (time: ~19hrs; 
CPU: ~200 Bytes) using 3 sensors for simultaneously training 
and predicting 18000 datapoints.  

 
Fig 7: Computational overhead results for varying sensor combinations and 
clustering algorithms. (a) Computational Time(s); (b) CPU memory usage (B) 

 
C. Impact of feature reduction on proposed multi-sensor SSL 

performance. 
   Feature reduction techniques like Principal component 
analysis (PCA) help in reducing input features to the learning 
model and thus reducing the computational load of the learning 
paradigm on the wearable device fitted on the infant’s body. 
The challenge is to reduce the number of features to such an 
extent till the prediction accuracy of the learning model is 
preserved. Fig 8 (a) and (b) analyze the effect of the number of 
input features on the overall accuracy and the computational 
time of the proposed multi-sensor SSL framework using data 
from different number of sensors. The feature reduction 
analysis is done on the basis of the results involving this 
Bisecting K-means (BiKM) clustering algorithm. While using 

data from 3 sensors, the accuracy (~80%) is preserved till the 
number of features are reduced from 18 to 10 (45% feature 
reduction). Also, for 2 sensors’ data, it can be observed that the 
accuracy (~75%) is maintained till the number of features are 
reduced from 12 to 9 (33% feature reduction). Thus, the higher 
the number of sensors, better accuracy is achieved which is 
preserved with higher percentage of feature reduction. Also, till 
the point where the accuracy is maintained for a particular 
number of sensors, it can be observed that with same number of 
features, data from higher number of sensors have better 
accuracy in less computational time as compared to that with 
the data from a smaller number of sensors. For example, when 
the number of features is 10 and 12, the proposed SSL with the 
3-sensors’ data has a better accuracy and less computational 
time than the proposed learning algorithm with 2-sensors’ data 
(encircled with brown in fig 8 (a-b)). 

 
Fig 8: (a) Overall accuracy and (b) Computational time for different number 

of features used for the proposed SSL framework with different sensors. 
   This is due to the reason that 3 sensors’ data has more 
information as compared to the 2-sensors’ data, thus the cluster 
models converge faster for the former, thus consuming 
marginally less learning time. Since accuracy of the proposed 
SSL with 3 sensors’ data decreases with the number of features 
below 10, the accuracy also falls below that of same algorithm 
with 2-sensors’ data (encircles with black in Fig 8 (a)). Thus, 
the proposed SSL with 3 sensors’ data and 45% reduced 
features will provide the best accuracy (~80%) with least 
possible computational overhead (~11 hours’ time) while 
iteratively learning and predicting 18000 datapoints. 

V. RELATED WORK 

    There are very popular real-time personalized wellness 
monitoring applications like human activity detection which 
use very common inertial measurement unit (IMU) sensors like 
accelerometers and gyroscopes. Here the classification task is 
carried out by pre-trained supervised learning models on 
smartwatches and smartphones [10]. Different combinations of 
sensor modalities and their positions on the body have been 
experimented with in many existing works [2]. Works that use 
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pre-trained supervised learning model to identify the infant 
activities [11-12] leverages multiple-sensor framework fitted 
on an infant body on boy parts like chest, arm and thigh. The 
primary drawback of such approaches is the usage of multiple 
learning models which are not-suitable for a lightweight on-
device scenario with computational constraints. Using a single 
multi-class classification learning model would be more 
suitable for this scenario.  
   HAD applications usually deal with activities which are 
mostly subject-specific. This requires person-specific pre-
labelled data, which can be scarce. Some existing human 
activity detection (HAD) systems uses a variety of pre-trained 
supervised learning-based classifiers [13-14] trained on a 
generalized dataset collected from a variety of subjects. This 
negates the person-specific angle to these applications. Semi-
supervised learning (SSL) [15] is a possible solution for on-
device learning in which classifiers can be trained on the device 
from a specific target user’s data, thus preserving the 
personalization feature of the model as discussed in [16]. In this 
paper, a semi-supervised learning algorithm with sparsely 
labelled datapoints have been implemented. This same learning 
framework have been implemented on a binary [4] and a multi-
class classification [5] scenario. This mechanism has proven to 
be effective for lightweight on-device applications like the 
above. An SSL method based on the combination of deep 
learning and transfer learning has been implemented in [17]. 
Usage of pre-labelled training data from different users in a 
deep learning model is required which affects the person-
specific feature of this application. The work in [18] presents a 
HAD system using a bi-view SSL framework to detect semantic 
human activities like having dinner, shopping, etc. Windowed 
datapoint extraction technique and clustering mechanism have 
been implemented here as a classifier model, but externally on 
a different device. This method also involves a two-layered 
framework for the classification task. making it 
computationally expensive. Thus, it is not very suitable for an 
on-device self-training and classification solution. 
   The above works in the literature discusses many useful semi-
supervised learning solutions but all with the usage of a single 
sensor. Applications like that of an infant activity detection are 
personalized. Also, due to a combination of non-upright and 
upright torso orientations, a framework of multiple sensors is 
required as well. Thus, a combined framework consisting of a 
combination of multiple sensors and a semi-supervised learning 
approach can be an effective solution approach for identifying 
multiple classes of infant activities. This paper sets out to 
accomplish that. 

VI. SUMMARY AND CONCLUSIONS  

   This paper deals with a wireless multi-sensor approach to 
infant wellness monitoring by activity classification using a 
novel on-device semi-supervised learning. Data from multiple 
sensors are aggregated in a single sensor, in which the proposed 
semi-supervised learning (SSL) algorithms are executed. The 
proposed SSL paradigm can simultaneously train and predict 
multiple classes of infant activities (moving, sedentary, fall) 
without the presence of any pre-labelled data with the expense 

of least possible computational overhead. Thus, it is suited for 
a lightweight wearable device. The proposed learning 
framework was experimentally analyzed and validated using 
data involving several hours of infant activities for different 
sensor combinations and the results were compared to the 
results obtained by a pre-trained supervised neural network 
model. It has been shown that the proposed semi-supervised 
learning-based classifier is able to classify infant activities with 
an accuracy up to 80% when all the 3 sensors have been used. 
Further analysis has been done based on prediction accuracy 
and computational overheads of the proposed SSL framework 
using different clustering algorithms for different sensor 
combinations. Lastly, it has been observed that data used from 
all the 3 sensors in the proposed learning framework sustains 
its performance for reduction in feature dimensions of up to 
45% which helps in further cutting down the computational 
overhead of the proposed learning paradigm.  
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