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Abstract—In this article, we present constrained Stein varia-
tional trajectory optimization (CSVTO), an algorithm for perform-
ing trajectory optimization with constraints on a set of trajectories
in parallel. We frame constrained trajectory optimization as a
novel form of constrained functional minimization over trajectory
distributions, which avoids treating the constraints as a penalty in
the objective and allows us to generate diverse sets of constraint-
satisfying trajectories. Our method uses Stein variational gradient
descent to find a set of particles that approximates a distribution
over low-cost trajectories while obeying constraints. CSVTO is
applicable to problems with differentiable equality and inequality
constraints and includes a novel particle resampling step to escape
local minima. By explicitly generating diverse sets of trajectories,
CSVTO is better able to avoid poor local minima and is more
robust to initialization. We demonstrate that CSVTO outperforms
baselines in challenging highly constrained tasks, such as a 7-DoF
wrench manipulation task, where CSVTO outperforms all base-
lines both in success and constraint satisfaction.

Index Terms—Motion and path planning, optimization and
optimal control, probability and statistical methods, trajectory
optimization.

I. INTRODUCTION

T
RAJECTORY optimization and optimal control are pow-

erful tools for synthesizing complex robot behavior using

appropriate cost functions and constraints [1], [2], [3], [4], [5].

Constraint satisfaction is important for safety-critical applica-

tions, such as autonomous driving, where constraints determine

which trajectories are safe. Constraints can also provide effective

descriptions of desired behavior. For instance, consider a robot

sanding a table. This problem can be defined with an equality

constraint specifying that the end effector must move along the

surface of the table as well as constraints on the minimum and

maximum force applied to the table. For many tasks, including

manipulation tasks such as the one aforementioned, satisfying

these constraints can be very difficult as constraint-satisfying

trajectories may lie on implicitly defined lower dimensional

manifolds. Such constraints present difficulties for sample-based

methods since the feasible set has zero measure, and thus,

it is difficult to sample. It is also difficult for gradient-based
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methods since even for trajectories that start feasible, if the

constraint is highly nonlinear then updates based on a first-order

approximation of the constraint will lead to solutions leaving the

constraint manifold. In addition, many useful tasks entail con-

strained optimization problems that are nonconvex and exhibit

multiple local minima.

Global sample-based motion planning methods such as

rapidly exploring random trees (RRT) [6]. Probabilistic

roadmaps (PRM) [7] effectively solve difficult planning prob-

lems, however, they do not find paths that minimize a given cost

function. To minimize a given cost function, algorithms such as

RRT* and PRM* [8] have been proposed to find asymptotically

globally optimal paths. Alternatively, a common approach is to

use the path returned from a sample-based motion planner to

initialize a trajectory optimization problem [9]. Sample-based

methods have additionally been applied to constrained planning

problems [10], [11], [12], [13] and kinodynamic problems [14],

[15]. While effective for solving problems exhibiting local min-

ima, when applied to kinodynamic or constrained problems,

these global methods are typically computationally expensive.

One of the key advantages of trajectory optimization tech-

niques over global search methods, such as sampling-based

motion planning, is computation speed. Faster computation

speed enables online replanning to adapt to disturbances. For

example, consider again the robot sanding the table, but now in

the proximity of a human. The human may move in an unex-

pected way that necessitates an update to the planned trajectory.

However, even if the cost function is well-suited to the task,

the performance of many trajectory optimization methods is

still highly dependent on the initialization. Poor initialization

may lead to the solver converging to a poor local minimum.

For example, for a robot minimizing a distance to goal cost

subject to collision constraints, this may mean a trajectory that

avoids obstacles but makes little or no progress toward the goal.

In the worst case, the solver may not find a feasible solution, in

which case the robot may collide with an obstacle. A dependence

on initialization is particularly problematic when resolving the

optimization problem online under limited computation time

when disturbances can lead to the previous solution becoming a

poor initialization for the current optimization problem. In the

sanding example mentioned previously, the human may move

to block the robot’s path, and performing a local optimization

starting from the previous trajectory may not return a feasible

solution.

In this article, we formulate the constrained trajectory opti-

mization problem as a Bayesian inference problem. This view
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has advantages as it aims to find a distribution over trajectories

rather than a single trajectory alone. As noted by Lambert

et al. [16], commonly used variational inference approaches [17]

lead to minimizing entropy-regularized objectives [16], which

can improve exploration of the search space and give greater

robustness to initialization. Previous methods taking the in-

ference view of trajectory optimization have only been able

to incorporate constraints via penalties in the cost [16], [18],

[19], [20]. A drawback of penalty methods is that selecting the

relative weights of the penalties is challenging due to possible

conflicts with the objective. We compare against baselines that

incorporate constraints via penalties and show that, for non-

trivial constraints, this results in poor constraint satisfaction.

An alternative method for enforcing constraints in trajectory

optimization is via barrier functions [21], [22]. While effective,

they are only applicable to inequality constraints and have not

yet been applied in the context of trajectory optimization as an

inference problem.

We propose constrained Stein variational trajectory optimiza-

tion (CSVTO), an algorithm that performs constrained trajectory

optimization on a set of trajectories in parallel. Our method

builds on orthogonal-space Stein variational gradient descent

(O-SVGD), a recent nonparametric variational inference method

for domains with a single equality constraint [23]. We present

a constrained Stein variational gradient descent (SVGD) algo-

rithm for trajectory optimization with differentiable equality and

inequality constraints, generating a diverse set of approximately

constraint-satisfying trajectories. The trajectories are approxi-

mately constraint satisfying because we do not run the algorithm

until convergence to avoid excessive computation times. We

additionally incorporate a novel resampling step that resamples

and perturbs particles in the tangent space of the constraints to

escape local minima. Our contributions are as follows.

1) We frame constrained trajectory optimization as a novel

form of constrained functional minimization over trajec-

tory distributions, which avoids treating the constraints as

a penalty in the objective.

2) We present a constrained SVGD algorithm for trajectory

optimization, which is applicable to problems with differ-

entiable equality and inequality constraints.

3) We propose a novel particle resampling step for resam-

pling and perturbing trajectory particles in the tangent

space of the constraints to escape local minima.

4) We evaluate our method on three complex constrained

problems, including a 12-DoF underactuated quadrotor

and two highly constrained 7-DoF manipulation tasks.

Our experimental results demonstrate that CSVTO outper-

forms baselines in challenging, highly constrained tasks, such

as a 7-DoF wrench manipulation task where our method achieves

20/20 success compared with 12/20 for interior point optimizer

(IPOPT) [24] and 19/20 for Stein variational model predictive

control (SVMPC) [20], CSVTO also achieves the lowest con-

straint violation of all baselines. In addition, CSVTO outper-

forms baselines in a 12-DoF quadrotor task with a dynamic ob-

stacle that necessitates online adaption of the planned trajectory.

The rest of the article is organized as follows. In Section II,

we discuss related work. In Section III, we will discuss the

Fig. 1. (a) We use CSVTO to turn a wrench in the real world with online
replanning. (b) Human disturbs the robot, changing the grasp position of the
wrench. (c) Robot readjusts the grasp position. (d) Robot achieves the desired
wrench angle.

trajectory optimization problem, followed by an overview of

the variational inference approach to trajectory optimization in

Section IV. In Section V, we introduce our novel formulation of

trajectory optimization as a constrained functional minimization

over trajectory distributions. We will then give some additional

background information on SVGD in Section VI, which is

necessary to develop our algorithm. In Section VII, we introduce

CSVTO. In Section VIII, we evaluate our method on a 12-DoF

quadrotor task and two highly constrained tasks with a 7-DoF

manipulator. We additionally deployed CSVTO to turn a wrench

in the real world (see Fig. 1). In Section IX, we discuss some

of the advantages of CSVTO over baselines, and then, discuss

some limitations and highlight areas for future work. Finally,

Section X concludes this article.

II. RELATED WORK

A. Trajectory Optimization

Previous work on local trajectory optimization techniques

includes direct methods [4], [25], where the explicit optimization

problem is transcribed and solved using nonlinear solvers such

as IPOPT [24] or sparse nonlinear optimizer [26]. Methods

in this class include sequential convex programming meth-

ods such as TrajOpt [2] and guaranteed sequential trajectory

optimization [1]. In contrast, indirect methods aim instead to

solve the local optimality conditions of the trajectory and early

examples include differential dynamic programming [27] and

iterative linear quadratic regulator [28], however, neither of

these methods can handle constraints. Later work incorporated

constraint satisfaction with these indirect methods [3], [29], [30].

Direct methods are typically easier to initialize but less accurate

[31]. However all of these methods only aim to find a single

locally optimal trajectory, and the performance is dependent on

the initialization. In contrast, our approach optimizes a diverse

set of trajectories in parallel. This makes our approach easier to

initialize as well as more robust to disturbances when replanning
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online. Our approach is related to the direct methods, in that we

use an iterative algorithm that aims to minimize an objective.

However, our method is based on viewing the trajectory opti-

mization problem as a Bayesian inference problem.

B. Sample-Based Motion Planning

Many global search methods have been developed in the

sampling-based motion planning literature, yielding motion

planners for constrained domains. These can be broadly

categorized as projection methods, whereby sampled config-

urations are projected to the constraint [10], [11], and con-

tinuation methods, which use a local approximation of the

constraint manifold at feasible configurations to sample new

configurations [12], [13]. Our method of trajectory optimization

is similar to continuation methods, as our iterative algorithm

projects update steps to the tangent space of the constraint.

While these global motion planners can be highly effective,

they are typically too computationally intensive to be run

online.

C. Planning and Control as Inference

Prior work framing trajectory optimization as Bayesian infer-

ence has used Gaussian approximations to yield fast, gradient-

based algorithms [18], [19], [32], [33], [34], [35]. Ha et al. [36]

presented a probabilistic approach for trajectory optimization

with constraints, using Laplace approximations around local

minima found by solving a nonlinear program. This approach

uses a Gaussian approximation with a degenerate covariance

with variance only in the tangent space of the constraints.

Samples from this distribution will generally deviate from the

constraint manifold for nonlinear constraints, in contrast, our

approach directly optimizes for diverse constraint-satisfying

samples. Sample-based techniques such as model predictive path

intregral (MPPI) control [37] and cross-entropy method [38]

have strong connections to the inference formulation of stochas-

tic optimal control [39], but these methods again use Gaus-

sian sampling distributions. Several recent works have focused

on improving the performance of these algorithms, often by

modifying the sampling distribution. Watson and Peters [40]

recently proposed using a Gaussian process (GP) as a sampling

distribution, and Pinneri et al. [41] proposed using colored

noise, both of which lead to smoother sampled trajectories.

Bhardwaj et al. [42] have also demonstrated improvements to

MPPI with a focus on robot manipulation. However, in all

of these prior works, the sampling distribution is unimodal.

Unimodal sampling distributions can be problematic in com-

plex environments due to their lack of flexibility that hinders

exploration of the search space. Recent work has proposed learn-

ing non-Gaussian sampling distributions with flexible model

classes [43], [44].

Another class of methods has used SVGD [45] for model

predictive control [20], [46] and trajectory optimization [16].

By using particle approximations, these methods can generate

multimodal trajectory distributions. SVGD has also been used

to improve PRMs [47], and for planning to goal sets [48]. Our

method is also based on SVGD.

However, to date, control-as-inference-based methods have

been unable to handle highly constrained domains. Recently

constrained covariance steering MPPI [49] was proposed which

can satisfy chance inequality constraints, but is restricted to

linear systems. Our method uses SVGD to generate diverse

sets of constraint-satisfying trajectories, which can satisfy both

inequality and equality constraints. Another method closely

related to ours is stochastic multimodal trajectory optimization

(SMTO) [50], this method treats the trajectory optimization

problem as a density estimation problem and alternates be-

tween sampling and performing a gradient-based optimization

to generate multiple low-cost trajectories that satisfy the con-

straints. SMTO uses covariant Hamiltonian optimization for

motion planning (CHOMP) [51] to perform the gradient-based

optimization sequentially for each sampled trajectory. Our con-

tribution is complementary to SMTO; SMTO could substitute

CHOMP with our method, CSVTO, in the gradient-optimization

step. This would have the advantage of performing the gradient-

based optimization in parallel and encouraging diversity among

trajectories.

D. Gradient Flows for Constrained Optimization

Our method is closely related to methods using gradient flows

for constrained optimization. Gradient flows are an optimiza-

tion method that reframes optimization as the solution to an

ordinary differential equation; gradient flows can be thought

of as continuous-time versions of gradient descent algorithms.

Yamashita [52] proposed a gradient flow method for equality-

constrained problems. The most common method of extending

this to problems with inequality constrained is via the intro-

duction of slack variables to convert inequality constraints to

equality constraints [53], [54], [55]. Our method, CSVTO, also

uses slack variables to transform inequality constraints into

equality constraints. Recently, Feppon et al. [56] proposed a

method that instead solves a quadratic program (QP) subproblem

to identify active inequality constraints, which are treated as

equality constraints in the gradient flow. Jongen and Stein [55]

applied constrained gradient flows to global optimization, by

proposing a gradient flow algorithm that iterates between search-

ing for local minima and local maxima.

SVGD has been interpreted as a gradient flow [57], and similar

ideas to those developed in the gradient flows for constrained

optimization literature were recently explored in O-SVGD [23].

O-SVGD performs SVGD in domains with a single equality

constraint. We extend and modify O-SVGD to domains with

multiple equality and inequality constraints.

III. TRAJECTORY OPTIMIZATION

Trajectory optimization is commonly modeled as an optimal

control problem (OCP). We consider a discrete-time system

with state x ∈ R
dx and control u ∈ R

du , where dx and du are

the dimensionality of the state and control, respectively, and

dynamics xt = f(xt−1,ut−1). We define finite horizon trajec-

tories with horizon T as τ = (X,U), where X = {x1, . . .xT }
andU = {u0, . . .uT−1}. Given an initial state x0, the aim when

solving an OCP is to find a trajectory τ that minimizes a given
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cost function C subject to equality and inequality constraints as

follows:

min
τ

C(τ)

s.t.

h(τ) = 0

g(τ) ≤ 0

∀t ∈ {1, . . . , T}

f(xt−1,ut−1) = xt

umin ≤ ut−1 ≤ umax

xmin ≤ xt ≤ xmax. (1)

Here, we have separated general inequality constraints g from

simple bounds constraints, as well as the dynamics constraints

from other equality constraints h. We additionally assume that

C is nonnegative and once differentiable and that f, g, h are all

twice differentiable.1 Problem (1) will be nonconvex in general,

therefore, it is likely it will have multiple local minima. The

quality of solutions for most methods for solving this OCP

depends heavily on the initialization; often a poor initialization

can lead to infeasibility.

IV. VARIATIONAL INFERENCE FOR TRAJECTORY OPTIMIZATION

In this section, we will demonstrate how unconstrained tra-

jectory optimization can be framed as an inference problem,

as in [20], [34], [58], and [59]. This framing results in esti-

mating a distribution over low-cost trajectories, rather than a

single optimal trajectory. By using this framing, we can leverage

approximate inference tools for trajectory optimization, in par-

ticular, variational inference [17]. In this section, we will show

how this framing leads to an entropy-regularized objective [16],

which aims to find a distribution over low-cost trajectories while

maximizing entropy. By using an entropy-regularized objective,

we aim to have improved exploration of the search space and

greater robustness to initialization.

To reframe trajectory optimization as probabilistic inference,

we first introduce an auxiliary binary random variable o for a

trajectory such that

p(o = 1|τ) = exp (−³C(τ)) (2)

which defines a valid probability distribution over o provided

both ³ and C are nonnegative. We can trivially see that the

trajectory that maximizes the likelihood of p(o = 1|τ) is the

trajectory that minimizes the cost. Introducing this binary vari-

able allows us to express the cost as a likelihood function, which

we will use in the Bayesian inference formulation of trajectory

optimization. Using this likelihood to perform inference gives

us a principled way of computing a distribution over trajectories,

where lower cost trajectories have a higher likelihood. The term

³ controls how peaked the likelihood function is around local

1We can also accommodate constraints that are only once-differentiable via
an approximation (see Section VII-A1-a).

maxima, or minima ofC, which in turn controls the dispersion of

the resulting trajectory distribution after performing inference.

We aim to find the posterior distribution over trajectories,

conditioned on the value of auxiliary variable o. This is given

by Bayes theorem as

p(τ |o = 1) =
p(o = 1|τ)p(τ)

p(o = 1)
(3)

where p(τ) = p(X,U) is a prior on trajectories. For determin-

istic dynamics, this prior is determined by placing a prior on

controls U. This prior is a design choice and can be used to

regularize the controls. For instance, a squared control cost can

be equivalently expressed as a Gaussian prior. Alternatively,

this prior could be learned from a dataset of low-cost trajec-

tories [60]. The trajectory prior is

p(τ) = p(U)

T
∏

t=1

´(xt − x̂t) (4)

where x̂t = f(xt−1,ut−1), and ´ is the Dirac delta function.

This inference problem can be performed exactly for the case

of linear dynamics and quadratic costs [35], [61]. However, in

general, this problem is intractable and approximate inference

techniques must be used. We use variational inference to approx-

imate p(τ |o = 1) with distribution q(τ), which minimizes the

Kullback–Leibler (KL) divergence KL(q(τ)||p(τ |o = 1)) [17].

The quantity to be minimized is

KL (q(τ)||p(τ |o = 1)) =

∫

q(τ) log
q(τ)

p(τ |o = 1)
dτ

=

∫

q(τ) log
q(τ)p(o = 1)

p(o = 1|τ)p(τ)
dτ.

(5)

The p(o = 1) term in the numerator does not depend on τ so can

be dropped from the minimization. This results in the variational

free energy F

F(q) =

∫

q(τ) log
q(τ)

p(o = 1|τ)p(τ)
dτ (6)

= −Eq(τ)[log p(o = 1|τ) + log p(τ)]−H(q(τ)) (7)

= Eq(τ)[³C(τ)]− Eq(τ)[log p(τ)]−H(q(τ)) (8)

where H(q(τ)) is the entropy of q(τ). Intuitively, we can un-

derstand that the first term promotes low-cost trajectories, the

second is a regularization on the trajectory, and the entropy term

prevents the variational posterior from collapsing to a maximum

a posteriori (MAP) solution. We may choose to provide regu-

larization on the controls as part of C, in which case the prior

term is absorbed into the cost term.

V. PROBLEM STATEMENT

In this article, we frame the constrained OCP introduced in

Section III as a probabilistic inference problem, using ideas

developed in Section IV.

It is first instructive to consider the dynamics constraint, which

is incorporated into the prior in (4) via the Dirac delta function.
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In this case, the term Eq(τ)[− log p(τ)] is infinite for any τ ,

which does not obey the dynamics constraint. We can convert

this unconstrained optimization problem with infinite cost to

the following constrained optimization problem on the space of

probability distributions

min
q

F̃(q)

s.t.

∀t ∈ {1, . . . , T}

Pq(f(xt−1,ut−1) = xt) = 1 (9)

where F̃(q) is the free energy from (8) with the infinite cost term
∑T

t=1 log ´(xt − f(xt−1,ut−1)) dropped from log p(τ), and

Pq(A) is the probability of event A under probability measure

q(τ). Applying this process to other constraints, we have

min
q

F̃(q)

s.t.

Pq(h(τ) = 0) = 1

Pq(g(τ) ≤ 0) = 1

∀t ∈ {1, . . . , T}

Pq(f(xt−1,ut−1) = xt) = 1

Pq(umin ≤ ut−1 ≤ umax) = 1

Pq(xmin ≤ xt ≤ xmax) = 1. (10)

Our goal is to solve the aforementioned optimization problem.

However, for any practical algorithm, we cannot guarantee exact

constraint satisfaction, both due to the potential nonconvexity

of the constraint functions and due to limited computation time.

Computation time is especially limited in an online planning

scenario. Therefore, we will evaluate our method according to

both the cost of the resulting trajectories and the amount of

constraint violation when optimizing within a fixed number of

iterations.

VI. STEIN VARIATIONAL GRADIENT DESCENT (SVGD)

We develop an algorithm to solve the constrained variational

inference objective in (10) based on SVGD [45]. In this section,

we will give an overview of SVGD that forms the foundation

of our method. SVGD is a variational inference technique that

uses a nonparametric representation of the variational posterior.

In our algorithm, we use SVGD to approximate the distribution

p(τ |o = 1) with particles, where each particle is a trajectory.

Consider the variational inference problem

q∗(x) = argmin
q(x)

KL (q(x)||p(x)) (11)

where x ∈ R
d and p and q are two probability density functions

supported onRd. SVGD uses a particle representation of q(x) =
1
N

∑N
i=1 ´(x− x

i), and iteratively updates these particles in

order to minimize KL(q(x)||p(x)). SVGD updates the particle

set with the update equation

x
i
k+1 = x

i
k + εφ∗(xi

k) (12)

where ε > 0 is a step-size parameter, k is the iteration number,

and i is the particle index. The update φ∗ is computed using a

differentiable positive definite kernel function K via

φ∗(xi
k) =

1

N

N
∑

j=1

K(xi
k,x

j
k)∇x

j

k

log p(xj
k) +∇

x
j

k

K(xi
k,x

j
k).

(13)

The first term of this objective maximizes the log probability

p(x) for the particles, with particles sharing gradients according

to their similarity defined by K. The second term is a repulsive

term that acts to push particles away from one another and

prevents the particle set from collapsing to a local MAP solution.

We will now give further details on the derivation of the

SVGD algorithm and demonstrate that it does indeed minimize

KL(q(x)||p(x)). We will use the developments in this section

to show that the fixed points of our algorithm satisfy first-order

optimality conditions in Section VII-A3. SVGD is based on the

kernelized Stein discrepancy (KSD) [62], which is a measure of

the discrepancy between two distributions p and q. The KSD is

computed as the result of the following constrained functional

maximization:

S(p, q) = max
φ∈Hd

{Ex∼q[Apφ(x)] s.t. ||φ||Hd ≤ 1} (14)

where φ : Rd → R
d is a function in a vector-valued reproducing

kernel Hilbert space (RKHS) Hd with a scalar kernel K : Rd ×
R

d → R. Ap is the Stein operator

Apφ(x) = ∇x log p(x)
Tφ(x) +∇x · φ(x) (15)

where ∇x · φ(x) =
∑d

k=1 ∂xk
φk(x). It was established in [62]

that S(q, p) = 0 ⇐⇒ p = q for a strictly positive-definite ker-

nel K. To minimize the KL divergence, SVGD considers the

incremental transform xε = x+ εφ(x), where x ∼ q(x) and ε

is a scalar step-size parameter. The resulting distribution after

applying the transform is q[εφ]. SVGD uses the following result:

∇εKL(q[εφ]||p(x))|ε=0 = −Ex∼q[Apφ(x)] (16)

which relates the Stein operator and the derivative of the KL

divergence w.r.t the perturbation ε. We would like to select φ

that maximally decreases the KL divergence. By considering

φ ∈ {φ ∈ Hd ; ||φ||Hd ≤ 1}, the optimal φ is the solution to

the following constrained functional maximization:

φ∗ = arg max
φ∈Hd

{−∇εKL(q[εφ]||p(x))|ε=0 s.t.||φ||Hd ≤ 1}.

(17)

This maximization has a closed-form solution, derived in [62,

Th. 3.8]. Note that we have used a slightly different definition

of the Stein operator than that used in [62, Th. 3.8], with Ap as

defined in (15) as equal to the trace of the Stein operator defined

in [62]. The closed-form solution is given by

φ∗(·) = Ex∼q[ApK(·,x)] (18)

= Ex∼q[K(·,x)∇x log p(x) +∇xK(·,x)] (19)
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and the resulting gradient of the KL divergence is

∇εKL(q[εφ∗]||p(x))|ε=0 = −S(p, q). (20)

This implies that for a suitably chosen kernel K, if the gradient

of the KL divergence is zero then the KSD is also zero, which

means that p = q. We finally arrive at the update rule given in

(13) as the approximation of the closed-form solution in (19)

with a finite set of particles.

A. Orthogonal-Space SVGD

Recently Zhang et al. [23] proposed O-SVGD, a method for

performing SVGD with a single equality constraint, although

they do not consider the problem of trajectory optimization. In

this section, we give an overview of O-SVGD, but we give an

alternative derivation to that given in [23] based on vector-valued

RKHS and matrix-valued kernels [63]. This alternative deriva-

tion will allow us to analyze our algorithm (see Section VII-A3).

The problem [23] aims to solve is

min
q

KL(q(x)||p(x)) s.t. Pq(h(x) = 0) = 1 (21)

where h represents a single equality constraint. For particles x

that are on the manifold induced by h(x) = 0, we would like

them to remain on the manifold after applying the Stein update

in (12). To do this, we replace the function φ(x)withP (x)φ(x),
where P (x) projects the updates to be in the tangent space of

the constraint and is given by

P (x) = I −
∇h(x)∇h(x)T

||∇(h(x)||2
. (22)

We can develop an SVGD algorithm that updates particles

on the constraint manifold by considering the set of func-

tions {P (x)φ(x), φ(x) ∈ Hd}. By applying [63, Lemma 2],

we establish that this set of functions is an RKHS Hd
⊥ with

matrix-valued kernel K⊥ given by

K⊥(x
i,xj) = P (xi)K(xi,xj)P (xj)T (23)

= K(xi,xj)P (xi)P (xj) (24)

where we have used the fact that K is a scalar function and that

P (x) is symmetric to rearrange. Running SVGD with kernel K⊥

will therefore solve the constrained minimization problem (17),

maximally reducing the KL divergence while only considering

updates that lie in the tangent space of the constraint. Zhang

et al. [23] also add a term to (12) that drives particles to the

manifold induced by the constraint

φC = −
ψ(h(x))∇h(x)

||∇h(x)||2
(25)

where ψ is an increasing odd function.

VII. METHODS

Our proposed trajectory optimization algorithm uses SVGD to

perform constrained optimization on a set of trajectories in par-

allel. The result is a diverse set of low-cost constraint-satisfying

trajectories. The full algorithm is shown in Algorithm 1. First, we

will introduce the main component of our proposed algorithm,

which decomposes the Stein update into a step tangential to the

constraint boundary, and a step toward constraint satisfaction.

We will then provide an analysis of the algorithm which relates it

to problem (10). Finally, we will discuss strategies for improving

performance, which include separating the bounds constraints,

an annealing strategy for increasing particle diversity, and re-

sampling particles during the optimization. Fig. 2 demonstrates

CSVTO being applied to a 2-D toy problem.

A. Constrained Stein Trajectory Optimization

Solving the constrained variational inference problem in (10)

is very difficult, since it requires finding a distribution that may

exhibit multimodality and has constrained support. To address

this, we use a nonparametric representation of the distribution

q(τ). We use SVGD where each particle is a trajectory, and

iteratively update the particle set while enforcing the constraints

on each particle. To do this, we extend O-SVGD to multi-

ple equality and inequality constraints and use it to generate

constraint-satisfying trajectories.

First, we relate using SVGD for unconstrained trajectory op-

timization to the minimization of the unconstrained variational

free energy F(q) from (7). Consider the iterative transform

τε = τ + εφ∗(τ), where φ∗ is the solution to (17) with posterior

log likelihood log p(τ |o = 1), τ ∼ q(τ) and τε ∼ q[εφ∗](τ). We

can recast (17) for trajectories in terms of the free energy F(q)

φ∗(τ) = arg max
φ∈Hd

{−∇εF(q[εφ])|ε=0, s.t.||φ||Hd ≤ 1}. (26)

Thus, the update τ + εφ∗ ensures we maximally decrease the

variational free energy. If φ∗(τ) = 0, then q(τ) is at a local

minimum of F(q). We will now modify the Stein update to

account for constraints.

1) Equality Constraints: We propose a modified Stein update

rule for the ith particle, in which we decompose the update into

two components

τ ik+1 = τ ik + ³Jφ⊥(τ
i
k) + ³CφC(τ

i
k) (27)

where φ⊥ is an update that is tangential to the constraint bound-

ary, φC acts in the direction that decreases constraint violation,

³J and ³C are scalar step size parameters, and k is the iteration.

We replace the O-SVGD φC from (25) with a Gauss–Newton

step to minimize h(τ)Th(τ)

φC(τ) = ∇h(τ)T (∇h(τ)∇h(τ)T )−1 h(τ). (28)

This uses approximate second-order curvature information for

fast convergence. We then compute the projection matrix P (τ),
which projects vectors onto the tangent space of the constraints

as

P (τ) = I −∇h(τ)T (∇h(τ)∇h(τ)T )−1∇h(τ). (29)

Inverting ∇h(τ)∇h(τ)T is only possible if ∇h(τ) is full rank.

While in Sections VII-A2 and VII-A3, we assume that ∇h(τ)
is full rank, for numerical stability we compute the pseudoin-

verse of ∇h(τ)∇h(τ)T via the singular-value decomposition,

discarding singular vectors corresponding to singular values that

are smaller than 1× 10−6. Once we have P (τ), we use it to
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Fig. 2. CSVTO visualized for a 2-D problem. The posterior is a mixture of three Gaussians, with the log posterior peaks visualized. There is an equality constraint
that the particles must lie on the circle. There is also an inequality constraint that the particles must lie outside the shaded region. (a) Initial particles are randomly
generated and are not necessarily feasible. (b) Due to the annealing discussed in Section VII-A4, early on in the optimization the particles are constraint-satisfying
and diverse. (c)Particles move toward the relative peaks of the objective, however, the circled particle has become stuck in a poor local minimum due to the
constraints, where the gradient of the log posterior is directed towards an infeasible peak. Since the particle is isolated it is not sufficiently affected by the repulsive
gradient term that would help escape the local minimum. (d) Resampling step from Section VII-A8 resamples the particles, applying noise in the tangent space of
the constraints. This eliminates the particle at the poor local minimum. (e) Set of particles converges around the local minimum of the objectives while satisfying
the constraints.

define the tangent space kernel, as in [23]

K⊥(τ
i, τ j) = K(τ i, τ j)P (τ i)P (τ j). (30)

We then use this kernel for the SVGD update to produce an

update that is in the tangent space of the constraint

φ∗
⊥(τ

i) =
1

N

N
∑

j=1

K⊥(τ
i, τ j)∇τj log p(τ j |o = 1)

+∇τjK⊥(τ
i, τ j). (31)

Since K⊥ is a matrix-valued function, the last term is calculated

(as in [63]) as

[

∇τjK⊥(τ
i, τ j)

]

l
=

∑

m

∇[τj ]m

[

K⊥(τ
i, τ j)

]

l,m
(32)

where the notation [x]l indicates the lth element of x. Equa-

tion (31) has several interesting features. First, two trajectory

particles τ i and τ j are considered close if they are close

according to the original kernel K. In addition, expanding

the first term to K(τ i, τ j)P (τ i)P (τ j)∇τj log p(τ j |o = 1), we

see that if P (τ i) = P (τ j) this reduces to K(τ i, τ j)P (τ j)∇τj

log p(τ j |o = 1). ForP (τ i) �= P (τ j), the magnitude of this term

will always be reduced. Intuitively this means that particles will

share gradients if particles are close and the tangent space of

the constraint is similar. In addition, all updates will be in the

tangent space of the constraint.

a) Repulsive term in the tangent space: The derivative

∇[τj ]m [K⊥(τ
i, τ j)]l,m can be expanded to

∇[τj ]m [K⊥(τ
i, τ j)]l,m = ∇[τj ]m [K(τ i, τ j)P (τ i)P (τ j)]l,m

= [P (τ i)P (τ j)]l,m∇[τj ]mK(τ i, τ j)

+K(τ i, τ j)[P (τ i)]l,m

×∇[τj ]m [P (τ j)]l,m. (33)

We see from the aforementioned equation that the gradient of the

kernel consists of two terms. The first term projects the gradient

of the unconstrained kernel to the tangent space of the constraints

both at τ i and τ j .

The second term requires computing the derivative of the

matrix-valued projection function. This term is expanded further

in Appendix A, showing that it requires the evaluation of the sec-

ond derivative of the constraint function ∇2h(τ). For problems

with constraints for which the second derivative is unavailable,

we can remove this second term for individual constraints. We

do this by setting the second derivative of a particular constraint

to be the zero matrix (see Appendix A). Doing so effectively

uses a locally linear approximation of the constraint to compute

the repulsive gradient.

We will discuss how we define a kernel on trajectories in

Section VII-A5.

2) Extension to Inequality Constraints: We extend the afore-

mentioned method to inequality constraints with the use of

slack variables. We turn the inequality constraints into equality

constraints with slack variable z as

g(τ) +
1

2
z
2 = 0. (34)

The full set of equality constraints then becomes

ĥ =

[

h(τ)

g(τ) + 1
2z

2

]

. (35)

Converting inequality constraints to equality constraints via

squared slack variables is often avoided as it can introduce spu-

rious non-local-minima that satisfy the Karush–Kuhn–Tucker

conditions [64]. To mitigate this issue, we make an assumption

on the regularity of the problem, denoted as (R) in [53]. The

details of the assumption are technical and we do not include it

here. The assumption essentially states that∇ĥ is full rank at ini-

tialization and remains so during the optimization. Under these

assumptions, Schropp and Singer [53] proved that the hyperbolic

equilibrium points of the augmented system are local minima of

the equality and inequality-constrained optimization problem.

Optimizing multiple trajectories in parallel provides additional

robustness against this issue. Even should some particles become

stuck at one of these undesirable fixed points, in Section VII-A8,

we propose a method for resampling the set of particles which

redistributes particles away from these fixed points. While we

could avoid this issue by using nonnegative slack variables with
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the transformation g(τ) + z, where z > 0, we found that this

led to poorer constraint satisfaction in practice.

After introducing the slack variables, we compute the con-

strained Stein update with all constraints as equality constraints.

We augment the state with z as

τ̂ =

[

τ

z

]

. (36)

The projection is given by

P (τ̂) = I −∇ĥ(τ̂)T (∇ĥ(τ̂)∇ĥ(τ̂)T )−1∇ĥ(τ̂) (37)

and the kernel is

K⊥(τ̂
i, τ̂ j) = K(τ i, τ j)P (τ̂ i)P (τ̂ j). (38)

Notice that the kernel uses the original τ and not the augmented

τ̂ . We then perform the constrained Stein update on the aug-

mented state

φ∗
⊥(τ̂

i) =
1

N

N
∑

j=1

K⊥(τ̂
i, τ̂ j)

[

∇ log p(τ j |o = 1)

0

]

+∇τ̂jK⊥(τ̂
i, τ̂ j) (39)

φC(τ̂) = ∇ĥ(τ̂)T (∇ĥ(τ̂)∇ĥ(τ̂)T )−1 ĥ(τ̂). (40)

Once we have performed the iterative optimization, we have

a set of trajectories. We then select a trajectory to execute by

choosing the one that minimizes the penalty function

Ĉλ(τ̂) = C(τ) + λ

∑

|ĥ(τ̂)|. (41)

3) Analysis: In this section, we provide an analysis of

CSVTO. We demonstrate that stationary points of the gradient

flow satisfy the first-order optimality conditions for the con-

strained variational optimization problem in (10), subject only

to equality constraints.

Theorem 1: Assume that ∇h is full rank. Let φ∗ ∈ Hd be the

solution to (17) with the unconstrained kernel K, and φ∗
⊥ ∈ Hd

⊥

be the solution to (17) using the tangent space kernel K⊥. If the

following holds:

³Jφ
∗
⊥(τ) + ³CφC(τ) = 0 (42)

then the following must be true:

φ∗(τ) +∇h(τ)Tμ = 0 (43)

h(τ) = 0 (44)

where μ is a vector of Lagrange multipliers.

Proof: Since φC and φ∗
⊥ are orthogonal, then if (42) holds,

then φC = φ∗
⊥ = 0. Next, we note that φ∗

⊥(τ) = P (τ)φ̂, where

φ̂ ∈ Hd and further P (τ)φ̂(τ) = 0 ⇒ P (τ)φ∗(τ) = 0. To

see this, consider P (τ)φ∗(τ) �= 0. This would imply that

∇εKL(q[εPφ∗]||p(τ |o = 1))|ε=0 �= 0, which implies that there

is a descent direction. This would mean that ∃ φ⊥ such that

−∇εKL(q[εφ∗
⊥]
||p(τ |o = 1))|ε=0 < −∇εKL(q[εφ⊥

||p(τ |o =
1))ε=0, which is a contradiction. Expanding P (τ)φ∗ = 0 yields

[

I −∇h(τ)T
(

∇h(τ)∇h(τ)T
)−1

∇h(τ)
]

φ∗(τ) = 0

φ∗(τ)−∇h(τ)T
[

(

∇h(τ)∇h(τ)T
)−1

∇h(τ)φ∗(τ)
]

= 0.

(45)

Specifying μ = −(∇h(τ)∇h(τ)T )−1∇h(τ)φ∗(τ) results in

(43) being satisfied. Now we expand φC = 0 resulting in

∇h(τ)T (∇h(τ)∇h(τ)T )−1h(τ) = 0. (46)

To show feasibility at the stationary point, we left multiply (46)

by ∇h(τ), which for full rank ∇h results in h(τ) = 0. �

Theorem 1 holds when we can integrate the expectation in

(19). However, we are approximating the expectation with par-

ticles so (43) may not hold in practice. However, the feasibility

condition (44) remains true when using a particle approximation

for q. To extend this proof to inequality constraints, note that in

Section VII-A2, we discussed the regularity conditions under

which hyperbolic stable stationary points of the gradient flow

on the augmented equality-constrained system satisfy first-order

optimality conditions of the original system with both equality

and inequality constraints.

4) Annealed SVGD for Improved Diversity: We employ an

annealing technique for SVGD as proposed in [65]. We use

a parameter ³ ∈ [0, 1] that controls the tradeoff between the

gradient of the posterior log-likelihood and the repulsive gra-

dient. For ³ << 1, the repulsive term dominates resulting in

trajectories being strongly forced away from one another. As ³

increases, the gradient of the posterior likelihood has a greater

effect resulting in trajectories being optimized to decrease the

cost. When combined with φC , this results in the optimization

prioritizing diverse constraint-satisfying trajectories first, then

decreasing cost later in the optimization. The annealed update

is given by

φi
⊥(τ̂ ) =

1

N

N
∑

j=1

³K⊥(τ̂i, τ̂j)

[

∇ log p(τj |o)

0

]

+∇τ̂jK⊥(τ̂i, τ̂j). (47)

We use a linear annealing schedule with ³k = k
K

, whereK is the

total number of iterations. When performing online replanning,

we only perform the annealing when optimizing the trajectory

the first time-step.

5) Trajectory Kernel: CSVTO relies on a base kernel

K(τ i, τ j) operating on pairs of trajectories that defines the

similarity between trajectories. As noted by Lambert et al. [20],

high-dimensional spaces can result in diminishing repulsive

forces, which can be problematic for trajectory optimization

problems due to the time horizon. We use a similar approach

to SVMPC [20] in that we decompose the kernel into the

sum of kernels operating on smaller components of the tra-

jectory. We use a sliding window approach to decompose the

trajectory. For a given sliding window length W , let τ t =
[xt:t+W , ut−1:t−1+W ]T . The overall kernel is then given by

K(τ i, τ j) =
1

T −W

T−W
∑

t

K(τ it , τ
j
t ). (48)
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We use the radial-basis function (RBF) kernel K(τ it , τ
j
t ) =

exp(− 1
h
||τ it − τ

j
t ||

2
2) as the base kernel, where h is the kernel

bandwidth. We use the median heuristic as in [45] to select the

kernel bandwidth:

h =
median(||τ it − τ

j
t ||2)

2

log(N)
(49)

where N is the number of particles.

6) Bounds Constraint: Bounds constraints can, in principle,

be handled as general inequality constraints as described in the

aforementioned section. However, since this involves adding

additional slack variables incorporating bounds constraints in-

volves an additional T × 2(du + dx) decision variables in the

optimization, where dx and du are the state and control dimen-

sionalities, respectively. It is more computationally convenient

to use a simple approach where at every iteration we directly

project the trajectory to satisfy the bound constraints. This is

done by

τ ∗ = min(max(τmin, τ), τmax). (50)

7) Initialization: As introduced in Section IV, we have a

user-specified prior on controls p(U). To initialize CSVTO on a

new problem, we proceed by sampling from this prior p(U) and

using the dynamics f(xt, ut) to generate sampled trajectories.

In this way, we ensure that the initial trajectory satisfies the

dynamics constraints.

We use a different initialization scheme when running tra-

jectory optimization online in a receding horizon fashion as

in Algorithm 2, as it is typical to warm-start the optimization

with the solution from the previous timestep. For a single parti-

cle, the trajectory consists of τ = (x1, . . .,xT ,u0, . . .,uT−1)).
The shift operation computes τ ′ = (x2, . . .,x

′
T+1,u1, . . .,u

′
T ).

Here x
′
T+1,u

′
T is the initialization for the newly considered

future timestep. The initializations x
′
T+1,u

′
T may be chosen

in a problem-specific way. In our approach, we choose them

by duplicating the previous timestep’s state and control, i.e.,

(x′
T+1,u

′
T ) = (xT ,uT−1).

When running the algorithm with inequality constraints, for

both the online and warm-start optimizations, we initialize the

slack variablezwithz =
√

2|g(τ)| so that trajectories satisfying

the inequality constraint are initialized to satisfy the transformed

equality constraint.

The aforementioned heuristic is motivated by the assumption

that the solution should not vary much between timesteps.

However, the fact that we have a set of trajectories rather than a

single one can invalidate this assumption, since we can only take

a single action. Trajectories that have very different first actions

from the action taken can end up being quite poor initializations,

particularly in the presence of constraints that can render them

infeasible. Over time, these poor initializations can lead to the

degradation in the quality of the particles, which motivates the

next section in which we discuss a resampling technique to

prevent sample impoverishment.

8) Resampling: As discussed previously, the shift operation

can lead to trajectories that are not executed becoming infeasible

and rendering those particles useless for trajectory optimization.

In addition, our cost and constraints are not necessarily convex,

Algorithm 1: A Single Step of CSVTO, This Will Run Every

Timestep.

1: function CSVTO(x0, τ,K,anneal)

2: z ←
√

2|g(τ)|
3: τ̂ ← [τ, z]T

4: for k ∈ {1, . . .,K} do

5: for i ∈ {i, . . .,N} do

6: φi
C ← via (40)

7: if anneal then

8: ³ ← k
K

9: φi
⊥ ← via (47)

10: else

11: φi
⊥ ← via (39)

12: τ̂ i ← τ̂ i + ³Jφ
i
⊥ + ³Cφ

i
C

13: τ̂ i ← PROJECTINBOUNDS(τ̂ i).
14: � Get the best trajectory according to penalty function

15: τ̂ ∗ ← argminτ Ĉλ(τ̂)
16: � Discard slack variables

17: τ ∗, τ ← τ̂ ∗, τ̂

18: return τ ∗, τ

so, as with any local optimization method, poor initializations

can lead to infeasibility. We take inspiration from the particle

filter literature [66] and incorporate a resampling step, which

is executed when performing online replanning. Every re-

sample_steps timesteps we resample after performing the

shift operation on the previous trajectory particles. To perform

resampling, we compute weights using the penalty function

wi =
exp(− Ĉλ(τ̂i)

β
)

∑N
j exp(− Ĉλ(τ̂j)

β
)

(51)

where ´ is a temperature parameter. We then resample a new set

of particles according to weights wi. It is common in the particle

filter literature to additionally add noise, to prevent resampled

particles collapsing. However, in our case, it is undesirable to add

random noise to a constraint-satisfying trajectory as it may lead

to constraint violation. We avoid this issue by sampling noise

and projecting the noise to only have components in the tangent

space of the constraints for a given trajectory. Suppose we have

sampled trajectory τi from the set of particles. We first sample

ε ∼ N (0, σ2
resampleI), and then, update the trajectory with

τnew = τi + P (τi)ε (52)

where P (τi) is the projection matrix from (29).

VIII. EVALUATION

We evaluate our approach in three experiments. The first

is a constrained 12-DoF quadrotor task, which has nonlinear

underactuated dynamics. The second experiment is a 7-DoF

robot manipulator task, where the aim is to move the robot end

effector to a goal location while being constrained to move along

the surface of a table. The third experiment is also a 7-DoF robot

manipulator task, where the aim is to manipulate a wrench to a
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Algorithm 2: CSVTO Running With Online Replanning.

1: function CSVTO_MPC(x0, τ0)

2: for t ∈ {1, . . .,T} do

3: � Resample

4: if MOD(t, resample_steps) = 0 then

5: τt ← RESAMPLE(τt)

6: if t = 1 then

7: K ← Kw

8: anneal ← True

9: else

10: K ← Ko

11: anneal ← False

12: τ ∗t , τt ← CSVTO(xt, τt,K,anneal)
13: � Select first control from the best trajectory

14: ut ← τ∗
15: xt ← STEPENV(ut)
16: � Shift operation

17: τt+1 ← SHIFT(τt)

goal angle. Both of these 7-DoF manipulator tasks involve plan-

ning in highly constrained domains. We perform the manipulator

experiments in IsaacGym [67]. The hyperparameters we use in

all experiments are shown in Table I. For all experiments, the

costs and constraint functions are written using PyTorch [68],

and automatic differentiation is used to evaluate all relevant first

and second derivatives.

A. Baselines

We compare our trajectory optimization approach to both

sampling-based and gradient-based methods. We compare

against IPOPT [24], a general nonlinear constrained optimiza-

tion solver, which has been widely used for robot trajectory

optimization [4], [25]. We use the MUMPS [69] linear solver

for IPOPT. When running IPOPT, where second derivatives

are available we use exact derivatives computed via automatic

differentiation in PyTorch, where they are not available we use

the limited-memory Broyden–Fletcher–Goldfarb–Shanno algo-

rithm (L-BFGS) [70] to approximate the Hessian. The method

used will be indicated for each experiment. For CSVTO and

IPOPT, we use a direct transcription scheme; IPOPT solves the

optimization problem as expressed in problem (1). For IPOPT,

we use the open-source implementation provided by Wächter

and Biegler [24].

We additionally compare against MPPI [37] and

SVMPC [20]. MPPI and SVMPC are methods for performing

unconstrained trajectory optimization, with constraints com-

monly incorporated with penalties. For these methods, we use

the penalty function Ĉ(λ,μ)(τ) = C(τ) + λ
∑

|h(τ)|+ μ
∑

|g(τ)|+, where |g(τ)|+ is a vector consisting of only the

positive values of g(τ). We use separate penalty weights for

equality and inequality constraints. We evaluate each of these

baselines on two different magnitudes of penalty weights on

equality constraints λ. In the SVMPC paper, the authors show

that their method can be used both with and without gradients.

We evaluate against two versions of SVMPC, one using a

sample-based approximation to the gradient and another using

the true gradient. For SVMPC and MPPI, we use a shooting

scheme since they can only handle constraints via penalties,

which can lead to poor satisfaction of the dynamics constraint.

We use our own implementations for MPPI and SVMPC in

PyTorch.

B. 12-DoF Quadrotor

We evaluate our method on a 12-DoF underactuated quadrotor

problem. The goal is to navigate the quadrotor from a start

state to a goal state. We chose this problem to demonstrate our

approach on a problem with complex nonlinear underactuated

dynamics. The experimental setup is shown in Figs. 3 and 4.

The state of the quadrotor isx = [x, y, z, p, q, r, ẋ, ẏ, ż, ṗ, q̇, ṙ]T ,

where (x, y, z) is the 3-D position and (p, q, r) are the Euler

angles. The control is the thrustu = [u1, u2, u3, u4]
T ∈ R

4. We

place bounds constraints on the (x, y) location of the quadro-

tor to be within a 10 m × 10 m area centered at (0, 0). The

goal is to travel from start locations sampled uniformly from

x, y ∈ [3.0 m, 4.5 m] to a goal location of (4, 4) within 100

time steps. We place an equality constraint that the quadrotor

must travel along a nonlinear surface z = fsurf(x, y). For this

surface, we sample z values from a GP prior with an RBF

kernel and zero mean function on a 10 × 10 grid of (x, y)
points. We use the sampled values as observations for a GP with

the same kernel and mean function and use the corresponding

posterior mean function as the equality constraint. We sample

a single surface in this way and use it for all experiments.

The dynamics for the 12-DoF quadrotor are from [71] and are

given by
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ẋ

ẏ
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ṙ

¦

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

¨

t+1

=

£

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¥

x

y

z

p

q

r

ẋ
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ṗ

q̇

ṙ
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(53)

where c(p), s(p), t(p) are cos, sin, and tan functions, respec-

tively. We use parameters m = 1 kg, Ix = 0.5 kg · m2, Iy =
0.1 kg · m2, Iz = 0.3 kg · m2,K = 5, g = −9.81m · s−2. We

use the same dynamics both for planning and for simulation.

We consider three variants of this task with different obstacle

avoidance constraints: We consider the case with no obstacles;
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TABLE I
HYPERPARAMETER VALUES FOR THE THREE EXPERIMENTS

Fig. 3. Experimental setup for the quadrotor task. The quadrotor must travel to the goal location, avoiding the obstacle in red while remaining on the blue
manifold. The fading yellow shows the path of the obstacle from previous timesteps. (a)–(d) CSVTO maintains a set of trajectories (dashed), with the selected
trajectory shown as a solid curve. CSVTO can keep a diverse set of trajectories and switches between them to avoid the moving obstacle. (e) and (f) IPOPT
generates an initial trajectory that makes good progress toward the goal and obeys the manifold constraint. However, even after the first timestep the obstacle has
moved to render this trajectory infeasible. As the obstacle moves further, IPOPT is unable to find an alternative trajectory and ends in a collision. (a) CSVTO t = 1.
(b) CSVTO t = 5. (c) CSVTO t = 10. (d) CSVTO t = 15. (e) IPOPT t = 1. (f) IPOPT t = 5. (g) IPOPT t = 10. (h) IPOPT t = 15.

Fig. 4. Experimental setup for the quadrotor with static-obstacles task. The
quadrotor must travel to the goal location, avoiding the obstacles in red while
remaining on the blue manifold.

and we consider the case of static obstacles. For the static-

obstacles case, we wish to demonstrate our method in a cluttered

environment with arbitrarily shaped obstacles. We do this by

generating the obstacles similarly to the surface constraint,

which results in a smooth obstacle constraint. We consider a

constraint function fobs(x, y), where the obstacle-free region is

{(x, y), fobs(x, y) ≤ 0}. We sample values for fobs(x, y) from

a GP prior with an RBF kernel and a constant mean function

of −0.5 so that there is a bias toward being obstacle free, on a

10× 10 grid of (x, y) points. We then use these points as the

observations for a GP with the same mean function and kernel

as the GP prior. We also add observations at (−4,−4) and (4, 4)
of −2, to ensure the start and goal regions are obstacle free. We

use the resulting GP posterior mean function as fobs(x, y). We

do this once and keep the same obstacle constraint for all trials.

The resulting obstacle constraint is shown in Fig. 4. Finally,

we consider a cylindrical obstacle in the x–y plane that moves

during the trial in a path that is unknown to the planner; at every

timestep, the planner plans assuming the obstacle will remain

fixed. If the quadrotor collides with an obstacle during execution,

then we consider the task failed.

The planning horizon is 12. The posterior log p(τ |o) for this

problem is a quadratic cost given by

log p(τ |o) = (xT − xgoal)
TP (xT − xgoal)

+

T−1
∑

t=1

(xt − xgoal)
TQ(xt − xgoal) + uT

t−1Rut−1.

(54)

The control cost is equivalent to the prior on controls p(ut) =
N (0, 2R−1). The values we use for the costs are

Q=Diag(5, 5,0.5,2.5,2.5,0.025, 1.25, 1.25, 1.25, 2.5, 2.5, 2.5)
(55)

P = 2Q (56)

R = Diag(0.5, 128, 128, 128). (57)

For this problem, we use automatic differentiation to compute

all required second derivatives for both IPOPT and CSVTO. We

run IPOPT with two different maximum iteration settings. For

the first, we limit the maximum number of iterations to 100 for

the initial warm start and to 10 for subsequent time steps. We

limit the number of iterations so that IPOPT has a comparable

computation time to other baselines. The next setting is to set

the maximum iterations to 1000, which allows IPOPT to run
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Fig. 5. Comparison between CSVTO and IPOPT with multiple initializations
on the quadrotor task with static obstacles. We compare CSVTO with eight
trajectory samples versus eight runs of IPOPT, both from the same initializations
and record the minimum cost achieved from the eight trajectories over 200
iterations of both. We run ten trials for each method. The shaded regions show
the range of the minimum cost achieved over the ten trials. We see that from the
same initializations, CSVTO finds a solution with a lower cost.

until convergence for most queries. We refer to this method as

IPOPT-1000. As we will show in Section VIII-E, this method is

substantially slower than other baselines and prohibitively slow

for MPC applications, but we included this baseline to see how

well IPOPT performs when computation time is not an issue.

For the baselines using a penalty method, we use μ = 2000 and

test two variants for λ: λ = 100 and λ = 1000.

In Fig. 5, we compare CSVTO and IPOPT run for 200

iterations for a single planning query with multiple differ-

ent initializations, indicating that for the same initializations,

CSVTO finds a lower cost local minimum. To generate these

initializations, we sample a nominal control sequence from the

prior p(U) and use small Gaussian perturbations with σ = 0.01
around this nominal control sequence as the initialization. The

initial state sequence is found by applying these controls with

the dynamics. We repeat this process ten times for a different

nominal control sequence. The results demonstrate that parallel

trajectory optimization with CSVTO is beneficial even when the

initial trajectory distribution is not diverse.

We ran the quadrotor experiments for the three different

obstacle cases for 20 trials with randomly sampled starts. The

results are shown in Fig. 6. CSVTO succeeds for 20/20 trials

for the no-obstacles and dynamic-obstacles cases, and 19/20 for

the static-obstacle case, all with a goal threshold of 0.3 m. For

the static-obstacle and dynamic-obstacle experiments, IPOPT

is the next best performing with 20/20 trials for no obstacles

at a goal threshold of 0.4 m, but success falls to 15/20 for

both the static-obstacles and dynamic-obstacle case. We see that

running IPOPT with more iterations improves performance for

the static-obstacles case, but in the other two cases, there is no

significant difference in performance when allowing IPOPT to

run until convergence. However, running IPOPT to convergence

has substantially higher computation time, which we will discuss

further in Section VIII-E. For the no-obstacles and dynamic-

obstacle cases, we see that sample-based methods perform well

according to the task success rate, however, they fail to satisfy the

surface equality constraint. In addition, both MPPI and SVMPC

fail for the static-obstacles case.

Trajectories generated from IPOPT versus CSVTO for the

dynamic-obstacles case are shown in Fig. 3, IPOPT generates a

trajectory aiming to go around the obstacle, but the movement of

the obstacle renders that trajectory infeasible as time progresses.

IPOPT is not able to adapt the trajectory to go around the

obstacle. In contrast, CSVTO generates a multimodal set of

trajectories that go either way around the obstacle. It is then

able to update the trajectories effectively, avoiding the obstacle

and reaching the goal. We do see that IPOPT achieves the lowest

constraint violation in the case of no obstacle or a static obstacle,

while CSVTO achieves the lowest constraint violation when

there is a dynamic obstacle.

C. Robot Manipulator on Surface

In this task, we consider a 7-DoF robot manipulator where

the end effector is constrained to move in SE(2) along the

surface of a table. The robot must move to a goal location

while avoiding obstacles on the surface. The setup is shown in

Fig. 7. This system’s state space is the robot’s joint configuration

q ∈ R
d. The actions are the joint velocity q̇ and the dynamics

are given by Euler integration qt+1 = qt + q̇t dt, with dt = 0.1.

The prior distribution over actions is p(U) = N (0, σ2I), where

σ = 0.5. The planning horizon is 15. The cost is C(τ) =

2500||pxyT − p
xy
goal||2 + 250

∑T−1
t=1 ||pxyt − p

xy
goal||2, where p

xy
t is

the end effector x, y position, which is computed from the

forward kinematics. The equality constraints on this system are

pzt = 0.8, which is the height of the table, and additionally, there

is an orientation constraint that the z-axis of the robot end effector

must be orthogonal to the table, i.e., the inner product of the table

z-axis and the robot z-axis should be equal to −1.

While obeying the table constraint the robot must also

avoid three obstacles from the Yale–CMU–Berkeley object

dataset [72]. We enforce this with a constraint that the signed

distance to the obstacles must be positive, which we compute

from the meshes of the objects. Since signed distance functions

(SDFs) are composable via the min operator, we combine the

SDFs of the three obstacles into a single inequality constraint per

timestep rather than an inequality constraint per obstacle. This is

to reduce the total number of inequality constraints, as introduc-

ing more inequality constraints results in more slack variables

and a higher dimensional problem. To evaluate this constraint,

offline we generate points on the surface of the robot. Online, we

use forward kinematics to map all of these points to the world

frame and evaluate their SDF value, selecting the minimum SDF

value as the value of the constraint. To compute the gradient

of the constraint, consider that for any surface point, we can

compute the gradient of the SDF value with respect to the point

from the object mesh. We then use automatic differentiation to

backpropagate this gradient through the forward kinematics to

compute a gradient of the SDF value with respect to the joint

configuration. Finally, to calculate an overall gradient, we use

a weighted combination of the gradients for each surface point,

with the weight computed via a softmin operation on the SDF

values.

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 14,2025 at 20:46:27 UTC from IEEE Xplore.  Restrictions apply. 



3614 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Fig. 6. Results for quadrotor experiments. The top row shows the success rate as we increase the size of the goal region. The bottom row shows the average
surface constraint violation as a function of time. (Left) No obstacle. (Middle) Static obstacles. (Right) Dynamic obstacle.

Fig. 7. Snapshots from CSVTO used for the robot manipulator on a surface
experiment. The robot must move the end effector to a goal location while
remaining on the surface of the table and avoiding the obstacles. CSVTO
generates trajectories that explore different routes to the goal.

The resulting inequality constraint is not twice differentiable,

both because of nonsmooth object geometries and because

of composing SDFs with the min operator. Due to this, for

CSVTO, we omit the second-order term in (33) for the inequality

constraint, and for IPOPT, we use L-BFGS to approximate

second-order information. Computing the SDF value and gradi-

ent is a computationally expensive operation, so we precompute

grids of the SDF values and the SDF gradients and do a lookup

when performing the optimization. We use a 320× 320× 480
grid with a resolution of 2.5 mm. There are also joint limit

constraints on all of the robot joints.

For the penalty-based baselines, we use penalty parameters of

μ = 2000 and variants with λ = 100 and λ = 1000. For IPOPT,

we found that running until convergence was prohibitively

costly, taking several minutes to converge per optimization.

For this reason, we limited the maximum number of iterations

for IPOPT to be the same as CSVTO, resulting in a similar

computation time. This is discussed further in Section VIII-E.

Fig. 8. Results for the robot manipulator on surface experiments. (Left)
Success rate as we increase the size of the goal region. (Right) Average constraint
violation as a function of time for both the height constraint and the orientation
constraint.

Due to contact with the table, the dynamics of the system used

for planning can deviate from those in the simulation. When

computing the constraint violation, we use the actual constraint

violation in the simulator rather than the planned constraint

violation.

We run this experiment for 20 trials with random goals and

show the results in Fig. 8. Our results show that CSVTO succeeds

in all 20 trials with a goal threshold 0f 0.1 m and achieves

the lowest constraint violation of all methods. The next closest

baseline, IPOPT succeeds 19/20 times, with the failure case

resulting from a poor local minima with qt and qt+1 on either

side of an obstacle, but a large distance from one another. This

resulted in the robot becoming stuck on the obstacle and unable

to make progress.
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Fig. 9. Robot manipulator turning a wrench experimental setup. The goal is to
turn the wrench by 90°. End-effector planned path at the first time-step visualized
for three different initial trajectories generated by (top) CSVTO and (bottom)
IPOPT. CSVTO’s end-effector path traces an arc around the wrench center to
turn the wrench, while IPOPT paths are often poor, containing very large steps
and lacking smoothness.

D. Robot Manipulator Using Wrench

In this task, we consider a 7-DoF robot manipulator in which

the goal is to manipulate a wrench to a goal angle. To turn the

wrench, the robot must be able to supply at least 1 Nm of torque.

The setup is shown in Fig. 9. The state space is [q φ θ]T .

q ∈ R
7 is the configuration space of the robot. φ parameterizes

the distance between the robot end effector and the wrench in the

x–y plane as l + φ where l is a nominal distance. θ is the wrench

angle. The actions are the joint velocities q̇. The dynamics of

the joint configuration are given by Euler integration qt+1 =
qt + q̇t dt, with dt = 0.1. We use a simple geometric model

for dynamics of φ and θ. Assuming that the robot end effector

remains grasping the wrench, we compute the next φ as φ =
||pxyee − p

xy
wrench||2 − l. To compute the next joint angle θ, we

use θt+1 = θt + tan ∆xee

∆yee
. The prior distribution over actions is

p(U) = N (0, σ2I), where σ = 1.

The equality constraints of the system are that pzee should

be at a fixed height, and additionally, that θT = θgoal. There is

also a constraint that the end-effector orientation of the robot

remains fixed relative to the wrench. To do this, we compute

the desired end-effector orientation from the wrench angle, and

compute the relative rotation between the desired and actual

end-effector orientation in the axis–angle form, constraining the

angle to be zero. In total, combining the dynamics constraints

for φ and θ with the other equality constraints, there are four

equality constraints on the pose of the end effector per time

step. When reporting the constraint violation, we report the

maximum violation of these four constraints. The inequality

constraints of the system are that the desired torque should

be achievable within the robot joint limits. This constraint

is min_torque ≤ J(q)T (l + φ) ≤ max_torque, where J

is the manipulator jacobian. There are also joint limit bound

constraints, and a bound constraint on φ. Computing the sec-

ond derivative of this constraint requires computing the second

derivative of the manipulator Jacobian, which is costly. To avoid

this, for CSVTO, we omit the second-order terms in (33), and for

IPOPT, we use L-BFGS. There is no cost C for this experiment,

Fig. 10. Results for the robot manipulator using the wrench. (Left) Success rate
as we increase the size of the goal region. (Right) Average constraint violation
as a function of time, where we compute the constraint violation at a given time
via the maximum violation among the equality constraints.

instead, the inference problem reduces to conditioning the prior

on constraint satisfaction. The planning horizon is 12.

For the penalty-based methods we use μ = 1000 and vari-

ants with λ = 1000 and λ = 10000. We run IPOPT both until

convergence with a max number of iterations of 1000, and

additionally, with a max iterations of 200 at warmup and 20

online, which results in a similar computation time to CSVTO.

We run this experiment for 20 trials with random initializa-

tions and show the results in the bottom row of Fig. 10. This prob-

lem is challenging because the dynamics are based on a simple

inaccurate geometric model. Compliance in the gripper causes

deviation from this geometric model, and the model is only

accurate so long as all constraints hold. Our results show that

CSVTO can succeed in all 20 trials with a goal threshold of 0.06

radians and achieves the lowest constraint violation. The next

closest baseline, SVMPC-grad with λ = 10000 succeeds 19/20

times with a goal threshold of 0.09 radians, dropping to 11/20 at

0.06 radians. We find that running IPOPT to convergence leads

to poor performance, as the solver is unable to converge to a

feasible solution. Limiting the maximum iterations to 200 for the

initial warm-start and 20 for subsequent online iterations leads

to improved task performance, achieving a success rate of 12/20.

We also demonstrate CSVTO on real hardware for the robot

manipulator manipulating a wrench task, shown in Fig. 1. After

generating a configuration-space trajectory using CSVTO, we

command the robot to move to the first configuration waypoint of

that trajectory using a joint impedance controller. Once the robot

has reached the desired waypoint, we perform replanning to

generate a new configuration-space trajectory. We use the same

hyperparameters as those in the simulator for this experiment.

During execution, we applied disturbances by perturbing the

robot end effector. The impedance controller can reject small

disturbances, but larger disturbances require re-planning from

the perturbed location. Fig. 1 shows one such perturbation.

Despite large disturbances, our method was able to readjust the

grasp and complete the task successfully.

E. Computation Time

To determine the computation times for CSVTO and each

baseline, we ran ten trials for each experiment on a computer
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TABLE II
MEAN AND STANDARD DEVIATION OF COMPUTATION TIMES FOR CSVTO AND ALL BASELINE METHODS FOR THE 12-DOF QUADROTOR EXPERIMENTS

TABLE III
AVERAGE COMPUTATION TIMES FOR CSVTO AND ALL BASELINE METHODS FOR THE 7-DOF ROBOT MANIPULATOR EXPERIMENTS

with an Intel i9-11900KF Processor with an NVIDIA RTX

3090 GPU. We record the average computation times for the

initial trajectory as well as subsequent online trajectories, which

we refer to as tw and to, respectively. We also record the

standard deviations of the computation times. The number of

iterations used for the warm-up and online phase is Kw and Ko,

respectively. For IPOPT, this is a maximum number of iterations,

and the solver may terminate early. For all other methods, all

iterations are used.

1) 12-DoF Quadrotor: The average computation time of

CSVTO compared to baselines for all quadrotor experiments is

shown in Table II. For this experiment, computing the gradient

was a major computational bottleneck, thus for the sample-based

methods, we allowed them more iterations. We see that MPPI

and SVMPC are faster than CSVTO with online trajectory

computation times of 0.366 s, 0.439 s, and 0.589 s, respectively.

For the no-obstacles and dynamic-obstacle cases, IPOPT is

also faster than CSVTO with an average online computation

time of 0.429 and 0.479 s due to early termination. However,

for the static-obstacles case, this rises to 0.768 s compared to

CSVTO at 0.650 s. When running IPOPT to convergence, the

solving time is substantially larger, with an average computation

time for the static-obstacle case of 15.8 s. We also see that

the standard deviations are very large, due to the variability in

how quickly the solver converges. Combining these with the

results from Section VIII-B, we see that CSVTO outperforms

IPOPT to convergence with substantially faster computation

times.

2) Robot 7-DoF Manipulator: The computation times for all

methods on both 7-DoF manipulation experiments are shown

in Table III. For the manipulator on a surface experiment, the

difference in computation speed of the sample-based versus

gradient-based algorithms per iteration was less pronounced

than for the quadrotor experiment. We thus kept the number

of iterations the same for all experiments, with 100 warm-

up iterations and ten online iterations. CSVTO and IPOPT

have similar computation times at 1.12 s and 1.14 s to com-

pute a trajectory online. MPPI is again the fastest algorithm

at 0.691 s to generate a trajectory online, although the perfor-

mance is lower both in terms of task success and constraint

violation. Initial attempts to run IPOPT with a maximum of

1000 iterations took several minutes to solve, which rendered it

impractical.

For the wrench task, CSVTO and SVMPC-grad have similar

computation times. While CSVTO requires the computation of

the second derivative of the constraints, the cost evaluation of

SVMPC-grad requires a loop through the time horizon, slowing

down both cost and gradient evaluation. Since CSVTO em-

ploys a collocation scheme, this process is vectorized. Whether

CSVTO or SVMPC-grad is faster depends on the relative cost

of computing the second derivatives versus looping through the

time horizon. Each iteration of IPOPT was faster than CSVTO

for this experiment, as IPOPT using the L-BFGS approximation

computes no second derivatives, whereas CSVTO only ne-

glected the second derivatives of the force inequality constraint.

We thus allowed IPOPT more iterations, as seen in Table III.

Attempting to allow IPOPT to run with a much larger maximum

iteration number resulted in much slower solving times and

worse performance.

IX. DISCUSSION

In this section, we will discuss some of the advantages of

CSVTO over baselines, and then, discuss some limitations and

finally highlight areas for future work.

A. Local Minima

CSVTO produces diverse approximately constraint-

satisfying trajectories. By encouraging diversity through

the course of the optimization, the algorithm searches the

solution space more widely and can result in multimodal sets of

solutions; for example, see Fig. 3. We found that this behavior
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is beneficial for escaping from local minima. This was most

clearly demonstrated in the 12-DoF Quadrotor experiment.

We found that in the case of no obstacles, IPOPT was

consistently able to get relatively close to the goal, achieving

a 100% success rate at a goal region of 0.4 m. However, it

was unable to escape a local minimum in the vicinity of the

goal region. This local minimum appears to be induced by

the surface constraint, as IPOPT frequently became stuck at a

position where it needed to climb in height to reach the goal

while satisfying the constraint, incurring a large control cost.

In contrast, CSVTO was able to achieve a 100% success with a

much smaller goal region of 0.2 m.

B. Initialization

CSVTO optimizes a set of trajectories in parallel. Each of

these trajectories has a different random initialization, and, as

mentioned, the objective encourages trajectory diversity. We find

that this approach is effective at making the algorithm more

robust to poor initialization. This is most clearly seen in the

7-DoF wrench manipulation experiment, shown in Fig. 9. This

system is highly constrained, and we can see from Fig. 9 that the

trajectories generated by IPOPT can be very low quality when

poorly initialized. This is reflected in the success rates, where in

our experiments CSVTO succeeds for 20/20 of the trials versus

12/20 for IPOPT.

C. Limitations and Future Work

1) Differentiability: Our method requires that all costs and

constraints are differentiable. This is a restrictive assumption,

particularly when treating dynamics as a constraint. Many

contact-rich robot manipulation tasks exhibit discontinuities that

invalidate this assumption.

2) Slack Variables: Our approach converts inequality con-

straints to equality constraints by introducing slack variables.

While this is a natural way of incorporating inequality con-

straints into our method, it results in increasing the number

of decision variables by the number of inequality constraints.

This is likely to be problematic for long-horizon planning tasks

with many inequality constraints. A possible solution would be

solving a QP subproblem at every iteration to determine the

active inequality constraints as in [56], however, this has the

issue that we would need to solve an individual QP subproblem

for every particle.

3) Computation Time Inadequate for Real-Time Control: We

note from Table II, in the dynamic-obstacle quadrotor task, the

average computation time for online trajectory generation is

0.643 s for CSVTO, compared to MPPI, the fastest baseline,

taking 0.373 s. In this case, the solve times for the current

implementation of CSVTO and all baselines are insufficient for

real-time reactive control. Our method, all baselines other than

IPOPT, and all cost and constraint functions were implemented

in Python, using automatic differentiation in PyTorch to compute

the relevant first and second derivatives. Implementing these

methods in C++, using a library such as CasADI [73] for

automatic differentiation, may enable real-time performance on

these systems in future work.

4) Kernel Selection: While our approach decomposes the

kernel into a sum of kernels operating on subtrajectories, each

of these kernels is an RBF kernel. While the RBF has attractive

properties, such as strict positive definiteness and smoothness,

we believe that exploring task-specific kernels for trajectory

optimization is an interesting avenue for future work.

X. CONCLUSION

In this article, we presented CSVTO, an algorithm for

performing constrained trajectory optimization on a set of

trajectories in parallel. To develop CSVTO, we formulated con-

strained trajectory optimization as a Bayesian inference prob-

lem, and proposed a constrained SVGD algorithm inspired by

O-SVGD [23] for approximating the posterior over trajectories

with a set of particles. Our results demonstrated that CSVTO out-

performs baselines in challenging highly constrained tasks, such

as a 7-DoF wrench manipulation task, where CSVTO succeeded

in 20/20 trials versus 12/20 for IPOPT. In addition, our results

demonstrated that generating diverse constraint-satisfying tra-

jectories improves robustness to disturbances, such as changes

in the environment, as well as robustness to initialization.

APPENDIX

MATRIX DERIVATIVE OF P (τ)

In (33), we showed that the repulsive gradient is split into two

terms, one of which contains the matrix derivative ∇[τ ]kP (τ).
In this section, we show how to compute this derivative. For no-

tational convenience, let τ ∈ R
N (thus P (τ) ∈ R

N×N ), h(τ) ∈
R

M (where M is the number of constraints), and we omit the

dependence on τ when writing the constraint derivative ∇h(τ).
∇[τ ]kP (τ) is a matrix of shape N ×N . We refer to the second

derivative of the lth constraint ∇2hl(τ) as Hl, which is an

N ×N matrix. The matrix derivative ∇[τ ]kP (τ), as defined in

(33), can be expanded into the following three terms:

∇[τ ]k [P (τ)]i,k = 2Ai,k −Bi,k (58)

where A,B ∈ R
N×N , and i, k ∈ {1, . . ., N}. Ai,k is given by

Ai,k =

M
∑

l

[Hl]k,i[
(

∇h∇hT
)−1

∇h]l,k. (59)

To compute Bi,k, we first consider the matrix Dk ∈ R
M×M :

[Dk]l,m =

N
∑

j

([Hl]k,j [∇h]l,j + [Hm]j,k[∇h]m,j) (60)

for l,m ∈ {1, . . .,M}. We then finally compute Bi,k as

Bi,k =

M
∑

l

M
∑

m

[Dk]l,m[∇hT
(

∇h∇hT
)−1

]i,l

× [
(

∇h∇hT
)−1

∇h]m,k. (61)
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When neglecting second-order terms for the lth constraint hl(τ)
(as discussed in Section VII-A1-a), we set Hl = 0 when com-

puting Ai,k and Bi,k.
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