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ABSTRACT

Chemical manufacturing is a growing field that contributes to
many industries and employs tens of thousands of researchers in
wet labs. Automation tools for synthetic chemistry are of interest
not only for their potential impact on efficiency and productivity,
but also on human resources and safety, since synthetic chemistry
poses a number of occupational risks and is largely inaccessible
to researchers with physical disabilities. Currently, most au-
tomation tools for synthetic chemistry are either designed to per-
form highly specialized tasks or they are designed as closed-loop
systems with minimal interaction between human and machine
during a synthesis procedure. We are pursuing an alternative,
human-centered approach to robotic tools for synthetic chemistry,
in which general-purpose collaborative robots (cobots) offer di-
verse forms of support to human researchers in the lab. In order
to design frameworks for productive scientist-cobot collabora-
tions, we need a deep understanding of the task space in synthetic
chemistry labs and the impact of these various activities on the
researchers. Based on observations and surveys from a group
of experimental scientists, we have identified and analyzed 10
manual tasks commonly performed by researchers in the wet lab,
each of which may be broken down into a sequence of sub-tasks.
We conducted an in-depth analysis of the two most frequently
performed sub-tasks: liquids dispensing and solids handling.
Through subcoding, we identified 40 liquid dispensing typolo-
gies and 18 solid handling typologies, and evaluated the burden
associated with each of these sub-tasks using the NASA TLX.
These data will be of value for the design of human-centered
automation tools that support, rather than displace, researchers
performing manual tasks in the lab, in order to foster a safer and
more accessible lab environment.

Keywords: Human-Centered Design, Human-Robot Collab-
oration, Experimental Science, Synthetic Chemistry, Typol-
ogy

1. INTRODUCTION
More than 80,000 chemists work in the United States [1],

where the chemical manufacturing industry is expected to grow by
6.5% between 2016 and 2026 [2]. Approximately 10 million new
chemical compounds are developed each year [3], contributing
to innovation in medicine, materials science, energy, cosmetics,
and many other fields [4]. These novel chemical compounds are
usually synthesized manually by scientists in the chemical wet
lab, who face substantial physical and cognitive burden and risks
in their occupations.

Experimental chemistry necessitates time-intensive and
physically-demanding labor, can be detrimental to the scientists’
health, and is inaccessible for those who are physically disabled
or chronically ill. Researchers are exposed to a wide variety of
chemicals, many of which may be hazardous. Despite the in-
stallation of chemical fume hoods, participation in mandatory
chemical safety training, and use of personal protective equip-
ment (PPE) [5], tens of thousands of injuries take place in the
field of chemical manufacturing annually [6]. According to the
United States Department of Labor (USDOL), more than 190,000
illnesses and 50,000 deaths are related to chemical exposure of
workers annually [7]. In the past few decades, multiple deaths
have occurred from accidents in university chemistry research
laboratories [8, 9], which started a movement within the commu-
nity to strengthen their safety training protocols [10]. According
to the Laboratory Incidents Report by the United States Chemical
Safety and Hazard Investigation Board, however, not much has
changed even after implementation of additional safety measures
and increased awareness of laboratory safety [11]. Accidents are
continuing to take place in the chemistry lab [12–14] and labo-
ratory safety is an ongoing issue that is yet to be resolved. Fur-
thermore, labs are not designed for scientists who are physically
disabled, chronically ill, and neurodivergent [15]. Chemistry
labs typically do not have wheelchair access and lab benches and
chemical fume hoods are set at a fixed height. Some experimental
procedures require multiple hours of standing and operation of
certain lab instruments are physically challenging [15].
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We hypothesize that appropriately designed collaborative
robots (cobots) may relieve physical and cognitive burdens for
researchers while making these jobs safer and more accessible.
Since this human-centered approach to the merger of robotics
and chemistry will demand an intimate knowledge of the diverse,
complex tasks performed by experimental scientists, we are con-
ducting observational studies of scientists in the workplace.

In this paper, we analyze ten tasks that were commonly per-
formed by scientists being observed during regular work days
in the wet lab. The operational definition for task is a standard
protocol followed during chemical synthesis to facilitate a com-
positional (chemical or physical) change in materials. A task is
completed through a sequence of sub-tasks, defined as the actions
the researcher performs. Using a mixed-methods approach, we
conducted (1) a comprehensive task analysis to understand the
nature of the work experimental scientists do in the chemistry
wet lab during chemical synthesis, and (2) a survey-based analy-
sis of the burden levels associated with the two most commonly
performed sub-tasks. This knowledge provides a foundation for
designing human-robot collaboration tasks in the chemistry wet
lab that will foster a safer and accessible environment, while
increasing research efficiency and augmenting scientists’ perfor-
mance.

2. BACKGROUND
In various manufacturing industries, automation has been

used as a tool to increase worker safety by reducing physical fa-
tigue from repetitive, manual labor while increasing productivity,
efficiency, and profit. The use of automation technologies is ex-
pected to reduce the difficulty of physically burdensome tasks,
which in turn will increase diversity and inclusion in the work-
place [16, 17]. Due to the labor-intensive nature and complex-
ity of experimental science, laboratory automation technologies
have been developed to eliminate scientists’ exposure to toxic
chemicals, relieve them from repetitive tasks, and enable faster
completion of reactions [18].

Many chemistry automation tools are benchtop units tailored
for one specific task such as high-throughput experimentation
[19], liquid handling [20–22], extraction [23], or synthesis of
specific classes of compounds, such as peptides [24] or oligonu-
cleotides [25]. General-purpose automation units require a more
complex set of capabilities to enhance the speed and/or efficiency
of reactions [26–29], build new structures through iteration [30],
or develop pharmaceutical compounds [31]. These end-to-end
automated synthesis units comprise fully of automated modules
such as in-line reactors and analytical processing units in order
to perform real-time synthesis monitoring and self-optimization
[32–48]. Machine learning algorithms are also in development to
automate synthesis planning and optimization of reaction param-
eters [49–53]. One recent study reported a free-roaming robot
that autonomously optimized reactions and executed experiments
at a faster rate than human chemists [54].

While these end-to-end automation tools for chemical syn-
thesis may potentially benefit productivity, safety, reproducibil-
ity, and/or labor costs in chemical manufacturing, they also come
with some key limitations. Commercially available robots of this
kind are very costly, whereas custom-built systems place large de-

mands on time, labor, and specialized expertise. Fully automated
units typically cannot be paused for manual intervention or mod-
ification of reaction parameters once a reaction has started [29],
which may be counterproductive in syntheses at earlier stages
of R&D. Full automation may also impede the discovery of new
knowledge due to the lack of publicly available data [53] and algo-
rithm limitations [43, 44, 54]. Chemical synthesis is an iterative
process that is labor- and time-intensive [40], requiring advanced
experimental skills, a deep understanding of theory, and human
intuition [55, 56]; the expertise and dexterity of human scientists
are still pivotal for experimental science. Therefore, full automa-
tion of chemical synthesis remains extremely challenging, which
is why most synthetic chemistry labs around the world continue
to lack end-to-end synthesis automation tools.

Little consideration has yet been given to collaborative robots
(cobots) in the context of synthetic chemistry. Cobots, designed to
work safely alongside humans, are more adaptable, user-friendly,
and affordable, and have been widely used in industries including
the automotive [57, 58], material handling [59, 60], automated
inspection [61], and healthcare [62, 63]. Although commercial
cobots have been used in previous laboratory automation studies
[54, 64], they have not yet involved real-time human-robot col-
laboration in the wet lab. One recent work conducted a Wizard
of Oz study to investigate how a cobot could support scientists by
performing "non-value adding tasks" [65].

We envision that appropriately designed cobots could relieve
scientists of physical and cognitive burdens and help increase the
safety and accessibility of wet lab research. A human-centered
approach is encouraged in human-robot interaction (HRI) stud-
ies [66, 67] to optimize and evaluate the interaction between
robots/cobots and humans [68] and to ensure that the introduction
of the robot is well accepted [65]. In order to ensure effective-
ness and acceptance in the synthetic chemistry lab, user-centered
studies must be conducted to fully understand the needs of the
researchers to inform the early design phase of human-robot col-
laboration tasks.

3. METHODOLOGY
To establish a comprehensive understanding of synthetic

chemistry tasks, we employed a mixed-methods research ap-
proach. Data were collected using direct observations and sur-
veys.

3.1 Data Collection
We recruited four scientists through expert sampling. All

participants are adults (ages 18 or older), work regularly in a syn-
thetic chemistry wet lab at a large American R1 university, and
have more than one year of chemistry wet lab research experi-
ence. Participants self-reported their chemistry wet lab research
experience level as 1-3 years (2), 3-5 years (1), and > 5 years (1).
This protocol was reviewed and approved by the university IRB
(Protocol #23-0346).

3.1.1 Direct Observations. Observations were conducted
in the laboratories where participants worked routinely. A total
of seven steps in six different syntheses were performed by the
four participants during observation. We were present during
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the observations to record analytic memos electronically and en-
sure full video capture of the procedures. All seven steps were
recorded using a webcam (Logitech C922 HD stream webcam)
that was secured at the top of the chemical fume hood using a
magnet or duct tape, or clamped on the side of the fume hood
using a 3-prong clamp, to provide an overhead view of the exper-
iments being conducted inside the fume hood. The placement of
the webcam was determined based on the individual fume hood
setup and primary workspace inside the fume hood.

3.1.2 Surveys. We administered the NASA Task Load In-
dex (TLX) without modification to assess self-reported burden
for each task performed. The NASA TLX determines perceived
burden through six sub-scales: mental demand (mental and per-
ceptual activity required, such as thinking, deciding, calculating,
remembering, looking, and searching), physical demand (physi-
cal activity required, such as pushing, pulling, turning, control-
ling, and activating), temporal demand (time pressure from the
rate or pace at which the task was performed), performance (sat-
isfaction with performance), effort (mental and physical effort
involved in accomplishing the task), and frustration (feeling inse-
cure, discouraged, irritated, stressed, and annoyed versus secure,
gratified, content, relaxed, and complacent) [69]. Each sub-scale
is ranked on a 20-point scale, where higher rankings mean higher
perceived burden. This method has been used in various contexts
to assess self-reported cognitive load while performing activities
and tasks [70–73]. It is also the second most frequently used
survey in HRI studies [74], enabling a direct comparison with
future studies in human-robot collaboration in the chemistry wet
lab.

In addition to the unmodified NASA TLX, free-response
questions developed for this research were included as optional
survey responses. All participants were asked to submit a survey
on specific tasks after the completion of the day’s experiments.
These surveys were provided to the participants via web hyperlink
or QR code and the participants were given an unlimited amount
of time to submit their responses.

3.2 Data Analysis

Task
Identification

Video
Analysis

Sub-​Task
Breakdown

Sub-​Task
Typology

Initial Coding Subcoding

Direct 
Observation

Survey

Mechanical motionAction

Quantify burden of sub-​task

Hierarchical Task Analysis

FIGURE 1: DATA ANALYSIS METHODS.

We performed a hierarchical task analysis (HTA), which is a
method used to learn how a user performs a task by identifying
the goals and tasks of a system and further analyzing these tasks
by breaking them down into sub-goals and understanding their
sequence [75]. HTA has been used as a method for task allocation
and human-computer interface design [75]. We expect that HTA

can also be used as a tool for designing collaborative tasks for
human-robot collaboration in the chemistry wet lab.

Tasks involved in synthetic chemistry were identified through
direct observations and analytical memos. These tasks were
further analyzed using computer-aided qualitative data analysis
performed in ATLAS.ti 23. The videos recorded during direct
observations were coded using an initial coding method [76] that
aided in breaking the tasks down into sub-tasks. During the initial
coding process, we found that there were variations within these
sub-tasks. Subcoding [76] was employed to further specify these
sub-tasks, which served as the basis for typology development.
A summary of data analysis methods are shown in Figure 1.

TABLE 1: SUMMARY OF 10 OBSERVED TASKS WITH THEIR
OCCURRENCE FREQUENCIES AND AVERAGE DURATIONS (MIN-
UTES:SECONDS).

Task Frequency Average Duration
Run Chemical 8 24:10 ± 26:34 (active)
Reaction 43 ± 33 hrs (passive)

Gravity 2 02:05 (active)
Filtration 04:46 (passive)

Syringe 1 06:41 (active)
Filtration 00:00 (passive)

Vacuum 7 07:59 ± 06:18 (active)
Filtration 20:40 ± 13:42 (passive)

Column 2 31:50 (active)
Chromatography 00:00 (passive)

Dialysis 3 20:01 ± 11:05 (active)
72 hrs (passive)

Extraction 2 20:41 (active)
05:30 (passive)

Rotary 8 20:07 ± 11:47 (active)
Evaporation 00:00 (passive)

Vacuum Dry 3 < 01:00 (active)
overnight (passive)

Lyophilization 3 14:58 ± 11:12 (active)
72 hrs (passive)

4. RESULTS
Through direct observations, we identified 10 distinct tasks

performed by researchers during routine synthesis procedures in
the wet lab. These tasks were broken down into sub-tasks through
initial coding of video recordings, which were further divided
into sub-task typologies through subcoding. Follow-up surveys
provided information on self-reported burden while performing
these tasks.

4.1 Task Identification
Through direct observations and analytical memos, we iden-

tified the following 10 tasks: (1) running a chemical reaction
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FIGURE 2: HIERARCHICAL TASK ANALYSIS DIAGRAM OF 10 OBSERVED TASKS PERFORMED BY SCIENTISTS DURING CHEMICAL SYN-
THESIS. SUB-TASKS INVOLVING LIQUID DISPENSING ARE IN RED BOXES AND THOSE INVOLVING SOLID HANDLING ARE IN BLUE BOXES.
DISASSEMBLING AN APPARATUS AND CLEANING UP WERE OMITTED IN THIS DIAGRAM.

(from preparing raw chemicals to work-up of a chemical reac-
tion), (2) gravity filtration, (3) syringe filtration, (4) vacuum fil-
tration, (5) column chromatography, (6) dialysis, (7) extraction,
(8) rotary evaporation, (9) vacuum dry, and (10) lyophilization.
The occurrence frequency and the average time taken to perform
each task are summarized in Table 1. The average task durations
are divided into active and passive times. During active times,
scientists make changes to the experimental system through phys-
ical manipulation of glassware and tools, or closely monitor the
experimental process to intervene when necessary. During pas-
sive times, the experimental apparatus is left unattended.

4.2 Sub-Task Breakdown
All 10 tasks were broken down into sub-tasks through initial

coding [76]. Sub-tasks were defined by the actions performed
to complete a task, such as "pour liquid," "dispense solid," and
"turn knob to set stir speed/temperature." These sub-tasks were
sequentially ordered to describe how the observed tasks were
completed. The results, summarized in Figure 2, revealed two
sub-tasks that occur with particularly high frequency: (1) liquid
dispensing (red boxes in Figure 2) occurred at least once in all
10 tasks and was performed 613 times and (2) solid handling
(blue boxes in Figure 2) occurred in 3 out of the 10 tasks and was
performed 121 times.

4.3 Development of a Sub-Task Typology
During the initial coding process, we observed variations

within the codes that led to the development of a sub-task ty-
pology. These variations were caused by the manipulation of
different glassware and tools, which was added to the primary

codes as subcodes [76]. We will refer to the glassware or tool
being held directly as the "grasped tool," and the vessel the liquids
and solids were transferred into as the "target vessel." Through
subcoding, we identified 40 typologies for liquid dispensing and
18 typologies for solid handling from 17 grasped tools and 13
target vessels. For each typology, the distribution of sub-task
completion times is illustrated in Figure 3 for liquid dispensing
and Figure 4 for solid handling. Typologies are ordered from the
most to least frequently occurring typology and the black squares
represent the mean.

Figure 3 shows that the squirt bottle was used the most fre-
quently, with a total of 141 occurrences. This is due to the fact that
the squirt bottle was used to dispense solvents during experiments
and was the primary vessel used for rinsing soiled glassware with
solvents, such as acetone and isopropyl alcohol. Because used
glassware are rinsed multiple times during each experiment, the
occurrence frequency is significantly high. Similarly, the Pas-
teur pipet was used for liquid transfer during experiments and
glassware rinsing, causing it to be the second most frequently
occurring typology, with 113 occurrences. The box plot for the
Pasteur pipet has the widest distribution (range = 61.30 s) and
displays many outliers. This is likely the result of the Pasteur
pipet being used not only for transferring liquid reagents and
rinsing soiled glassware, where the liquids could be dispensed
quickly, but also for drop-wise addition of liquids, which was a
slow process.

The 18 typologies for solid handling are shown in Figure
4. The performance duration for transferring solids from a cen-
trifuge tube to a vial using a spatula had the largest range of
51.29 s and an outlier at 65.63 s. According to our observations,
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FIGURE 3: BOX PLOT OF SUB-TASK COMPLETION TIMES (IN SECONDS) FOR 40 LIQUID DISPENSING TYPOLOGIES. THE BLACK SQUARES
REPRESENT THE MEAN, n IS THE OCCURRENCE FREQUENCY, AND R IS THE RANGE.

the solids stored inside centrifuge tubes for these procedures were
sticky materials. This may have been the cause for the broad range
of performance duration and extreme outlier. Solid handling is
highly dependent on the physical and chemical properties of the
solid being transferred, such as the granule size and hydrophilic-
ity. These differences may have caused the broad distribution of
performance duration in all typologies involving solid transfer.

4.3.1 Self-Reported Burden of Sub-Tasks. A total of 32
survey responses were collected. Out of the submitted responses,
84% of the free response questions were answered, and it took
participants an average of 5 minutes and 19 seconds to complete
one survey (with an outlier survey having taken 5 hours and 18
minutes).

17 out of the 32 responses discussed the difficulties of liquid
and solid handling during various tasks. Results of these 17
responses (9 for liquid dispensing and 8 for solid handling) are
shown in Figure 5, where the 6 NASA TLX sub-scales are listed
along the y-axis and each cell color and value corresponds to the
exact value submitted on a 20-point scale.

The survey results showed that for both liquid (Fig. 5a) and
solid (Fig. 5b) handling, while mental demand, physical de-
mand, and effort stayed ≤ 11, temporal demand, performance,
and frustration ranked > 11 in multiple instances. Free response
answers revealed that the high ranks of temporal demand, perfor-
mance, and frustration were caused by the physical and chemical

properties of the liquids and solids being used.
O2-sensitive, H2O-sensitive, or light-sensitive liquid

reagents require quick transfer to avoid exposure to the atmo-
sphere. This increased the level of temporal demand, as the
participants felt rushed. This also contributed significantly
to performance and frustration. Generally, participants were
happy with their performance when liquids were transferred
quickly without dripping or spilling, but were unhappy with
their performance if they felt that the liquid transfer could have
been quicker. Participants felt frustrated by the pressure to
dispense the correct amount without spilling the chemical, while
dispensing quickly to avoid exposure to the atmosphere. There
was also a comment about the stress of dealing with hazardous
chemicals.

Similarly, hydrophilic solids contributed to the temporal
demand experienced during solid handling, as participants felt
rushed to measure and dispense quickly to avoid exposure to the
atmosphere. The low satisfaction with performance (correlated
with higher values on the NASA TLX scale) was caused by the
difficulties associated with reaching the exact target weight and
dispensing the solids into the target vessel without spilling or
having it stick to the side of the flask. The primary cause of
frustration was going over the target weight. One participant
described solid dispensing as a "tedious task."

For both liquid and solid handling, one survey responded
with 18 out of 20 for performance. These responses were sub-
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FIGURE 4: BOX PLOT OF SUB-TASK COMPLETION TIMES (IN SECONDS) FOR 18 SOLID HANDLING TYPOLOGIES. THE BLACK SQUARES
REPRESENT THE MEAN, n IS THE OCCURRENCE FREQUENCY, AND R IS THE RANGE.

(a) NASA TLX responses for liquid dispensing. (b) NASA TLX responses for solid handling.

FIGURE 5: NASA TLX RESPONSES FOR (a) LIQUID DISPENSING AND (b) SOLID HANDLING. THE 6 NASA TLX SUB-SCALES ARE LISTED
ALONG THE Y-AXIS AND EACH CELL COLOR AND VALUE CORRESPONDS TO THE EXACT VALUE ON A 20-POINT SCALE, WHERE HIGHER
RANKINGS MEAN HIGHER PERCEIVED BURDEN. 9 RESPONSES FOR LIQUID DISPENSING AND 8 RESPONSES FOR SOLID HANDLING
WERE COLLECTED.

mitted by two different participants. According to the answers
to the free response questions, the reason for such discontent in
performance was from the feeling that they did not perform as
well as they should have, as they commented: "I could have done
this quicker" and "this measurement was imperfect."

5. DISCUSSIONS AND FUTURE WORK
In this paper, we presented 10 common wet lab tasks and

their associated sequences of sub-tasks performed by scientists
during synthesis procedures, as well as a method of identify-
ing typologies for liquid and solid handling sub-tasks based on
the grasped tool and the target vessel. The complexity of these
sub-tasks are demonstrated by the diversity of their respective ty-
pologies, highlighting the challenges in perception and reasoning
that a cobot for chemical synthesis would face.

Analyzing the most common sub-tasks of liquid and solid

handling, we found several factors that introduce variations in
difficulty and completion time. Regarding the grasped tool, three
factors appear to contribute to variation in difficulty and proce-
dural time. First, the diameter of the grasped tool determines the
gripping diameter of the grasp. Second, the weight of the grasped
tool will change the force required to pick it up from the surface.
Third, the volume or mass of material influences how long it will
take to complete the sub-task, where greater masses or volumes
take longer to complete the sub-task. The target vessel also has
three contributing factors. First, the shape of the target vessel de-
termines how the grasped tool must be poured to avoid knocking
over the target vessel. Second, the diameter of the target vessel
opening will govern the level of precision required for successful
material transfer, where higher precision requires more time to
complete the transfer. Third, the location of the target vessel
relative to the grasping tool will change how much the arm must
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move.
Consideration of these factors may provide avenues to en-

hance efficiency and reduce error rates in the two critical sub-
tasks of liquid and solid handling. These typologies may also
help contribute to the identification of (1) robotic platforms with
suitable capabilities to provide useful support, (2) appropriate
programming or training paradigms to enable cobot-scientist col-
laboration, and (3) additional tools (such as peripheral sensors
or manipulators) that might be needed to equip a cobot with the
faculties to provide maximum support and safety in the lab. In
addition, it may provide insight for designing a novel cobot tai-
lored for applications in chemistry research. Coupled with our
survey data that reveals the level of burden experienced by the
researchers in various tasks, these observational studies may help
us prioritize which tasks will be most rewarding to researchers
who have access to cobots in the wet lab.

The work presented in this paper is a part of a larger study
that aims to develop a comprehensive "map" of the task space that
researchers navigate routinely in the chemistry wet lab. In future
work, we aim to expand the number and diversity of participants
in our observation studies, identify more tasks and sub-task se-
quences, and synthesize the quantitative and qualitative data into
a framework of decision-making and task-performance that will
facilitate the design of human-robot collaboration tasks in the wet
lab with commercially available cobots.

6. CONCLUSION
Using a mixed-methods approach, we have identified 10 tasks

performed during chemical synthesis, divided these tasks into se-
quential sub-tasks, and developed a typology for the two most
frequent sub-tasks: liquid dispensing and solid handling. The
typology was developed based on the mechanical motions of the
hands and arms, which were governed by the glassware and tools
being grasped and the vessel into which the liquids and solids were
transferred. We also used the NASA TLX and free-response sur-
vey questions to quantify self-reported burden experienced while
performing these two sub-tasks. Through an analysis of survey
responses, we found that self-reported burden was highly depen-
dent on factors specific to each liquid or solid reagent, such as
their physical and chemical properties and toxicity. Such a com-
prehensive analysis of tasks performed during chemical synthesis
will help understand the scientists’ needs in their workplace and
contribute to the design of effective collaboration between human
scientists and cobots in the lab in order to reduce the burden on
scientists while increasing laboratory safety, research efficiency,
and accessibility.
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