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Abstract— Robot Imitation Learning (IL) is a crucial tech-
nique in robot learning, where agents learn by mimicking human
demonstrations. However, IL encounters scalability challenges
stemming from both non-user-friendly demonstration collection
methods and the extensive time required to amass a sufficient
number of demonstrations for effective training. In response, we
introduce the Augmented Reality for Collection and generAtion
of DEmonstrations (ARCADE) framework, designed to scale
up demonstration collection for robot manipulation tasks. Our
framework combines two key capabilities: 1) it leverages AR to
make demonstration collection as simple as users performing
daily tasks using their hands, and 2) it enables the automatic
generation of additional synthetic demonstrations from a single
human-derived demonstration, significantly reducing user effort
and time. We assess ARCADE’s performance on a real Fetch
robot across three robotics tasks: 3-Waypoints-Reach, Push,
and Pick-And-Place. Using our framework, we were able to
rapidly train a policy using vanilla Behavioral Cloning (BC), a
classic IL algorithm, which excelled across these three tasks. We
also deploy ARCADE on a real household task, Pouring-Water,
achieving an 80% success rate.

I. INTRODUCTION

Imitation Learning (IL) aims to empower end-users to
teach robots skills and behaviors through demonstrations
and has shown promising results in controlled laboratory
environments [1], [2], [3], [4]. Behavioral Cloning (BC) [5],
a common form of IL, mimics human actions from demon-
strations using supervised learning, showing effectiveness in
complex scenarios [6], [7]. Compared to alternate approaches,
such as adversarial imitation learning (AIL) [8], [9], BC stands
out for its simplicity in implementation and optimization.
Moreover, it functions offline, eliminating the need for
potentially risky environmental interactions [10], [11]. These
advantageous features make BC a promising choice for
deploying robots in real household environments. However,
to realize this vision, we must overcome two significant BC
challenges, the complex process of demonstration collection
and the data-hungry nature of BC algorithms [12].
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Regarding the first challenge, current methods for gathering
demonstrations often require familiarity with teleoperation
using specific controllers (e.g., joystick, 3D mouse) [13], [14],
[15] or contact-based kinesthetic teaching with robots [4],
[10]. Such approaches may not be feasible or desirable for
non-expert users. Recently, Virtual Reality (VR) has been
explored as a potential method to simplify demonstration
collection process [16], [17], but such approaches involve
additional efforts such as creating realistic VR environments,
leading to further complications. We are inspired by an alter-
native approach, suggested by [18], to use Augmented Reality
(AR) to enable more natural collection of demonstrations.

Regardless of the demonstration collection method, BC
introduces a second challenge in requiring a substantial
volume of expert demonstrations, often in the hundreds, for
effective training. Amassing such a quantity of demonstrations
may be excessively burdensome for end users. This challenge
is primarily due to the covariate shift issue [19], [20], where
minor discrepancies in action prediction accumulate over
time, leading the agent to encounter states not covered by
the demonstrations.

We introduce ARCADE, a novel AR-based framework
tailored to effectively address both challenges. ARCADE
provides a three-step process for generating demonstrations
in a user-friendly and scalable manner. First, a user provides
a single demonstration using their hands as they would in
daily life, addressing the complex process of demonstration
collection challenge. During this process, the user wears an
AR headset that tracks their hand motion and visualizes a
robot digital twin overlaying the user. Second, ARCADE
automatically generates a small set (10-15) of candidate
demonstrations by following waypoints that are randomly
sampled from the single user-collected demonstration, during
which we apply a Key-Poses Detector to preserve the core
elements of the user’s demonstration. These candidates are
visualized in AR to the user who can rapidly filter out any that
contain errors (e.g., violating user preferences or implicit con-
straints) to form a user-accepted set of demonstrations. Third,
ARCADE generates a large set of additional high-quality
demonstrations, all based on the initial user demonstration,
and uses an Automatic Validation approach to compare each
candidate against the user’s accepted set without further need
for user input, thus rapidly scaling the demonstration set and
addressing the data-hungry challenge to enable effective BC
training. We summarize our contributions as:

1) We introduce a novel framework for generating demonstra-
tions at scale from a single AR-captured demonstration.
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2) Within this framework, we have developed two inno-
vative techniques: a Key-Poses Detector and Automatic
Validation, both designed to facilitate the generation of
high-quality demonstrations from one user-provided AR
demonstrations.

3) We evaluate ARCADE on a physical Fetch robot for three
manipulation tasks. The BC-trained policy with ARCADE-
generated demonstrations demonstrates excellent perfor-
mance across all tasks. Further validation of ARCADE
in a more complex Pouring Water task showed the robot
achieving an 80% success rate, highlighting ARCADE’s
potential for realistic robot assistance in homes.

II. RELATED WORK
A. Demonstration Collection Methods

Methods for collecting demonstrations in IL have evolved
alongside the field itself. The earliest and also the most
popular method involves users kinesthetically guiding the
robot in a tactile manner to perform tasks [1]. However, the
effectiveness of kinesthetic teaching depends on the user’s
dexterity and their ability to perform smooth demonstrations.
This makes it challenging to gather large-scale datasets, as
maintaining the stamina needed for repeated physical demon-
strations is difficult. Teleoperation offers an alternative [21],
[22], [23], where users control the robot using various devices
such as a keyboard and mouse [24], [25], 3D-mouse [26],
[14], [27], joysticks [28], or mobile phones [29] to perform
tasks. Unfortunately, Jiang et al., 2024 shows that such
systems typically require a longer training process for users
to effectively operate these systems and they may achieve
the worst performance compared to alternative methods [30].
Recent research has explored the use of VR to streamline
the process of demonstration collection, offering users a
potentially more intuitive way to control robots [31], [17],
[32], [33], [16], [12]. However, such VR methods necessitate
the development of a simulation environment and remove
the demonstration process from the contexts of real-world
applications. To eliminate the need for a real robot during
demonstration collection, Duan et al., 2023 suggests using
AR for this purpose, which inspires our framework.

B. Behavioral Cloning

Behavioral Cloning (BC), a key technique in Imitation
Learning (IL), effectively completes tasks by replicating
demonstrations provided by users [5]. For example, Ratliff
et al., 2007 apply BC to manipulation and locomotion tasks
by converting them into multiclass classification problems,
subsequently solved via supervised learning [34]. However,
one major challenge for BC methods is addressing covariate
shift (also known as compounding errors) [19], [20], which
results in action predictions for out-of-distribution states. To
address covariate shift, Dataset Aggregation (DAgger) [19]
can improve robot policies during training, but may be taxing
for users as it requires continuous feedback throughout the
training process. An alternative solution is to supply a large
number of high-quality demonstrations that encompass a
broader state space, thereby enhancing the performance of

the BC task [6], [35], [36], yet this too can be burdensome
for users due to the stamina required to create high quality
large scale datasets. Recently, George et al., 2023 pro-
posed generating multiple demonstrations from a single VR-
collected demonstration [12]. However, this approach does
not guarantee alignment with user preferences, potentially
affecting the quality of the generated demonstrations. Instead,
our framework ensures all generated demonstrations match
user preferences by deriving them from a user-approved set
after reviewing AR-visualized options.

III. METHODOLOGY
A. Framework Overview

We introduce the ARCADE as a framework for generating
demonstrations in a user-friendly and scalable manner, as
illustrated in Figure 1. §III-B details the initial AR-based
user demonstration (Figure 1A). Next, §III-C describes the
method for generating demonstrations (Figure 1B). Then,
$III-D details the method for users to validate generated
demonstrations (Figure 1C). Finally, §III-E introduces an
automated validation approach for these demonstrations to
rapidly scale up the size of the demonstration set (Figure 1D).

Our framework integrates three underlying techniques:
Markov Decision Processes (MDPs), Dynamic Time Warping
(DTW), and Behavioral Cloning (BC). We model the envi-
ronment using an MDP, denoted as M = (S, A, R, T, py).
Here, S represents the state space, for which we use the
robot arm’s joint values, and .4 denotes the action space,
defined by changes in the arm’s joint. The reward function
is given by R, T is the deterministic transition function, and
po represents the initial state probability distribution. We
use DTW [37], an algorithm for quantifying the similarity
between temporal sequences that may differ in timing or
speed, as a crucial tool for Automatic Validation. We employ
BC as our IL algorithm, training a policy, 7y, to mimic
demonstrations, = = {r;}}£,, where each demonstration is a
list of state-action pairs, 7 = {(s;,a;)}}¥,.

B. AR-assisted Demonstration Collection

To collect demonstrations of robot arm trajectories from
users, we utilized the Microsoft HoloLens 2, an augmented
reality head-mounted display (ARHMD). During the demon-
stration collection process (Figure 2), users wear the ARHMD,
which overlays a digital twin of the robot on the user and
provides an egocentric view of the robot’s perspective. This
setup facilitates real-time visual feedback of the robot’s
movements to the user. For our tasks and learning algorithm,
the robot’s end-effector must align with and track the user’s
hand. We accomplish this by using current inverse kinematics
(IK) algorithms [38], which calculate the robot’s joint angles
based on the demonstrator’s hand position. The distance
between the user’s pointer finger and thumb is used to
inform gripper movements (open/close) for picking or placing
objects. As the joint angles, end-effector positions, and pick
or place actions are calculated during the demonstrations, this
information is recorded on a separate machine, transmitted
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Fig. 1: This figure shows the architecture of ARCADE. (I) First, a user provides a single demonstration, 74%, through AR.

(IT) We generate a new demonstration, 77", by following sampled poses, extracted from 7

AR and key poses, obtained

via Key-Poses Detector. (III) Additional candidate demonstrations are then generated, which are visualized in AR for user
validation. Users filter the candidate demonstrations to form an accepted set of generated demonstrations, Za¢cePted (IV)
Finally, we continue generating additional new demonstrations, automatically determining whether to keep or discard each
demonstration based on comparing it to Z22°°¢P**? via Automatic Validation.

from the HoloLens via Unity Robotics Hub’s ROS-TCP-
Endpoint and ROS-TCP-Connector [39].

Exocentric View

Egocentric View

Fig. 2: Left: Egocentric view showing the robot’s end effector
overlapping with and following the human hand’s movements
to perform the Push task. Right: Exocentric view showing
how the human performs the task manually, with the digital
twin robot end effector mirroring the hand movements.

With this setup, we record a single demonstration 74%

from the user with a form as shown in Equation 1. Each
demonstration includes N data points, with the form of end-
effector pose, p;, corresponding robot arm joints, j;, and
binary gripper state, g; for each timestep i = 1,..., N.

= {(pi jir 91) Y (1)
C. Demonstrations Generation

Successfully collecting a single high-quality demonstra-
tion, 74%, through user-friendly AR methods addresses

one challenge, complex process of demonstration collection,
mentioned in §1. However, gathering a sufficient number of
demonstrations with minimal user effort remains a hurdle. We
automatically generate additional demonstrations based on
the initial user-provided 7. Such generated demonstrations
must meet two criteria for effective BC: 1) they should
encompass a broader state space than the states in 74%
and ensure task completion simultaneously, and 2) they must
maintain similarity to 74%, as IL algorithms are less effective
with heterogeneous demonstrations [3].

To satisfy the first criterion, we use a waypoint-following
approach. For waypoints sampling, we utilize a random
interval length method to select poses from 7%, Considering
the poses, PAT = {p;}N ,, extracted from 747, we choose
one pose at every ¢ timesteps, where ¢ is randomly determined
within the range [j, k] for each selection. By navigating
through these randomly determined waypoints, the robot arm
can explore a broader range of joints or end-effector states,
irrespective of the specific definition of the state space.

However, to ensure critical waypoints necessary for task
completion are not inadvertently filtered out during the
sampling process, we introduce an automatic Key-Poses
Detector. Our method identifies key poses assuming that
they occur either during grasping and releasing actions or
at moments of significant angle changes in the user’s hand
trajectory coupled with slow movement (i.e., approaching
zero velocity). Algorithm 1 details the pseudocode for the
Key-Poses Detector. For grasp and release actions (Line 1),



Algorithm 1: Key-Poses Detector

Algorithm 2: Automatic Validation

Input : points: positions extracted from collected
poses; window _length: the duration over
which we compute pose angles and density;
sharp_turn_threshold; dense_region_threshold.

1 grasp_release_indices < {gJ"**P}{ | U {grelease} |

2 sharp_turn_indices, dense_region_indices <—

Empty list

3 for idx, point in enumerate(points) do

4 angle <

ComputeAngle(point, window_length)

5 if angle > sharp_turn_threshold then

6 L sharp_turn_indices.append(idx)

7 density_score <—

ComputeDensity(point, window_length)
8 if density_score > dense_region_threshold then
9 L dense_region_indices.append(idzx)

10 key_poses_indices < grasp_release_indices U
(sharp_turn_indices N dense_region_indices)
Output : key_poses_indices

the collected demonstration, 74%, inherently provides the

required information. In situations involving angle changes,
the function ComputeAngle(-) calculates the angle at the
current position, using the start and end positions of the
window to help identify sharp turns (Lines 5-6). Although
the collected demonstration records only position-based
data without velocity, we employ ComputeDensity(-) to
gauge the density of neighboring poses within a window by
calculating their average pairwise distances (Line 7), serving
as a proxy to detect slow movements (Lines 8-9).

The combined set of sampled waypoints and detected key
waypoints constitutes the waypoint set, denoted as W. To
reach these waypoints in W, we use Movelt’s [40] built-in
motion planner [41] and IK [42], which tends to yield diverse
trajectories, thereby encompassing a larger state space.

D. User Validation
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Fig. 3: Visualized candidate demonstrations may exhibit
behaviors that could lead to rejection by the user: (left)
unnatural motions due to poor IK solutions, (middle) po-
tentially hazardous motions, (right) misalignment with the
user’s preferences.

Retaining key poses, as detailed in § III-C, aids in meeting
the second criterion: maintaining similarity between 74%
and the newly generated demonstrations, 7. However,

: 7™": new candidate generated from TAR,

gaccepted: gccepted set of generated
demonstrations; (: the acceptable level.
1 Z%cale « Empty list
._ H ted
2 S = {Zj=1,j7ﬁi DTW(ﬂaccep e 7
3 [ ~ Uniform(1, H)
46= ZiL#z DTW(rnew, paceerted)
5 if § < Smin(S) then
6 L Zscale gppend(T™e")

Output : =5¢ele

Input

accepted) H
=1

this strategy alone is inadequate to tackle the problem of
heterogeneous demonstrations fully because of three potential
scenarios (illustrated in Figure 3) that might occur in 7™°%:
1) unnatural movements resulting from IK instability [38];
2) potentially hazardous behaviors (e.g., the robot arm being
too close to a table surface); and 3) any behaviors that the
user may find undesirable (e.g., some users may favor shorter
trajectories while some others might prioritize more human-
like movements). Therefore, we must validate the behaviors in
the generated demonstrations. To accomplish this, we initially
create a set of generated candidate demonstrations, denoted
as Zeandidates . frnewyH Qubsequently, we present each
candidate in the set =candidates (4 the yser for validation, via
AR. Viewing demonstrations in AR enables users to identify
any problems in 7" and decide whether to retain or remove
the demonstration. The result of this process is a set of user-
accepted demonstrations, Zaccepted — [rocceptedlH e
believe this interactive approach, where users observe and
filter a small set of automatically generated demonstrations,
may be substantially less demanding and more efficient for
users compared to traditional methods in which users must
manually generate their own additional demonstrations.

E. Automatic Validation

Effective training of BC often requires a large number
of demonstrations, typically in the hundreds. Even with
user’s role shifted to validating generated demonstrations, the
volume of necessary demonstrations for effective BC might
still be daunting. Thus, we designed an automated method for
scaling up the validation of generated demonstrations, where
the user only needs to observe and approve a small set (e.g.,
10-15 candidate demonstrations), after which the system can
autonomously generate and self-validate candidates based on
the characteristics of the user-approved set.

As shown in Algorithm 2, we leverage Z%¢°cPted to
construct a similarity array, S, utilizing dynamic time warp-
ing, DTW () (81II-A). Each element in S quantifies the
similarity for every pair of user-accepted demonstrations,
Zaccepted - Qubsequently, we assess each newly generated
candidate demonstration, 77", against Zaccepted excluding
one randomly for fair comparison, utilizing DTW (-) (line 3-
4). Acceptance of the newly generated demonstration, 7"¢%,
only occurs when § < Smin(S) (line 5-6). The parameter



B, a scalar (e.g., 0.95), determines the acceptable level: a
higher acceptable level (i.e., smaller 3) results in more similar
generated demonstrations but smaller coverage of the state
space, and vice versa. This automatic filtering mechanism
ensures that we only retain demonstrations aligning with user
preferences. This process eliminates the need for constant
user supervision (i.e., after the initial interaction where the
user provides a single demonstration of their own and then
filters generated candidates to the approved set of 10-15
demonstrations, no further user input is needed) and thus
enhances the scalability of BC demonstration generation. Fol-
lowing the scalable, automated generation of demonstrations,
BC models can be trained as usual, using the extensive set
of demonstrations, =5¢ele,

IV. SYSTEM VALIDATION

We evaluate our framework using a real Fetch robot.
We first examined performance on three archetypal tasks,
3-Waypoints-Reach, Push, and Pick-And-Place (Figure 4),
chosen because they exemplify fundamental manipulation
behaviors that, when combined, can accomplish a variety of
complex household activities. We provide an example of this
in a fourth, more complex Pouring Water task (§IV-C).

In the 3-Waypoints-Reach task, the robot arm aims to hit
three predefined waypoints: Wy, W5, and W3. For the Push
task, the robot arm must push an object on the desk from its
starting position to a predefined goal point. The Pick-And-
Place task involves the robot arm grasping an object, moving
it to another location, and then releasing it. For 3-Waypoints-
Reach and Push, the state space consists of 7 arm joints, and
the action space includes 7 delta arm joints, corresponding
to each joint’s movement. For Pick-And-Place, we expand
the state space to eight dimensions to include the gripper
angle, and the action space also increases to eight dimensions,
encompassing the delta changes in the gripper.

Fig. 4: We evaluate on three tasks: Left: 3-Waypoints-Reach,
Middle: Push, Right: Pick-And-Place.

We introduce a Task Completion Error (TCE) metric,
measured in meters, to evaluate BC performance across the
three archetypal tasks. For the 3-Waypoints-Reach task, we
calculate this metric by averaging the minimum distances
to the three waypoints during the evaluation. For the Push
and Pick-And-Place tasks, it measures the distance from the
object’s final position to its target goal.

To benchmark ARCADE’s effectiveness, we compared four
BC policies across 3 archetypal tasks:

o ARCADE (741): a policy trained using just the initial
user AR demonstration from ARCADE.

o ARCADE (2°¢%¢): a policy trained with the full AR-
CADE system, consisting of 100 generated demonstra-
tions.

o BL (7¥%): a baseline (BL) policy trained using a single
demonstration collected via kinesthetic teaching, 7+°.

o BL (Zsc@le-ki): 3 baseline policy trained using 100
demonstrations, Z5°*¢-*? generated identically to Z5¢®!¢
but based on 7% instead of T4,

To assess each task, we execute each of the four BC-learned
policies ten times, reporting the mean and standard deviation
of the TCE for each policy as our results.

A. Implementation Details

1) Hardware: We utilized the Microsoft HoloLens 2 as
our augmented reality head-mounted display (ARHMD). The
HoloLens 2 tracks both the position and orientation of the
wearer’s hands, allowing us to map the user’s hand movements
to the robot during the initial demonstration. It also enables
the visualization of virtual imagery, which we use to align a
digital twin of the robot with the user’s movements during the
demonstration and to display candidate demonstrations for
the user to review and select for the accepted demonstration
set. Our current implementation utilizes the Fetch robot, a
mobile manipulation platform with a 7 degree-of-freedom
arm, although our work can be generalized to any robot
manipulator.

2) Policy Architecture: To represent the BC policy 7y, we
use a GaussianMLP model [43]. This model is composed of
two multilayer perceptrons, one for producing the mean p
and the other for the standard deviation o, together forming a
Gaussian distribution. The robot arm’s action is then sampled
from this distribution, denoted as a ~ my.

B. Archetypal Task Results
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Fig. 5: The results of BC policies trained using ARCADE
or a kinesthetic teaching baseline (BL) with either 1 or 100
demonstrations across three tasks. The full (100 demonstration
set: Z%¢@¢) ARCADE system offers the best performance in
all tasks.
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Figure 5 illustrates the results of each of the four BC
policies across the three archetypal tasks. We conducted a two-
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Fig. 6: The robot successfully pours water from a single-user demonstration, showcasing ARCADE’s effectiveness in equipping

robots for practical household chores.

way analysis of variance (ANOVA) to test whether the type of
demonstration collection (kinesthetic teaching baseline vs our
ARCADE framework) and the size of the demonstration set
(|2] =1 or |Z| = 100) affected BC policy TCE. We found
significant main effects of both factors and their interaction
on TCE at p < .001 for all three tasks. Using Tukey’s
Honestly Significant Difference (HSD) test to compare the
performance of all four BC policies, we found that all
four policies performed significantly differently (p < .0001
for each comparison), with performance ordered from best
to worst as the ARCADE (Z%°*¢) (best), BL (Zscle-Ft),
ARCADE (74%), and BL (7¥%) (worst) for the 3-Waypoint-
Reach and Pick-and-Place tasks. For the push task, Tukey’s
HSD did not reveal a significant difference between the
performance of the ARCADE (2°¢%¢) and BL (29CLAE-k7)
(p = .976), with both of them significantly better than the BL
(%) (p < .0001), which itself outperformed the ARCADE
(72%) (p < .0001). These findings indicate that the ARCADE
framework can generate demonstrations that match or surpass
those from traditional kinesthetic teaching in terms of BC
policy performance. Furthermore, the results show that both
sets of demonstrations generated by our method, Z5¢%¢ and
Zscale-ki | facilitate effective BC training.

C. Real Household Task - Pouring Water

To demonstrate ARCADE’s capability in handling more
complex household tasks and its potential for widespread
home robot deployment, we introduce an additional task:
Pouring-Water. Here, the goal is for the robot to learn
to grasp a bottle and pour water into a cup from just a
single demonstration given by the user. This task utilizes
the same state and action spaces as the Pick-And-Place task
and is deemed successful when water is poured into the cup.
Testing the BC policy trained with Z°¢/¢ from ARCADE,
we achieved an 80% success rate (8 of 10 trials), with failures
attributed to the plastic bottle’s shape alteration. Figure 6
captures a successful instance of the robot performing the
pouring action.

V. CONCLUSION

We introduce ARCADE, a scalable framework that al-
lows the collection of numerous high-quality demonstrations
from a single user-collected demonstration via AR. This
approach offers a user-friendly and time-efficient method for
demonstration collection. Empirical evaluations across three
archetypal robot tasks demonstrate ARCADE'’s effectiveness
in generating high-quality demonstrations suitable for effec-
tively training IL algorithms. Applying ARCADE to the real
household task of Pouring-Water illustrates the framework’s
potential to facilitate the widespread integration of robots
into daily home life.
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