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Abstract

Large, well described gaps exist in both what we know and what we 
need to know to address the biodiversity crisis. Artificial intelligence 
(AI) offers new potential for filling these knowledge gaps, but where 
the biggest and most influential gains could be made remains unclear. 
To date, biodiversity-related uses of AI have largely focused on tracking 
and monitoring of wildlife populations. Rapid progress is being made 
in the use of AI to build phylogenetic trees and species distribution 
models. However, AI also has considerable unrealized potential in the 
re-evaluation of important ecological questions, especially those that 
require the integration of disparate and inherently complex data types, 
such as images, video, text, audio and DNA. This Review describes 
the current and potential future use of AI to address seven clearly 
defined shortfalls in biodiversity knowledge. Recommended steps 
for AI-based improvements include the re-use of existing image data 
and the development of novel paradigms, including the collaborative 
generation of new testable hypotheses. The resulting expansion of 
biodiversity knowledge could lead to science spanning from genes to 
ecosystems — advances that might represent our best hope for meeting 
the rapidly approaching 2030 targets of the Global Biodiversity 
Framework.
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data imputation and analysis to conservation decisions. Finally, we 
provide a critical analysis of the realistic limitations of AI technologies; 
although the proliferation of foundation models (including molecular19, 
cellular20,21 and organismal22 models) coupled with generative AI holds 
promise for reducing all biodiversity shortfalls, AI is not the answer to 
every challenge.

Taxonomic descriptions
The Linnaean shortfall refers to the gap between the number of spe-
cies on Earth and the number that have been formally described7. This 
shortfall is arguably the most foundational, as nearly every field in 
ecology, evolution and conservation relies on naming and catalogu-
ing species to assess biodiversity. Nothing can be done to understand 
a species that is not known to exist.

Challenges
The size of the Linnaean shortfall is unknown, because estimating the 
size of this gap relies on counting the number of species that have been 
described and estimating the number of non-described species, both of 
which involve uncertainty. Approximately 2 million extant species have 
been described23 of the estimated 8.7 million eukaryotic species thought 
to exist on Earth24, although estimates vary widely25. In general, the size of 
the Linnaean shortfall is thought to increase as the size of an organism and 
its complexity decreases26 and to vary geographically along with a variety 
of other traits7,27,28 (see the Wallacean shortfall). Despite the fundamental 
nature of the Linnaean shortfall and the currently heightened global 
risk of species extinction, the number of newly named species has not 
increased since the 2000s2. Indeed, taxonomy is a severely underfunded 
scientific discipline that is itself threatened with extinction29.

Past and future role of AI
AI has so far been used to mitigate the Linnaean shortfall in two major 
ways: to impute the estimated total number of taxa30 and to identify 
new taxa in existing datasets (Fig. 1). Automated identification of pre-
viously undescribed taxa is a very promising task for AI that might be 
accomplished through identification of new taxa in existing images22, 
DNA samples31 or acoustic recordings and leveraging of modalities 
(such as DNA or acoustic analysis) that can indicate the presence of 
taxa as yet unseen32.

Novel taxa have been identified in raw sensor data, including 
via DNA barcodes31,33 and citizen science images22,34. The image-
classification models BioCLIP22 and BIOSCAN-CLIP31 are not designed to 
pinpoint new species, but can be used to label putative examples of new 
species by association with known template images or DNA sequences, 
respectively. WildCLIP focuses on the retrieval of images displaying 
certain attributes of an animal or its environment, which could be 
used to interrogate diverse datasets35. Although such approaches are 
currently in the early stages of implementation, they offer consider-
able potential for incorporating techniques from the ML subareas 
of open world classification and category discovery32, which involve 
the identification of new categories (such as species) in unlabelled 
datasets (such as image libraries) that could contain both previously 
known and as-yet-undescribed categories.

Looking ahead, AI tools might contribute to tasks designed spe-
cifically to enable species discovery. For example, once a new species 
is identified (either manually or via AI-assisted discovery methods32), AI 
vision–language models might be able to assist taxonomists in crafting 
a species description by picking out and describing its distinguish-
ing features34,36,37. Such methods could draw upon interpretable AI 

Introduction
Biodiversity is essential for human well-being, yet is increasingly threat-
ened. Biodiversity is also complex, scale-dependent, hard to measure 
and full of surprises. Unlike the relatively simple causal link between 
atmospheric greenhouse gas concentration and climate change, the 
biodiversity story is more nuanced. The grand challenge in ecology and 
conservation is to be able to answer the following crucial questions. 
How many species do we have on Earth? Which populations are declin-
ing? Which areas are essential to protect? When will tipping points be 
reached? How should we best meet the 2030 global biodiversity targets 
set out in the Kunming–Montréal Global Biodiversity Framework (GBF; 
https://www.cbd.int/gbf)1? Why do contemporary extinctions exceed 
background rates? Adequate answers to these and other questions are 
needed to capitalize on the current global momentum toward nature 
conservation.

Unfortunately, despite large volumes of data being collected, nearly 
all GBF targets and indicators are missing essential information, which is 
needed both to establish baselines and to monitor progress. Persistent 
biases dating from the 1980s have led to conservation efforts being 
focused repeatedly on the same taxa, which (counterintuitively) are 
not always those with the greatest levels of risk2. Overall, biodiversity 
is well described in only a small fraction of the world3 and existing data 
are biased toward common species and populated areas in the Northern 
Hemisphere4,5. Little is known for many species beyond their names and 
where they live. Information on how a particular species functions, how 
it speciated and how it interacts in communities is often absent, espe-
cially for species occurring in the ocean2. These knowledge deficits span 
taxonomy to species interactions and have been organized into seven 
defined shortfalls in global biodiversity knowledge6,7 that capture the 
breadth and complexity of biodiversity in measurable ways. Overcom-
ing these shortfalls is essential for calculating essential biodiversity 
variables8, meeting all biodiversity-based GBF indicators and addressing 
the most pressing challenges to biodiversity, which range from obtaining 
detailed on-the-ground knowledge to understanding national trends.

Ecologists and conservation researchers need to harness the 
current unprecedented levels of interest and global coordination in 
biodiversity protection generated by the GBF alongside emerging 
technologies, such as artificial intelligence (AI) and, more specifically, 
data-driven machine learning (ML), that can handle diverse and rapidly 
expanding datasets. An open question is how we can best leverage these 
technologies. To date, the rapid rise of AI technologies and methods 
in ecology and evolution has been mostly focused on a small set of 
conservation topics (reviewed elsewhere9–11) and data-collection appli-
cations, such as bioacoustics12, camera traps13,14 satellite imagery and 
remote sensing15. Reviews of AI applications in biodiversity loss16 and 
AI methods for ecologists17 have already been published. The present 
Review considers how AI could address critical knowledge gaps in the 
broader fields of biodiversity science, which span spatial scales, genes, 
functions, phylogenies and species interactions. We note that owing 
to the extremely rapid development of AI, many of the publications 
cited in this Review are currently available only in non-peer-reviewed 
formats (conference proceedings or preprints).

In this Review, we delineate the current state of the seven bio-
diversity shortfalls7,18, discuss how they are being addressed with AI 
and identify where AI offers the greatest potential for bridging the 
remaining gaps (Fig. 1). Where AI methods have not yet been used to 
address all seven biodiversity shortfalls, we recommend avenues of 
investigation that map the needs of each shortfall to specific AI solu-
tions and place each solution in the context of the required steps, from 
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Fig. 1 | Potential roles of artificial intelligence in filling biodiversity knowledge 
gaps and downstream applications. a, Artificial intelligence (AI) is widely 
implemented in the data–decision pipeline for conservation applications (those 
relating to species of conservation concern) but is less often integrated into 
the broader subfields of ecology. In consequence, most biodiversity shortfalls 
remain relatively unexplored. The increasing emphasis on satellite imagery 
and imputation methods, which generate large datasets and involve statistical 

modelling, is likely to drive further uses of AI. b, The future development of AI 
could help to fill knowledge gaps in several areas. These improvements generally 
apply across multiple biodiversity shortfalls, although some tasks benefit more 
than others from specific improvements. The size of the boxes and the width of 
the connecting lines represent the relative importance of the contributions of 
AI to the data-generation and conservation-application processes. LLM, large 
language model.
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techniques integrated with species-detection algorithms such as those 
used in BioCLIP or BIOSCAN-CLIP. Other algorithms might be used to rec-
ommend where, when and how to search for novel species: for example, 
approaches inspired by active learning could identify areas where there 
is high uncertainty in the diversity of certain taxa. This process results in 
an active learning feedback loop (Fig. 1), in which hypotheses proposed 
by both humans and algorithms are validated and the results are used to 
train further algorithms with improved performance. Such active learn-
ing processes are predicted to be instrumental in the design of future 
global monitoring networks38. Contributions from AI might, therefore, 
not only increase the rate of species discovery and description but also 
the effectiveness of current and future generations of taxonomists.

Estimates and patterns of abundance
The Prestonian shortfall refers to the lack of knowledge of the abun-
dance of a species and its trends in both space and time. Aside from the 
fundamental importance of accurate estimates of species abundance 
to population biology and evolution, knowledge of abundance is also 
critical to defining a species’ conservation status and predicting its risk 
of extinction. However, addressing the Prestonian shortfall represents 
a considerable challenge because it involves counting (or estimating) 
the number of all individuals of a species present at a given point in 
space and time.

Challenges
From a data perspective, measuring the true abundance of a given 
population requires an exhaustive census of every individual of the 
relevant species present within a defined spatial and temporal window. 
This laborious exercise is very rarely completed even for relatively 
charismatic, easily detected and well studied taxa such as birds39 or 
large mammals. As a notable exception, the Center for Tropical For-
est Science (CTFS) Forest Global Earth Observatory (GEO) has estab-
lished forest plots specifically for measuring the true abundance of 
tropical tree species40. However, even for stationary and relatively 
well described tree species, conducting such censuses requires an 
enormous amount of effort.

A practical alternative to a complete census is to estimate both 
species abundance and its spatiotemporal trends from a statistically 
representative sample of individuals drawn from the entire popula-
tion. The essential challenge of this approach is to accurately estimate 
the number of individuals that are present in the population but not 
sampled, which requires repeated sampling in either space or time. 
Two broad categories of population estimation model exist: marked, 
in which specific individuals are tagged or can otherwise be identified 
when re-sighted in repeated surveys; and unmarked, in which individu-
als are counted but cannot be identified as a specific (re-sighted) indi-
vidual. The relative abundances of multiple species or trends in relative 
abundance among species might be sufficient for some applications 
and can often be inferred from count data alone18,39.

Notably, although the explosion in citizen science data and the 
availability of digitized museum specimens have made important con-
tributions to documenting the presence of species across their ranges 
(as discussed in the section on the Wallacean shortfall), these unmarked 
data sources usually do not measure abundance directly and might be 
too sparse in space and time to support robust estimates of abundance.

Past and future role of AI
To date, AI-based analysis of sensor data (such as camera trap images 
and acoustic recordings) has been applied to mitigating the Prestonian 

shortfall by generating unmarked data for statistical abundance 
estimation41,42. For example, occupancy estimates derived from 
repeated sampling43 and time-to-detection models44 that are based on 
the automated classification of bird song produce species abundance 
estimates similar to those derived from traditional human surveys45. 
Automated classification can also be combined with grids of sensors, 
such as acoustic recorders, to produce high-resolution maps of sound 
sources that can be used to estimate the abundance of sound-producing 
species46,47.

AI is already reducing the Prestonian shortfall for many species 
by increasing the efficiency of human experts in identifying specific 
individuals in collected images, which facilitates the non-invasive 
marked estimation of species abundance48. This work started with 
the publication in 1990 of the first methods of re-identification based 
on computer vision49. Early attempts involved the use of statistical pat-
tern recognition derived from low-level features and geometry14,50,51. 
Advances in person re-identification using deep learning52 have now 
been applied to images of animals of various species53–55 and have 
led to notable improvements in re-identification, particularly when 
high-quality, well focused images of single individuals taken by human 
experts were assessed.

AI methods that can identify individual organisms, not just their 
species identity, are poised to contribute even further to mitigating 
the Prestonian shortfall by enabling data obtained from passive sen-
sors to be used in marked abundance models. However, much work 
remains to be done to increase the resilience of computer-vision-based 
re-identification to poor-quality images, for example those captured 
without a human photographer (such as in camera-trap data14,56). In 
addition, these methods could be expanded to include many more 
data modalities, such as video57–59, drone or unmanned aerial vehicle 
recordings60 and audio files61,62. AI applications for wildlife population 
monitoring (such as Wildbook; https://www.wildme.org/wildbook.
html) would also benefit from progress on the ‘open-set challenge’, 
which involves not only identifying confidently that an individual has 
never before been seen63 but also recognizing and matching sightings 
of new individuals over time64. We anticipate that progress will also be 
made on the incorporation of experts into participatory and iterative 
human–AI systems to reduce the amount of expert input needed to 
derive abundance estimates65 and to improve resistance to category 
errors, such as assigning images of multiple individuals to a single 
identification or splitting images of a single individual into multiple 
identifications.

In the long term, considerable development work is needed to 
enable computer vision systems to efficiently recognize individuals 
without clear biometric markings and to recognize the same indi-
vidual as their markings change over time. Such improvements might 
involve the recognition of specific individuals from their behaviour, 
gait or vocalizations, or the integration of additional modalities, such 
as hyperspectral imaging or environmental DNA (eDNA) analyses. 
Additional biological attributes and contextual information derived 
from mechanistic studies of species behaviours, such as social interac-
tions, demographic status and territories, could also be integrated into 
re-identification systems. Additionally, interdisciplinary research on 
statistical estimates of abundance is needed, for example, to develop 
estimation methods that take into account the continuous-value con-
fidence scores of AI models47 or make use of mixed-granularity species 
identification data, in which some sightings can be identified at the 
individual level, whereas others can only be confidently identified for 
a small subset of the population.
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In contrast to the several decades of experience in the application 
of AI-based analytic methods to image databases, the application of 
these methods to acoustic61 and other data types collected in the field 
remains limited and emerging. Progress in computer vision could lead 
to the development of improved methods for the aerial census of large 
groups, which could build upon existing methods used to accurately 
count the number of individuals in crowds66,67. The growing availabil-
ity of eDNA data, particularly those obtained using field-deployable 
sequencing technologies, offers another potential avenue for species 
abundance estimation. However, the conversion of eDNA concentra-
tions into reliable abundance estimates remains challenging, owing to 
the presence of complex environmental factors that affect DNA per-
sistence and detection68. AI approaches could make estimates derived 
from eDNA concentrations more robust by accounting for these envi-
ronmental factors and by integrating eDNA data collected using other 
sensor types. Finally, we note that the AI-supported species abundance 
estimation methods described in this section have generally provided 
single snapshots in time. Additional progress towards the use of AI 
for forecasting time series and understanding drivers of population 
change, including through process-based and knowledge-guided ML 
models of population dynamics69,70, is expected to contribute further 
towards reducing this shortfall.

Biogeographic species distribution
The Wallacean shortfall refers to the lack of detailed information on 
the biogeographic distribution of species. The documentation of 
species distributions dates from the early 1800s and, as such, is one 
of the oldest endeavours in biodiversity science. Moreover, the Wal-
lacean shortfall affects nearly every subfield of ecology, including 
understanding the effects of climate change on biodiversity and the 
reconstruction of historical speciation events. Accurate data on spe-
cies biogeographic distributions is essential for conservation because 
range size is one of the best predictors of extinction risk71–73 and is one 
of the main criteria for assignment of at-risk status74. Knowledge of 
biogeographic species distributions is also essential for mapping spe-
cies, biodiversity hotspots and ecosystem services. This information 
directly feeds several important biodiversity indicators, such as the 
Species Protection Index75.

Challenges
Addressing the Wallacean shortfall is relatively simple in principle, in 
that it can be filled by simple occurrence data, which are increasingly 
drawn from crowdsourced initiatives such as iNaturalist76. However, 
although the Global Biodiversity Information Facility (GBIF; https://
www.gbif.org/) now contains over 3 billion records, these data are 
biased toward terrestrial areas2, certain taxa (especially popular birds), 
the Northern Hemisphere and locations within 1.0 km of roads77. Expert 
species-range maps derived from taxa-specific sources (including 
conservation guides and at-risk assessments) also provide distribu-
tion information for many taxa, but these often lack the granularity 
needed for use in conservation applications, such as the estimation 
of species–habitat relationships.

Past and future role of AI
One of the most promising ways in which AI can be used to fill the Wal-
lacean shortfall is in the processing of incoming primary data collected 
from sensor arrays (Fig. 1). Technologies such as high-resolution sat-
ellite and aerial remote sensing in a wide range of spectra, stationary 
image capture, acoustic sensing and eDNA analysis are increasingly 

being used to provide species data for sparsely covered and/or inac-
cessible locations. These innovations are already resulting in surprising 
discoveries, such as new colonies of emperor penguins78 and advances 
such as the ability to monitor whales in remote locations79. Species 
occurrences can also be extracted from non-target acoustic recordings, 
images on crowd science platforms (such as iNaturalist) and social 
media posts80.

A second major and well integrated effort to fill the Wallacean 
shortfall has involved the use of species distribution models (SDMs) 
to impute missing data. SDMs used to predict a species’ spatial dis-
tribution from environmental or habitat data have rapidly adopted 
ML techniques such as boosted regression trees81. Modern SDMs are 
now beginning to incorporate more-powerful ML techniques that 
can handle complex interactions with multiple data types, such as 
remotely sensed land-cover classes and continuous local climate 
measurements82. AI-based statistical model integration is an even more 
powerful tool83 for the analysis of multimodal datasets that can handle 
multiple types of species occurrence data — for example, presence-only 
community science, presence–absence plot data and remote sensing 
imagery (Box 1). The development of standardized protocols and com-
petitions such as GeoLifeCLEF (one of several challenges in ImageCLEF 
(https://www.imageclef.org/), the Conference and Labs of the Evalua-
tion Forum (CLEF) cross language image retrival track)84 are extending 
the success of AI-assisted SDMs to other macroecological models used 
to predict biodiversity metrics, such as species richness85.

However, many challenges remain to be addressed to enable 
meaningful gains to be made in primary data collection and data syn-
thesis. AI-assisted methods offer the potential to decrease known 
data gaps by targeting severely under-sampled areas (such as the 
deep ocean) and taxa (such as fungi) via active learning methods that 
optimize future data acquisition from in situ sensor networks and 
community scientists86,87. Extreme edge computational approaches 
increasingly move AI to the sensors themselves, in the form of smart 
camera traps and acoustic arrays that enable automated and adaptive 
data collection. Advanced techniques are also needed for spatial bias 
correction38,88, to improve models of undersampled species that are 
based on well sampled species89,90, and to model community assem-
blages and turnover91. The development of these methods requires 
cross-disciplinary collaborations of ecological statisticians and AI 
researchers92. Although multimodal datasets (for example, those 
that integrate camera trap and community science data) are already 
proving useful83, future work could address the computational chal-
lenges associated with the analysis of large remote-sensing datasets 
by making use of models that efficiently encode spatially varying data 
representations, which are useful for many downstream tasks93,94. 
Finally, where possible, the utility of AI methods for estimating spa-
tial distributions of species should be rigorously quantified using 
best-in-class, expert-verified evaluation datasets. The creation of such 
‘gold standard’ datasets is challenging but deserves attention from the 
biodiversity community95,96.

Abiotic tolerance and fundamental niche
The Hutchinsonian shortfall refers to a gap in understanding of the 
tolerance of a species to abiotic conditions, including temperature, 
precipitation, soil, water and terrain. This suite of abiotic tolerances is 
often referred to as the Grinnellian fundamental niche, which is consid-
ered to be the multidimensional environmental space in which a species 
can persist97,98. Knowledge of abiotic tolerances is particularly impor-
tant in the context of climate change because rapidly changing abiotic 
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conditions are driving mismatches between species occurrences and 
tolerances that pose a threat to conservation efforts. Mitigation of 
the Hutchinsonian shortfall could improve predictions of population 
trajectories and range shifts under climate change99.

Challenges
Information on species tolerances comes from two primary sources: 
physiological data derived from study of the organism and occurrence 
data from field observations. Physiological data collected about organ-
isms in field or laboratory experimental settings can be used to generate 
models that generate performance curves for a given organism under 
different abiotic conditions. These data are challenging to obtain and 
exist only for a subset of species100. Additionally, such studies often 
fail to account for environmental factors that affect performance 
under field conditions and rarely capture intraspecific variations 

(see Raunkiaeran shortfall) or consider phenotypic plasticity101. Alter-
natively, occurrence data from field observations of an organism can be 
linked to data on prevalent abiotic conditions to characterize a species’ 
realized niche.

The differentiation of fundamental niches (the potential for tolera-
tion of extant conditions) from realized niches (environments where 
an organism is actually found) remains a challenge, given that biotic 
factors and dispersal capabilities also shape species distributions102. 
A further challenge is the lack of data on the abiotic environment, 
particularly at the fine spatial scales needed to precisely quantify the 
abiotic tolerances of organisms.

Past and future role of AI
AI is an obvious candidate for inferring an organism’s tolerances from 
field observations and occurrence data. Increasingly finer-resolution 
imagery from satellites (Box 1) and drones, thermal imaging data 
and precise light detection and ranging (LiDAR)-generated three-
dimensional (3D) models of surface features can be the base ingredients 
for extracting a highly refined picture of species habitats or proxies 
that can be used to estimate such habitats. Although such raw data 
do not directly inform scientists about habitats, they can be used to 
extract the required information about phenology, soils and climate. 
Some sensors track organisms directly. Animal tracking, although 
particularly relevant to the Hutchinsonian shortfall, is also relevant 
to the Wallacean and other shortfalls.

Looking forward, alongside the advances in satellite-derived 
imagery used to identify habitat associations (Box 1), ground-to-space 
systems such as International Cooperation for Animal Research Using 
Space (ICARUS) could greatly enhance our understanding of abiotic 
tolerances and detailed behavioural responses to abiotic conditions 
(reviewed elsewhere103). For plants, abiotic conditions could poten-
tially be harvested from photographs (also discussed in relation to the 
Raunkiaeran shortfall). However, laboratory-based experimental work 
is needed to complement such observational data. AI could be helpful 
in building 3D models of wingbeats for birds using structured light and 
high-speed cameras104, other detailed animal tracking movements105,106 
or scent-based molecule detection107 (which could be used to detect 
stress hormones in laboratory animals, for example). Looking to 
the future, the creation of accurate ‘digital twin’ ecological system 
models108–110 will require abiotic tolerance data derived from these AI 
methods as well as process-based AI approaches that combine abiotic 
tolerance information with additional observations to track and predict 
biodiversity change.

Functional trait variation
The Raunkiaeran shortfall highlights the lack of knowledge of both 
intraspecific and interspecific trait variations, the ecological func-
tions arising from species traits, how these functions are influenced by 
interactions with other traits, and which traits act in tandem to provide 
specific ecosystem functions.

Challenges
Obtaining the true distributions of trait values within a given popula-
tion requires a comprehensive assessment of every individual’s traits 
to be conducted within a specified time frame, which is logistically 
impossible. For that reason, researchers have largely focused on com-
piling species mean values derived from measurements of museum 
specimens or individuals in the field as well as extraction of trait data 
from guidebooks and the scientific literature. These efforts led to the 

Box 1 | The use of imagery to fill 
biodiversity knowledge shortfalls
 

One of the biggest contributors to meeting the Wallacean 
and Hutchinsonian shortfalls (among others) has been the 
ever-increasing detail supplied by satellite imagery. The 
characterization of Earth’s topography and terrain is relatively 
mature. National Aeronautics and Space Administration (NASA)- 
and European Space Agency (ESA)-based missions have provided 
planet-scale terrain models at resolutions of tens of metres. 
However, AI can still contribute to the assessment of other habitat 
variables. For example, global gridded soil data (SoilGrids250)195 
are based on traditional machine learning (ML) approaches such as 
random forests. These models were trained on publicly available 
soil profiles and spectral data in which reflectance relates to 
indices of vegetation, clouds or water vapour that populate a global 
datacube196 and can be used, together with local observations, 
to characterize a habitat197. Although historic indices were based 
on simple band ratios, the need for modelling of more-complex 
relationships or more-targeted variables has encouraged the 
AI community to provide these essential variables and thereby 
facilitate monitoring of the planet’s climate198 and biodiversity103,199.

Advances in deep learning mean that new indices can be 
produced at high resolution and global scales. Tree height 
and above-ground biomass200, forest degradation201, drivers of 
deforestation-related phenological factors such as plant functional 
types202 and tree wood density203 are some important examples. 
However, most AI-based approaches require globally distributed 
ground observations to train the models, sometimes collected by 
missions such as the Global Ecosystem Dynamics Investigation 
(GEDI), which provided global tree-height ground points200. Thus, 
the development of AI-assisted models often requires extensive 
fieldwork collections and could potentially also benefit from citizen 
science204. Technical and economic challenges that remain to be 
solved to make the most of the immense observational power of 
satellite data include the integration of multiple sensor types (such 
as optical and radar205,206), the limited spatial resolution of sensors, 
the high cost of large data volumes, and high computational costs. 
Multispectral or hyperspectral drone or airborne data can be used 
for smaller regions.
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development of large, publicly available trait databases111–115. Efforts 
over the past 15 years have focused on intraspecific trait variability112,116 
and the potential for some traits (such as diet and foraging character-
istics) to show substantial spatiotemporal variation even within an 
individual117. However, considerable taxonomic gaps remain; most 
trait databases focus on plants116 or tetrapods111–113,115 and only a handful 
include invertebrates114,118, fungi and microorganisms118,119, for which 
comprehensive taxonomic coverage is often lacking. Geographic cov-
erage is also uneven; regions in the Global South and ecosystems such 
as tropical forests and deep oceans typically lack comprehensive trait 
data. Finally, our knowledge of traits often centres on easily measurable 
morphological characteristics, which are only sometimes clearly linked 
to ecological functions120,121. These factors limit our understanding of 
trait–environment relationships. Comprehensive data are urgently 
needed on behavioural, physiological and life-history traits, which are 
crucial for understanding species’ ecological roles and interactions.

Past and future role of AI
Current AI techniques to address the Raunkiaeran shortfall typi-
cally focus on extracting trait information from digitized museum 
specimens122 and images provided by citizen scientists through the 
burgeoning field of imageomics123. Most efforts have concentrated 
on easily measurable (often morphological) traits, but more-complex 
applications of AI are emerging. For example, in a study of birdwing 
butterflies, an AI model identified subtle differences in wing shape and 
colour — traits that are challenging for humans to discern124. Likewise, AI 
has detected colour differences between genotypes of the polymorphic 
wood tiger moth (Arctia plantaginis) that are typically invisible to the 
human eye and has analysed pattern signatures of the mimetic eggs 
of the common cuckoo (Cuculus canorus)125. ML techniques have also 
been used to impute missing trait data126 and to infer trait combina-
tions that are responsible for species interactions. Computer vision 
algorithms that learn from image attributes127 could make important 
strides in addressing the Raunkiaeran shortfall (Box 1).

Several advances could be useful for quantifying ecosystem func-
tion. For example, the use of remotely sensed images to assess plant 
productivity could identify ecological interactions (as described for 
the Eltonian shortfall). The large strides made in using imagery to 
identify species and trait composition128 are expected to facilitate the 
detailed measurement of ecosystem processes such as nutrient cycling, 
decomposition and food-web energy dynamics.

Looking ahead, AI is likely to continue to make surprising dis-
coveries related to traits that are undetectable by human senses and 
to further develop this knowledge by adding further data modalities 
and identifying connections among them. AI could be used to analyse 
high-resolution 3D scans of collected natural history specimens, such 
as skulls, pollen129 or fossil plants. Likewise, efforts are also advancing 
from 2D to 3D, static to video and visible-only to hyperspectral and 
other imaging techniques, which (for example) could capture the 
behaviour of flying insects around artificial light sources130. AI could 
also play an important part in discovering and connecting traits to 
function within a single context in which multiple species exist.

Evolutionary relationships
The Darwinian shortfall highlights gaps in our understanding of the 
tree of life and the evolution of lineages, species and traits7. A related 
but distinct gap is the shortfall in understanding of evolutionary rela-
tionships at the population level, which we refer to here as the genetic 
diversity shortfall (described in Box 2).

The evolutionary history of species is particularly relevant to the 
study of the evolution of species traits (see the Raunkiaeran shortfall) 
and species niches (see the Hutchinsonian shortfall). However, beyond 
its fundamental importance to evolutionary biology, knowledge of 
evolutionary relationships is also crucial for conservation policy and 
planning, given that programmes such as EDGE (Evolutionarily Distinct, 
Globally Endangered) prioritize the conservation of evolutionarily 
distinct species131.

Challenges
The tree of life has been extensively revised with the advent of molec-
ular biology, initially through the comparison of DNA fragments 
and now through whole-genome sequencing. Despite considerable 
advances in these methodologies, the use of molecular techniques 
for building comprehensive phylogenies remains constrained by 
data availability7,132. As a result, only a few well known groups, such as 
birds, some plants and mammals, have comprehensive species-level 
phylogenies103,133 and many other clades (particularly highly diverse 
groups such as microorganisms, insects and fungi) lack comprehen-
sive phylogenetic information. Limited data availability also hampers 
the estimation of time-calibrated phylogenies, which are crucial for the 
derivation of accurate evolutionary timelines. This process typically 
involves using the fossil record to set node age constraints, employing 
molecular clocks to estimate evolution rates and divergence times and 
using integrated models of fossil and phylogenetic data to concurrently 
estimate divergence times and diversification rates.

Past and future role of AI
All modern phylogenetic inference methods use computational (albeit 
mostly non-ML) algorithms134. However, several advances in AI have 
shown promise for improving the understanding of evolutionary rela-
tionships. For example, frequently used ML algorithms such as random 
forests (which combine the output of multiple decision trees to reach 
a single result) have been used to improve the accuracy and efficiency 
of phylogenetic inference135 and graph neural networks represent a 
potentially fruitful next step in this area. Moreover, guided by phylog-
eny and the increasing number of sequenced species, AI is starting to be 
used to extract trait information directly from images136–138 in studies of 
phenotype–genotype correlations139 (see the Raunkiaeran shortfall). 
AI-harvested information can also be used to study trait evolution. For 
instance, Phylo-NN140 integrates images with phylogenetic data in a 
hierarchical manner to generate imageomes (sequences of quantized 
feature vectors that capture evolutionary signals at varying ancestry 
levels). Other examples include phylogenetic Gaussian processes for 
reconstructing ancestral traits141, which provide detailed insights into 
evolutionary history and trait evolution across species.

Looking ahead, AI has the potential to revolutionize our under-
standing of evolutionary relationships. Advanced AI algorithms could 
accelerate phylogenetic reconstruction by leveraging parallel hardware 
and computational approximations that borrow core ideas from AI to 
address the combinatorial nature of phylogeny estimation. The power 
of modern AI methods to synthesize scientific knowledge, coupled 
with the increasing availability of sequenced genomes, could lead to 
the development of evolutionary foundation models similar to those 
emerging at the DNA sequence31,142, cell21, organism and species22 levels. 
Future applications of AI might also enable trait dendrograms to be 
inferred directly from images of organisms, potentially including 3D 
fossil images, to generate testable hypotheses about their evolutionary 
relationships. AI could also be used to analyse high-resolution 3D scans 
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of collected natural history specimens143 to study trait evolution and 
reconstruct ancestral states. In acknowledgement of the receptiveness 
of the AI and/or ML communities to competitions and benchmarks, 
development of AI methods might be spurred by efforts to extend 
existing computational phylogenetic benchmarks to multimodal 
data for phylogeny inference. We note that such benchmarks must be 
carefully designed to ensure they are as representative as possible of 
the real-world challenge they pose. Other large-scale datasets such 
as Arboretum144, TreeOfLife-10M22 and BIOSCAN-5M145 already target 
the Linnaean shortfall by providing extensive multimodal biodiver-
sity data. Similar phylogeny-focused datasets could challenge the AI 
community to address the Darwinian shortfall.

Species interactions
The Eltonian shortfall describes the gap in our knowledge of interspe-
cies interactions (including competition, predation, herbivory, mutu-
alism and parasitism) that are fundamental in shaping the ecological 
distribution and abundance of species. If such biotic interactions are 
not accounted for, predictions of (for example) population viabil-
ity and species responses to disturbance are likely to be incorrect. 
An understanding of species interaction networks also enriches the 
understanding of ecosystem functioning and resilience to disturbance.

Challenges
The complexity of ecosystems and food webs makes it challenging to 
identify the presence and strength of pairwise interactions. Although 
some interactions (such as pollination and predation) involve direct 
contact between species, such events are often rare and difficult to 
observe. Other interactions remain invisible, such as competition for 
scarce resources. Species interactions are often not apparent until 
after the loss or removal of an individual species causes disruption 
that reverberates throughout ecosystems. Diet analysis of faecal or 
gut content — and, increasingly, DNA metabarcoding — has informed 
our understanding of the richness of trophic interactions (those that 
control energy flow through food webs via direct consumption of one 
species by another), although such methods remain costly and have 
low accuracy for some taxa146. In relation to species interactions at 
biogeographic scales, field data on species co-occurrence can inform 
joint SDMs89,147,148, although such correlative approaches can rarely 
tease apart the mechanistic interactions that underlie co-occurrence 
patterns149.

Past and future role of AI
The Eltonian shortfall represents one of the most critical data gaps 
and many exciting opportunities exist for the use of AI to mitigate 

Box 2 | The shortfall in knowledge of genetic diversity
 

Genetic diversity is not included among the original seven global 
shortfalls in biodiversity knowledge, but it represents another critical 
knowledge gap. The genetic variants present in a (sub)population 
are important for maintaining its local environmental adaptation207. 
Intraspecies variation can be affected differently to interspecies 
variation by ecological processes, such as trophic cascades208, and is 
tied to ecosystem services such as pollination209. Genetic diversity is 
also one of the best indicators of the health of a population. Indeed, 
the adaptive potential of a population (which is reduced by factors 
such as undergoing a genetic bottleneck) has long been used in 
conservation assessments and as the basis for a headline indicator207 
in the Global Biodiversity Framework. In many populations, genetic 
diversity is declining rapidly210.

Two major challenges associated with this shortfall are that 
traditional methods of collecting genetic data across populations 
are extremely resource-intensive, and that genetic diversity cannot 
necessarily be inferred from conservation risk status211. In time, these 
challenges may be alleviated by the ever-increasing collection of 
environmental DNA212 and RNA213. Other challenges include differing 
sensitivities to individual genetic markers and sampling procedures 
and the lack of coordinated collection efforts (with notable 
exceptions214).

The resounding success of human genome-wide association 
studies and comparative population genomics offers considerable 
promise for the development of biodiversity applications. For 
example, one proposed framework leveraged large models for 
gene vectorization to predict habitat specificity from microbial 
whole-genome sequences215. The model not only demonstrated 
strong predictive performance but also recapitulated known 
interaction networks and proposed new candidates for experimental 
follow-up215. This work highlights the capacity of AI to process 

large-scale genetic data and uncover genetic interactions within 
species. AI-assisted approaches are being used to correlate the 
similarity of individual biometric features, such as egg-spot patterns 
or facial features, with genetic distance. These advances underscore 
the potential of AI to increase understanding of genetic diversity 
within populations and aid conservation efforts.

Future AI technologies might transform our understanding of 
genetic diversity by overcoming current limitations in data collection 
and analysis. Emerging technologies such as nanopore-based 
sequencing could bring genetic analysis into the field by enabling 
real-time, inexpensive data collection216. Megabarcoding 
techniques217,218 that facilitate large-scale genetic barcoding greatly 
enhance our ability to gather comprehensive population genetic 
data. In bioinformatics, the shift towards transformer-based AI 
models — such as Nucleotide Transformer219 and DNA Bidirectional 
Encoder Representations from Transformers (DNABERT)220 — along 
with generalized state-space models, open up the ability to analyse 
long DNA sequences. These models can generate the detailed 
DNA embeddings that are crucial for capturing genetic diversity 
within and between populations. Further developments could 
connect DNA sequences to observable phenotypes, which might 
enable image and acoustic data to serve as a proxy for genetic 
variability.

How ecologists can best leverage these data and tools remains 
unclear. The role of AI in making genetic data accessible through 
natural language interactions, exemplified by transformer models 
such as ChatNT221 and single-cell GPT222, could greatly enhance our 
ability to interpret and use genetic information. Synergy between 
AI advances and innovative data collection techniques is key to 
resolving the genetic diversity shortfall.
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this shortfall (Fig. 1). AI supports two broad ways to address the Elto-
nian shortfall: intelligent sensing in primary data collection and data 
imputation by interaction prediction.

AI is already being used for direct sensing of plant–pollinator150 
and plant–pest interactions151 in collections of visual152,153 and acoustic154 
data. These initiatives are partly motivated by smart agriculture (that is, 
the use of advanced technologies to improve agricultural productivity 
and sustainability). Exciting possibilities exist for using the soundtracks 
from recorded videos and images of non-focal species recorded in 
databases (such as iNaturalist) and social media posts to harvest spe-
cies interactions from existing data. Similarly, large language models 
(LLMs) could generate summaries of existing detailed text descriptions 
from guidebooks, grey literature (produced at all levels of govern-
ment, academia, business and industry outside commercial publishing 
channels) and conservation assessments. Predictive approaches are 
of great importance in data imputation because sampling of species 
interactions is much harder than sampling of species occurrence, even 
when supported by AI. Predictive tools could help to alleviate this data 
gap by providing both the basis for probabilistic analyses and effective 
guidance for additional observation efforts.

AI is now beginning to be used to adapt traditional models of spe-
cies interactions based on plant–pollinator155–157, predator–prey158,159 
and host–parasite160 networks by incorporating trait matching, eDNA161, 
species co-occurrence or even just network structures. Interactions can 
be predicted even in the absence of traits by extrapolating from partly 
known interaction networks162 or relying solely on co-occurrence163 
using graph dimensionality reduction techniques to generate a small 
latent interaction space that captures the essential features of the 
meta-web and even allows some transferability across taxa164. Although 
these AI-assisted approaches remain limited by the need for more finely 
grained data sources (such as GPS tracking)165, they are key to the alle-
viation of data sparsity. Some studies have demonstrated advantages 
of ML approaches (specifically deep neural networks and random 
forests) over classic statistical techniques156 but much work remains 
to be done, particularly in addressing the mismatch between pre-
dictions of individual interactions and community properties166 and 
in developing process-based ML models that realistically constrain 
network predictions163.

In the long term, one of the obvious uses of AI will be to improve the 
analysis of ecological and other interaction networks, although such 
approaches are yet to be widely adopted. Graph neural networks167, 
a form of deep neural network that performs inference on network 
structures rather than tensors, seem to be particularly promising. 
Graph neural networks represent a natural way to learn (multilayer) rep-
resentations from graphs and to deal with a number of network-related 
problems168 but have had slow uptake in ecology. Graph tokenization169, 
a process similar to text tokenization, offers an alternative to graph-
based learning with conventional deep neural networks. Ultimately, 
although graphs are likely to be a natural match for AI-assisted analysis 
of interaction and species networks, the extent of the improvement 
gained for ecological networks remains to be seen170.

AI-assisted analysis of interaction and species networks has many 
potential applications, such as anticipation of extinction cascades. 
Once a metaweb has been characterized, algorithms can predict which 
extinctions and co-extinctions would have disproportionate effects 
on network structure171 (and, probably, on network function). Com-
bined with Bayesian reasoning, this approach has delivered automated 
decision-making support that promises substantially improved conser-
vation outcomes172 and could improve analyses of the effects of threats 

on food webs173. For example, the use of AI has led to considerable 
progress in understanding the patterns of historical mass extinctions 
by first inferring historical food webs from ecomorphological and 
phylogenetic traits and then evaluating their resilience174.

Summary and future directions
The potential contributions of AI to filling the seven global biodiver-
sity shortfalls extend far beyond those completed so far (Table 1). We 
believe that AI is poised to have a major effect on the seven shortfalls 
in three broad areas: continued improvements in data collection and 
processing; new approaches to ecological inference and prediction; 
and collaborative research design and hypothesis generation (Fig. 2). 
The first two areas have already received attention in ecology and fur-
ther advances and applications are clearly on the way. The third area 
remains in its infancy.

The best established and most widespread applications of AI in 
filling biodiversity shortfalls relate to increasing the speed, scale and 
effectiveness of data collection and processing. To date, much of this 
work has centred on the use of automated sensors and ML methods, 
primarily from computer vision, to generate new records of species 
presence (that is, occurrence or abundance). These data are already 
helping to fill the Wallacean, Prestonian and Hutchinsonian shortfalls 
(Figs. 1 and 2; Box 1), mainly through their use in statistical models that 
relate species presence to abiotic conditions. Particularly promising 
are extensions of open-world classification and category discovery that 
could soon reinvigorate the naming of new species (that is, the Linnaean 
shortfall) via the automated discovery of taxonomic diversity. Below 
the species level, AI extensions to fine-scale features of organisms will 
help to fill the Raunkerian shortfall and the genetic diversity shortfall 
(Box 2). Finally, the generation of large-scale species co-occurrence 
data or even automated detection of direct species interactions, such 
as predation events or aggressive vocalizations, could further help to 
fill the Eltonian shortfall.

In the long term, the speed, scale and effectiveness of data process-
ing must continue to improve as biodiversity datasets expand. A spe-
cific area for future growth is the application of emerging techniques 
for the detection and identification of rare events and anomalies. 
Addressing the challenges presented by hard-to-detect species, events 
and other kinds of unusual signal will help to fill all seven shortfalls. 
Another key role for AI that has largely gone unrealized in ecology is 
the ability of models to not only automate the detection, classification 
and analysis of data features that are already known to humans but 
also to discover novel features and patterns that had not previously 
been described or even imagined. Examples include traits that are not 
detectable by human senses, subtle features that distinguish individual 
organisms within a species from each other, and general patterns in 
community structure.

The assimilation capacity of AI also has untapped potential to 
gather and synthesize what we already know175,176. Large amounts of 
(often publicly funded) high-quality ecological data are present in 
at-risk species assessments, consultant findings and government 
reports176, many of which are available online and include more-detailed 
ecological information than is found in existing compiled data-
sets. Data-gathering and synthesis activities that could take many 
person-years could be done much more efficiently by using LLMs177 
for the initial stages. AI-assisted data gathering could be especially 
helpful for meta-analyses, in which data and findings from hundreds or 
thousands of papers need to be compiled to answer key unresolved eco-
logical and evolutionary questions178. Despite its speed and promise, 
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AI-assisted data synthesis still requires careful checks at all stages of 
data compilation, analysis and interpretation (Box 3).

Progress has also been made towards using AI-based deep learn-
ing to perform inference and prediction tasks that have traditionally 
been the remit of statistical methods such as regression. These tasks 
are ubiquitous across ecology and are a natural fit for AI. As the use of 
AI-based methods continues to grow, improved models are expected 
to support more-accurate SDMs to assist with the Wallacean shortfall 
as well as forecasting of time series (which has particular relevance to 
the Prestonian shortfall), phylogenetic reconstructions and food webs. 
Particularly important advances could come from the growing use 
of knowledge-guided ML, explainable AI179 and causal inference180,181, 
which could go beyond simply describing biodiversity patterns to 
uncovering their underlying ecological mechanisms. Such approaches 
have begun to make important contributions in related disciplines182,183 
but have not yet been widely applied to addressing biodiversity short-
falls. Other improvements in bioinformatics tools and methods are 

expected to help to fill the genetic diversity (Box 2) and Darwinian short-
falls. Across all shortfalls, targeting of geographically and taxonomically 
under-represented biodiversity should be a priority76.

A specific and critical need in ecological inference is to under-
stand connections and interactions across biological scales, especially 
at the community level. In general, AI is well-suited to the analysis of 
high-dimensionality data and systems and could be potentially more 
effective than existing methods at uncovering patterns and processes, 
both static and dynamic, in large interacting biological systems. The 
ability to use large, multimodal datasets and collections of models, 
together with nascent AI methods for data integration and synthesis, to 
extend knowledge from the species level to the community level will be 
essential for filling the Eltonian shortfall as well as other shortfalls that 
are driven by multi-species interactions. This process has begun with 
the creation of ML versions of joint SDMs184, but moving from species to 
communities is expected to more accurately reflect ecological dynamics 
and provide more-direct links to ecosystem functions and services.

Table 1 | Open problems in AI of relevance to biodiversity shortfalls

Open problem Description Importance to biodiversity

Foundation models Development and application of large-scale models, 
pretrained on extensive datasets, that can be adapted across 
diverse tasks without extensive retraining, thereby enabling 
existing knowledge to be leveraged for specific applications

Build on pre-existing knowledge rather than task-specific training and 
empower non-expert users to describe domain-specific observations 
while benefiting from the model’s broad knowledge base, which 
potentially accelerates and democratizes biodiversity research

Learning from long-tail 
distributions and 
fine-grained categories

Development of ML methods and evaluation metrics for 
highly imbalanced class distributions, especially data with 
many rare categories delineated by subtle differences in 
features and complex patterns

Essential for addressing the inherent complexity of ecological 
data, strong sampling bias, rare and hard-to-observe species and 
correlations between species. These methods could potentially 
improve the precision of biodiversity models and forecasts, as well as 
conservation impact assessments and conservation strategies

Out-of-distribution 
performance

Development of ML models that generalize effectively to 
data that differ markedly from the training data, owing to 
variations in sensors, geographical locations, environmental 
conditions or other factors

Biodiversity data collected for training models often come from 
limited regions and conditions, whereas deployment occurs in 
varied and unpredictable environments. Accurate out-of-distribution 
predictions are essential to identify general ecological relationships 
and enable reliable monitoring and assessment across different 
ecosystems

Continual learning Development of ML models that continually learn and adapt 
from streaming data online, without the need for retraining 
on large, static datasets

Important for models deployed in dynamic and/or remote 
environments where traditional batch retraining is logistically 
challenging. Enables models to be updated with new data and 
changing conditions, which improves their accuracy and reliability 
for monitoring biodiversity in real time

Long-context learning Development of ML models that effectively use and retain 
information from long sequences of data, essential for tasks 
such as natural language processing, time series forecasting, 
and whole-genome DNA-sequence analysis

Models increasingly integrate multimodal data and leverage advanced 
architectures such as transformers. Long-context learning enables the 
incorporation of extensive temporal and spatial information, which 
improves the understanding of complex ecological patterns and 
processes and ultimately leads to more-accurate and comprehensive 
biodiversity models

Core set selection Identification and extraction of the most representative or 
informative subsets from large, noisy datasets, to optimize 
model-training efficiency and performance while minimizing 
computational resources

A crucial component of biodiversity studies, which often involve 
massive, unstructured datasets that require considerable expertise 
to curate. Effective core set selection can streamline the analysis 
of complex ecosystems, reduce computational demands, and 
potentially improve the accuracy of biodiversity models by focusing 
on the most relevant data points

Efficient parameter 
inference

Development of methods and toolkits for efficient parameter 
estimation and interpretation of those parameters

Essential for compatibility with statistical approaches commonly 
used in biodiversity analyses (such as understanding organism 
tolerances along environmental gradients) and estimation of statistical 
uncertainty and confidence

Process discovery and 
causal inference

Development of ML methods to identify underlying 
mechanistic relationships and causal structures from 
observational data, distinguish correlation from causation, 
and extract interpretable processes from complex 
ecological datasets

Required for understanding ecosystem dynamics, species interactions 
and responses to environmental change. Increases the reliability of 
predicted biodiversity responses to interventions and helps to identify 
key drivers of population decline, thereby supporting evidence-based 
conservation strategies

AI, artificial intelligence; ML, machine learning.
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Finally, we propose that future generations of AI might fundamen-
tally change the role of computers and computation in ecology and bio-
diversity research. At present, the contributions of AI remain restricted 
(like those of ecological models) to a largely top-down framework, 
in which a tool or model is used to conduct an analysis specified by a 
human scientist. The value and/or utility of AI in a particular context 

is determined by how well different tools or models accomplish these 
predetermined tasks. This framework contrasts with collaborative 
research partnerships, in which participants iteratively discuss, chal-
lenge and build on each other’s ideas to reach insights that could not 
have been reached by the individual participants alone. To date, such 
collaborations necessitate interactions between human colleagues.

Darwinian
Challenges linked to the sampling of large and uncertain phylogenies

Eltonian
Very limited data on species interactions

a   Shortfall needs

b   Opportunities for AI

Field Conservation examples

All

• Population ecology
• Community ecology
• Biogeography
• Ecosystem ecology

• At-risk populations
• Red List index
• Living Planet index
• Planning for 30 × 30

• Tipping points
• Ecosystem resilience
• Keystone species
• Red List of ecosystems
• Conservation rank (e.g. EDGE)

• Functional ecology
• Evolution
• Food web ecology
• Pollination ecology

Linnaean
Stalled taxonomic naming and descriptions

Prestonian
Challenges in the detection of true abundance changes in populations
Wallacean
Taxonomic and regional biases in the distribution of information
Hutchinsonian
Di�iculties in understanding true organismal responses to the environment

Raunkiaeran
Limited data on the morphology and function of organisms

Darwinian
High-throughput phylogenetic assembly

Eltonian
Detect and model relevant interactions

Linnaean
Discover unidentified taxa from automated
sensors

Prestonian
Identify individuals in sensor data

Wallacean
Model species distributions from
multimodal data streams

Hutchinsonian
Infer habitat from satellite imagery
or behaviour from traits

Raunkiaeran
Measure traits from images or 
text-mine morphological descriptions

AI-assisted tasks

Rare event and anomaly detection

Improved data processing

Improved statistical inference
and prediction

Increased e�ectiveness of research 
(e.g. use of optimized sampling)

Discovery of hidden patterns

Connection of taxonomic, spatial 
and temporal scales (e.g. moving 
from species to communities)

Fig. 2 | The seven shortfalls in biodiversity knowledge. a, Important challenges 
relating to each shortfall are presented along with summaries of the associated 
scientific fields and examples of conservation applications, including proposed 
or accepted indicators for the Kunming–Montréal Global Biodiversity 
Framework (GBF): the Red List Index (RLI), the Living Planet Index, the Red List 
of Ecosystems, Evolutionarily Distinct, Globally Endangered Species (EDGE) and 

targets such as Target 3 of the GBF (protection of 30% of the land and sea by 2030, 
also known as 30 × 30). b, Connections between these shortfalls and applications 
of AI might provide the greatest potential for future advances beyond those 
already underway. The heights of the right-hand boxes indicate the relative 
potential for such gains.
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We speculate that several potential avenues exist through which AI 
might begin to join human scientists as a collaborative research partner. 
For example, we see potential for the growth of AI-assisted methods that 
iteratively and adaptively optimize experimental sampling schemes, in 
concert with changing input from human researchers, which will feed 
into coordinated monitoring efforts such as those of Group on Earth 
Observations Biodiversity Observation Network (GEO BON)38. The use 
of AI in non-ecology fields, such as computer-aided drug discovery185 
and materials science186, has shown the potential for such models to 
propose candidate research directions for experimental follow-up. 
Parallel tasks within biodiversity science could include AI-generated 
proposals of the existence of undetected species, resource flows, inter-
actions, historical events, or intervention strategies that could be veri-
fied with additional research effort. Perhaps the broadest indications 
of such potential currently lie in LLM chatbots, which can be used by 
researchers to help them to think through research ideas and directions.

These potential applications of AI are largely in their infancy and 
breakthroughs are likely to come from the broad integration of ML 
with expert knowledge and models derived from first principles187,188. 
The exploration of process-based or knowledge-guided ML models189 
that combine new information with existing scientific knowledge 
will be particularly important to derive ecological knowledge from 
newly obtained data. For example, AI systems trained on the extensive 
past climate record and based on transformer architecture190 or graph 
neural networks191 have already contributed to climate modelling. 
Knowledge-guided ML69,70 offers a very promising future approach to 
this problem, in which the results of the AI model are constrained by 
boundary conditions dictated by physical knowledge of the climate 
system188,192 or phenological parameters188,192.

Realization of these additional benefits of AI requires communica-
tion between biodiversity scientists and AI practitioners. A first useful 
step in this direction would be a concerted effort to translate biodi-
versity needs into tractable problems that attract attention from the 
AI community. Each biodiversity shortfall requires the identification 
of ecological use-cases along with evaluation data and benchmarks 
similar to GeoCLEF and BirdCLEF (tracks within CLEF that test and 
evaluate cross-language information retrieval of topics with a geo-
graphic specification and the ability to automate the identification of 
bird species from song, respectively), which are not usually prepared 
by ecologists. Development of such use-cases is already in progress for 
the Wallacean shortfall95 and could be strategically set up for other bio-
diversity shortfalls. We stress that such collaborations also contribute 
to the AI community193 by providing complex case studies that include 
multimodal data, long-tailed distributions, domain generalization, 
causal inference and other challenges. A long-term solution will be 
to integrate ecology into computer-science training programmes so 
that students trained in both specialties can speak the same language, 
clearly communicate issues and collectively arrive at solutions. The 
potential benefits of such joint training extend to related fields that 
face similar issues, such as Earth systems or climate sciences.

Beyond its contributions to fundamental ecology, an AI-inclusive 
research agenda is expected to have large follow-on benefits for policy 
and decision-making. Although AI is already making contributions to 
conservation in terms of data collection and analysis, its future contri-
butions to fundamental ecology could greatly improve our understand-
ing of conservation problems. As an immediate example, filling the 
Eltonian shortfall would provide a more-complete representation of 
species interactions and food webs in conservation that would help to 

Box 3 | Responsible use of artificial intelligence by ecologists
 

Artificial intelligence (AI) tools can help to address global biodiversity 
shortfalls but are not a panacea. Their effective application requires 
careful integration with scientific knowledge and application to 
real-world decision-making. Several broad areas are particularly 
relevant in the context of biodiversity shortfalls16:

	• Errors or biases in data can be perpetuated in results, and poor 
algorithm design can mask unintended biases. For example, 
AI classifiers trained on abundant data from temperate regions 
could perform poorly in biodiverse tropical regions, and the 
development of AI models limited to well studied charismatic 
species might further bias research and management efforts 
towards those species. Explainable AI models can be helpful in 
exposing such biases.

	• The performance expectations placed on AI systems can be 
unrealistically high, leading to disappointment and failures 
when these systems are used to perform roles for which they are 
unsuited, such as reasoning or prediction of future scenarios. 
We believe that, for the foreseeable future, AI should not replace 
human judgement in critical decision-making.

	• The ability to easily and accurately predict the locations of 
species, particularly those that are threatened or endangered, 
could inadvertently increase threats to those species by 
supporting poaching and the wildlife trade.

	• The analysis and sharing of datasets could potentially expose 
information about the individuals who collected such data or 

such information could appear incidentally in images, recordings 
and other digital records. Although sensor networks and AI 
models are already used to detect individuals engaged in illegal 
activities (such as poaching or illegal logging), strong legal and 
regulatory frameworks might be needed to prevent the same 
networks from being used for broader human surveillance 
purposes.

	• Widespread use of AI in biodiversity research could inadvertently 
increase inequality owing to its requirement for complex and 
costly computing resources, which represent a barrier to access 
by groups who would benefit from them the most, especially 
in the absence of effective communication. Accurate local 
knowledge could be overlooked in favour of deployment of 
large-scale, top-down models, which are often inaccurate at 
the local scales where biodiversity studies and conservation 
operate.

	• The hardware running some AI systems, especially generative 
AI models such as ChatGPT, consumes substantial amounts 
of energy and materials223, the production and supply 
of which (ironically) pose considerable risks to global 
biodiversity. Such concerns might be alleviated by selection 
of more-energy-efficient transfer learning based on large 
foundation models, or smaller, more-focused AI models 
designed for specific tasks.
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bridge the divide between biodiversity and ecosystem function172,173,194. 
More-complete ecological knowledge is also predicted to greatly 
increase our ability to assess and monitor global indicators of the rapidly 
approaching 2030 GBF targets. Improved flow-through of ecological 
knowledge (and conservation-informed ecological hypothesis genera-
tion) to implementation of conservation strategies (Fig. 1) could generate 

more opportunities to tailor analyses and scenarios to specific conserva-
tion questions from academia, government, non-governmental organi-
zations and industry, thereby setting ecologists and conservationists on 
a direct path to data-informed solutions.

Published online: 20 February 2025

Glossary

Active learning
Sets of methodologies that aim to 
optimize data-collection strategies or 
to select the most informative samples 
among a large quantity of redundant 
items using iteration and the uncertainty 
of the AI model as guiding principles. 
Such models both increase confidence 
and reduce the amount of data required 
by adding examples to the training data 
in successive improvement cycles, in 
which the algorithm prompts the user 
for further information.

Benchmarks
Standardized, structured challenges 
posed to the AI community that often 
take the form of a fixed dataset, split into 
training, validation and testing subsets, 
alongside a carefully designed metric or 
set of metrics used to evaluate success.

Bioinformatics
A field of biology focused on the 
methods, tools, software and 
infrastructure needed to store, manage 
and analyse large, complex biological 
datasets.

Category discovery
A challenge in machine learning that 
aims to identify and group previously 
unknown or unlabelled categories 
within a dataset, thus allowing the 
model to autonomously discover and 
define new classes based on patterns 
or similarities in the data, in some cases 
alongside existing classes or domains.

Computer vision
A field of AI that enables machines to 
analyse and interpret information in 
images and videos to perform tasks such 
as image classification, object detection, 
semantic or instance segmentation, 
3D image reconstruction, depth 
estimation, visual question answering, 
image retrieval and scene understanding.

Edge computational 
approaches
Computing systems that process 
the data at the device or sensor 
level and transmit only the desired 
results. Used when sensor behaviour 
is controlled by the results, in 
sensors that acquire a lot of unusable 
data, or under low-bandwidth 
conditions.

Embeddings
In machine learning, a representation 
of an object (such as an image, audio 
recording or word) as a numerical 
vector, such that some measure of 
discrepancy between vectors, generally 
called a distance, corresponds in a 
meaningful way to the relatedness of 
the objects they represent.

Foundation models
Machine learning models that 
are trained on a wide variety of 
data with the goal of being useful 
across a variety of different problems; 
broadly applicable foundation models 
require extremely large parameter 
spaces.

Fundamental niche
The role or position of an organism 
within an ecosystem, including its 
diet, behaviour and interactions 
with predator, prey or competitor 
species and its effect on its 
environment (habitat conditions 
and resources).

Gaussian processes
A type of statistical model based 
on the assumption that underlying 
random variables are normally 
distributed. Often used for continuous 
value prediction tasks that can 
naturally represent uncertainty 
in the modelled data.

Generative AI
Unlike discriminative AI, generative 
models are designed to generate 
novel content, often images or text, as 
opposed to providing information about 
existing data.

Imageomics
An emerging field, in which machine 
learning tools built around biological 
knowledge are used to analyse image 
data to characterize patterns and gain 
insights into traits and relationships 
at individual, population and species 
scales.

Machine learning
A subcategory of artificial intelligence 
in which models use an algorithm to 
pick out patterns in a training dataset 
that are relevant for solving the problem 
at hand.

Multimodal datasets
Datasets that observe the same entity 
with a variety of sensors. A modality 
could be an on-animal sensor, a drone 
image or a microphone, for example.

Natural language processing
A mechanism that enables human 
users to interact with artificial systems 
using natural language (that is via text 
or speech).

Open world classification
Also termed open set classification. 
A machine learning approach designed 
both to classify items into known 
classes and to recognize whether items 
belong to unknown classes that were 
absent during training.

Phenology
The study of how recurrent phenomena 
such as seasonal and climate variations 
affect events in the life cycle of an 
organism.

Realized niche
The subset of conditions within the 
fundamental niche actually used by a 
species, after interactions with other 
species (in particular predation and 
competition) and dispersal limitations 
have been taken into account.

Species distribution models
Also known as environmental 
niche models, these key tools predict 
species occurrence or abundance 
as a function of abiotic or biotic 
environmental variables; used for 
ecological inference of species 
responses to the environment and for 
mapping present and projected species 
distributions in response to climate or 
land-use change.

Tokenization
The process by which raw data 
(such as a text) are converted into 
smaller units (such as individual words) 
that can be used by models such as 
transformers.

Traits
Phenotypic attributes that affect an 
organism’s fitness and/or influence 
its ecosystem functions and can also 
provide insights into the consequences 
of biodiversity loss for ecosystem 
functioning and human well-being.

Transformers
A neural network architecture that 
processes sequences of tokens 
(often text or images) in parallel 
rather than sequentially and is 
therefore highly effective at capturing 
long-range dependencies in data 
but computationally very expensive, 
requiring very large models and 
amounts of training data.
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