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Abstract

Sections

Large, well described gaps exist in both what we know and what we
need to know to address the biodiversity crisis. Artificial intelligence
(Al) offers new potential for filling these knowledge gaps, but where
the biggest and most influential gains could be made remains unclear.
To date, biodiversity-related uses of Al have largely focused on tracking
and monitoring of wildlife populations. Rapid progress is being made
in the use of Al to build phylogenetic trees and species distribution
models. However, Al also has considerable unrealized potentialin the
re-evaluation of important ecological questions, especially those that
require theintegration of disparate and inherently complex data types,
such asimages, video, text, audio and DNA. This Review describes

the current and potential future use of Al to address seven clearly
defined shortfallsin biodiversity knowledge. Recommended steps

for Al-based improvements include the re-use of existing image data
and the development of novel paradigms, including the collaborative
generation of new testable hypotheses. The resulting expansion of
biodiversity knowledge could lead to science spanning from genes to
ecosystems — advances that might represent our best hope for meeting
therapidly approaching 2030 targets of the Global Biodiversity
Framework.
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Introduction

Biodiversity is essential for human well-being, yetis increasingly threat-
ened. Biodiversity isalso complex, scale-dependent, hard to measure
and full of surprises. Unlike the relatively simple causal link between
atmospheric greenhouse gas concentration and climate change, the
biodiversity story ismore nuanced. The grand challenge in ecology and
conservation is to be able to answer the following crucial questions.
How many species do we have on Earth? Which populations are declin-
ing? Which areas are essential to protect? When will tipping points be
reached? How should we best meet the 2030 global biodiversity targets
set outinthe Kunming-Montréal Global Biodiversity Framework (GBF;
https://www.cbd.int/gbf)'? Why do contemporary extinctions exceed
background rates? Adequate answersto these and other questions are
needed to capitalize on the current global momentum toward nature
conservation.

Unfortunately, despite large volumes of databeing collected, nearly
all GBF targets and indicators are missing essential information, whichis
neededbothtoestablish baselines and to monitor progress. Persistent
biases dating from the 1980s have led to conservation efforts being
focused repeatedly on the same taxa, which (counterintuitively) are
not always those with the greatest levels of risk®. Overall, biodiversity
iswell described in only a small fraction of the world® and existing data
arebiased toward common species and populated areasinthe Northern
Hemisphere*”’. Little isknown for many species beyond their names and
wherethey live. Information on how a particular species functions, how
it speciated and how it interacts in communities is often absent, espe-
cially for species occurring in the ocean”. These knowledge deficits span
taxonomy to species interactions and have been organized into seven
defined shortfalls in global biodiversity knowledge®’ that capture the
breadthand complexity of biodiversity in measurable ways. Overcom-
ing these shortfalls is essential for calculating essential biodiversity
variables®, meetingall biodiversity-based GBF indicators and addressing
the most pressing challenges to biodiversity, whichrange from obtaining
detailed on-the-ground knowledge to understanding national trends.

Ecologists and conservation researchers need to harness the
current unprecedented levels of interest and global coordination in
biodiversity protection generated by the GBF alongside emerging
technologies, suchas artificial intelligence (Al) and, more specifically,
data-driven machine learning (ML), that can handle diverse and rapidly
expanding datasets. An open questionis how we can best leverage these
technologies. To date, the rapid rise of Al technologies and methods
in ecology and evolution has been mostly focused on a small set of
conservation topics (reviewed elsewhere’ ") and data-collection appli-
cations, such as bioacoustics'”, camera traps'>'* satellite imagery and
remote sensing®. Reviews of Al applications in biodiversity loss' and
Almethods for ecologists'” have already been published. The present
Review considers how Al could address critical knowledge gapsinthe
broader fields of biodiversity science, which span spatial scales, genes,
functions, phylogenies and species interactions. We note that owing
to the extremely rapid development of Al, many of the publications
cited in this Review are currently available only in non-peer-reviewed
formats (conference proceedings or preprints).

In this Review, we delineate the current state of the seven bio-
diversity shortfalls”*®, discuss how they are being addressed with Al
and identify where Al offers the greatest potential for bridging the
remaining gaps (Fig. 1). Where Al methods have not yet been used to
address all seven biodiversity shortfalls, we recommend avenues of
investigation that map the needs of each shortfall to specific Al solu-
tions and place each solutionin the context of the required steps, from

data imputation and analysis to conservation decisions. Finally, we
provideacritical analysis of the realistic limitations of Altechnologies;
although the proliferation of foundation models (including molecular®,
cellular®®”' and organismal® models) coupled with generative Al holds
promise for reducing all biodiversity shortfalls, Alis not the answer to
every challenge.

Taxonomic descriptions

The Linnaean shortfall refers to the gap between the number of spe-
ciesonEarthand the number that have been formally described’. This
shortfall is arguably the most foundational, as nearly every field in
ecology, evolution and conservation relies on naming and catalogu-
ing species to assess biodiversity. Nothing can be done to understand
aspecies thatis not known to exist.

Challenges

The size of the Linnaean shortfall is unknown, because estimating the
size of this gap relies on counting the number of species that have been
described and estimating the number of non-described species, both of
whichinvolve uncertainty. Approximately 2 million extant species have
beendescribed” of the estimated 8.7 million eukaryotic species thought
toexistonEarth®, although estimates vary widely®.Ingeneral, the size of
theLinnaeanshortfallisthought toincrease as the size of anorganismand
its complexity decreases” and to vary geographically along with a variety
of other traits””** (see the Wallacean shortfall). Despite the fundamental
nature of the Linnaean shortfall and the currently heightened global
risk of species extinction, the number of newly named species has not
increased since the 2000s”. Indeed, taxonomy is a severely underfunded
scientific discipline thatis itself threatened with extinction®.

Past and future role of Al

Alhas so far been used to mitigate the Linnaean shortfall in two major
ways: to impute the estimated total number of taxa®® and to identify
new taxain existing datasets (Fig.1). Automated identification of pre-
viously undescribed taxais a very promising task for Al that might be
accomplished throughidentification of new taxain existing images®,
DNA samples® or acoustic recordings and leveraging of modalities
(such as DNA or acoustic analysis) that can indicate the presence of
taxa as yet unseen®,

Novel taxa have been identified in raw sensor data, including
via DNA barcodes®+* and citizen science images***. The image-
classification models BioCLIP*> and BIOSCAN-CLIP* are not designed to
pinpoint new species, but canbe used to label putative examples of new
species by association with known templateimages or DNA sequences,
respectively. WildCLIP focuses on the retrieval of images displaying
certain attributes of an animal or its environment, which could be
used to interrogate diverse datasets®. Although such approaches are
currently in the early stages of implementation, they offer consider-
able potential for incorporating techniques from the ML subareas
of open world classification and category discovery®, which involve
the identification of new categories (such as species) in unlabelled
datasets (such as image libraries) that could contain both previously
known and as-yet-undescribed categories.

Looking ahead, Al tools might contribute to tasks designed spe-
cifically to enable species discovery. For example, once a new species
isidentified (either manually or via Al-assisted discovery methods®), Al
vision-language models might be able to assist taxonomistsin crafting
a species description by picking out and describing its distinguish-
ing features®****. Such methods could draw upon interpretable Al
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Fig. 1| Potential roles of artificial intelligence in filling biodiversity knowledge = modelling, is likely to drive further uses of Al. b, The future development of Al

gaps and downstream applications. a, Artificial intelligence (Al) is widely could help tofillknowledge gaps in several areas. These improvements generally
implemented in the data-decision pipeline for conservation applications (those apply across multiple biodiversity shortfalls, although some tasks benefit more
relating to species of conservation concern) but is less often integrated into than others from specificimprovements. The size of the boxes and the width of
the broader subfields of ecology. In consequence, most biodiversity shortfalls the connectinglines represent the relative importance of the contributions of
remain relatively unexplored. The increasing emphasis on satellite imagery Alto the data-generation and conservation-application processes. LLM, large
and imputation methods, which generate large datasets and involve statistical language model.
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techniquesintegrated with species-detectionalgorithms such asthose
usedin BioCLIP or BIOSCAN-CLIP. Other algorithms might be used torec-
ommend where, whenand how to search for novel species: forexample,
approachesinspired by active learning could identify areas where there
is high uncertainty inthe diversity of certain taxa. This process resultsin
anactivelearning feedbackloop (Fig.1),inwhich hypotheses proposed
by both humansand algorithms are validated and the results are used to
train further algorithms with improved performance. Such activelearn-
ing processes are predicted to be instrumental in the design of future
global monitoring networks®. Contributions from Almight, therefore,
notonlyincreasetherate of species discovery and description but also
the effectiveness of current and future generations of taxonomists.

Estimates and patterns of abundance

The Prestonian shortfall refers to the lack of knowledge of the abun-
dance ofaspeciesandits trendsinboth space and time. Aside from the
fundamentalimportance of accurate estimates of species abundance
to population biology and evolution, knowledge of abundanceis also
criticaltodefining a species’ conservation status and predicting its risk
of extinction. However, addressing the Prestonian shortfall represents
aconsiderable challenge because it involves counting (or estimating)
the number of all individuals of a species present at a given point in
space and time.

Challenges

From a data perspective, measuring the true abundance of a given
population requires an exhaustive census of every individual of the
relevant species present within a defined spatial and temporal window.
This laborious exercise is very rarely completed even for relatively
charismatic, easily detected and well studied taxa such as birds* or
large mammals. As a notable exception, the Center for Tropical For-
est Science (CTFS) Forest Global Earth Observatory (GEO) has estab-
lished forest plots specifically for measuring the true abundance of
tropical tree species*’. However, even for stationary and relatively
well described tree species, conducting such censuses requires an
enormous amount of effort.

A practical alternative to a complete census is to estimate both
species abundance and its spatiotemporal trends from a statistically
representative sample of individuals drawn from the entire popula-
tion. The essential challenge of this approachis to accurately estimate
the number of individuals that are present in the population but not
sampled, which requires repeated sampling in either space or time.
Two broad categories of population estimation model exist: marked,
inwhich specificindividuals are tagged or can otherwise be identified
whenre-sightedinrepeated surveys; and unmarked, in which individu-
alsare counted but cannotbe identified as a specific (re-sighted) indi-
vidual. Therelative abundances of multiple species or trendsinrelative
abundance among species might be sufficient for some applications
and can often be inferred from count data alone’®*.

Notably, although the explosion in citizen science data and the
availability of digitized museum specimens have madeimportant con-
tributions to documenting the presence of species across their ranges
(asdiscussed in the section onthe Wallacean shortfall), these unmarked
datasources usually do not measure abundance directly and might be
too sparseinspace and time to support robust estimates of abundance.

Past and futurerole of Al
To date, Al-based analysis of sensor data (such as camera trap images
and acousticrecordings) has been applied to mitigating the Prestonian

shortfall by generating unmarked data for statistical abundance
estimation*"*2, For example, occupancy estimates derived from
repeated sampling* and time-to-detection models** thatare based on
the automated classification of bird song produce species abundance
estimates similar to those derived from traditional human surveys®.
Automated classification can also be combined with grids of sensors,
suchasacousticrecorders, to produce high-resolution maps of sound
sources that canbe used to estimate the abundance of sound-producing
species*®?,

Alis already reducing the Prestonian shortfall for many species
by increasing the efficiency of human experts in identifying specific
individuals in collected images, which facilitates the non-invasive
marked estimation of species abundance*®. This work started with
the publicationin1990 of the first methods of re-identification based
oncomputer vision®. Early attempts involved the use of statistical pat-
tern recognition derived from low-level features and geometry'*°°!,
Advances in person re-identification using deep learning*? have now
been applied to images of animals of various species® > and have
led to notable improvements in re-identification, particularly when
high-quality, well focused images of single individuals taken by human
experts were assessed.

Al methods that canidentify individual organisms, not just their
species identity, are poised to contribute even further to mitigating
the Prestonian shortfall by enabling data obtained from passive sen-
sors to be used in marked abundance models. However, much work
remainstobe donetoincrease theresilience of computer-vision-based
re-identification to poor-quality images, for example those captured
without a human photographer (such as in camera-trap data**°). In
addition, these methods could be expanded to include many more
data modalities, such as video®*, drone or unmanned aerial vehicle
recordings® and audio files®“*. Al applications for wildlife population
monitoring (such as Wildbook; https://www.wildme.org/wildbook.
html) would also benefit from progress on the ‘open-set challenge’,
whichinvolves not only identifying confidently that an individual has
never before been seen® butalso recognizing and matching sightings
of newindividuals over time®. We anticipate that progress will also be
made ontheincorporation of experts into participatory and iterative
human-Al systems to reduce the amount of expert input needed to
derive abundance estimates® and to improve resistance to category
errors, such as assigning images of multiple individuals to a single
identification or splitting images of a single individual into multiple
identifications.

In the long term, considerable development work is needed to
enable computer vision systems to efficiently recognize individuals
without clear biometric markings and to recognize the same indi-
vidual as their markings change over time. Suchimprovements might
involve the recognition of specific individuals from their behaviour,
gaitor vocalizations, or the integration of additional modalities, such
as hyperspectral imaging or environmental DNA (eDNA) analyses.
Additional biological attributes and contextual information derived
frommechanistic studies of species behaviours, such associal interac-
tions, demographic status and territories, could also be integrated into
re-identification systems. Additionally, interdisciplinary research on
statistical estimates of abundance is needed, for example, to develop
estimation methods that take into account the continuous-value con-
fidence scores of Almodels* or make use of mixed-granularity species
identification data, in which some sightings can be identified at the
individual level, whereas others can only be confidently identified for
asmall subset of the population.
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Incontrastto the several decades of experience in the application
of Al-based analytic methods to image databases, the application of
these methods to acoustic® and other data types collected in the field
remains limited and emerging. Progressin computer vision could lead
tothe development ofimproved methods for the aerial census of large
groups, which could build upon existing methods used to accurately
count the number of individuals in crowds®®*’. The growing availabil-
ity of eDNA data, particularly those obtained using field-deployable
sequencingtechnologies, offers another potential avenue for species
abundance estimation. However, the conversion of eDNA concentra-
tionsintoreliable abundance estimates remains challenging, owing to
the presence of complex environmental factors that affect DNA per-
sistence and detection®®, Alapproaches could make estimates derived
from eDNA concentrations more robust by accounting for these envi-
ronmental factors and by integrating eDNA data collected using other
sensor types. Finally, we note that the Al-supported species abundance
estimation methods described in this section have generally provided
single snapshots in time. Additional progress towards the use of Al
for forecasting time series and understanding drivers of population
change, including through process-based and knowledge-guided ML
models of population dynamics®”’, is expected to contribute further
towards reducing this shortfall.

Biogeographic species distribution

The Wallacean shortfall refers to the lack of detailed information on
the biogeographic distribution of species. The documentation of
species distributions dates from the early 1800s and, as such, is one
of the oldest endeavours in biodiversity science. Moreover, the Wal-
lacean shortfall affects nearly every subfield of ecology, including
understanding the effects of climate change on biodiversity and the
reconstruction of historical speciation events. Accurate data on spe-
ciesbiogeographic distributionsis essential for conservation because
range size is one of the best predictors of extinction risk” > and is one
of the main criteria for assignment of at-risk status’. Knowledge of
biogeographic species distributionsis also essential for mapping spe-
cies, biodiversity hotspots and ecosystem services. This information
directly feeds several important biodiversity indicators, such as the
Species Protection Index™.

Challenges

Addressing the Wallacean shortfall is relatively simple in principle, in
that it can be filled by simple occurrence data, which are increasingly
drawn from crowdsourced initiatives such as iNaturalist”. However,
although the Global Biodiversity Information Facility (GBIF; https://
www.gbif.org/) now contains over 3 billion records, these data are
biased toward terrestrial areas?, certain taxa (especially popular birds),
the Northern Hemisphere and locations within 1.0 km of roads””. Expert
species-range maps derived from taxa-specific sources (including
conservation guides and at-risk assessments) also provide distribu-
tion information for many taxa, but these often lack the granularity
needed for use in conservation applications, such as the estimation
of species-habitat relationships.

Past and future role of Al

One of the most promising ways in which Al can be used to fill the Wal-
laceanshortfallisinthe processing ofincoming primary data collected
from sensor arrays (Fig. 1). Technologies such as high-resolution sat-
ellite and aerial remote sensing in a wide range of spectra, stationary
image capture, acoustic sensing and eDNA analysis are increasingly

being used to provide species data for sparsely covered and/or inac-
cessiblelocations. Theseinnovations are already resultingin surprising
discoveries, such as new colonies of emperor penguins’ and advances
such as the ability to monitor whales in remote locations™. Species
occurrences canalso be extracted fromnon-target acoustic recordings,
images on crowd science platforms (such as iNaturalist) and social
media posts®.

A second major and well integrated effort to fill the Wallacean
shortfall has involved the use of species distribution models (SDMs)
to impute missing data. SDMs used to predict a species’ spatial dis-
tribution from environmental or habitat data have rapidly adopted
ML techniques such as boosted regression trees®. Modern SDMs are
now beginning to incorporate more-powerful ML techniques that
can handle complex interactions with multiple data types, such as
remotely sensed land-cover classes and continuous local climate
measurements®, Al-based statistical model integrationis an even more
powerful tool®* for the analysis of multimodal datasets that can handle
multiple types of species occurrence data — for example, presence-only
community science, presence-absence plot data and remote sensing
imagery (Box1). The development of standardized protocols and com-
petitions such as GeoLifeCLEF (one of several challengesin ImageCLEF
(https://www.imageclef.org/), the Conference and Labs of the Evalua-
tion Forum (CLEF) cross language image retrival track)®* are extending
the success of Al-assisted SDMs to other macroecological models used
to predict biodiversity metrics, such as species richness®.

However, many challenges remain to be addressed to enable
meaningful gains to be made in primary data collection and data syn-
thesis. Al-assisted methods offer the potential to decrease known
data gaps by targeting severely under-sampled areas (such as the
deep ocean) and taxa (such as fungi) via active learning methods that
optimize future data acquisition from in situ sensor networks and
community scientists®**®. Extreme edge computational approaches
increasingly move Al to the sensors themselves, in the form of smart
cameratrapsand acousticarrays that enable automated and adaptive
data collection. Advanced techniques are also needed for spatial bias
correction®®®, to improve models of undersampled species that are
based on well sampled species®**°, and to model community assem-
blages and turnover®. The development of these methods requires
cross-disciplinary collaborations of ecological statisticians and Al
researchers’”. Although multimodal datasets (for example, those
that integrate camera trap and community science data) are already
proving useful®®, future work could address the computational chal-
lenges associated with the analysis of large remote-sensing datasets
by making use of models that efficiently encode spatially varying data
representations, which are useful for many downstream tasks”"*.
Finally, where possible, the utility of Al methods for estimating spa-
tial distributions of species should be rigorously quantified using
best-in-class, expert-verified evaluation datasets. The creation of such
‘gold standard’ datasets is challenging but deserves attention from the
biodiversity community®?°,

Abiotic tolerance and fundamental niche

The Hutchinsonian shortfall refers to a gap in understanding of the
tolerance of a species to abiotic conditions, including temperature,
precipitation, soil, water and terrain. This suite of abiotic tolerancesis
oftenreferred to as the Grinnellian fundamental niche, which is consid-
ered tobe the multidimensional environmental space in whichaspecies
can persist’”’®. Knowledge of abiotic tolerances is particularly impor-
tantinthe context of climate change because rapidly changing abiotic
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Box 1| The use of imagery to fill
biodiversity knowledge shortfalls

One of the biggest contributors to meeting the Wallacean
and Hutchinsonian shortfalls (among others) has been the
ever-increasing detail supplied by satellite imagery. The
characterization of Earth’s topography and terrain is relatively
mature. National Aeronautics and Space Administration (NASA)-
and European Space Agency (ESA)-based missions have provided
planet-scale terrain models at resolutions of tens of metres.
However, Al can still contribute to the assessment of other habitat
variables. For example, global gridded soil data (SoilGrids250)'*°
are based on traditional machine learning (ML) approaches such as
random forests. These models were trained on publicly available
soil profiles and spectral data in which reflectance relates to
indices of vegetation, clouds or water vapour that populate a global
datacube' and can be used, together with local observations,
to characterize a habitat™’. Although historic indices were based
on simple band ratios, the need for modelling of more-complex
relationships or more-targeted variables has encouraged the
Al community to provide these essential variables and thereby
facilitate monitoring of the planet’s climate'® and biodiversity'**%°,
Advances in deep learning mean that new indices can be
produced at high resolution and global scales. Tree height
and above-ground biomass®*, forest degradation®’, drivers of
deforestation-related phenological factors such as plant functional
types® and tree wood density*®® are some important examples.
However, most Al-based approaches require globally distributed
ground observations to train the models, sometimes collected by
missions such as the Global Ecosystem Dynamics Investigation
(GEDI), which provided global tree-height ground points®*°. Thus,
the development of Al-assisted models often requires extensive
fieldwork collections and could potentially also benefit from citizen
science?®. Technical and economic challenges that remain to be
solved to make the most of the immense observational power of
satellite data include the integration of multiple sensor types (such
as optical and radar®*>*°®), the limited spatial resolution of sensors,
the high cost of large data volumes, and high computational costs.
Multispectral or hyperspectral drone or airborne data can be used
for smaller regions.

conditions are driving mismatches between species occurrences and
tolerances that pose a threat to conservation efforts. Mitigation of
the Hutchinsonian shortfall could improve predictions of population
trajectories and range shifts under climate change®.

Challenges

Information on species tolerances comes from two primary sources:
physiological dataderived from study of the organism and occurrence
datafrom field observations. Physiological data collected about organ-
ismsinfield orlaboratory experimental settings can be used to generate
models that generate performance curves for a given organism under
different abiotic conditions. These data are challenging to obtainand
exist only for a subset of species'*’. Additionally, such studies often
fail to account for environmental factors that affect performance
under field conditions and rarely capture intraspecific variations

(see Raunkiaeran shortfall) or consider phenotypic plasticity'”. Alter-
natively, occurrence datafromfield observations of an organism canbe
linked to dataon prevalent abiotic conditions to characterize aspecies’
realized niche.

The differentiation of fundamental niches (the potential for tolera-
tion of extant conditions) from realized niches (environments where
an organism is actually found) remains a challenge, given that biotic
factors and dispersal capabilities also shape species distributions'*,
A further challenge is the lack of data on the abiotic environment,
particularly at the fine spatial scales needed to precisely quantify the
abiotic tolerances of organisms.

Past and future role of Al

Alisanobvious candidate for inferring an organism’s tolerances from
field observations and occurrence data. Increasingly finer-resolution
imagery from satellites (Box 1) and drones, thermal imaging data
and precise light detection and ranging (LiDAR)-generated three-
dimensional (3D) models of surface features can be the base ingredients
for extracting a highly refined picture of species habitats or proxies
that can be used to estimate such habitats. Although such raw data
do not directly inform scientists about habitats, they can be used to
extract the required information about phenology, soils and climate.
Some sensors track organisms directly. Animal tracking, although
particularly relevant to the Hutchinsonian shortfall, is also relevant
to the Wallacean and other shortfalls.

Looking forward, alongside the advances in satellite-derived
imagery used toidentify habitat associations (Box 1), ground-to-space
systems such asInternational Cooperation for Animal Research Using
Space (ICARUS) could greatly enhance our understanding of abiotic
tolerances and detailed behavioural responses to abiotic conditions
(reviewed elsewhere'®). For plants, abiotic conditions could poten-
tially be harvested from photographs (also discussed inrelation to the
Raunkiaeran shortfall). However, laboratory-based experimental work
isneeded tocomplement such observational data. Al could be helpful
inbuilding 3D models of wingbeats for birds using structured light and
high-speed cameras'*, other detailed animal tracking movements'®>'%°
or scent-based molecule detection'” (which could be used to detect
stress hormones in laboratory animals, for example). Looking to
the future, the creation of accurate ‘digital twin’ ecological system
models'** % will require abiotic tolerance data derived from these Al
methods as well as process-based Alapproaches that combine abiotic
toleranceinformation with additional observations to track and predict
biodiversity change.

Functional trait variation

The Raunkiaeran shortfall highlights the lack of knowledge of both
intraspecific and interspecific trait variations, the ecological func-
tions arising from species traits, how these functions are influenced by
interactions with other traits, and which traitsactin tandem to provide
specific ecosystem functions.

Challenges

Obtaining the true distributions of trait values within a given popula-
tionrequires acomprehensive assessment of every individual’s traits
to be conducted within a specified time frame, which is logistically
impossible. For that reason, researchers have largely focused on com-
piling species mean values derived from measurements of museum
specimens or individuals in the field as well as extraction of trait data
fromguidebooks and the scientific literature. These efforts led to the
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development of large, publicly available trait databases™ ', Efforts
over the past 15 years have focused on intraspecific trait variability">"
and the potential for some traits (such as diet and foraging character-
istics) to show substantial spatiotemporal variation even within an
individual”. However, considerable taxonomic gaps remain; most
trait databases focus on plants™ or tetrapods™ "> and only a handful
include invertebrates"*"'®, fungi and microorganisms"®'"’, for which
comprehensive taxonomic coverage is often lacking. Geographic cov-
erageisalsouneven;regionsinthe Global South and ecosystems such
astropical forests and deep oceans typically lack comprehensive trait
data. Finally, our knowledge of traits often centres on easily measurable
morphological characteristics, which are only sometimes clearly linked
to ecological functions™?®'?", These factors limit our understanding of
trait-environment relationships. Comprehensive data are urgently
needed onbehavioural, physiological and life-history traits, which are
crucial for understanding species’ ecological roles and interactions.

Past and futurerole of Al

Current Al techniques to address the Raunkiaeran shortfall typi-
cally focus on extracting trait information from digitized museum
specimens'” and images provided by citizen scientists through the
burgeoning field of imageomics'®*. Most efforts have concentrated
on easily measurable (often morphological) traits, but more-complex
applications of Al are emerging. For example, in a study of birdwing
butterflies, an Almodelidentified subtle differences inwing shape and
colour —traits that are challenging for humans to discern'?*. Likewise, Al
has detected colour differences between genotypes of the polymorphic
wood tiger moth (Arctia plantaginis) that are typically invisible to the
human eye and has analysed pattern signatures of the mimetic eggs
of the common cuckoo (Cuculus canorus)'. ML techniques have also
been used to impute missing trait data'?® and to infer trait combina-
tions that are responsible for species interactions. Computer vision
algorithms that learn from image attributes'” could make important
strides in addressing the Raunkiaeran shortfall (Box 1).

Several advances could be useful for quantifying ecosystem func-
tion. For example, the use of remotely sensed images to assess plant
productivity could identify ecological interactions (as described for
the Eltonian shortfall). The large strides made in using imagery to
identify species and trait composition'?® are expected to facilitate the
detailed measurement of ecosystem processes such as nutrient cycling,
decomposition and food-web energy dynamics.

Looking ahead, Al is likely to continue to make surprising dis-
coveries related to traits that are undetectable by human senses and
to further develop this knowledge by adding further data modalities
andidentifying connections among them. Al could be used to analyse
high-resolution 3D scans of collected natural history specimens, such
asskulls, pollen” or fossil plants. Likewise, efforts are also advancing
from 2D to 3D, static to video and visible-only to hyperspectral and
other imaging techniques, which (for example) could capture the
behaviour of flying insects around artificial light sources™°. Al could
also play an important part in discovering and connecting traits to
function within a single context in which multiple species exist.

Evolutionary relationships

The Darwinian shortfall highlights gaps in our understanding of the
tree of life and the evolution of lineages, species and traits’. A related
butdistinctgap is the shortfallin understanding of evolutionary rela-
tionships at the population level, which we refer to here as the genetic
diversity shortfall (described in Box 2).

Theevolutionary history of speciesis particularly relevant to the
study of the evolution of species traits (see the Raunkiaeran shortfall)
and species niches (see the Hutchinsonian shortfall). However, beyond
its fundamental importance to evolutionary biology, knowledge of
evolutionary relationships is also crucial for conservation policy and
planning, given that programmes such as EDGE (Evolutionarily Distinct,
Globally Endangered) prioritize the conservation of evolutionarily

distinct species™’.

Challenges

The tree of life has been extensively revised with the advent of molec-
ular biology, initially through the comparison of DNA fragments
and now through whole-genome sequencing. Despite considerable
advances in these methodologies, the use of molecular techniques
for building comprehensive phylogenies remains constrained by
data availability”"**. As a result, only a few well known groups, such as
birds, some plants and mammals, have comprehensive species-level
phylogenies'***** and many other clades (particularly highly diverse
groups such as microorganisms, insects and fungi) lack comprehen-
sive phylogeneticinformation. Limited data availability also hampers
the estimation of time-calibrated phylogenies, which are crucial for the
derivation of accurate evolutionary timelines. This process typically
involves using the fossil record to set node age constraints, employing
molecular clocks to estimate evolution rates and divergence times and
using integrated models of fossil and phylogenetic data to concurrently
estimate divergence times and diversification rates.

Past and future role of Al

Allmodern phylogeneticinference methods use computational (albeit
mostly non-ML) algorithms"*. However, several advances in Al have
shown promise forimproving the understanding of evolutionary rela-
tionships. For example, frequently used ML algorithms such as random
forests (which combine the output of multiple decision trees to reach
asingle result) have been used toimprove the accuracy and efficiency
of phylogenetic inference' and graph neural networks represent a
potentially fruitful next step in this area. Moreover, guided by phylog-
eny and theincreasing number of sequenced species, Al is starting tobe
used to extract traitinformation directly from images™***in studies of
phenotype-genotype correlations' (see the Raunkiaeran shortfall).
Al-harvested information canalso be used to study trait evolution. For
instance, Phylo-NN"’ integrates images with phylogenetic dataina
hierarchical manner to generate imageomes (sequences of quantized
feature vectors that capture evolutionary signals at varying ancestry
levels). Other examples include phylogenetic Gaussian processes for
reconstructing ancestral traits', which provide detailed insightsinto
evolutionary history and trait evolution across species.

Looking ahead, Al has the potential to revolutionize our under-
standing of evolutionary relationships. Advanced Al algorithms could
accelerate phylogenetic reconstructionby leveraging parallel hardware
and computational approximations that borrow core ideas from Al to
address the combinatorial nature of phylogeny estimation. The power
of modern Al methods to synthesize scientific knowledge, coupled
with the increasing availability of sequenced genomes, could lead to
the development of evolutionary foundation models similar to those
emerging at the DNA sequence®'*?, cell”’, organism and species® levels.
Future applications of Al might also enable trait dendrograms to be
inferred directly from images of organisms, potentially including 3D
fossilimages, to generate testable hypotheses about their evolutionary
relationships. Al could also be used to analyse high-resolution 3D scans
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Box 2 | The shortfall in knowledge of genetic diversity

Genetic diversity is not included among the original seven global
shortfalls in biodiversity knowledge, but it represents another critical
knowledge gap. The genetic variants present in a (sub)population
are important for maintaining its local environmental adaptation®”’.
Intraspecies variation can be affected differently to interspecies
variation by ecological processes, such as trophic cascades®®, and is
tied to ecosystem services such as pollination’’®. Genetic diversity is
also one of the best indicators of the health of a population. Indeed,
the adaptive potential of a population (which is reduced by factors
such as undergoing a genetic bottleneck) has long been used in
conservation assessments and as the basis for a headline indicator®”’
in the Global Biodiversity Framework. In many populations, genetic
diversity is declining rapidly*°.

Two major challenges associated with this shortfall are that
traditional methods of collecting genetic data across populations
are extremely resource-intensive, and that genetic diversity cannot
necessarily be inferred from conservation risk status?". In time, these
challenges may be alleviated by the ever-increasing collection of
environmental DNA”? and RNA?", Other challenges include differing
sensitivities to individual genetic markers and sampling procedures
and the lack of coordinated collection efforts (with notable
exceptions?').

The resounding success of human genome-wide association
studies and comparative population genomics offers considerable
promise for the development of biodiversity applications. For
example, one proposed framework leveraged large models for
gene vectorization to predict habitat specificity from microbial
whole-genome sequences?®. The model not only demonstrated
strong predictive performance but also recapitulated known
interaction networks and proposed new candidates for experimental
follow-up®®. This work highlights the capacity of Al to process

of collected natural history specimens'* to study trait evolution and
reconstruct ancestral states. Inacknowledgement of the receptiveness
of the Al and/or ML communities to competitions and benchmarks,
development of Al methods might be spurred by efforts to extend
existing computational phylogenetic benchmarks to multimodal
datafor phylogeny inference. We note that such benchmarks must be
carefully designed to ensure they are as representative as possible of
the real-world challenge they pose. Other large-scale datasets such
as Arboretum™*, TreeOfLife-10M* and BIOSCAN-5M'* already target
the Linnaean shortfall by providing extensive multimodal biodiver-
sity data. Similar phylogeny-focused datasets could challenge the Al
community to address the Darwinian shortfall.

Species interactions

The Eltonian shortfall describes the gap in our knowledge of interspe-
ciesinteractions (including competition, predation, herbivory, mutu-
alism and parasitism) that are fundamental in shaping the ecological
distribution and abundance of species. If such biotic interactions are
not accounted for, predictions of (for example) population viabil-
ity and species responses to disturbance are likely to be incorrect.
An understanding of species interaction networks also enriches the
understanding of ecosystem functioning and resilience to disturbance.

large-scale genetic data and uncover genetic interactions within
species. Al-assisted approaches are being used to correlate the
similarity of individual biometric features, such as egg-spot patterns
or facial features, with genetic distance. These advances underscore
the potential of Al to increase understanding of genetic diversity
within populations and aid conservation efforts.

Future Al technologies might transform our understanding of
genetic diversity by overcoming current limitations in data collection
and analysis. Emerging technologies such as nanopore-based
sequencing could bring genetic analysis into the field by enabling
real-time, inexpensive data collection”®. Megabarcoding
techniques®’”'® that facilitate large-scale genetic barcoding greatly
enhance our ability to gather comprehensive population genetic
data. In bioinformatics, the shift towards transformer-based Al
models — such as Nucleotide Transformer®® and DNA Bidirectional
Encoder Representations from Transformers (DNABERT)*° — along
with generalized state-space models, open up the ability to analyse
long DNA sequences. These models can generate the detailed
DNA embeddings that are crucial for capturing genetic diversity
within and between populations. Further developments could
connect DNA sequences to observable phenotypes, which might
enable image and acoustic data to serve as a proxy for genetic
variability.

How ecologists can best leverage these data and tools remains
unclear. The role of Al in making genetic data accessible through
natural language interactions, exemplified by transformer models
such as ChatNT?*' and single-cell GPT??, could greatly enhance our
ability to interpret and use genetic information. Synergy between
Al advances and innovative data collection techniques is key to
resolving the genetic diversity shortfall.

Challenges

The complexity of ecosystems and food webs makes it challenging to
identify the presence and strength of pairwise interactions. Although
some interactions (such as pollination and predation) involve direct
contact between species, such events are often rare and difficult to
observe. Other interactions remain invisible, such as competition for
scarce resources. Species interactions are often not apparent until
after the loss or removal of an individual species causes disruption
that reverberates throughout ecosystems. Diet analysis of faecal or
gut content — and, increasingly, DNA metabarcoding — has informed
our understanding of the richness of trophic interactions (those that
control energy flow through food webs via direct consumption of one
species by another), although such methods remain costly and have
low accuracy for some taxa'®. In relation to species interactions at
biogeographicscales, field dataonspecies co-occurrence caninform
joint SDMs®*"*71*¢ although such correlative approaches can rarely
tease apart the mechanistic interactions that underlie co-occurrence

patterns'®’,

Past and futurerole of Al
The Eltonian shortfall represents one of the most critical data gaps
and many exciting opportunities exist for the use of Al to mitigate
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this shortfall (Fig. 1). Al supports two broad ways to address the Elto-
nian shortfall: intelligent sensing in primary data collection and data
imputation by interaction prediction.

Alis already being used for direct sensing of plant-pollinator™®
and plant-pestinteractions™in collections of visual**"** and acoustic™*
data. Theseinitiatives are partly motivated by smart agriculture (thatis,
the use of advanced technologies to improve agricultural productivity
and sustainability). Exciting possibilities exist for using the soundtracks
from recorded videos and images of non-focal species recorded in
databases (such as iNaturalist) and social media posts to harvest spe-
ciesinteractions from existing data. Similarly, large language models
(LLMs) could generate summaries of existing detailed text descriptions
from guidebooks, grey literature (produced at all levels of govern-
ment, academia, business and industry outside commercial publishing
channels) and conservation assessments. Predictive approaches are
of great importance in data imputation because sampling of species
interactions is much harder than sampling of species occurrence, even
whensupported by Al. Predictive tools could help to alleviate this data
gap by providing both the basis for probabilistic analyses and effective
guidance for additional observation efforts.

Alis now beginning to be used to adapt traditional models of spe-
cies interactions based on plant-pollinator™™¥, predator-prey”*'’
and host-parasite' networks by incorporating trait matching, eDNA™,
species co-occurrence or even just network structures. Interactions can
be predicted eveninthe absence of traits by extrapolating from partly
known interaction networks'®* or relying solely on co-occurrence'®
using graph dimensionality reduction techniques to generate a small
latent interaction space that captures the essential features of the
meta-web and even allows some transferability across taxa'®*. Although
these Al-assisted approaches remain limited by the need for more finely
grained data sources (such as GPS tracking)'®®, they are key to the alle-
viation of data sparsity. Some studies have demonstrated advantages
of ML approaches (specifically deep neural networks and random
forests) over classic statistical techniques™ but much work remains
to be done, particularly in addressing the mismatch between pre-
dictions of individual interactions and community properties'® and
in developing process-based ML models that realistically constrain
network predictions'®.

Inthelongterm, one of the obvious uses of Al will be toimprove the
analysis of ecological and other interaction networks, although such
approaches are yet to be widely adopted. Graph neural networks'?,
aform of deep neural network that performs inference on network
structures rather than tensors, seem to be particularly promising.
Graphneural networks represent a natural way to learn (multilayer) rep-
resentations from graphs and to deal with anumber of network-related
problems'**but have had slow uptake in ecology. Graph tokenization'®’,
a process similar to text tokenization, offers an alternative to graph-
based learning with conventional deep neural networks. Ultimately,
although graphsare likely to be anatural match for Al-assisted analysis
of interaction and species networks, the extent of the improvement
gained for ecological networks remains to be seen'”®,

Al-assisted analysis of interaction and species networks has many
potential applications, such as anticipation of extinction cascades.
Once ametaweb has been characterized, algorithms can predict which
extinctions and co-extinctions would have disproportionate effects
on network structure” (and, probably, on network function). Com-
bined with Bayesian reasoning, this approach has delivered automated
decision-making support that promises substantiallyimproved conser-
vation outcomes'’?and could improve analyses of the effects of threats

on food webs'”. For example, the use of Al has led to considerable
progress inunderstanding the patterns of historical mass extinctions
by first inferring historical food webs from ecomorphological and
phylogenetic traits and then evaluating their resilience'*.

Summary and future directions

The potential contributions of Al to filling the seven global biodiver-
sity shortfalls extend far beyond those completed so far (Table 1). We
believe that Al is poised to have a major effect on the seven shortfalls
inthree broad areas: continued improvements in data collection and
processing; new approaches to ecological inference and prediction;
and collaborative research design and hypothesis generation (Fig. 2).
Thefirsttwo areas have already received attentionin ecology and fur-
ther advances and applications are clearly on the way. The third area
remainsinitsinfancy.

The best established and most widespread applications of Al in
filling biodiversity shortfalls relate to increasing the speed, scale and
effectiveness of data collection and processing. To date, much of this
work has centred on the use of automated sensors and ML methods,
primarily from computer vision, to generate new records of species
presence (that is, occurrence or abundance). These data are already
helpingtofill the Wallacean, Prestonian and Hutchinsonian shortfalls
(Figs.1and 2; Box 1), mainly through their use in statistical models that
relate species presence to abiotic conditions. Particularly promising
are extensions of open-world classification and category discovery that
couldsoonreinvigorate the naming of new species (thatis, the Linnaean
shortfall) via the automated discovery of taxonomic diversity. Below
the specieslevel, Al extensions to fine-scale features of organisms will
help tofill the Raunkerian shortfall and the genetic diversity shortfall
(Box 2). Finally, the generation of large-scale species co-occurrence
dataorevenautomated detection of direct speciesinteractions, such
as predation events or aggressive vocalizations, could further help to
fill the Eltonian shortfall.

Inthelongterm, the speed, scale and effectiveness of data process-
ing must continue to improve as biodiversity datasets expand. A spe-
cificareafor future growthis the application of emerging techniques
for the detection and identification of rare events and anomalies.
Addressing the challenges presented by hard-to-detect species, events
and other kinds of unusual signal will help to fill all seven shortfalls.
Another key role for Al that has largely gone unrealized in ecology is
the ability of models to not only automate the detection, classification
and analysis of data features that are already known to humans but
also to discover novel features and patterns that had not previously
beendescribed or evenimagined. Examplesinclude traits that are not
detectable by human senses, subtle features that distinguish individual
organisms within a species from each other, and general patterns in
community structure.

The assimilation capacity of Al also has untapped potential to
gather and synthesize what we already know">", Large amounts of
(often publicly funded) high-quality ecological data are present in
at-risk species assessments, consultant findings and government
reports”®, many of which are available online and include more-detailed
ecological information than is found in existing compiled data-
sets. Data-gathering and synthesis activities that could take many
person-years could be done much more efficiently by using LLMs"”’
for the initial stages. Al-assisted data gathering could be especially
helpful for meta-analyses, in which dataand findings from hundreds or
thousands of papers need to be compiled to answer key unresolved eco-
logical and evolutionary questions'’®. Despite its speed and promise,
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Table 1| Open problems in Al of relevance to biodiversity shortfalls

Open problem

Description

Importance to biodiversity

Foundation models

Development and application of large-scale models,
pretrained on extensive datasets, that can be adapted across
diverse tasks without extensive retraining, thereby enabling
existing knowledge to be leveraged for specific applications

Build on pre-existing knowledge rather than task-specific training and
empower non-expert users to describe domain-specific observations
while benefiting from the model’s broad knowledge base, which
potentially accelerates and democratizes biodiversity research

Learning from long-tail
distributions and
fine-grained categories

Development of ML methods and evaluation metrics for
highly imbalanced class distributions, especially data with
many rare categories delineated by subtle differences in
features and complex patterns

Essential for addressing the inherent complexity of ecological

data, strong sampling bias, rare and hard-to-observe species and
correlations between species. These methods could potentially
improve the precision of biodiversity models and forecasts, as well as
conservation impact assessments and conservation strategies

Out-of-distribution
performance

Development of ML models that generalize effectively to
data that differ markedly from the training data, owing to
variations in sensors, geographical locations, environmental
conditions or other factors

Biodiversity data collected for training models often come from
limited regions and conditions, whereas deployment occurs in
varied and unpredictable environments. Accurate out-of-distribution
predictions are essential to identify general ecological relationships
and enable reliable monitoring and assessment across different
ecosystems

Continual learning

Development of ML models that continually learn and adapt
from streaming data online, without the need for retraining
on large, static datasets

Important for models deployed in dynamic and/or remote
environments where traditional batch retraining is logistically
challenging. Enables models to be updated with new data and
changing conditions, which improves their accuracy and reliability
for monitoring biodiversity in real time

Long-context learning

Development of ML models that effectively use and retain
information from long sequences of data, essential for tasks
such as natural language processing, time series forecasting,
and whole-genome DNA-sequence analysis

Models increasingly integrate multimodal data and leverage advanced
architectures such as transformers. Long-context learning enables the
incorporation of extensive temporal and spatial information, which
improves the understanding of complex ecological patterns and
processes and ultimately leads to more-accurate and comprehensive
biodiversity models

Core set selection

Identification and extraction of the most representative or
informative subsets from large, noisy datasets, to optimize
model-training efficiency and performance while minimizing
computational resources

A crucial component of biodiversity studies, which often involve
massive, unstructured datasets that require considerable expertise
to curate. Effective core set selection can streamline the analysis

of complex ecosystems, reduce computational demands, and
potentially improve the accuracy of biodiversity models by focusing
on the most relevant data points

Efficient parameter
inference

Development of methods and toolkits for efficient parameter
estimation and interpretation of those parameters

Essential for compatibility with statistical approaches commonly

used in biodiversity analyses (such as understanding organism
tolerances along environmental gradients) and estimation of statistical
uncertainty and confidence

Process discovery and
causal inference

Development of ML methods to identify underlying
mechanistic relationships and causal structures from
observational data, distinguish correlation from causation,
and extract interpretable processes from complex
ecological datasets

Required for understanding ecosystem dynamics, species interactions
and responses to environmental change. Increases the reliability of
predicted biodiversity responses to interventions and helps to identify
key drivers of population decline, thereby supporting evidence-based
conservation strategies

Al artificial intelligence; ML, machine learning.

Al-assisted data synthesis still requires careful checks at all stages of
data compilation, analysis and interpretation (Box 3).

Progress has also been made towards using Al-based deep learn-
ing to perform inference and prediction tasks that have traditionally
been the remit of statistical methods such as regression. These tasks
are ubiquitous across ecology and are a natural fit for Al. As the use of
Al-based methods continues to grow, improved models are expected
to support more-accurate SDMs to assist with the Wallacean shortfall
as well as forecasting of time series (which has particular relevance to
the Prestonian shortfall), phylogenetic reconstructions and food webs.
Particularly important advances could come from the growing use
of knowledge-guided ML, explainable AI'® and causal inference'**®!,
which could go beyond simply describing biodiversity patterns to
uncoveringtheir underlying ecological mechanisms. Such approaches
have begun to make important contributionsin related disciplines'**'®*
but have not yet been widely applied to addressing biodiversity short-
falls. Other improvements in bioinformatics tools and methods are

expectedto help tofill the genetic diversity (Box 2) and Darwinian short-
falls. Across all shortfalls, targeting of geographically and taxonomically
under-represented biodiversity should be a priority™.

A specific and critical need in ecological inference is to under-
stand connections and interactions across biological scales, especially
at the community level. In general, Al is well-suited to the analysis of
high-dimensionality data and systems and could be potentially more
effective than existing methods at uncovering patterns and processes,
both static and dynamic, in large interacting biological systems. The
ability to use large, multimodal datasets and collections of models,
together with nascent Almethods for dataintegration and synthesis, to
extend knowledge from the species level to the community level willbe
essential for filling the Eltonian shortfall as well as other shortfalls that
are driven by multi-species interactions. This process has begun with
the creation of ML versions of joint SDMs™**, but moving from species to
communities is expected to more accurately reflect ecological dynamics
and provide more-direct links to ecosystem functions and services.
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Finally, we propose that future generations of Almight fundamen-
tally change the role of computers and computationin ecology and bio-
diversity research. At present, the contributions of Alremain restricted
(like those of ecological models) to a largely top-down framework,
in which a tool or model is used to conduct an analysis specified by a
human scientist. The value and/or utility of Al in a particular context

a Shortfall needs

is determined by how well different tools or models accomplish these
predetermined tasks. This framework contrasts with collaborative
research partnerships, in which participants iteratively discuss, chal-
lenge and build on each other’s ideas to reach insights that could not
have been reached by the individual participants alone. To date, such
collaborations necessitate interactions between human colleagues.

Conservation examples

Field
| |

Linnaean
Stalled taxonomic naming and descriptions

Prestonian
Challenges in the detection of true abundance changes in populations

Wallacean

Taxonomic and regional biases in the distribution of information
Hutchinsonian

Difficulties in understanding true organismal responses to the environment

Raunkiaeran
Limited data on the morphology and function of organisms

e Functional ecology
e Evolution

* Food web ecology
e Pollination ecology

Darwinian
Challenges linked to the sampling of large and uncertain phylogenies

Eltonian
Very limited data on species interactions

b Opportunities for Al

Linnaean
Discover unidentified taxa from automated
sensors

Prestonian
Identify individuals in sensor data

Wallacean
Model species distributions from
multimodal data streams

Hutchinsonian
Infer habitat from satellite imagery
or behaviour from traits

Raunkiaeran
Measure traits from images or
text-mine morphological descriptions

Darwinian
High-throughput phylogenetic assembly

Eltonian
Detect and model relevant interactions

Fig.2|The sevenshortfalls in biodiversity knowledge. a, Important challenges
relating to each shortfall are presented along with summaries of the associated
scientific fields and examples of conservation applications, including proposed
or accepted indicators for the Kunming-Montréal Global Biodiversity
Framework (GBF): the Red List Index (RLI), the Living Planet Index, the Red List
of Ecosystems, Evolutionarily Distinct, Globally Endangered Species (EDGE) and

e Population ecology
e Community ecology
» Biogeography

» Ecosystem ecology

All

o At-risk populations
e Red List index

e Living Planet index
e Planning for 30 x 30

» Tipping points

» Ecosystem resilience

* Keystone species

o Red List of ecosystems

« Conservation rank (e.g. EDGE)

Al-assisted tasks
|

Rare event and anomaly detection

Improved data processing

Improved statistical inference
and prediction

Increased effectiveness of research
(e.g. use of optimized sampling)

Discovery of hidden patterns

Connection of taxonomic, spatial
and temporal scales (e.g. moving
from species to communities)

targets such as Target 3 of the GBF (protection of 30% of the land and sea by 2030,
alsoknownas 30 x 30). b, Connections between these shortfalls and applications
of Almight provide the greatest potential for future advances beyond those
already underway. The heights of the right-hand boxes indicate the relative
potential for such gains.
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Box 3 | Responsible use of artificial intelligence by ecologists

Artificial intelligence (Al) tools can help to address global biodiversity
shortfalls but are not a panacea. Their effective application requires
careful integration with scientific knowledge and application to
real-world decision-making. Several broad areas are particularly
relevant in the context of biodiversity shortfalls':

e Errors or biases in data can be perpetuated in results, and poor
algorithm design can mask unintended biases. For example,
Al classifiers trained on abundant data from temperate regions
could perform poorly in biodiverse tropical regions, and the
development of Al models limited to well studied charismatic
species might further bias research and management efforts
towards those species. Explainable Al models can be helpful in
exposing such biases.
The performance expectations placed on Al systems can be
unrealistically high, leading to disappointment and failures
when these systems are used to perform roles for which they are
unsuited, such as reasoning or prediction of future scenarios.
We believe that, for the foreseeable future, Al should not replace
human judgement in critical decision-making.
The ability to easily and accurately predict the locations of
species, particularly those that are threatened or endangered,
could inadvertently increase threats to those species by
supporting poaching and the wildlife trade.
The analysis and sharing of datasets could potentially expose
information about the individuals who collected such data or

We speculate that several potential avenues exist through which Al
mightbegintojoinhumanscientistsasa collaborative research partner.
For example, we see potential for the growth of Al-assisted methods that
iteratively and adaptively optimize experimental sampling schemes, in
concert with changing input from human researchers, which will feed
into coordinated monitoring efforts such as those of Group on Earth
Observations Biodiversity Observation Network (GEO BON)*. The use
of Alin non-ecology fields, such as computer-aided drug discovery'
and materials science'®, has shown the potential for such models to
propose candidate research directions for experimental follow-up.
Parallel tasks within biodiversity science could include Al-generated
proposals of the existence of undetected species, resource flows, inter-
actions, historical events, or intervention strategies that could be veri-
fied with additional research effort. Perhaps the broadest indications
of such potential currently lie in LLM chatbots, which can be used by
researchersto helpthemtothink throughresearchideasanddirections.

These potential applications of Al are largely in their infancy and
breakthroughs are likely to come from the broad integration of ML
with expert knowledge and models derived from first principles'®"'*%,
The exploration of process-based or knowledge-guided ML models'®®
that combine new information with existing scientific knowledge
will be particularly important to derive ecological knowledge from
newly obtained data. For example, Al systems trained on the extensive
past climate record and based on transformer architecture'*° or graph
neural networks' have already contributed to climate modelling.
Knowledge-guided ML**”° offers a very promising future approach to
this problem, in which the results of the Al model are constrained by
boundary conditions dictated by physical knowledge of the climate
system'®¥°2 or phenological parameters'®'*,

such information could appear incidentally in images, recordings
and other digital records. Although sensor networks and Al
models are already used to detect individuals engaged in illegal
activities (such as poaching or illegal logging), strong legal and
regulatory frameworks might be needed to prevent the same
networks from being used for broader human surveillance
purposes.

o Widespread use of Al in biodiversity research could inadvertently
increase inequality owing to its requirement for complex and
costly computing resources, which represent a barrier to access
by groups who would benefit from them the most, especially
in the absence of effective communication. Accurate local
knowledge could be overlooked in favour of deployment of
large-scale, top-down models, which are often inaccurate at
the local scales where biodiversity studies and conservation
operate.

e The hardware running some Al systems, especially generative
Al models such as ChatGPT, consumes substantial amounts
of energy and materials®?®, the production and supply
of which (ironically) pose considerable risks to global
biodiversity. Such concerns might be alleviated by selection
of more-energy-efficient transfer learning based on large
foundation models, or smaller, more-focused Al models
designed for specific tasks.

Realization of these additional benefits of Al requires communica-
tionbetween biodiversity scientists and Al practitioners. A first useful
step in this direction would be a concerted effort to translate biodi-
versity needsinto tractable problems that attract attention from the
Alcommunity. Each biodiversity shortfall requires the identification
of ecological use-cases along with evaluation data and benchmarks
similar to GeoCLEF and BirdCLEF (tracks within CLEF that test and
evaluate cross-language information retrieval of topics with a geo-
graphicspecification and the ability to automate the identification of
bird species fromsong, respectively), which are not usually prepared
by ecologists. Development of such use-casesis already in progress for
the Wallacean shortfall” and could be strategically set up for other bio-
diversity shortfalls. We stress that such collaborations also contribute
to the Alcommunity'” by providing complex case studies thatinclude
multimodal data, long-tailed distributions, domain generalization,
causal inference and other challenges. A long-term solution will be
tointegrate ecology into computer-science training programmes so
thatstudents trained in both specialties can speak the same language,
clearly communicate issues and collectively arrive at solutions. The
potential benefits of such joint training extend to related fields that
face similarissues, such as Earth systems or climate sciences.

Beyond its contributions to fundamental ecology, an Al-inclusive
research agendais expected to have large follow-on benefits for policy
and decision-making. Although Al is already making contributions to
conservation in terms of data collection and analysis, its future contri-
butions to fundamental ecology could greatly improve our understand-
ing of conservation problems. As an immediate example, filling the
Eltonian shortfall would provide a more-complete representation of
species interactions and food webs in conservation that would help to
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Glossary

Active learning

Sets of methodologies that aim to
optimize data-collection strategies or
to select the most informative samples
among a large quantity of redundant
items using iteration and the uncertainty
of the Al model as guiding principles.
Such models both increase confidence
and reduce the amount of data required
by adding examples to the training data
in successive improvement cycles, in
which the algorithm prompts the user
for further information.

Benchmarks

Standardized, structured challenges
posed to the Al community that often
take the form of a fixed dataset, split into
training, validation and testing subsets,
alongside a carefully designed metric or
set of metrics used to evaluate success.

Bioinformatics

Afield of biology focused on the
methods, tools, software and
infrastructure needed to store, manage
and analyse large, complex biological
datasets.

Category discovery

A challenge in machine learning that
aims to identify and group previously
unknown or unlabelled categories
within a dataset, thus allowing the
model to autonomously discover and
define new classes based on patterns
or similarities in the data, in some cases
alongside existing classes or domains.

Edge computational
approaches

Computing systems that process

the data at the device or sensor

level and transmit only the desired
results. Used when sensor behaviour
is controlled by the results, in

sensors that acquire a lot of unusable
data, or under low-bandwidth
conditions.

Embeddings

In machine learning, a representation

of an object (such as an image, audio
recording or word) as a numerical
vector, such that some measure of
discrepancy between vectors, generally
called a distance, correspondsin a
meaningful way to the relatedness of
the objects they represent.

Foundation models

Machine learning models that

are trained on a wide variety of

data with the goal of being useful
across a variety of different problems;
broadly applicable foundation models
require extremely large parameter
spaces.

Fundamental niche

The role or position of an organism
within an ecosystem, including its
diet, behaviour and interactions
with predator, prey or competitor
species and its effect on its
environment (habitat conditions
and resources).

Computer vision

Afield of Al that enables machines to
analyse and interpret information in
images and videos to perform tasks such
asimage classification, object detection,
semantic or instance segmentation,

3D image reconstruction, depth
estimation, visual question answering,
image retrieval and scene understanding.

Gaussian processes

A type of statistical model based

on the assumption that underlying
random variables are normally
distributed. Often used for continuous
value prediction tasks that can
naturally represent uncertainty

inthe modelled data.

Generative Al

Unlike discriminative Al, generative
models are designed to generate

novel content, often images or text, as
opposed to providing information about
existing data.

Imageomics

An emerging field, in which machine
learning tools built around biological
knowledge are used to analyse image
data to characterize patterns and gain
insights into traits and relationships
atindividual, population and species
scales.

Machine learning

A subcategory of artificial intelligence

in which models use an algorithm to
pick out patterns in a training dataset
that are relevant for solving the problem
athand.

Multimodal datasets

Datasets that observe the same entity
with a variety of sensors. A modality
could be an on-animal sensor, a drone
image or a microphone, for example.

Natural language processing
A mechanism that enables human
users to interact with artificial systems
using natural language (that is via text
or speech).

Realized niche

The subset of conditions within the
fundamental niche actually used by a
species, after interactions with other
species (in particular predation and
competition) and dispersal limitations
have been taken into account.

Species distribution models
Also known as environmental

niche models, these key tools predict
species occurrence or abundance

as a function of abiotic or biotic
environmental variables; used for
ecological inference of species
responses to the environment and for
mapping present and projected species
distributions in response to climate or
land-use change.

Tokenization

The process by which raw data

(such as a text) are converted into
smaller units (such as individual words)
that can be used by models such as
transformers.

Traits

Phenotypic attributes that affect an
organism’s fitness and/or influence

its ecosystem functions and can also
provide insights into the consequences
of biodiversity loss for ecosystem
functioning and human well-being.

Open world classification

Also termed open set classification.

A machine learning approach designed
both to classify items into known
classes and to recognize whether items
belong to unknown classes that were
absent during training.

Phenology

The study of how recurrent phenomena
such as seasonal and climate variations
affect events in the life cycle of an
organism.

Transformers

A neural network architecture that
processes sequences of tokens
(often text orimages) in parallel
rather than sequentially and is
therefore highly effective at capturing
long-range dependencies in data

but computationally very expensive,
requiring very large models and
amounts of training data.

bridge the divide between biodiversity and ecosystem function

172,173,194

More-complete ecological knowledge is also predicted to greatly
increase our ability to assess and monitor globalindicators of therapidly
approaching 2030 GBF targets. Improved flow-through of ecological
knowledge (and conservation-informed ecological hypothesis genera-
tion) toimplementation of conservation strategies (Fig. 1) could generate

more opportunitiestotailor analyses and scenarios to specific conserva-
tion questions fromacademia, government, non-governmental organi-
zationsandindustry, thereby setting ecologists and conservationists on
adirect path to data-informed solutions.
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