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Constraining Gaussian Process Implicit Surfaces for
Robot Manipulation via Dataset Refinement

Abhinav Kumar", Member, IEEE, Peter Mitrano

Abstract—Model-based control faces fundamental challenges in
partially-observable environments due to unmodeled obstacles. We
propose an online learning and optimization method to identify
and avoid unobserved obstacles online. Our method, Constraint
Obeying Gaussian Implicit Surfaces (COGIS), infers contact data
using a combination of visual input and state tracking, informed by
predictions from a nominal dynamics model. We then fit a Gaussian
process implicit surface (GPIS) to these data and refine the dataset
through a novel method of enforcing constraints on the estimated
surface. This allows us to design a Model Predictive Control (MPC)
method that leverages the obstacle estimate to complete multiple
manipulation tasks. By modeling the environment instead of at-
tempting to directly adapt the dynamics, our method succeeds
at both low-dimensional peg-in-hole tasks and high-dimensional
deformable object manipulation tasks. Our method succeeds in
10/10 trials vs 1/10 for a baseline on a real-world cable manipulation
task under partial observability of the environment.

Index Terms—Manipulation planning,
planning.

motion and path

1. INTRODUCTION

PECIAL care must be taken when using model-based plan-
S ning and control methods in partially observable environ-
ments. This is particularly important where not all obstacles are
modeled by dynamics, to avoid collisions with unmodeled or
unobserved parts of the environment. Such collisions could pre-
vent task completion; for instance, the object being manipulated
might be blocked by the unmodeled environment object. The
challenge is heightened when manipulating deformable objects
like cables in the home or office. These objects can interact
with unmodeled parts of the environment in complex ways due
to high-dimensional, highly nonlinear dynamics. This creates
more possibilities for task failure.

Prior work has explored ways to model objects in the envi-
ronment based on data from partial visual observations and/or
contact [1], [2], [3], [4]. However, such estimates can produce
inaccuracies that may lead to the task becoming infeasible (e.g.
blocking the path to the goal). In this work, we introduce Con-
straint Obeying Gaussian Implicit Surfaces (COGIS). COGIS
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Constraint
Satisfying Surface

Fig. 1.  Our method learns a continuous model of the obstacle geometry as an
implicit surface, voxelized here for visualization, while enforcing constraints
on the model. We model contacts as pairs of points interior and exterior to
the O-level-set surface. (a) A constraint violating surface where the cable state
estimate penetrates the surface due to noisy estimates of interior and exterior
points. (b) The surface after estimated contacts have been refined.

uses a Gaussian process implicit surface (GPIS) [5] to model
obstacles using contacts inferred during task execution. It also
uses anovel optimization approach to ensure the obstacle surface
satisfies provided constraints.

COGIS learns a GPIS using contacts estimated by tracking
the state of a manipulated object. It also incorporates predictions
from nominal dynamics and visual data. This enables obstacle
modeling without specialized tactile sensing, which may not be
available along the surface of a manipulated object.

The GPIS in COGIS uses a Gaussian Process (GP) to learn a
0-level-set surface that we use to model obstacle geometry. The
underlying GP provides a method of estimating surfaces from the
estimated contacts along with an uncertainty estimate. Its kernel
function also provides a useful inductive bias that encourages
smooth surface predictions.

By optimizing the contact dataset, we enforce user-provided
constraints on the GPIS without assumptions on the form, con-
vexity, or differentiability of the constraints. We do this with
CMA-ES with Margin [6], a particle-based optimizer. These
constraints can incorporate domain knowledge or assumptions
related to the task being performed. Our key insight is that this
task-specific information can be used to constrain estimated en-
vironment models, thereby improving task performance. We use
the estimated surface to construct costs for MPC. Considering
the estimated surface in the cost function, along with consider-
ing visible obstacles in the dynamics, allows the controller to
navigate through the environment.

The contributions of this letter are:

e A method for estimating obstacle geometries online using

a fusion of visual input and contacts inferred through state
tracking and predictions from nominal dynamics

e A method for ensuring the estimated geometry satisfies

arbitrary task-informed constraints
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We show that our method is able to identify obstacles and
enable task completion for low-dimensional peg-in-hole tasks
and high-dimensional deformable object manipulation tasks.
Baselines that do not adapt online or that attempt to reason
in the dynamics space succeed less frequently for the higher-
dimensional tasks. We also show that enforcing constraints on
the learned surface improves task performance.

II. RELATED WORK

Online Adaptation: An alternative to estimating environment
geometry when using a pre-existing dynamics model is to
account for unanticipated contact by adapting the dynamics
model [7], [8], [9], [10], [11]. These works directly update a
learned dynamics model with data from the online environment
or learn a residual dynamics model to capture the novel dy-
namics. While these methods are useful for low-dimensional
state-action spaces, they require either multiple trials to collect
sufficient data when dynamics are high-dimensional or fit simple
linear models online. In contrast, we attempt to estimate unseen
obstacles, which exist in the 3D workspace and thus do not
require adapting high-dimensional dynamics models. We also
do not require large amounts of data and our results show that
our method can estimate novel objects well enough to complete
tasks in a single episode.

TAMPC [12]is amethod that adapts MPC techniques to novel
environments through identifying and avoiding traps, or local
minima, of controllers, which sometimes arise from unantici-
pated obstacles. TAMPC defines local minima in state-action
space. However, in manipulation problems, local minima are
often induced by geometric properties of the scene. By directly
considering the geometry of obstacles and manipulated objects,
we can learn a richer model that results in more efficient task
execution.

Contact Detection: There is prior work that estimates loca-
tions of contact points [13] or estimates properties of manipu-
lated objects using contact [14]. These methods use estimates of
joint torques and knowledge of robot geometries to calculate a
belief over contacts. These methods are not generally applied to
deformable objects as we lack good torque estimates along an
object like a cable. Lack of this data motivates alternate methods
for contact estimation.

Learned Object/Environment Modeling: Learned implicit sur-
faces have previously been used to model environment and
object geometries. Two popular classes of models are Gaussian
process implicit surfaces (GPIS) [14], [15], [16], [17], [18],
[19], [20], [21], [22] and neural implicit surfaces (NIS) [23],
[24], [25], [26]. These works assume access to rich perception
signals, including visual data with dynamic viewpoints or tactile
sensors. We do not assume that our viewpoint of the system can
change over time nor do we have access to tactile data when
grasped objects make contact with obstacles. We instead rely
on a combination of limited visual data with contacts estimated
through state tracking and predictions from nominal dynamics.

Constrained Implicit Surfaces: Prior work has investigated
methods for imposing constraints on shape reconstructions. One
class of these methods can take the form of fitting parameterized
functions to provided point clouds [27], [28], [29]. These meth-
ods employ a fixed set of constraints and construct equations
that allow them to satisfy these constraints within a convex
optimization approach. Alternate methods in rendering constrain
implicit surfaces to respect haptic interaction [30] and methods
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that learn 3D representations from 2D images include regular-
ization terms to constrain certain geometric properties [31]. In
contrast to these approaches, our method imposes constraints on
GPIS, handles arbitrary constraints, and fits the surfaces without
access to multi-view visual data.

III. PROBLEM STATEMENT

In this letter, we consider manipulation problems in which a
robot arm grasps an object and navigates it to a goal location.
We assume task execution begins with the object being grasped
and the grasp is maintained throughout execution.

We consider the problem of optimal control in a partially
observable environment. Let u € U represent the robot’s action
and X € X represent the state of a grasped object. We define
X = (x!,...,x™), meaning X is represented as an ordered set of
n components where x* € R?. This representation is useful for
high-dimensional systems like deformable objects, which can
be represented as a collection of particles or points of interest.
For example, a cable can be represented as a set of ordered
points in R3. It can be applied to other systems where n = 1,
for example a peg grasped by a robot in a peg-in-hole task.
Using this representation enables independent reasoning about
collisions between different components of manipulated objects
and the environment. We assume access to a function dy (x1, X2)
that provides a distance between state components.

Given an initial state X and a reachable goal set GG, we seek a
trajectory 7 using (MPC) that reaches G with a minimal number
of control steps. G specifies known goal locations for a subset
of components of X. We refer to the goal location for a specific
component 7 as G;. This is useful when not all components have
desired goal configurations, for example in a task where one end
of a cable needs to be plugged in.

A trajectory 7 has a horizon 7', a sequence of controls 7, =
{up...ur_1}, and a sequence of states 7x = {Xy...Xr}. A
nominal dynamics model f(X, u) predicts the next state given
the current state and some action. f is assumed to be provided
and will be applied to a novel environment with obstacles that it
may not be able to model due to partial observability. We assume
that error in f is caused by unobserved obstacles.

Our method can utilize, but does not assume access to, a depth
image Z and corresponding point cloud P of the environment
collected without occlusion from the robot or manipulated object
prior to task execution. Pre-generated depth images and point
clouds prevent visibility issues caused by robot occlusion. We
use d(X, P) to refer to the minimum distance between each
component of X and the points in P.

We assume the environment is static over the course of task
execution. We assume the robot and the grasped object can make
contact with the environment without ceasing task execution or
damaging itself or the environment. This can be realized through
compliant control or the ability to sense torques at joints of the
robot and recover to a safe configuration when a threshold is
crossed.

We assume the environment is partially observable and there-
fore partially modeled at initialization. We seek to fit a model £
of the unknown environment geometry £ while obeying one or
more provided constraints H = {hy, ..., h,}. £ will be fit from
data collected during task execution.

This problem is challenging as estimating the model during
task execution means we have access to limited data and no
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Fig. 2.

Block diagram showing the algorithm. Green blocks refer to objects generated by COGIS. The dynamics model, shown here as a MuJoCo simulation,

and visual input are created offline and used to plan a trajectory along with the current GPIS. After an action is executed, we infer contacts from the transition
(X¢,ut, X¢41), which we use to update the GPIS. The generated data D are refined using CMAwWM by selecting a subset D that ensures the GPIS satisfies
provided constraints hgaj. We fit a surface in yellow that approximates the obstacle geometry occluded by the table while constraining the surface to avoid penetration

with the cable state estimate.

prior knowledge of the occluded region of the environment. In
addition, we do not assume tactile sensing is available.
To address data quality issues, we incorporate explicit con-

straints into the estimation of £. We define h,y = hy A ... A
Iy as a constraint satisfied if all constraints in H are satisfied.
These constraints can encode desired topological properties of
the model, for example requiring there to be a collision-free

path from the current state to G given . Our goal is to inform
an MPC method using £. Rather than focusing on obtaining an

accurate geometry of the unseen object, we only seek an £ that
is sufficient for completing the task.

IV. METHOD

Our method, shown in Fig. 2, can be split into two parts:
Generating contact data to be used to estimate £ online (Secs.
A, B, C) and refining £ to satisfy constraints (Sec. D). We also

include a description of our controller and how it uses & to
complete the task (Sec. E). We execute these steps in a loop,
shown in Algorithm 1. We first define the GPIS model used to

fit £. A GPIS model learns a O-level-set surface given exterior,
surface, and interior points and their corresponding semantic
labels:

ifx is interior

ifx is on the surface
ifx is exterior

<0
=0
>0

GPIS : R3 — R;GPIS(x) (1)

We define a novel optimization problem for the dataset re-
finement in the case of implicit surface models parameterized
by a set D of points with corresponding semantic labels. D is
a subset of all collected data D. As £ is parameterized by D,
updating D can be considered equivalent to updating £

We seed the GPIS at initialization with the points in G with
corresponding labels of 1, reflecting our assumption that these
points are reachable and therefore exterior to the surface. The
GPIS parameters are updated using gradient descent every Tj;
iterations (see Table II).

A. Dynamics-Informed Contact Data Generation

We use predictions from nominal dynamics to estimate con-
tacts which we then use to generate interior and exterior points
of the GPIS. By identifying regions of state space where the
dynamics are inaccurate, we can generate candidate contact

estimates. While not all non-nominal dynamics are the result
of contact, we can generate data in this manner and then refine
contact estimates by enforcing constraints on the surface.

As we compute and execute control inputs using our controller
discussed in Section IV-E, we observe transitions of the form
(X, uy, X¢11). We estimate contacts by comparing the ob-
served next state X1 to the corresponding dynamlcs prediction
Xt+1 for the transition. We generate labels Y+ 1, Yt+1 cR"”

for X¢41 and Xt+1 respectively, using (2) and (3).

, dy (X, X
Yi,, = min (M 1) 2)
dx (X, Xi11)
Vi =91 ,~1 3)

As the values in X, correspond to the tracked positions of
the grasped object in the world, we can assume these points are
exterior to or in contact with the surface. Per (1), this means they
should have a corresponding label in Y1 > 0.(2) will compute
a label between 0 and 1. We interpret lower values as meaning
a contact is more likely as motion is impeded. An illustration
of this can be seen in Fig. 3(a). We generate 2n potential data
points for the GPIS corresponding to points in X1 and XH—I
per control step. We add a subset of these points to the GPIS as
explained in Section IV-B.

A transition corresponds to a contact when Y}; 11 <0, which

occurs when Yi,; <.5 per (3). In this case, X{,; would
correspond to an interior point. Adding interior and exterior
points with their corresponding labels to the GPIS allows it to
interpolate a O-level-set, thereby fitting a surface.

B. Adding Generated Data to GPIS

While we calculate labels for the 27 points in X1 and Xt—{—l
at each timestep, we do not necessarily add all 2n points to the
GPIS. We choose which data points to add based on the progress
being made by the controller and the semantics of the generated
labels.

1) Local Minima of Controller: Due to the finite horizon of
MPC, it is possible for the controller to enter a local minimum
of the cost function from which it cannot make progress toward
the goal. As we will discuss later, we use the uncertainty of
the GPIS as an exploration term in our MPC cost function to
address this. Adding data to the GPIS when the controller enters a
local minimum changes the cost landscape by reducing the GPIS

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 14,2025 at 20:49:56 UTC from IEEE Xplore. Restrictions apply.



KUMAR et al.: CONSTRAINING GAUSSIAN PROCESS IMPLICIT SURFACES FOR ROBOT MANIPULATION VIA DATASET REFINEMENT

Algorithm 1: High-Level Control Loop.

1 Given Ga fagaMPC7a7:anaCaf7dX7Pa Z,’l"c

2 X, =Xy // Saved state for local
minimum detection

3 while Not Reached Goal do

4 if T, steps since last component selection then

5 L s  argmin £(X;)

u; < MPC(Xt7 G) «, IB, B Ca s, fa éa dX)

Xt4+1 < apply ug, step environment

o1 + f(Xeyuy)

Generate Yy 1, ?t+1 using Equations (2), (3)

10 if T, steps since last local minimum check then

1 local_minimum

LT I

11 , ,
Tmn ?:1 dX(Xz-i-l’XD < dmin

12 X < Xt+1

13 else

14 L local_minimum < False

15 pre_process_data(Xi41, Yir,

16 Xt_,_l, ?t-i‘l’ P, Z r.,local_minimum)

17 | Update D, D with {(Xs11, Yeq1), (Xeq, Ye41)}
18 if —h.y then

19 L refine_contacts(D, D, Tewa, N, han)

Algorithm 2: pre_process_data.

I: Given ) )

Xt+1, Yt+1, Xt+1, Yt+1, P./ Z./ Te, local_minimum
V' + Image-frame depth of X, is less than
corresponding value in Z

C + d(Xt+17P) <Te

Y1 [VA-Cl=1

Yt—l—l [V /\ C] == O

I+ =(VA=C)A (Ygr <0)

Xit1 = X1 [V AC) VIV 1ocal _minimum]
Yt+1 — Yt+1[(V AC)V IV local minimum]
Xt—i—l = Xt+1[I]

10 Yoy = Yopi[l]

N

0 ooy g

uncertainty at those points. The change in the cost landscape can
alleviate the local minimum, enabling further progress. When a
local minimum is detected, we add all components in X and
their labels to the GPIS. Note that this cannot add any interior
points, as we do not add points in Xt+1~ To determine if we have
entered a local minimum, we periodically check the average
distance per timestep traveled by the manipulated object (line
8in Algorithm 1). If this distance is below a threshold d;,, we
consider the last state to be at a local minimum. We consider
these data points (Xty1, Y¢y1) separately from data points
added to the GPIS when contact is inferred. We define masks M
and M over all points in D and D respectively, where M* = 1
if the +th data point corresponds to a detected local minimum
and 0 otherwise. This mask is used in our contact refinement in
Section IV-D.

2) Visual Pre-Processing: Only using dynamics and state
estimates to generate labels can lead to false positive contacts
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OBSTACLE

o

Fig.3. (a) The green transition has a small discrepancy between the predicted
and actual next state, resulting in no contact detection. The red transition has a
higher discrepancy, resulting in contact detection. (b) When the cable is pulled
upwards, the red transition would result in contact detection but does not due to
visual pre-processing. Points that are updated by vision are indicated by the red
line surrounded by green.

along the full length of an object like a cable even if only a
portion of the cable is in contact, as shown in Fig. 3(b).

To address this, we use visual input to clean the labels, as
shown in Algorithm 2. Specifically, we determine if components
are visible and, if so, whether they are in contact with the
environment. We determine visibility by projecting component
coordinates into image coordinates. Given the intrinsic and
extrinsic camera parameters, we can recover pixel coordinates
(u,v) for each component as well as a depth z corresponding
to the current state. Letting Z(u,v) be the depth value stored
in the depth image Z at (u,v), a state component is visible if
z < Z(u,v). Visible components are given a label of 1.

Components of X, that are within a distance . of a point
in P are considered as visibly in-contact with a label of 0. 7.
is a parameter whose value is informed by the resolution of the
point cloud and the geometry of the grasped object.

We add data to D and D if a combination of critera are met:
We add points in X, and their labels if they are non-visible
interior points (lines, 6, 9 in Algorithm 2) and we add points in
X;+1 and their labels if they are visibly in-contact or correspond
to interior points in Xt—i—l (line 7 in Algorithm 2). We do not
add the dynamics predictions of visible components to D and
D to avoid incorrectly adding interior points to the data sets.

C. Visual Post-Processing

Even with pre-processed data, the specific values of kernel
parameters and the nature of Gaussian process interpolation can
lead to predictions of occupancy in known free space. Along
with using visual input to pre-process the labels in D and D, we
also use the visual data to post-process the GPIS output. When
making a prediction, we check if the input point is visibly in free
space. If so, we override the mean of the prediction and treat the
point as being in free space.

As opposed to explicitly adding known free space points to
the GPIS, this filtering step allows us to fit a useful surface
while having an uncertainty landscape that only depends on the
states visited during task execution. As the Gaussian Process
produces smooth uncertainty quantification, data correspond-
ing to visible points can incorrectly reduce the uncertainty in
non-visible areas. This could be addressed through an additional
input dimension corresponding to the visibility of the point, but
we choose to implement the post-processing over the kernel
engineering that would be required to include the semantic
information as GPIS input.
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Algorithm 3: refine_contacts.

1 Given D, D, ¢, Tewn, N, han
2 D=D[M =0]

3 D= D[M = 0]

4 M =M[M = 0]

5 M =M[M=0]

6 w* « 117l

7¢*=-1

8 CMA + CMAwWM(N(.5,.25))

9 Calculate ¢ using (5)

10 for Tya steps do

1 Q «+ Sample(CMA, N)

12 Evaluate samples using ¢

13 for w; € Q do

14 if c¢'w; > ¢* and hay(D,w;) then

15 w* =w;
16 o*=c'w;
17 | Update CMA with 2

18 Remove points from D where w* = 0

D. Contact Refinement

Akey contribution of COGIS is its ability to refine the estimate
of the object using task-specific constraints. Due to noise in state
estimation or dynamics as well as heuristics used in computing
interior points, it is possible to fit models of the environment that
do not satisfy the desired constraints. For example, a surface
may be fit that results in significant penetration of the state
estimate into the surface, causing issues with planning methods.
In another case, there may be no paths to G that avoid collision
with €. As € is parameterized by D, we can improve constraint
satisfaction by removing data from D that leads to constraint
violation.

‘We implement an integer optimization problem in (4) to refine
E.

w* =argmax, c'w
S.t. hau(D, Gy s s )

ar € {0, L

c:a<zyaDim>

“)

)
ieD
w € {0,1}!P! is a binary vector with an entry corresponding to

each data point in D, ¢ € RIP! is a weight for the optimization,
described below, K is the kernel function of the GPIS, and o
is the softmax function. A value of O corresponds to the data
point being removed from D. The “...” refer to auxiliary ar-
guments that may be needed for computing various constraints.
This approach minimizes deviation from the current estimate
by removing a minimal number of data points from D while
ensuring constraint satisfaction.

_ While we seek to maximize the number of data points kept in
D, we bias the optimization toward keeping data points that have
a higher density in D. This reflects our assumption that points
that are repeatedly encountered are less likely to be spurious.
By keeping a “memory” of all collected non-local minima data
points, even ones that have been previously removed from D, we

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 12, DECEMBER 2024

can recover from incorrectly removing data points from D due
to the distribution of D at the time of the previous optimization.
Through the use of this memory, we are able to reduce the search
space of our optimization by searching over only the data points
in D while still informing the optimization with all collected
data.

cis defined in (5) and biases the optimization toward keeping
points in D that are more similar to points in D, with similarity
calculated using K. We use o to ensure a consistent scale for ¢
regardless of the size of D or D.

We solve this optimization problem using CMA-ES with
Margin (CMAwM) [6], as shown in Algorithm 3. CMAwWM is
a particle-based optimization method that handles constraints
by including them in its objective function. We construct an
objective function ¢ in (6) minimized by CMAwM that includes
the objective function from (4) as the first term and a constraint
violation penalty as the second term:

#(D,w,...) = —c'w+10(1 — hgy(D,w,...))  (6)

As CMAwWM does not require gradients to optimize ¢, we can
use constraints that may not be convex or differentiable with
respect to w.

After the optimization has run, states that may have been local
minima given the previous £ may no longer be local minima.
Keeping the previously detected local minima in D may prevent
the controller from exploring states needed to collect contact data
as they would have low variance under the GPIS. To address this,
we remove points from D and D corresponding to local minima
using the masks M and M when the optimization is triggered
(lines 2-5, Algorithm 3).

E. Controller

Our MPC cost function is J(7)= Jy(7)+ aJ,(T)+
CJ.(7) + pJ.() where the different terms are: a goal directed
cost .Jg, an action regularization cost .J,, a collision cost .J.,
and an exploration cost J.. o, 3, C € R are coefficients used to
weigh the different costs.

1) Goal Cost: The goal cost in (7) drives the controller
toward the goal state. dy (G;, X?) = 0 if there is no goal defined
for component z. If only this distance is used in the cost, it is
possible for other cost terms to overwhelm the goal cost near the
goal, preventing the trajectory from converging successfully. We
add a cost term that helps the controller converge to the goal by
creating a deeper basin in the cost function near the goal that
the controller can exploit. We use an indicator 1,,, which is 1
when the goal distance is less than 7, for all state components
with defined goals. 7, is the distance from the goal that would
indicate task success. We weight this term by a parameterrn € R.

T
Te(r) =" (—77 1, +de(Gi,Xi)> @)

t=1 1€G

2) Action Regularization Cost: J,(T) = S 1o |Jus||2 pe-
nalizes large actions to encourage smooth motion.

3) Collision Cost: We define a collision cost in (8) that
penalizes transitions that would cause collision with £. This
is done by calculating the posterior prediction of the GPIS for
the states along a rollout.

T m
By =3_%_ L4xiy<o

=1 i=dl

®)
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Fig. 4. The peg-in-hole environments. The end-effector is grasping a peg,
which the robot navigates to the hole. Environments and figure are from [12].

4) Exploration Cost: Asinprior work, we use the uncertainty
to gain information about the obstacles by exploring new regions
of state space. We also find this form of exploration useful to
help escape from what would otherwise be local minima of
the controller. The exploration cost J.(7) = — Z;thl o5? uses
the variance of the GPIS at a state X, where 0, € R" is the
variance of the normal distribution predicted by the GPIS for
the » components.

V. RESULTS

We evaluate our method on peg-in-hole and deformable ob-
ject manipulation tasks, demonstrating the method’s utility for
manipulating objects with varying state dimensions and task
requirements. We use model predictive path integral control
(MPPI) [32] for MPC. We use a Matern kernel for the GPIS
with v = 1.5. Other parameter values are provided in Table II.
We use [33] to implement the Gaussian process.

A. Constraint Optimization Implementation

For the following experiments, we provide definitions of
constraints we enforce on the surface. These constraints are
violated in the presence of spurious interior points. The presence
of exterior points does not increase the likelihood that these con-
straints are violated. Therefore, in our CMAwWM optimization,
we only optimize w for the interior points in D, and pre-fix
the values in w corresponding to exterior points to 1. This is
consistent with maximizing (4) and allows us to reduce the size
of our search space at runtime.

B. Peg-in-Hole

We use the peg-in-hole tasks defined in [12] and shown in
Fig. 4. In these tasks, an end-effector simulated in PyBullet [34]
navigates a peg to a goal hole. We assume the goal location is
known but assume no prior knowledge of obstacles, necessitat-
ing adaptation. Due to heuristic placement of interior points, the
narrow opening in the Peg-U task can induce surfaces that block
the path to the goal, as shown in Fig. 5. A success is defined as
placing the peg within 2cm of the hole within 750 control steps.

The state is (x,y, Ry, Ry), where (z,y) represents the R?
end-effector position and (R, R,) are reaction forces. The
control signal is (Az, Ay). We execute 1 step of a planned
trajectory, replanning at each timestep. We only consider the
R? position to fit the surface. For these tasks, n = 1.

1) Constraint: For these tasks, we enforce a constraint using
connected components to guarantee the existence of a collision-
free path between the goal and the tracked point at the center of
the peg. We calculate connected components of a binary image
of the scene based on the GPIS predicted semantics using [35].
If the current state and the goal state are in different components,
the constraint is violated.
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Fig. 5. Predicted obstacles for the Peg-U task. (a) A constraint violation; the
goal is encompassed by the obstacle, violating the constraint. (b) Optimized
surface; CMAwWM removes the red interior point above the goal, satisfying the
constraint.

2) Analysis: We compare our method to TAMPC and use
their pre-trained dynamics model for f, which is learned without
the presence of obstacles. We do not use visual input for our
method to provide a comparison to TAMPC. We also evaluate
two ablations: one with refine_ contacts ablated and one
with no local minima detection.

We use the MPPI parameters in [12] and tune the parameters
for our method with Bayesian optimization.

As shown in Table I, we achieve similar to higher success
rates than TAMPC and the ablations on these tasks over 30
trials. We believe this is due to the learned surface providing
a dense geometric model of the environment that is informed by
topological constraints, allowing for collision checking while
guaranteeing task feasibility. We also show the utility of the
contact refinement optimization for the Peg-U task through a
higher success rate when compared to the ablation.

We show comparable results between the ablation and full
method for the Peg-T task. This is expected as the geometry for
the Peg-T and Peg-I tasks is less likely to induce violations of the
connected components constraint. There is some increase in suc-
cess rate for the Peg-I task, caused by the constraint sometimes
being violated when there is penetration of the peg state into the
surface estimate. As we remove data points corresponding to
local minima from D before running CMAwM, this can result
in a “reset” of the exploration cost, making it more likely for the
controller to succeed. The learned surface also approximates the
true obstacle geometry, as seen in Fig. 5.

C. Simulated Cable Manipulation

In this task, a two-armed, 16-dof robot removes a cable from
under a hook. The hook has a barrier that occludes part of the
obstacle, as shown in Fig. 6. The high degree of occlusion
motivates estimating the obstacle geometry and the contact
refinement. A success is placing the center of the cable in a
4cm radius sphere over the hook within 200 steps.

We use a MuJoCo [36] simulation to model f. We include
the observed environment in our dynamics by constructing a
mesh from P and using it in MuJoCo. We represent the cable
as 25 articulated links and track the R? position for each link.
These positions comprise the state components. The control is
[Api, Ap,] € RS, where Ap; is the change in the left gripper’s
position and Ap,. is the change in the right gripper’s position.

‘We use CDCPD2 [37] in combination with the state from the
simulation of the partial environment to estimate the cable state.
CDCPD2 includes regularization terms that promote smooth-
ness of the estimate and prevent large deviations in the estimate
between timesteps, leading to reasonable estimates for occluded
portions of the cable.
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Fig. 6. Deformable object tasks. (a) Simulated cable manipulation task. The
robot navigates the center of the cable to the green goal region. The camera is
located above and behind the robot, causing the obstacle geometry to induce
a high degree of occlusion. (b) Real world cable manipulation task. The robot
starts grasping the cable under the clamp and navigates it to the power strip.

1) Constraint: We constrain the surface to prevent penetra-
tion of the cable state estimate by calculating GPIS predictions
for each state component. We find it useful to be conservative
by calculating a lower bound on the GPIS prediction using
the uncertainty. Specifically, if 4 and o are the mean and
variance of the Gaussian predicted by the GPIS, then we check
if u + ®~1(¢)o < 0, where ® is the CDF of the standard normal
distribution and ¢ € (0, 1). ¢ = .4 for this task.

2) Analysis: We compare our method to TAMPC and a base-
line which directly uses the partial visual information with-
out any online adaptation. We also run ablations, individually
ablating the local minima data addition, the visual pre-
processing, visual post-processing, and the contact refinement
step. For the TAMPC state distance function, we consider the
R position of the center of the cable to provide a more useful
distance than a distance in the full R”® state, which we found to
be ineffective. We do not train a residual dynamics model online
for TAMPC as the online data is insufficient for training a useful
model for the high-dimensional state-action space.

Our results in Table I show that our method achieves higher
success rates than the baselines and contact refinement ablation
over 30 trials. We also show that the contact refinement provides
the largest increase in performance of the various design choices.
The ablated method can fail if spurious interior points close off
the gap between the hook and the table. Our contact refinement
algorithm can remove the spurious data points, improving task
success. We believe TAMPC’s trap representation provides a
sparser signal to the controller and struggles to cover the space of
possible local minima induced by the hook. Our method reasons
about contacts along the length of the cable independently,
enabling us to learn a richer model of the environment that
improves task performance. The non-adaptive baseline cannot
reason about the occluded part of the obstacle, leading it to
collide repeatedly with the obstacle.

D. Real Cable Manipulation

In this task, the robot navigates an extension cord around
an occluded obstacle to a goal power strip. Part of a clamp
underneath the table is occluded, as shown in Fig. 6, requiring
online adaptation to successfully complete the task. The higher
amount of state estimation noise in the real world along with
the gap between the MuJoCo dynamics used in MPPI and the
true cable dynamics can lead to artifacts in the estimated surface
which motivate contact refinement.

We again use a MuJoCo model of the partially observed
environment for f with the same cable state. For this task, one
gripper is used as one end of the cable is fixed to the wall. We use
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TABLE I
SUCCESS RATES, 95% CONFIDENCE INTERVALS FOR CONTROL STEPS

Environment Method Success C.o nirol, Steps
(Given Success)
COGIS (Ours) 26/30 | 296.3 1844
Peg-U COGIS-No local minima 12/30 | 129.17 +£ 334
COGIS-No refinement 11/30 | 135.7+62.9
TAMPC 27/30 | 248.3+574
COGIS (Ours) 27/30 | 328.7 +£56.9
Peg-I COGIS-No local minima 3/30 | 499.7 +248.9
COGIS-No refinement 25/30 | 316.2+57.3
TAMPC 23/30 | 2744+ 45.6
COGIS (Ours) 30/30 | 123.3+35.1
Peg-T COGIS-No local minima 25/30 | 234.2+61.7
COGIS-No refinement 30/30 | 107.7 +-26.9
TAMPC 25/30 | 160.3 +25.0
COGIS (Ours) 23/30 | 114.4+21.8
COGIS-No local minima 24/30 | 122.8 +13.8
COGIS-No vis. pre-process | 22/30 135.7 £15.1
Sim. Cable | COGIS-No vis. post-process | 21/30 | 121.4+13.6
COGIS-No refinement 17/30 | 111.5 +22.7
TAMPC 1/30 16140
Non-adaptive 1/30 174+ 0
COGIS (Ours) 10/10 74.11+5.8
Real Cable COGIS-No refinement 9/10 884+114
TAMPC 1/10 13240
Control step statistics are calculated for 1 trials.
TABLE IT
PARAMETERS
Peg-in-Hole | Sim. Cable Real Cable
A MPPI temperature .01 167 5
K MPPI samples 500 72 55
T MPPI horizon 10, 15, 20 8 12
3 MPPI noise diag[.2y2] | diag[.004x6] | diag[.003xs]
@ .590 627 10
B 996 995 4
n 11.03 100 1000
C 15.88 10000 10000
dymin .01 .01 .0025
T 5 3 1
Te - 3 3
Tht 3 2 2
Tg .02 .04 1
Te - .01 .01
Toma 25 25 25
N 20 50 50

the same constraint as used in the simulated cable experiment,
with { = .45 .

1) Analysis: We find that both the ablation and full method
are able to consistently solve the task over 10 trials, but we
observe qualitative differences in the estimated surfaces and
quantitative differences in the episode lengths. As can be seen
in Fig. 1, without the additional optimization, error in state esti-
mation or dynamics can create artifacts in the surface estimate.
These artifacts can lead to longer trajectories, as seen by the
greater number of actions taken by the ablation.

Our method outperforms TAMPC, which struggles due to the
high dimensional nature of the problem and the potentially long
recovery horizon.

VI. DISCUSSION AND CONCLUSION

The main limitation of our method is its assumption that
dynamics error is caused by contact. This can lead to placing
surfaces in regions where there is no unobserved obstacle due to
improper modeling of the physical system. This improper mod-
eling could be due to incorrect estimations of system properties,
for example the stiffness or other physical parameters of a cable,
or due to the use of learned dynamics or low-fidelity simulators.
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Our contact refinement step is capable of mitigating this through
imposing constraints that can remove artifacts generated due to
non-contact based dynamics error. However, it is possible that
large deviations from nominal dynamics, for example due to a
large gap between the simulator and reality, could generate more
spurious obstacles than the refinement is able to compensate
for.

As the constraints are task-informed, it is possible that a sur-
face fit for one task may result in poor performance if used as is
in another task. However, COGIS should be able to generate sur-
faces online given meaningful constraints for a new task. While
we cannot guarantee that we will only detect true contacts with
the environment, we show in our results in Table I that the inclu-
sion of the contact refinement leads to higher task success rates.

We presented Constraint Obeying Gaussian Implicit Surfaces
(COGIS), a method for modeling a priori unknown obstacles
while ensuring these models satisfy desired constraints. Through
this we enable rapid adaptation of manipulation to partially
observable environments. We achieve higher success rates than
baselines and ablations across multiple tasks, including high-
dimensional deformable object manipulation tasks. Our method
leverages a novel fusion of visual and inferred contact infor-
mation to model obstacles using a Gaussian process implicit
surface along with a novel contact refinement step, enabling
data-efficient obstacle modeling for use in MPC.
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