
Generating Executable Action Plans with Environmentally-Aware
Language Models

Maitrey Gramopadhye1 and Daniel Szafir1

Abstract— Large Language Models (LLMs) trained using
massive text datasets have recently shown promise in generating
action plans for robotic agents from high level text queries.
However, these models typically do not consider the robot’s
environment, resulting in generated plans that may not actually
be executable, due to ambiguities in the planned actions or en-
vironmental constraints. In this paper, we propose an approach
to generate environmentally-aware action plans that agents
are better able to execute. Our approach involves integrating
environmental objects and object relations as additional inputs
into LLM action plan generation to provide the system with
an awareness of its surroundings, resulting in plans where
each generated action is mapped to objects present in the
scene. We also design a novel scoring function that, along with
generating the action steps and associating them with objects,
helps the system disambiguate among object instances and take
into account their states. We evaluated our approach using the
VirtualHome simulator and the ActivityPrograms knowledge
base and found that action plans generated from our system had
a 310% improvement in executability and a 147% improvement
in correctness over prior work. The complete code and a demo
of our method is publicly available at https://github.
com/hri-ironlab/scene_aware_language_planner.

I. INTRODUCTION

Recent work in the natural language processing (NLP) and
machine learning (ML) communities has made tremendous
breakthroughs in several core aspects of computational lin-
guistics and language modeling driven by advances in deep
learning, data, hardware, and techniques. These advance-
ments have led to the release of pretrained large (million
and billion+ parameter) language models (LLMs) that have
achieved the state-of-the-art across a variety of tasks such as
text classification, generation, and summarization, question
answering, and machine translation, that demonstrate some
abilities to meaningfully understand the real world [1], [2],
[3], [4], [5], [6], [7], [8]. LLMs also demonstrate cross-
domain and cross-modal generalizations, such as retrieving
videos from text, visual question answering and task plan-
ning [9]. In particular, recent works have explored using
LLMs to convert high-level natural language commands to
actionable steps (e.g. “bring water” → “grab glass”, “fill
glass with water”, “walk to table”, “put glass on table”) for
intelligent agents [10], [11], [12], [13], [14], [15]. Trained
on diverse and extensive data, LLMs have the distinct ability
to form action plans for varied high-level tasks.

While promising, the action steps generated by LLMs in
prior work are not always executable by a robot platform.
For instance, for a task “clean the room” a LLM might
generate an output “call cleaning agency on phone”; while

1University of North Carolina at Chapel Hill, United States

being correct, this action plan might not be executable since
the agent might not grasp the concept of “call” or have the
“phone” object in it’s environment. This limitation arises
because LLMs are trained solely on large text corpora and
have essentially never had any interaction with an embodied
environment. As a result, the action steps they generate lack
context on the robot’s surroundings and capabilities.

To address this issue, prior works have explored grounding
LLMs by fine-tuning models using human interactions [15],
[16], [17] or training models for downstream tasks using
pretrained LLMs as frozen backbones [18], [19], [20], [21],
[22], [23], [24], [25]. However, these methods often require
training on extensive annotated data, which can be expensive
or infeasible to obtain, or can lead to loss of generalized
knowledge from the LLM. Instead, recent research has in-
vestigated biasing LLM output without altering their weights
by using prompt engineering [10], [11], [26] or constraining
LLM output to a corpus of available action steps defined a
priori that are known to be within a robot’s capabilities [10],
[11]. This line of research focuses on methods that can utilise
the capabilities of LLMs while preserving their generality
and with substantially less additional annotated data.

While these systems effectively perform common sense
grounding by extracting knowledge from an LLM, they
employ a one-fits-all approach without considering the vari-
ations possible in the actionable environment. As a result,
executing the action plans generated by these systems either
requires approximations to the agent’s environment or time-
consuming and costly pretraining to generate an affordance
score to determine the probability that an action will succeed
or produce a favourable outcome towards task completion,
given the current agent and environment states. Additionally,
since prior systems are environment agnostic, it is not
possible to use them to generate executable action plans
for tasks requiring object disambiguation. For example, to
generate correct action plans for tasks that require interaction
with multiple objects with the same name, the system needs
to be able to distinguish among object instances.

We propose a novel method to address these issues
while generating low-level action plans from high-level task
specifications. Our approach is an extension to Huang et
al., 2022 [10]. From an Example set (see §IV) using the
ActivityPrograms knowledge base collected by Puig et al.,
2018 [27], we sample an example similar to the query task
and environment and use it to design a prompt for a LLM
(details of which are given in §III-A). We then use the LLM
to autoregressively generate candidates for each action step.
To rank the generated candidates, we design multiple scores

ar
X

iv
:2

21
0.

04
96

4v
2

 [c
s.R

O
]

2
M

ay
 2

02
3

https://github.com/hri-ironlab/scene_aware_language_planner
https://github.com/hri-ironlab/scene_aware_language_planner

Fig. 1. Visualization of an example action plan being executed in VirtualHome. Within the virtual home environment a simulated humanoid agent carries
out the robot task sequences generated by our environmentally-aware language model.

for the actions and their associated objects (see §III-B and
§III-C). After the top candidate is selected, we append it to
the action plan and repeat the process until the entire action
plan is generated.

To evaluate our action plans, we use the recently released
VirtualHome interface [27] (Figure 1 shows a visualization
of an example action plan running in VirtualHome). We use
several metrics (details in §IV-A), including executability,
Longest Common Sub-sequence (LCS), and final graph
correctness to autonomously test generated action plans on
VirtualHome. Overall, we found that our method increased
action plan executability and correctness by 310% and 147%
respectively over a state-of-the-art baseline.

II. RELATED WORK

Our work builds upon recent efforts in robotics to lever-
age the potential of LLMs. For instance, researchers are
beginning to explore LLMs in the context of applying com-
monsense reasoning to natural language instructions [28],
providing robotic agents with zero-shot action plans [10], and
supplying high-level semantic knowledge about robot tasks
[11]. Below, we review related research in task planning,
LLMs, and action plan grounding.

A. Task Planning

The problem of task planning involves generating a series
of steps to accomplish a goal in a constrained environment.
Historically, this problem has been widely studied in robotics
[29], [30], [31], with most approaches solving it by opti-
mizing the generated plan, given environment constraints,
[32], [33] and using symbolic planning [29], [31]. Recently,
machine learning methods have been employed to relax the
constraints on the environment and allow higher-level task
specifications by leveraging techniques such as reinforcement
learning or graph learning to learn task hierarchy [34], [35],
[36], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46],
[47], [48], [49]. However, most of these methods require
extensive training from demonstrations, or explicitly encoded
environmental knowledge and may not generalize to unseen
environments and tasks. The use of LLMs, which encapsulate
generalized world knowledge, may help plan for novel tasks
and new environments.

B. Large Language Models

Large language models (LLMs) are language models,
usually inspired by the transformer architecture [50], tens
of gigabytes in size and trained on enormous amounts
of unstructured text data. Recent advances in the field of
natural language processing have shown that LLMs are
useful for several downstream applications including interac-
tive dialogue, essay generation, creating websites from text
descriptions, automatic code completion, etc. [1], [2], [4],
[3]. During their pretraining, LLMs can accumulate diverse
and extensive knowledge [51], [52], [53] that enables their
use in applications beyond NLP, such as retrieving visual
features [54] and solving mathematical problems [55], [56]
or as pretrained models for other modalities [57], [58]. In
robotics, knowledge embedded in LLMs can be utilised to
generate actionable plans for agents from high-level queries.
However, in order for a plan to be executable by a robot, the
outputs from the LLMs need to be grounded in the context
of the robot’s environment and capabilities.

C. Grounding Natural Language in Action Plans

There has been considerable work towards grounding nat-
ural language in actionable steps. Prior research has focused
on parsing natural language or analysing it as series of lexical
tokens to remove ambiguity and map language commands
to admissible actions [59], [60], [61], [62]. However, these
methods usually require extensive, manually coded rules and
thus fail to generalize to novel environments and tasks. More
relevant to our approach, recent work has explored grounding
language models using additional environment elements [63],
[64], [65], [66], [67]. Techniques include prompting [10],
[26] and constraining language model outputs to admissible
actions [11], [12], [13], [14]. To also ground the output
of language models in the environment of the agent, prior
works have tried using LLMs as fixed backbones, [18], [20],
[21], [22], [23], [24], [25], [68] fine-tuning or ranking model
outputs through interactions with the environment [15], [16],
[17]. Our work extends such approaches, where we use
additional inputs from the environment (i.e., objects and their
properties) to condition the model output without any fine-
tuning of the LLM or extra training to learn value functions
for ranking LLM outputs.

Fig. 2. An overview of our approach. We generate action plans by first
selecting an example that has a similar task and environment to the query.
We use this example to autoregressively prompt the Planning LM to generate
an action plan and map the output to admissible actions and objects using
the Translation LM.

III. APPROACH

In this section, we discuss our proposed method to gen-
erate directly executable action plans from high-level tasks
(Figure 2 provides a visual overview). Motivated by Huang
et al., 2022 [10], our approach uses two language models,
a planning LM (LMP) to generate the action plan and
calculate a score for the similarity of an object with the other
objects associated with the action plan; and a translation LM
(LMT) to calculate embeddings for objects and actions.

A. LLM Action Plan Prompt Generation

Large language models have the ability to learn from con-
text during inference, i.e., when autoregressively sampled,
LLMs can generate meaningful text to complete or extend
a given textual prompt [1]. We leverage this capability in
designing prompts for LLM sampling that generate action
plans. Specifically, we select an example from an Example
set of task and action plans synthesized from the Activi-
tyPrograms dataset (see §IV) and construct a prompt for the
LLM by prepending the example task and action plan to the
current task.

We dynamically select the example during inference to
design a prompt similar to the query. As in Huang et al., 2022
[10], we use the query task to select the example. However,
one of our novel extensions is to also use the environment
associated with the query to construct a prompt, keeping in
mind the objects (and their states) the agent can currently
interact with. For a query (Q) with task “Play video games”,
an example (Ex1) with task “play board games” may be

chosen considering just the task similarity. However, another
example (Ex2) with task “Use the computer” may be more
relevant because the action plan for both Q and Ex2 would
have actions involving similar objects, such as “switch on
computer”, “type on keyboard”, “push mouse”, etc., which
may not be present in the action plan for Ex1. Considering
the environment in selecting the example may also help in
disambiguating between examples with high task similarity
but different objects. For example, a “clean room” action
plan, which uses a rag, and a “clean floor” plan, which uses
a mop, may both have high task similarity to a “clean the
house” query task. Considering the objects present in the
environment (E) of the query (Q) (e.g., a rag is present, but
not a mop) can help determine the better example.

We start by selecting {Qi
e}

Ne
i=1 examples that have tasks

{T i
e}

Ne
i=1 similar to the task T of the query Q. Here Ne is

a hyperparameter. We use the cosine similarity (C) of task
embeddings to calculate task similarity given by:

SM (T, Te) = C(LMT (T), LMT (Te))

We then compare the environments {Ei
e}

Ne
i=1 of the selected

examples with the environment (E) of the query (Q). An
environment from a sample in our dataset is structured like
a graph, with the graph nodes representing the available
objects. The nodes also have information about object prop-
erties (eg. grabbable, openable, movable, etc.) and the current
states of the objects (eg. clean, closed, etc.). The edges in
the graph represent the relations between objects (eg. inside,
on, facing, close to, etc.). We calculate the environment
similarity as the mean of the intersection over unions of the
nodes and edges respectively:

SG(E,Ee) =
1

2
· (IoU(nodes(E), nodes(Ee))+

IoU(edges(E), edges(Ee)))

Finally, from the selected Ne examples, we select one
example Q∗e that maximises the example score given by:

SM (T ∗e , T) +Ws · SG(E
∗
e , E)

where Ws is a hyperparameter. With the example task T ∗e ,
action plan A∗e , and query task T , we form a prompt (Pra =
T ∗e + A∗e + T) for generating the action plan and a set
of objects (Pro) associated with the actions plan A∗e . We
use Pro to calculate the similarity scores between any new
objects and the objects already associated with the action
plan (See §III-C).

B. Action Step Generation

As in Huang et al., 2022 [10], we sample the LMP

multiple times using prompt Pra to get k samples for each
action step, and the LLM generation probability associated
with each sample step (Pa). Pa gives a score for how relevant
the planner LM thinks the sample is to the current action
plan and prompt. However, since the output of the language
model is unconstrained, it can include infeasible steps that
the agent cannot actually execute. To make sure the actions
generated are executable, we map each sample to its closest

admissible action step that maximises the action matching
score given by:

PaM = max(SM (as, av); ∀av ∈ Av)

Where SM (as, av) = C(LMT (as), LMT (av)). Av is the
corpus of all admissible atomic action steps, constructed by
matching every possible action with every known object.

C. Object Association

Each action step discussed so far is of the format
[Action] <Object names>. For an agent to execute
an action step, it needs to associate the object names in the
step with objects in the environment. However, action plans
generated without considering the environment often contain
object names that cannot be directly mapped to objects
present in the environment, making the plan not executable.

We propose a way to autonomously associate objects in
the query environment with action steps during action plan
generation, using only a list of the objects present in the
environment and their locations, without the use of any
hard-coded information from the environment. As a result,
our action plans can be executed directly in any query
environment. Additionally, since our action plans consider
the agent’s environment, we are able to generate action plans
for tasks that were previously infeasible. For example, a
task “set the table” has an action plan with steps “find a
plate”, “put plate on table”, “grab cup”, “put cup on table”,
etc. repeated multiple times, each time for different “plate”
and “cup” objects. A system that does not have any scene
information may generate an action plan that has these action
steps repeated in a correct order, but map all “cup” objects
to the same “cup” and all “plate” objects to the same “plate”
during execution, creating an incorrect final result. Since our
method can distinguish among the “cup” and “plate” objects
in the scene, we can associate different objects of the same
name with repeated action steps, leading to correct execution.

Since the admissible action steps for our agent all follow
the same schema, we first parse the step to extract the object
names (e.g., “put cup on table” has the object names “cup”
and “table”). For each extracted object name (ô), we then
assign an object from the environment. To do so, we first
use a translation LM (LMT) to find o′, the closest available
object name to ô that is present in the agent’s environment,
chosen by maximizing an object matching score given by:

PoM = max(SM (ô, o); ∀o ∈ O)

where O is the corpus of all object names present in the
agent’s current environment. We also calculate an object
relevance score that denotes the similarity of o′ with the
object names in the action plan of the example (A∗) and
those associated with the previous steps of the generated
action plan. For each object name o∗ in Pro, we construct
the text “o∗ and o′ are related”. We forward the text through
the planning LM (LMP) to calculate the associated cross-
entropy loss (Lce). We compute the object relevance score
(Po) as the mean of −log(Lce) over all objects in Pro.

The object matching and relevance scores enable a con-
sideration of environment objects for action plan generation,
but will be the same for all objects in the scene with the same
name. To disambiguate among such objects, we calculate an
object disambiguation score (PoD) as being inversely related
to mean distance (do) of the object from the objects that the
agent interacted with in the last generated step:

PoD = exp(
−do
100

)

This score prioritizes objects that are near the agent’s
location in the prior step. Thus, promoting shorter and more
efficient routes for the agent to complete an action step. For
some object names, the location is absent in the dataset,
and object disambiguation is impossible. In such cases we
set PoD = 0. However since disambiguation occurs among
objects with the same object name, this doesn’t create an
unfair bias for objects that have location information present.
For each object, we also look for repetitions, i.e., instances
where the current (action, objects) pair is found in the
already generated action plan. For each such instance we
incur a negative penalty to encourages the agent to interact
with a different object with the same name. This negative
score builds for every instance of repetition and can also
reduce the overall score for the (action, objects) pair,
deterring our action plans from loops of multiple actions
(e.g., “walk to table”, “walk to chair” repeated over and over)
that prior works suffer from. We assign the object with the
greatest PoD to ô.

D. Ranking and Termination

We take a weighted sum of the scores described above to
rank all (action, objects) pairs:

Wa ·Pa+WaM ·PaM +Wo ·Po+WoM ·PoM +WoD ·PoD

Where Wa,WaM ,Wo,WoM and WoD are hyperparameter
weights for each score. If an action step has multiple
objects, we calculate a mean for each of the 3 object
scores (PoM , Po, PoD), over the objects. We then select the
highest ranking (action, objects) pair and append it to the
action plan. We also append action to the prompt for action
generation (Pra) and objects to the set for object relevance
score (Pro). If the score for the highest ranking (action,
objects) pair is below a cutoff hyperparameter, we terminate
the action plan.

The resulting action plans generated by the language
model are in natural language. To execute and evaluate
plans, we used the VirtualHome simulation platform (see
§IV), which required parsing this plan to create an action
plan matching the VirtualHome agent schema. This parsing
was performed using a predefined mapping since all natural
language action steps follow a fixed pattern.

IV. EVALUATION

We evaluated our approach in generating environmentally-
aware action plans against plans generated using the method
in Huang et al., 2022 [10], the state-of-the-art baseline for a

LLM action plan generation system, which does not consider
environment information. We executed all plans using Vir-
tualHome, a multi-agent simulation platform. VirtualHome
provides diverse and customizable household environments
that support a wide array of possible interactions in the
form of atomic action steps. An atomic action step is spec-
ified by [Action] <Objects> (object ids) (e.g.
[PutBack] <glass> (2) <sink> (1)).

For our experiments, we used the ActivityPrograms
Knowledge Base released by Puig et al., 2018 [27]. This
dataset contains 292 unique high-level household tasks, with
1374 unique action plans and 6201 unique environments in
total extracted from VirtualHome, and task and action plan
samples manually annotated by Amazon Mechanical Turk
workers. Each data point consists of a high-level task, a
graphical representation of the agent’s environment, and an
action plan consisting of atomic actions. Out of the 292 tasks,
285 tasks have action plans and environments that execute
without error in the VirtualHome interface. We performed
our experiments on these 285 tasks, randomly split into 3
sets: an Example set of 160 tasks, a Validation set of 25
tasks and a Test set of the remaining 100 tasks.

A. Metrics

We evaluate our action plans across three metrics: exe-
cutability, longest common sequence, and correctness.

Executability measures whether the generated actions
follow a logical order and satisfy the constraints of the
environment (e.g., action preconditions are met by preceding
actions, action plan objects are present in the environment,
and object states support planned actions). We executed the
action plan step-by-step on the VirtualHome interface and
calculated the number of steps that executed without the
action plan failing. We report the percentage of steps that
executed as the action plan executability score.

Following Puig et al., 2018 [27], we computed Longest
Common Sub-sequence (LCS) as the length of the longest
common sub-sequence of steps between a generated action
plan and a “ground truth” action plan from the Activi-
tyPrograms dataset written by human annotators; divided
by the length of the longer action plan. We required that
the arrangement of the steps in the sub-sequence remains
the same, but allowed gaps between them. LCS provides a
metric to understand the number of correct actions being
generated and also their short term order, while penalizing
longer action plans that have irrelevant or repeated actions.
However, it does not judge the correctness of the action
plan as a whole because it does not consider the position
of the longest common sequence in the action plan. Also,
as LCS only compares the natural language action plans, it
does not offer a way to judge whether the action plan is able
to disambiguate among objects of the same name.

We propose Final Graph Correctness as a new metric
to evaluate the final correctness of the environment graph
after execution of the action plans. We executed each gen-
erated action plan in VirtualHome up to the last executable
step and extracted the graph for the resulting environment

Fig. 3. Example plans generated by our system. For each action step,
matched environment objects with ids are identified in brackets. Our system
can handle plans containing actions with multiple objects (e.g., pillow and
bed) and can consider multiple objects of the same name (e.g., curtain).

(Eo). We then compared this graph with the graph of the
environment formed after executing the ground truth action
plan (EG). We computed the set of nodes and edges that
changed in the initial environment (Einit) after executing the
output and ground truth action plans respectively: Nodeso,
Edgeso, NodesG, EdgesG. The final graph correctness was
calculated as the mean of intersection over unions of the two
sets of nodes and edges thus obtained:

Final correctness =
1

2
· (IoU(Nodeso, NodesG)+

IoU(Edgeso, EdgesG))

B. Experimental Setup

We evaluated and ablated over the Test set (100 tasks) and
used the Example set (160 tasks) for prompt engineering.
The Validation set (25 tasks) was used for hyperparameter
search. We ran all our experiments on Google Colab using
a NVIDIA A100-SXM4-40GB GPU.

In action plans generated by the baseline, objects in
action steps were not originally associated with the objects
in the environment. For each object in each action step,
we randomly selected an object of the same name if it is
available, and assigned it to the action step.

We used open-source resources from Hugging Face Trans-
formers [69] and SentenceTransformers [70] for our model
choices. Our primary results used GPT2-large [3] as the
Planning LM and all-roberta-large-v1 [71] as the
Translation LM.

V. RESULTS

In this section we present our results. The step count is
measured as the number of steps and all other metrics re-
ported are a percentage of 100, unless mentioned otherwise.
Some action plans generated by our method are illuminated
in Figure 3.

A. Environment Aware Action Plans

We computed the action plans for each of the samples in
our Test set, using our method and the baseline [10] that
doesn’t use any scene information. As each task can have
multiple action plans and associated environments, we con-
ducted 5 runs every time we generated an action plan; in each
run we randomly selected an action plan and environment for

each task. We report the average results over all the runs.
Table I reports the mean step count, executability, LCS and
final graph correctness for both methods.

TABLE I
EVALUATION RESULTS OF GENERATED ACTION PLANS

Method Steps Executability LCS Correctness
Huang et al. 5.574 16.396% 8.795% 33.312%

Ours 8.380 50.826% 10.941% 48.990%

We observed that on average our method produced longer
action plans, which allowed the agent to complete more
complicated and longer-horizon tasks. Our method, using the
information from the scene, generated action plans that were
not only more executable but also led to final environment
graphs that were closer to the desired results. As seen from
the average LCS, using the environment information to select
the example and inform action step generation also led to
action plans that were closer to the ground truth action plans.
However, we found that the extra computation associated
with the agent’s environment slowed down our method as
compared to the baseline. On average, computing a step with
our method took 1.435 seconds, as compared to the 0.838
seconds of the baseline.

These results are promising as our method, which implic-
itly considers object states and properties in our example
selection module, could be readily integrated with a robot
perception stack during real deployments.

B. Ablations
TABLE II

ABLATIONS OF IMPLEMENTATION CHOICES

Method Steps Executability LCS Correctness
Baseline 5.57 16.396% 8.795% 33.312%

+ Object scores
(PoM , Po) 10.87 43.892% 8.749% 47.715%

+ Object disamb.
(PoD) 7.92 46.353% 9.390% 48.056%

+ Env. similarity
(SG) 8.39 49.786% 11.140% 48.695%

1) Ablation of Implementation Choices: We ablated the
scores we propose and show results over the test set in Table
II. Compared to the baseline, we saw our biggest jump in
executability and final correctness by incorporating object
matching with the action steps and using the object scores
(PoM , Po) to inform action step ranking. The additional
scores also encouraged longer and more complicated action
plans. Adding in the disambiguation score (PoD) enabled the
agent to distinguish between objects with the same name and
allowed for more accurate action plans. It also discouraged
redundant or repeated actions, thus resulting in shorter and
more executable plans. Finally, since we used the objects
in the environment to inform action step selection, also
including this information in example selection (SG) boosted
results further as it made the resulting prompt more relevant
to the current environment of the agent.

To exactly evaluate the usefulness of object disambigua-
tion, we separately evaluated and compared the performance
of the 23 action plans which had a (action, objects) pair

TABLE III
ACTION PLANS WITH MULTIPLE OBJECTS OF THE SAME NAME

Method Steps Executability LCS Correctness
w/o Object disamb. 19.44 42.578% 7.686% 59.718%
w/ Object disamb. 8.96 58.570% 12.006% 61.462%

repeated in the action plan when object disambiguation was
omitted. The results for this ablation are shown in Table III.

2) Ablation over Planning LMs: We ablated over different
sized Planning LMs (ranging from 117M parameters to 1.5B
parameters in size) from two families of models [3], [72],
while fixing all-roberta-large-v1 as the Translation
LM (Table IV). We observed that within a family of models,
the medium sized models (GPT2-large, OPT-350M) gave
the best results. We found that the small models (GPT2,
OPT-125M) resulted in shorter action plans that were unable
to capture the details required in action steps and ended up
generating high-level instructions which were vague and not
executable by the agent (e.g. a task “work in office” gener-
ated an action plan - “Step 1: Go to office”, “Step 2: work”).
On the other hand, the large models (GPT2-xl, OPT-1.3B)
often generated complicated samples that couldn’t effectively
be mapped to any available actions and thus resulted in action
plans that were not relevant to the query task (e.g., a task
“Shampoo hair” generated a sample “grab a shampoo bottle
and get in the shower” which couldn’t be mapped to any
atomic action step).

TABLE IV
ABLATIONS OF PLANNING LM

Planning LM Steps Executability LCS Correctness
GPT2 1.04 8.667% 0.188% 33.441%

GPT2-large 8.39 49.786% 11.140% 48.695%
GPT2-xl 9.58 32.018% 8.641% 47.132%

OPT-125M 4.52 29.183% 10.681% 41.346%
OPT-350M 6.23 51.442% 13.72% 50.101%
OPT-1.3B 8.27 26.991% 7.932% 43.652%

3) Ablation over Translation LMs: We also explored
using different size models of Sentence BERT and
Sentence RoBERTa [2], [70], [71] for the Translation LM,
fixing GPT2-large as the Planning LM (Table V). We
found that larger translation LMs (stsb-bert-large,
stsb-roberta-large, all-roberta-large-v1)
created better performing and slightly shorter action plans
compared to smaller model variants (stsb-bert-base,
stsb-roberta-base). We speculate that larger models
may create more meaningful embeddings for actions and
objects and thus better guide the Planning LM to correct
actions; however they are harsher towards planning LM
outputs that don’t effectively match any atomic action step
and thus caused the action plans to terminate faster.

VI. FUTURE WORK & CONCLUSIONS

In this paper, we propose a method to condition large
language models on the information contained in an agent’s
environment to generate environmentally-aware action plans
from high-level tasks. We propose multiple scores to rank

TABLE V
ABLATIONS OF TRANSLATION LM

Translation LM Steps Executability LCS Correctness
stsb-bert-base 9.76 40.555% 10.892% 47.393%
stsb-bert-large 9.07 47.412% 12.602% 49.711%

stsb-roberta-base 9.53 38.479% 9.306% 47.386%
stsb-roberta-large 8.49 40.279% 9.871% 48.383%

all-roberta-large-v1 8.39 49.786% 11.140% 48.695%

the outputs of LLMs and ground them in the agent’s sur-
roundings. We discuss the performance of our generated
action plans for complex and diverse tasks on the Virtu-
alHome interface. While our results demonstrate improved
performance in terms of plan executability and correctness
over the state-of-the-art baseline, there are several areas for
further improvements. For example, our approach makes
implicit use of various object properties and states when
selecting examples for prompt generation, but cannot make
use of this information directly during plan generation.
Future research might explore how to further improve plan
executability by addressing this limitation. In addition, future
work is needed to validate our approach in a real-world
robot deployment, beyond the VirtualHome simulator, where
object information can be derived from a robot perception
and affordance reasoning stack. We hope this work spurs
further investigations into how robotics may leverage LLMs
in dynamic environments.

REFERENCES

[1] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of Deep Bidirectional Transformers for Language Understand-
ing,” in NAACL, 2019.

[3] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language Models are Unsupervised Multitask Learners,” 2019.

[4] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, P. J. Liu et al., “Exploring the limits of transfer
learning with a unified text-to-text transformer.” J. Mach. Learn. Res.,
vol. 21, no. 140, pp. 1–67, 2020.

[5] B. Z. Li, M. Nye, and J. Andreas, “Implicit Representations of
Meaning in Neural Language Models,” in ACL, 2021.

[6] A. Roberts, C. Raffel, and N. M. Shazeer, “How Much Knowledge
Can You Pack into the Parameters of a Language Model?” ArXiv, vol.
abs/2002.08910, 2020.

[7] D. W. Otter, J. R. Medina, and J. K. Kalita, “A survey of the usages
of deep learning for natural language processing,” IEEE transactions
on neural networks and learning systems, vol. 32, no. 2, pp. 604–624,
2020.

[8] “Natural language processing advancements by deep learning: A
survey, author=Torfi, Amirsina and Shirvani, Rouzbeh A and Ke-
neshloo, Yaser and Tavaf, Nader and Fox, Edward A,” arXiv preprint
arXiv:2003.01200, 2020.

[9] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von
Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill et al., “On
the opportunities and risks of foundation models,” arXiv preprint
arXiv:2108.07258, 2021.

[10] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, “Language models
as zero-shot planners: Extracting actionable knowledge for embodied
agents,” arXiv preprint arXiv:2201.07207, 2022.

[11] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David,
C. Finn, K. Gopalakrishnan, K. Hausman, A. Herzog et al., “Do as I
Can, Not as I Say: Grounding language in robotic affordances,” arXiv
preprint arXiv:2204.01691, 2022.

[12] A. Suglia, Q. Gao, J. Thomason, G. Thattai, and G. Sukhatme,
“Embodied BERT: A Transformer Model for Embodied, Language-
guided Visual Task Completion,” arXiv, 2021. [Online]. Available:
https://arxiv.org/abs/2108.04927

[13] A. Pashevich, C. Schmid, and C. Sun, “Episodic Transformer for
Vision-and-Language Navigation,” in ICCV, 2021.

[14] P. Sharma, A. Torralba, and J. Andreas, “Skill Induction and Planning
with Latent Language,” ArXiv, vol. abs/2110.01517, 2022.

[15] S. Li, X. Puig, Y. Du, C. J. Wang, E. Akyürek, A. Torralba, J. An-
dreas, and I. Mordatch, “Pre-Trained Language Models for Interactive
Decision-Making,” ArXiv, vol. abs/2202.01771, 2022.

[16] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton,
F. Kelton, L. E. Miller, M. Simens, A. Askell, P. Welinder, P. F.
Christiano, J. Leike, and R. J. Lowe, “Training language models to
follow instructions with human feedback,” ArXiv, vol. abs/2203.02155,
2022.

[17] M. Reid, Y. Yamada, and S. S. Gu, “Can Wikipedia Help Offline
Reinforcement Learning?” 2022.

[18] S. Nair, E. Mitchell, K. Chen, B. Ichter, S. Savarese, and C. Finn,
“Learning Language-Conditioned Robot Behavior from Offline Data
and Crowd-Sourced Annotation,” in CoRL, 2021.

[19] C. Lynch and P. Sermanet, “Language conditioned imitation learning
over unstructured data,” Robotics: Science and Systems, 2021.
[Online]. Available: https://arxiv.org/abs/2005.07648

[20] V. Blukis, C. Paxton, D. Fox, A. Garg, and Y. Artzi, “A
Persistent Spatial Semantic Representation for High-level Natural
Language Instruction Execution,” in 5th Annual Conference on Robot
Learning, 2021. [Online]. Available: https://openreview.net/forum?id=
NeGDZeyjcKa

[21] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta, “R3m:
A universal visual representation for robot manipulation,” 2022.
[Online]. Available: https://arxiv.org/abs/2203.12601

[22] A. Akakzia, C. Colas, P.-Y. Oudeyer, M. CHETOUANI, and
O. Sigaud, “Grounding Language to Autonomously-Acquired Skills
via Goal Generation,” in International Conference on Learning
Representations, 2021. [Online]. Available: https://openreview.net/
forum?id=chPj I5KMHG

[23] R. Zellers, A. Holtzman, M. Peters, R. Mottaghi, A. Kembhavi,
A. Farhadi, and Y. Choi, “PIGLeT: Language grounding through
neuro-symbolic interaction in a 3D world,” in Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Online: Association for
Computational Linguistics, Aug. 2021, pp. 2040–2050. [Online].
Available: https://aclanthology.org/2021.acl-long.159

[24] F. Hill, S. Mokra, N. Wong, and T. Harley, “Human Instruction-
Following with Deep Reinforcement Learning via Transfer-Learning
from Text,” ArXiv, vol. abs/2005.09382, 2020.

[25] P. C. Humphreys, D. Raposo, T. Pohlen, G. Thornton,
R. Chhaparia, A. Muldal, J. Abramson, P. Georgiev, A. Santoro,
and T. Lillicrap, “A data-driven approach for learning to
control computers,” in Proceedings of the 39th International
Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, K. Chaudhuri, S. Jegelka, L. Song,
C. Szepesvari, G. Niu, and S. Sabato, Eds., vol. 162.
PMLR, 17–23 Jul 2022, pp. 9466–9482. [Online]. Available:
https://proceedings.mlr.press/v162/humphreys22a.html

[26] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. Chi, Q. Le, and
D. Zhou, “Chain of Thought Prompting Elicits Reasoning in Large
Language Models,” ArXiv, vol. abs/2201.11903, 2022.

[27] X. Puig, K. Ra, M. Boben, J. Li, T. Wang, S. Fidler, and A. Torralba,
“Virtualhome: Simulating household activities via programs,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 8494–8502.

[28] H. Chen, H. Tan, A. Kuntz, M. Bansal, and R. Alterovitz, “En-
abling robots to understand incomplete natural language instructions
using commonsense reasoning,” in IEEE International Conference on
Robotics and Automation (ICRA), 2020, pp. 1963–1969.

[29] R. E. Fikes and N. J. Nilsson, “Strips: A new approach to
the application of theorem proving to problem solving,” Artificial
Intelligence, vol. 2, no. 3, pp. 189–208, 1971. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0004370271900105

[30] E. D. Sacerdoti, “A Structure for Plans and Behavior,” 1977.

https://arxiv.org/abs/2108.04927
https://arxiv.org/abs/2005.07648
https://openreview.net/forum?id=NeGDZeyjcKa
https://openreview.net/forum?id=NeGDZeyjcKa
https://arxiv.org/abs/2203.12601
https://openreview.net/forum?id=chPj_I5KMHG
https://openreview.net/forum?id=chPj_I5KMHG
https://aclanthology.org/2021.acl-long.159
https://proceedings.mlr.press/v162/humphreys22a.html
https://www.sciencedirect.com/science/article/pii/0004370271900105

[31] D. S. Nau, Y. Cao, A. Lotem, and H. Muñoz-Avila, “SHOP: Simple
Hierarchical Ordered Planner,” in IJCAI, 1999.

[32] M. Toussaint, “Logic-Geometric Programming: An Optimization-
Based Approach to Combined Task and Motion Planning,” in IJCAI,
2015.

[33] M. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum,
“Differentiable physics and stable modes for tool-use and manipulation
planning - extended abtract,” in Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI-
19. International Joint Conferences on Artificial Intelligence
Organization, 7 2019, pp. 6231–6235. [Online]. Available: https:
//doi.org/10.24963/ijcai.2019/869

[34] D. Xu, S. Nair, Y. Zhu, J. Gao, A. Garg, L. Fei-Fei, and
S. Savarese, “Neural task programming: Learning to generalize across
hierarchical tasks,” CoRR, vol. abs/1710.01813, 2017. [Online].
Available: http://arxiv.org/abs/1710.01813

[35] D. Xu, R. Martı́n-Martı́n, D.-A. Huang, Y. Zhu, S. Savarese, and
L. Fei-Fei, “Regression Planning Networks,” in Thirty-third Confer-
ence on Neural Information Processing Systems (NeurIPS), 2019.

[36] D. Huang, S. Nair, D. Xu, Y. Zhu, A. Garg, L. Fei-Fei, S. Savarese,
and J. C. Niebles, “Neural task graphs: Generalizing to unseen tasks
from a single video demonstration,” CoRR, vol. abs/1807.03480,
2018. [Online]. Available: http://arxiv.org/abs/1807.03480

[37] B. Eysenbach, R. R. Salakhutdinov, and S. Levine, “Search
on the replay buffer: Bridging planning and reinforcement
learning,” in Advances in Neural Information Processing Systems,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates, Inc.,
2019. [Online]. Available: https://proceedings.neurips.cc/paper/2019/
file/5c48ff18e0a47baaf81d8b8ea51eec92-Paper.pdf

[38] N. Savinov, A. Dosovitskiy, and V. Koltun, “Semi-parametric
topological memory for navigation,” in International Conference
on Learning Representations, 2018. [Online]. Available: https:
//openreview.net/forum?id=SygwwGbRW

[39] B. Ichter, P. Sermanet, and C. Lynch, “Broadly-Exploring, Local-
Policy Trees for Long-Horizon Task Planning,” in CoRL, 2021.

[40] C. Matuszek, N. FitzGerald, L. Zettlemoyer, L. Bo, and D. Fox,
“A Joint Model of Language and Perception for Grounded Attribute
Learning,” in ICML, 2012.

[41] T. Silver, R. Chitnis, N. Kumar, W. McClinton, T. Lozano-Perez,
L. P. Kaelbling, and J. Tenenbaum, “Inventing relational state and
action abstractions for effective and efficient bilevel planning,” in
The Multi-disciplinary Conference on Reinforcement Learning and
Decision Making (RLDM), 2022.

[42] C. R. Garrett, C. Paxton, T. Lozano-Perez, L. P. Kaelbling, and D. Fox,
“Online Replanning in Belief Space for Partially Observable Task and
Motion Problems,” 2020 IEEE International Conference on Robotics
and Automation (ICRA), pp. 5678–5684, 2020.

[43] Y. Zhu, D. Gordon, E. Kolve, D. Fox, L. Fei-Fei, A. K. Gupta,
R. Mottaghi, and A. Farhadi, “Visual Semantic Planning Using Deep
Successor Representations,” 2017 IEEE International Conference on
Computer Vision (ICCV), pp. 483–492, 2017.

[44] B. Wu, S. Nair, L. Fei-Fei, and C. Finn, “Example-Driven Model-
Based Reinforcement Learning for Solving Long-Horizon Visuomotor
Tasks,” ArXiv, vol. abs/2109.10312, 2021.

[45] S. Nair and C. Finn, “Hierarchical Foresight: Self-Supervised
Learning of Long-Horizon Tasks via Visual Subgoal Generation,”
in International Conference on Learning Representations, 2020.
[Online]. Available: https://openreview.net/forum?id=H1gzR2VKDH

[46] F. Xia, C. Li, R. Martı́n-Martı́n, O. Litany, A. Toshev, and S. Savarese,
“ReLMoGen: Leveraging Motion Generation in Reinforcement Learn-
ing for Mobile Manipulation,” arXiv preprint arXiv:2008.07792, 2020.

[47] C. Li, F. Xia, R. Martin-Martin, and S. Savarese, “HRL4IN: Hierar-
chical Reinforcement Learning for Interactive Navigation with Mobile
Manipulators,” arXiv preprint arXiv:1910.11432, 2019.

[48] A. Pu, A. Katabarwa, B. Hiziroglu, and O. Dai, “[Re] Language as
an Abstraction for Hierarchical Deep Reinforcement Learning,” 2020,
submitted to NeurIPS 2019 Reproducibility Challenge. [Online].
Available: https://openreview.net/forum?id=S1xcL6qfpr

[49] D. Shah, A. T. Toshev, S. Levine, and brian ichter, “Value Function
Spaces: Skill-Centric State Abstractions for Long-Horizon Reasoning,”
in International Conference on Learning Representations, 2022.
[Online]. Available: https://openreview.net/forum?id=vgqS1vkkCbE

[50] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you

need,” in Advances in Neural Information Processing Systems,
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates,
Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/paper/
2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[51] J. Davison, J. Feldman, and A. Rush, “Commonsense knowledge
mining from pretrained models,” in Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP). Hong Kong, China: Association for
Computational Linguistics, Nov. 2019, pp. 1173–1178. [Online].
Available: https://aclanthology.org/D19-1109

[52] Z. Jiang, F. F. Xu, J. Araki, and G. Neubig, “How can we know what
language models know?” CoRR, vol. abs/1911.12543, 2019. [Online].
Available: http://arxiv.org/abs/1911.12543

[53] F. Petroni, T. Rocktäschel, P. Lewis, A. Bakhtin, Y. Wu, A. H. Miller,
and S. Riedel, “Language Models as Knowledge Bases?” ArXiv, vol.
abs/1909.01066, 2019.

[54] G. Ilharco, R. Zellers, A. Farhadi, and H. Hajishirzi, “Probing Text
Models for Common Ground with Visual Representations,” ArXiv, vol.
abs/2005.00619, 2020.

[55] K. Cobbe, V. Kosaraju, M. Bavarian, J. Hilton, R. Nakano, C. Hesse,
and J. Schulman, “Training Verifiers to Solve Math Word Problems,”
ArXiv, vol. abs/2110.14168, 2021.

[56] J. Shen, Y. Yin, L. Li, L. Shang, X. Jiang, M. Zhang, and Q. Liu,
“Generate & rank: A multi-task framework for math word problems,”
arXiv preprint arXiv:2109.03034, 2021.

[57] K. Lu, A. Grover, P. Abbeel, and I. Mordatch, “Pretrained
Transformers as Universal Computation Engines,” arXiv preprint
arXiv:2103.05247, 2021.

[58] M. Tsimpoukelli, J. Menick, S. Cabi, S. Eslami, O. Vinyals, and
F. Hill, “Multimodal few-shot learning with frozen language models,”
Proc. Neural Information Processing Systems, 2021.

[59] Y. Artzi and L. Zettlemoyer, “Weakly Supervised Learning of
Semantic Parsers for Mapping Instructions to Actions,” Transactions
of the Association for Computational Linguistics, vol. 1, pp. 49–62,
2013. [Online]. Available: https://aclanthology.org/Q13-1005

[60] D. Misra, K. Tao, P. Liang, and A. Saxena, “Environment-Driven
Lexicon Induction for High-Level Instructions,” in ACL, 2015.

[61] D. Misra, J. Sung, K. Lee, and A. Saxena, “Tell me Dave: Context-
sensitive grounding of natural language to manipulation instructions,”
The International Journal of Robotics Research, vol. 35, pp. 281 –
300, 2016.

[62] M. Tenorth, D. Nyga, and M. Beetz, “Understanding and Executing
Instructions for Everyday Manipulation Tasks from the World
Wide Web,” in IEEE International Conference on Robotics and
Automation (ICRA), Anchorage, AK, USA, May 3–8 2010, pp. 1486–
1491. [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=5509955

[63] C. Sun, A. Myers, C. Vondrick, K. P. Murphy, and C. Schmid,
“VideoBERT: A Joint Model for Video and Language Representation
Learning,” 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 7463–7472, 2019.

[64] L. H. Li, M. Yatskar, D. Yin, C.-J. Hsieh, and K.-W. Chang, “Visual-
BERT: A Simple and Performant Baseline for Vision and Language,”
in Arxiv, 2019.

[65] J. Lu, D. Batra, D. Parikh, and S. Lee, “ViLBERT: Pretraining Task-
Agnostic Visiolinguistic Representations for Vision-and-Language
Tasks,” in NeurIPS, 2019.

[66] R. Zellers, X. Lu, J. Hessel, Y. Yu, J. S. Park, J. Cao,
A. Farhadi, and Y. Choi, “Merlot: Multimodal neural script
knowledge models,” in Advances in Neural Information Processing
Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and
J. W. Vaughan, Eds., vol. 34. Curran Associates, Inc., 2021,
pp. 23 634–23 651. [Online]. Available: https://proceedings.neurips.
cc/paper/2021/file/c6d4eb15f1e84a36eff58eca3627c82e-Paper.pdf

[67] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and
I. Sutskever, “Learning transferable visual models from natural
language supervision,” CoRR, vol. abs/2103.00020, 2021. [Online].
Available: https://arxiv.org/abs/2103.00020

[68] C. Lynch and P. Sermanet, “Grounding Language in Play,” ArXiv, vol.
abs/2005.07648, 2020.

[69] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cis-
tac, T. Rault, R. Louf, M. Funtowicz, and J. Brew, “HuggingFace’s

https://doi.org/10.24963/ijcai.2019/869
https://doi.org/10.24963/ijcai.2019/869
http://arxiv.org/abs/1710.01813
http://arxiv.org/abs/1807.03480
https://proceedings.neurips.cc/paper/2019/file/5c48ff18e0a47baaf81d8b8ea51eec92-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/5c48ff18e0a47baaf81d8b8ea51eec92-Paper.pdf
https://openreview.net/forum?id=SygwwGbRW
https://openreview.net/forum?id=SygwwGbRW
https://openreview.net/forum?id=H1gzR2VKDH
https://openreview.net/forum?id=S1xcL6qfpr
https://openreview.net/forum?id=vgqS1vkkCbE
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/D19-1109
http://arxiv.org/abs/1911.12543
https://aclanthology.org/Q13-1005
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5509955
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5509955
https://proceedings.neurips.cc/paper/2021/file/c6d4eb15f1e84a36eff58eca3627c82e-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/c6d4eb15f1e84a36eff58eca3627c82e-Paper.pdf
https://arxiv.org/abs/2103.00020

Transformers: State-of-the-art Natural Language Processing,” ArXiv,
vol. abs/1910.03771, 2019.

[70] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks,” ArXiv, vol. abs/1908.10084, 2019.

[71] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “RoBERTa: A Robustly Optimized
BERT Pretraining Approach,” ArXiv, vol. abs/1907.11692, 2019.

[72] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen,
C. Dewan, M. Diab, X. Li, X. V. Lin, T. Mihaylov, M. Ott, S. Shleifer,
K. Shuster, D. Simig, P. S. Koura, A. Sridhar, T. Wang, and L. Zettle-
moyer, “OPT: Open Pre-trained Transformer Language Models,” 2022.

APPENDIX

A. Pseudo-Code of the Algorithm

This section presents the pseudo-code for generating an
action plan in Algorithm 1. A detailed discussion of the
method and action step scores is given in §III.

Algorithm 1 Generating environment aware action plans
1: Legend
2: LMP : Planning language model for text completion
3: LMT : Translation language model for text embedding
4: {(T i

e , A
i
e, E

i
e)}

Ne
i=1 : Example set, where each sample

consists of a task Te, action plan Ae and environment
Ee

5: Av : The corpus of all available atomic actions
6: C : Cosine similarity function
7: ExtractObjects : Extract objects from an atomic action
8: SM (a1, a2) : Similarity function for object or action

embeddings = C(LMT (a1), LMT (a2))
9: SG(E1, E2) : Similarity function for environment graphs

10: Input: Test task T and the query environment E
11: Output: Action plan comprising of executable action

steps of type - (action, objects)
12:
13: Get example (T ∗e , A

∗
e, E

∗
e) that maximises SM (T ∗e , T)+

Ws · SG(E
∗
e , E)

14: Initialize prompt for actions (Pra) with (T ∗e +A∗e + T)
and prompt for objects (Pro) with objects in E∗e

15: for step < max steps do
16: Sample LMP k times to obtain candidate actions
17: for each action do
18: objs = ExtractObjects(action)
19: PaM = max(SM (action, av); ∀av ∈ Av)
20: Pa = generation probability returned by LMP

21: PoM = avg(max(SM (ô, ov); ∀ov ∈ O); ∀ô ∈
objs)

22: Po calculated from LMP using prompt Pro
23: do = mean distance of the object from the

objects interacted with in the last step
24: PoD = exp(−do/100)
25: Ranking score = Wa · Pa +WaM · PaM +Wo ·

Po +WoM · PoM +WoD · PoD

26: Get (action, objects) pair with highest ranking
and append it to output.

27: Append action to Pra and objects to Pro
28: Terminate action plan if ranking score < cutoff
29: end for
30: end for

B. Admissible Atomic Action Steps

This section discusses the admissible atomic action steps
that the agent can perform. This corpus was constructed by
matching every possible action in the dataset with every
known object in the VirtualHome simulator. Each of the
possible 42 actions is in natural language and has an in-
jective mapping to the format acceptable to the VirtualHome
simulator, as given in Table VI. Table VII lists all of the 228
objects that can be present in a VirtualHome environment.

TABLE VI
ALL ADMISSIBLE ACTIONS

Natural Language VirtualHome acceptable format
Sleep [SLEEP]
Stand up [STANDUP]
Wake up [WAKEUP]
Close < Obj > [CLOSE] < Obj >
Cut < Obj > [CUT] < Obj >
Drink < Obj > [DRINK] < Obj >
Drop < Obj > [DROP] < Obj >
Eat < Obj > [EAT] < Obj >
Find < Obj > [FIND] < Obj >
Grab < Obj > [GRAB] < Obj >
Greet < Obj > [GREET] < Obj >
Lie on < Obj > [LIE] < Obj >
Look at < Obj > [LOOKAT] < Obj >
Move < Obj > [MOVE] < Obj >
Open < Obj > [OPEN] < Obj >
Plug in < Obj > [PLUGIN] < Obj >
Plug out < Obj > [PLUGOUT] < Obj >
Point at < Obj > [POINTAT] < Obj >
Pull < Obj > [PULL] < Obj >
Push < Obj > [PUSH] < Obj >
Put back < Obj > [PUTOBJBACK] < Obj >
Take off < Obj > [PUTOFF] < Obj >
Put on < Obj > [PUTON] < Obj >
Read < Obj > [READ] < Obj >
Rinse < Obj > [RINSE] < Obj >
Run to < Obj > [RUN] < Obj >
Scrub < Obj > [SCRUB] < Obj >
Sit on < Obj > [SIT] < Obj >
Squeeze < Obj > [SQUEEZE] < Obj >
Switch off < Obj > [SWITCHOFF] < Obj >
Switch on < Obj > [SWITCHON] < Obj >
Touch < Obj > [TOUCH] < Obj >
Turn to < Obj > [TURNTO] < Obj >
Type on < Obj > [TYPE] < Obj >
Walk to < Obj > [WALK] < Obj >
Wash < Obj > [WASH] < Obj >
Watch < Obj > [WATCH] < Obj >
Wipe < Obj > [WIPE] < Obj >
Release < Obj > [RELEASE] < Obj >
Pour < Obj1 > into < Obj2 > [POUR] < Obj1 > < Obj2 >
Put < Obj1 > on < Obj2 > [PUTBACK] < Obj1 > < Obj2 >
Put < Obj1 > in < Obj2 > [PUTIN] < Obj1 > < Obj2 >

TABLE VII
ALL POSSIBLE OBJECTS

razor conditioner paper towel homework
bowl fork toaster food oatmeal
music stand ironing board light tooth paste
dirt toilet paper chef knife pen
button hanger food pizza child
bedroom shoes juice arms both
bookshelf pantry clothes jacket picture
pot sponge mousepad cup
mirror printer address book kitchen
clothes socks computer cd player knife
duster food apple trashcan electric shaver
water glass shower alarm clock laptop
sofa remote control comforter cutting board
notes table cloth food turkey notebook
nightstand cleaning bottle cloth napkin document
detergent fridge centerpiece food carrot
pasta living room glass cookingpot
painting bed mop oven
cellphone sink food sugar feet both
desk dishrack hair kitchen cabinet
fryingpan bills wall clock dry pasta
home office coffee maker food snack freezer
console love seat wine glass textbook
paper ground coffee mug dvd player
lighting food dessert spoon food fish
cat television clothes skirt chair
filing cabinet faucet receipt crackers
milk radio keyboard washing machine
brush novel keys curtain
bathroom garbage can broom groceries
toothbrush teeth food bread pajamas
food vegetable microwave clothes hat folder
magazine food chicken legs both clothes pants
closet wall dresser sauce pan
couch spectacles after shave board game
face soap dishwasher water man
drinking glass placemat cabinet printing paper
stereo slippers coin kitchen counter
shampoo toy table face
purse hands both bookmark lamp
food cheese beer soap dish soap
kids bedroom sheets cupboard food food
scissors bathtub mop bucket drying rack
headset mouse toilet clothes scarf
clothes shirt clothes dress towel creditcard
carpet rag coffee cup food egg
window coffee table floor controller
coffee filter iron bag woman
dog book drawing facial cleanser
phone newspaper coffee pot envelope
pillow food noodles floor lamp telephone
entrance hall food cereal stove vacuum cleaner
plate coffee fly mail
napkin lightswitch shredder blanket

dining room bathroom counter
instrument piano electrical outlet
toothbrush holder cleaning solution
clothes underwear laundry detergent

video game console basket for clothes
video game controller bathroom cabinet

C. Sample Action Plan

This section gives an example of an action plan from the
ActivityPrograms knowledge base. The action plan consists
of atomic action steps in the format described in §B. Since
each natural language action can be mapped to a Virtual-
Home acceptable format, each action plan represented in nat-
ural language also has a unique action plan in VirtualHome

acceptable format (see Table VIII).
TABLE VIII

SAMPLE ACTION PLAN FROM ACTIVITYPROGRAMS KNOWLEDGE BASE

Walk to kitchen [WALK] <kitchen> (1)
Walk to dish soap [WALK] <dish soap> (1)
Find dish soap [FIND] <dish soap> (1)
Grab dish soap [GRAB] <dish soap> (1)
Find plate [FIND] <plate> (1)
Put dish soap on plate [PUTBACK] <dish soap> (1) <plate> (1)
Find plate [FIND] <plate> (1)
Grab plate [GRAB] <plate> (1)
Wash plate [WASH] <plate> (1)
Rinse plate [RINSE] <plate> (1)
Find dishrack [FIND] <dishrack> (1)
Put plate on dishrack [PUTBACK] <plate> (1) <dishrack> (1)

D. Hyperparameter Tuning

We used the Validation set of size 25 to conduct a grid
search for the hyperparameters given in Table IX.

TABLE IX
HYPERPARAMETERS

Hyperparameter name Values considered
Weight for Object Matching Score (WoM) {0, 0.3, 0.5, 0.7}
Weight for Object Relevance Score (Wo) {0, 0.1, 0.25}
Weight for Object Disambiguation Score (WoD) {0, 0.1, 0.3, 0.5}
Weight for Environment Similarity (Ws) {0, 0.25, 0.5}
Temperature modulating LMP

sample probability (T) {0, 0.3, 0.5}
Action step score cutoff {0.8, 1.0, 1.2, 1.4, 1.6}

E. Qualitative Results for Action Plans

This section presents some more action plans generated
by our method.

Task: Watch TV

Walk to living room [dining room 1]
Walk to remote control [remote control 1000]
Find remote control [remote control 1000]
Grab remote control [remote control 1000]
Walk to couch [couch 192]
Sit on couch [couch 192]
Touch remote control [remote control 1000]
Find television [television 216]
Switch on television [television 216]
Turn to television [television 216]
Watch television [television 216]

Task: Surf internet

Walk to home office [home office 246]
Walk to desk [desk 282]
Find chair [chair 283]
Sit on chair [chair 283]
Find computer [computer 321]
Switch on computer [computer 321]
Turn to home office [home office 246]
Walk to computer [computer 321]
Turn to computer [computer 321]
Type on home office [home office 246]

Task: Take dishes out of dishwasher

Walk to kitchen [oven 229]
Walk to dishwasher [dishwasher 1000]
Find dishwasher [dishwasher 1000]
Open dishwasher [dishwasher 1000]

Task: Sort laundry

Wash clothes underwear [clothes underwear 2306]
Wash clothes socks [clothes socks 2029]

Task: Sleep

Walk to bedroom [bedroom 220]
Walk to pillow [pillow 239]
Find pillow [pillow 239]
Grab pillow [pillow 239]
Find bed [bed 264]
Put pillow in bed [pillow 240, bed 264]
Lie on bed [bed 264]

Task: Hang keys

Walk to entrance hall [dining room 41]
Walk to purse [purse 1001]
Find purse [purse 1001]
Open purse [purse 1001]
Find keys [keys 1002]
Grab keys [keys 1002]
Close purse [purse 1001]

Task: Watch movie

Walk to living room [dining room 49]
Walk to remote control [remote control 1000]
Find remote control [remote control 1000]
Grab remote control [remote control 1000]
Walk to couch [couch 230]
Sit on couch [couch 230]
Touch remote control [remote control 1000]

Task: Vacuum

Walk to living room [dining room 41]
Walk to closet [bathroom 1]
Open closet [bathroom 1]
Find vacuum cleaner [vacuum cleaner 1001]
Grab vacuum cleaner [vacuum cleaner 1001]
Pull vacuum cleaner [vacuum cleaner 1001]
Plug in vacuum cleaner [vacuum cleaner 1001]
Switch on vacuum cleaner [vacuum cleaner 1001]
Pull vacuum cleaner [vacuum cleaner 2420]
Push vacuum cleaner [vacuum cleaner 1001]
Pull vacuum cleaner [vacuum cleaner 2461]
Push vacuum cleaner [vacuum cleaner 2420]
Pull vacuum cleaner [vacuum cleaner 2571]
Push vacuum cleaner [vacuum cleaner 2461]
Switch off vacuum cleaner [vacuum cleaner 1001]
Plug out vacuum cleaner [vacuum cleaner 1001]

Task: Eat

Walk to kitchen [oven 82]
Walk to plate [plate 1003]
Find plate [plate 1003]
Grab plate [plate 1003]
Find food food [food food 1000]
Grab food food [food food 1000]
Put food food on plate [food food 1000, plate 1003]
Walk to dining room [dining room 1]
Walk to table [table 63]
Find table [table 63]
Put plate on table [plate 1003, table 63]
Find chair [chair 60]
Sit on chair [chair 60]
Eat plate [plate 1003]
Eat food food [food food 1000]
Put food food on plate [food food 2021, plate 2166]

Task: Computer work

Walk to computer [computer 379]
Turn to computer [computer 379]
Look at computer [computer 379]
Type on computer [computer 379]
Switch off computer [computer 379]

Task: Clean screen

Walk to home office [home office 241]
Walk to computer [computer 276]
Find computer [computer 276]
Turn to computer [computer 276]
Look at computer [computer 276]
Switch off computer [computer 276]
Find brush [brush 2108]
Turn to brush [brush 2108]
Look at brush [brush 2108]
Grab brush [brush 2108]
Wipe computer [computer 209]
Drop brush [brush 2108]
Find napkin [napkin 2060]
Grab napkin [napkin 2060]
Wash napkin [napkin 2060]
Wipe computer [computer 276]
Drop napkin [napkin 2060]
Find brush [brush 2705]
Grab brush [brush 2705]
Wipe brush [brush 2108]

Task: Look at painting

Walk to living room [dining room 1]
Walk to painting [drawing 139]
Turn to painting [drawing 139]
Look at painting [drawing 139]
Find painting [drawing 139]
Turn to painting [drawing 138]
Look at painting [drawing 138]
Turn to painting [drawing 140]
Look at painting [drawing 140]
Turn to painting [drawing 141]
Look at painting [drawing 141]
Turn to painting [drawing 142]
Look at painting [drawing 142]
Turn to painting [drawing 186]
Look at painting [drawing 186]
Turn to painting [drawing 283]
Look at painting [drawing 283]
Turn to painting [drawing 283]

Task: Put clothes away

Find clothes dress [clothes dress 2134]
Turn to clothes dress [clothes dress 2134]
Point at clothes dress [clothes dress 2134]
Wash clothes dress [clothes dress 2134]
Turn to clothes dress [clothes dress 2202]
Look at clothes dress [clothes dress 2134]
Wash clothes dress [clothes dress 2202]
Look at clothes dress [clothes dress 2202]
Wash clothes dress [clothes dress 2229]
Look at clothes dress [clothes dress 2229]
Wash clothes dress [clothes dress 2467]
Look at clothes dress [clothes dress 2467]
Wash clothes dress [clothes dress 2592]
Look at clothes dress [clothes dress 2592]

Task: Start computer

Walk to home office [home office 179]
Walk to chair [chair 227]
Pull chair [chair 227]
Sit on chair [chair 227]
Find computer [computer 264]
Switch on computer [computer 264]
Turn to computer [computer 264]
Look at computer [computer 264]
Turn to home office [home office 179]
Walk to chair [chair 133]
Walk to chair [chair 134]
Pull chair [chair 134]
Sit on chair [chair 134]
Find computer [computer 320]
Switch on computer [computer 320]
Turn to computer [computer 320]
Look at computer [computer 320]
Turn to home office [home office 179]

Task: Compute

Walk to home office [home office 1]
Walk to chair [chair 17]
Find chair [chair 17]
Sit on chair [chair 17]
Find computer [computer 98]
Switch on computer [computer 98]
Find notebook [laptop 2077]
Grab notebook [laptop 2077]

Task: Straighten pictures on wall

Walk to living room [dining room 41]
Walk to wall [wall 68]
Find picture [picture 2114]
Turn to picture [picture 2114]
Look at picture [picture 2114]
Grab picture [picture 2114]
Walk to wall [wall 2]
Put picture on wall [picture 2114, wall 2]
Find picture [picture 2331]
Turn to picture [picture 2331]
Look at picture [picture 2331]
Grab picture [picture 2331]
Walk to wall [wall 3]
Put picture on wall [picture 2331, wall 3]
Find picture [picture 2402]
Grab picture [picture 2402]
Walk to wall [wall 4]
Put picture on wall [picture 2402, wall 4]
Find picture [picture 2417]
Grab picture [picture 2417]

Task: Work

Walk to desk [desk 104]
Walk to chair [chair 103]
Find chair [chair 103]
Sit on chair [chair 103]
Find laptop [laptop 2120]
Open laptop [laptop 2120]

Task: Put away keys

Walk to entrance hall [dining room 1]
Walk to purse [purse 2067]
Find purse [purse 2067]
Open purse [purse 2067]
Find keys [keys 1000]
Grab keys [keys 1000]
Close purse [purse 2067]

Task: Spread table with appropriate supplies

Walk to table [table 123]
Put food food in table [food food 2006, table 123]
Put food food in bowl [food food 2006, bowl 2284]

Task: Send email

Walk to chair [chair 103]
Sit on chair [chair 103]
Find laptop [laptop 2053]
Switch on laptop [laptop 2053]
Turn to laptop [laptop 2053]
Look at laptop [laptop 2053]
Find mail [mail 1000]
Grab mail [mail 1000]
Read mail [mail 1000]
Find keyboard [keyboard 168]
Type on keyboard [keyboard 168]
Switch off laptop [laptop 2053]

Task: Put in chair

Walk to dining room dining room (100]
Walk to chair chair (126]
Put chair in table chair 126, table 128]
Sit on chair chair (126]
Put chair on table chair 126, table 128]
Sit on chair chair (127]
Put back chair chair (127]
Sit on chair chair (124]
Put back chair chair (124]
Sit on chair chair (125]
Put back chair chair (125]
Sit on chair chair (17]
Put back chair chair (17]
Sit on chair chair (240]
Put back chair chair (240]
Sit on chair chair (240]
Put back chair chair (126]
Sit on chair chair (126]
Put back chair chair (126]
Sit on chair chair (2002]

Task: Open curtains

Walk to home office [home office 241]
Walk to curtain [curtain 289]
Find curtain [curtain 289]
Pull curtain [curtain 289]
Open curtain [curtain 289]
Walk to curtain [curtain 290]
Find curtain [curtain 290]
Pull curtain [curtain 290]
Open curtain [curtain 290]
Walk to home office [home office 241]
Walk to curtain [curtain 291]
Find curtain [curtain 291]
Pull curtain [curtain 291]
Open curtain [curtain 291]
Walk to curtain [curtain 22]
Find curtain [curtain 22]
Pull curtain [curtain 22]
Open curtain [curtain 22]
Walk to curtain [curtain 206]
Find curtain [curtain 206]

	I INTRODUCTION
	II RELATED WORK
	II-A Task Planning
	II-B Large Language Models
	II-C Grounding Natural Language in Action Plans

	III APPROACH
	III-A LLM Action Plan Prompt Generation
	III-B Action Step Generation
	III-C Object Association
	III-D Ranking and Termination

	IV EVALUATION
	IV-A Metrics
	IV-B Experimental Setup

	V RESULTS
	V-A Environment Aware Action Plans
	V-B Ablations
	V-B.1 Ablation of Implementation Choices
	V-B.2 Ablation over Planning LMs
	V-B.3 Ablation over Translation LMs

	VI FUTURE WORK & CONCLUSIONS
	References
	Appendix
	A Pseudo-Code of the Algorithm
	B Admissible Atomic Action Steps
	C Sample Action Plan
	D Hyperparameter Tuning
	E Qualitative Results for Action Plans

