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Constrained Stein Variational
Trajectory Optimization

Thomas Power

Abstract—In this article, we present constrained Stein varia-
tional trajectory optimization (CSVTO), an algorithm for perform-
ing trajectory optimization with constraints on a set of trajectories
in parallel. We frame constrained trajectory optimization as a
novel form of constrained functional minimization over trajectory
distributions, which avoids treating the constraints as a penalty in
the objective and allows us to generate diverse sets of constraint-
satisfying trajectories. Our method uses Stein variational gradient
descent to find a set of particles that approximates a distribution
over low-cost trajectories while obeying constraints. CSVTO is
applicable to problems with differentiable equality and inequality
constraints and includes a novel particle resampling step to escape
local minima. By explicitly generating diverse sets of trajectories,
CSVTO is better able to avoid poor local minima and is more
robust to initialization. We demonstrate that CSVTO outperforms
baselines in challenging highly constrained tasks, such as a 7-DoF
wrench manipulation task, where CSVTO outperforms all base-
lines both in success and constraint satisfaction.

Index Terms—Motion and path planning, optimization and
optimal control, probability and statistical methods, trajectory
optimization.

I. INTRODUCTION

RAJECTORY optimization and optimal control are pow-
T erful tools for synthesizing complex robot behavior using
appropriate cost functions and constraints [1], [2], [3], [4], [5].
Constraint satisfaction is important for safety-critical applica-
tions, such as autonomous driving, where constraints determine
which trajectories are safe. Constraints can also provide effective
descriptions of desired behavior. For instance, consider a robot
sanding a table. This problem can be defined with an equality
constraint specifying that the end effector must move along the
surface of the table as well as constraints on the minimum and
maximum force applied to the table. For many tasks, including
manipulation tasks such as the one aforementioned, satisfying
these constraints can be very difficult as constraint-satisfying
trajectories may lie on implicitly defined lower dimensional
manifolds. Such constraints present difficulties for sample-based
methods since the feasible set has zero measure, and thus,
it is difficult to sample. It is also difficult for gradient-based
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methods since even for trajectories that start feasible, if the
constraint is highly nonlinear then updates based on a first-order
approximation of the constraint will lead to solutions leaving the
constraint manifold. In addition, many useful tasks entail con-
strained optimization problems that are nonconvex and exhibit
multiple local minima.

Global sample-based motion planning methods such as
rapidly exploring random trees (RRT) [6]. Probabilistic
roadmaps (PRM) [7] effectively solve difficult planning prob-
lems, however, they do not find paths that minimize a given cost
function. To minimize a given cost function, algorithms such as
RRT* and PRM* [8] have been proposed to find asymptotically
globally optimal paths. Alternatively, a common approach is to
use the path returned from a sample-based motion planner to
initialize a trajectory optimization problem [9]. Sample-based
methods have additionally been applied to constrained planning
problems [10], [11], [12], [13] and kinodynamic problems [14],
[15]. While effective for solving problems exhibiting local min-
ima, when applied to kinodynamic or constrained problems,
these global methods are typically computationally expensive.

One of the key advantages of trajectory optimization tech-
niques over global search methods, such as sampling-based
motion planning, is computation speed. Faster computation
speed enables online replanning to adapt to disturbances. For
example, consider again the robot sanding the table, but now in
the proximity of a human. The human may move in an unex-
pected way that necessitates an update to the planned trajectory.
However, even if the cost function is well-suited to the task,
the performance of many trajectory optimization methods is
still highly dependent on the initialization. Poor initialization
may lead to the solver converging to a poor local minimum.
For example, for a robot minimizing a distance to goal cost
subject to collision constraints, this may mean a trajectory that
avoids obstacles but makes little or no progress toward the goal.
In the worst case, the solver may not find a feasible solution, in
which case the robot may collide with an obstacle. A dependence
on initialization is particularly problematic when resolving the
optimization problem online under limited computation time
when disturbances can lead to the previous solution becoming a
poor initialization for the current optimization problem. In the
sanding example mentioned previously, the human may move
to block the robot’s path, and performing a local optimization
starting from the previous trajectory may not return a feasible
solution.

In this article, we formulate the constrained trajectory opti-
mization problem as a Bayesian inference problem. This view
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has advantages as it aims to find a distribution over trajectories
rather than a single trajectory alone. As noted by Lambert
etal. [16], commonly used variational inference approaches [17]
lead to minimizing entropy-regularized objectives [16], which
can improve exploration of the search space and give greater
robustness to initialization. Previous methods taking the in-
ference view of trajectory optimization have only been able
to incorporate constraints via penalties in the cost [16], [18],
[19], [20]. A drawback of penalty methods is that selecting the
relative weights of the penalties is challenging due to possible
conflicts with the objective. We compare against baselines that
incorporate constraints via penalties and show that, for non-
trivial constraints, this results in poor constraint satisfaction.
An alternative method for enforcing constraints in trajectory
optimization is via barrier functions [21], [22]. While effective,
they are only applicable to inequality constraints and have not
yet been applied in the context of trajectory optimization as an
inference problem.

We propose constrained Stein variational trajectory optimiza-
tion (CSVTO), an algorithm that performs constrained trajectory
optimization on a set of trajectories in parallel. Our method
builds on orthogonal-space Stein variational gradient descent
(O-SVGD), arecent nonparametric variational inference method
for domains with a single equality constraint [23]. We present
a constrained Stein variational gradient descent (SVGD) algo-
rithm for trajectory optimization with differentiable equality and
inequality constraints, generating a diverse set of approximately
constraint-satisfying trajectories. The trajectories are approxi-
mately constraint satisfying because we do not run the algorithm
until convergence to avoid excessive computation times. We
additionally incorporate a novel resampling step that resamples
and perturbs particles in the tangent space of the constraints to
escape local minima. Our contributions are as follows.

1) We frame constrained trajectory optimization as a novel
form of constrained functional minimization over trajec-
tory distributions, which avoids treating the constraints as
a penalty in the objective.

2) We present a constrained SVGD algorithm for trajectory
optimization, which is applicable to problems with differ-
entiable equality and inequality constraints.

3) We propose a novel particle resampling step for resam-
pling and perturbing trajectory particles in the tangent
space of the constraints to escape local minima.

4) We evaluate our method on three complex constrained
problems, including a 12-DoF underactuated quadrotor
and two highly constrained 7-DoF manipulation tasks.

Our experimental results demonstrate that CSVTO outper-
forms baselines in challenging, highly constrained tasks, such
as a7-DoF wrench manipulation task where our method achieves
20/20 success compared with 12/20 for interior point optimizer
(IPOPT) [24] and 19/20 for Stein variational model predictive
control (SVMPC) [20], CSVTO also achieves the lowest con-
straint violation of all baselines. In addition, CSVTO outper-
forms baselines in a 12-DoF quadrotor task with a dynamic ob-
stacle that necessitates online adaption of the planned trajectory.

The rest of the article is organized as follows. In Section II,
we discuss related work. In Section III, we will discuss the
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Fig. 1. (a) We use CSVTO to turn a wrench in the real world with online
replanning. (b) Human disturbs the robot, changing the grasp position of the
wrench. (c) Robot readjusts the grasp position. (d) Robot achieves the desired
wrench angle.

trajectory optimization problem, followed by an overview of
the variational inference approach to trajectory optimization in
Section IV. In Section V, we introduce our novel formulation of
trajectory optimization as a constrained functional minimization
over trajectory distributions. We will then give some additional
background information on SVGD in Section VI, which is
necessary to develop our algorithm. In Section VII, we introduce
CSVTO. In Section VIII, we evaluate our method on a 12-DoF
quadrotor task and two highly constrained tasks with a 7-DoF
manipulator. We additionally deployed CSVTO to turn a wrench
in the real world (see Fig. 1). In Section IX, we discuss some
of the advantages of CSVTO over baselines, and then, discuss
some limitations and highlight areas for future work. Finally,
Section X concludes this article.

II. RELATED WORK
A. Trajectory Optimization

Previous work on local trajectory optimization techniques
includes direct methods [4], [25], where the explicit optimization
problem is transcribed and solved using nonlinear solvers such
as IPOPT [24] or sparse nonlinear optimizer [26]. Methods
in this class include sequential convex programming meth-
ods such as TrajOpt [2] and guaranteed sequential trajectory
optimization [1]. In contrast, indirect methods aim instead to
solve the local optimality conditions of the trajectory and early
examples include differential dynamic programming [27] and
iterative linear quadratic regulator [28], however, neither of
these methods can handle constraints. Later work incorporated
constraint satisfaction with these indirect methods [3], [29], [30].
Direct methods are typically easier to initialize but less accurate
[31]. However all of these methods only aim to find a single
locally optimal trajectory, and the performance is dependent on
the initialization. In contrast, our approach optimizes a diverse
set of trajectories in parallel. This makes our approach easier to
initialize as well as more robust to disturbances when replanning

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 14,2025 at 20:46:27 UTC from IEEE Xplore. Restrictions apply.



3604

online. Our approach is related to the direct methods, in that we
use an iterative algorithm that aims to minimize an objective.
However, our method is based on viewing the trajectory opti-
mization problem as a Bayesian inference problem.

B. Sample-Based Motion Planning

Many global search methods have been developed in the
sampling-based motion planning literature, yielding motion
planners for constrained domains. These can be broadly
categorized as projection methods, whereby sampled config-
urations are projected to the constraint [10], [11], and con-
tinuation methods, which use a local approximation of the
constraint manifold at feasible configurations to sample new
configurations [12], [13]. Our method of trajectory optimization
is similar to continuation methods, as our iterative algorithm
projects update steps to the tangent space of the constraint.
While these global motion planners can be highly effective,
they are typically too computationally intensive to be run
online.

C. Planning and Control as Inference

Prior work framing trajectory optimization as Bayesian infer-
ence has used Gaussian approximations to yield fast, gradient-
based algorithms [18], [19], [32], [33], [34], [35]. Ha et al. [36]
presented a probabilistic approach for trajectory optimization
with constraints, using Laplace approximations around local
minima found by solving a nonlinear program. This approach
uses a Gaussian approximation with a degenerate covariance
with variance only in the tangent space of the constraints.
Samples from this distribution will generally deviate from the
constraint manifold for nonlinear constraints, in contrast, our
approach directly optimizes for diverse constraint-satisfying
samples. Sample-based techniques such as model predictive path
intregral (MPPI) control [37] and cross-entropy method [38]
have strong connections to the inference formulation of stochas-
tic optimal control [39], but these methods again use Gaus-
sian sampling distributions. Several recent works have focused
on improving the performance of these algorithms, often by
modifying the sampling distribution. Watson and Peters [40]
recently proposed using a Gaussian process (GP) as a sampling
distribution, and Pinneri et al. [41] proposed using colored
noise, both of which lead to smoother sampled trajectories.
Bhardwaj et al. [42] have also demonstrated improvements to
MPPI with a focus on robot manipulation. However, in all
of these prior works, the sampling distribution is unimodal.
Unimodal sampling distributions can be problematic in com-
plex environments due to their lack of flexibility that hinders
exploration of the search space. Recent work has proposed learn-
ing non-Gaussian sampling distributions with flexible model
classes [43], [44].

Another class of methods has used SVGD [45] for model
predictive control [20], [46] and trajectory optimization [16].
By using particle approximations, these methods can generate
multimodal trajectory distributions. SVGD has also been used
to improve PRMs [47], and for planning to goal sets [48]. Our
method is also based on SVGD.
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However, to date, control-as-inference-based methods have
been unable to handle highly constrained domains. Recently
constrained covariance steering MPPI [49] was proposed which
can satisfy chance inequality constraints, but is restricted to
linear systems. Our method uses SVGD to generate diverse
sets of constraint-satisfying trajectories, which can satisfy both
inequality and equality constraints. Another method closely
related to ours is stochastic multimodal trajectory optimization
(SMTO) [50], this method treats the trajectory optimization
problem as a density estimation problem and alternates be-
tween sampling and performing a gradient-based optimization
to generate multiple low-cost trajectories that satisfy the con-
straints. SMTO uses covariant Hamiltonian optimization for
motion planning (CHOMP) [51] to perform the gradient-based
optimization sequentially for each sampled trajectory. Our con-
tribution is complementary to SMTO; SMTO could substitute
CHOMP with our method, CSVTO, in the gradient-optimization
step. This would have the advantage of performing the gradient-
based optimization in parallel and encouraging diversity among
trajectories.

D. Gradient Flows for Constrained Optimization

Our method is closely related to methods using gradient flows
for constrained optimization. Gradient flows are an optimiza-
tion method that reframes optimization as the solution to an
ordinary differential equation; gradient flows can be thought
of as continuous-time versions of gradient descent algorithms.
Yamashita [52] proposed a gradient flow method for equality-
constrained problems. The most common method of extending
this to problems with inequality constrained is via the intro-
duction of slack variables to convert inequality constraints to
equality constraints [53], [54], [55]. Our method, CSVTO, also
uses slack variables to transform inequality constraints into
equality constraints. Recently, Feppon et al. [56] proposed a
method that instead solves a quadratic program (QP) subproblem
to identify active inequality constraints, which are treated as
equality constraints in the gradient flow. Jongen and Stein [55]
applied constrained gradient flows to global optimization, by
proposing a gradient flow algorithm that iterates between search-
ing for local minima and local maxima.

SVGD has been interpreted as a gradient flow [57], and similar
ideas to those developed in the gradient flows for constrained
optimization literature were recently explored in O-SVGD [23].
O-SVGD performs SVGD in domains with a single equality
constraint. We extend and modify O-SVGD to domains with
multiple equality and inequality constraints.

III. TRAJECTORY OPTIMIZATION

Trajectory optimization is commonly modeled as an optimal
control problem (OCP). We consider a discrete-time system
with state x € R% and control u € R%, where d, and d,, are
the dimensionality of the state and control, respectively, and
dynamics x; = f(x_1,u;—1). We define finite horizon trajec-
tories with horizon 7" as 7 = (X, U), where X = {xy,...x7}
and U = {uy, ...up_1}. Given an initial state X, the aim when
solving an OCP is to find a trajectory 7 that minimizes a given
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cost function C subject to equality and inequality constraints as
follows:
min  C(7)

T

S.L.

Upin < W1 < Upax
(1)

Here, we have separated general inequality constraints g from
simple bounds constraints, as well as the dynamics constraints
from other equality constraints h. We additionally assume that
C is nonnegative and once differentiable and that f, g, h are all
twice differentiable.! Problem (1) will be nonconvex in general,
therefore, it is likely it will have multiple local minima. The
quality of solutions for most methods for solving this OCP
depends heavily on the initialization; often a poor initialization
can lead to infeasibility.

Xmin < X < Xmax -

IV. VARIATIONAL INFERENCE FOR TRAJECTORY OPTIMIZATION

In this section, we will demonstrate how unconstrained tra-
jectory optimization can be framed as an inference problem,
as in [20], [34], [58], and [59]. This framing results in esti-
mating a distribution over low-cost trajectories, rather than a
single optimal trajectory. By using this framing, we can leverage
approximate inference tools for trajectory optimization, in par-
ticular, variational inference [17]. In this section, we will show
how this framing leads to an entropy-regularized objective [16],
which aims to find a distribution over low-cost trajectories while
maximizing entropy. By using an entropy-regularized objective,
we aim to have improved exploration of the search space and
greater robustness to initialization.

To reframe trajectory optimization as probabilistic inference,
we first introduce an auxiliary binary random variable o for a
trajectory such that

@)

which defines a valid probability distribution over o provided
both v and C' are nonnegative. We can trivially see that the
trajectory that maximizes the likelihood of p(o = 1|7) is the
trajectory that minimizes the cost. Introducing this binary vari-
able allows us to express the cost as a likelihood function, which
we will use in the Bayesian inference formulation of trajectory
optimization. Using this likelihood to perform inference gives
us a principled way of computing a distribution over trajectories,
where lower cost trajectories have a higher likelihood. The term
~ controls how peaked the likelihood function is around local

p(o = 1|7) = exp (=7 C(7))

'We can also accommodate constraints that are only once-differentiable via
an approximation (see Section VII-Al-a).
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maxima, or minima of C', which in turn controls the dispersion of
the resulting trajectory distribution after performing inference.

We aim to find the posterior distribution over trajectories,
conditioned on the value of auxiliary variable o. This is given
by Bayes theorem as

plo=1|7)p(7)
plo=1)

where p(7) = p(X, U) is a prior on trajectories. For determin-
istic dynamics, this prior is determined by placing a prior on
controls U. This prior is a design choice and can be used to
regularize the controls. For instance, a squared control cost can
be equivalently expressed as a Gaussian prior. Alternatively,
this prior could be learned from a dataset of low-cost trajec-
tories [60]. The trajectory prior is

p(rlo=1) = 3)

T
p(7) = p(U) [ [ 6(x: — %) “
t=1

where X; = f(x¢-1,ut-1), and ¢ is the Dirac delta function.
This inference problem can be performed exactly for the case
of linear dynamics and quadratic costs [35], [61]. However, in
general, this problem is intractable and approximate inference
techniques must be used. We use variational inference to approx-
imate p(7|o = 1) with distribution ¢(7), which minimizes the
Kullback-Leibler (KL) divergence KL (q(7)||p(T|o = 1)) [17].
The quantity to be minimized is

KL (g(r)lp(rlo = 1)) = / ¢(r)log — 27

(&)

The p(o = 1) term in the numerator does not depend on 7 so can
be dropped from the minimization. This results in the variational
free energy F

(1)

Flq) = /Q(T) log méﬁ (6)
= —Eynllogp(o = 1|7) +logp(7)] — H(q(7)) (7)
= Eyr)[vO(7)] = Eq(r)[log p(7)] — H(q(7)) ®)

where H(q(7)) is the entropy of ¢(7). Intuitively, we can un-
derstand that the first term promotes low-cost trajectories, the
second is a regularization on the trajectory, and the entropy term
prevents the variational posterior from collapsing to a maximum
a posteriori (MAP) solution. We may choose to provide regu-
larization on the controls as part of C, in which case the prior
term is absorbed into the cost term.

V. PROBLEM STATEMENT

In this article, we frame the constrained OCP introduced in
Section III as a probabilistic inference problem, using ideas
developed in Section IV.

Itis first instructive to consider the dynamics constraint, which
is incorporated into the prior in (4) via the Dirac delta function.
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In this case, the term E,(,)[—logp(7)] is infinite for any 7,
which does not obey the dynamics constraint. We can convert
this unconstrained optimization problem with infinite cost to
the following constrained optimization problem on the space of
probability distributions

min F(q)
S.t.
vte{l,...,T}
Py(f(x¢-1,up1) = %x¢) =1 9)

where F(q) is the free energy from (8) with the infinite cost term
S, log 8(x; — f(x:_1,u; 1)) dropped from logp(7), and
P,(A) is the probability of event A under probability measure
q(7). Applying this process to other constraints, we have

min 7 (q)
s.t.
Py(h(r) =0) =
Palg(r) <0) =
vte{l,...,T}

Py(f(xi—1,u1) = %) =1

Pq(umin <u ;< umax) =1

Pq(xmin <x¢ < Xmax) =1. (10)

Our goal is to solve the aforementioned optimization problem.
However, for any practical algorithm, we cannot guarantee exact
constraint satisfaction, both due to the potential nonconvexity
of the constraint functions and due to limited computation time.
Computation time is especially limited in an online planning
scenario. Therefore, we will evaluate our method according to
both the cost of the resulting trajectories and the amount of
constraint violation when optimizing within a fixed number of
iterations.

VI. STEIN VARIATIONAL GRADIENT DESCENT (SVGD)

We develop an algorithm to solve the constrained variational
inference objective in (10) based on SVGD [45]. In this section,
we will give an overview of SVGD that forms the foundation
of our method. SVGD is a variational inference technique that
uses a nonparametric representation of the variational posterior.
In our algorithm, we use SVGD to approximate the distribution
p(T]o = 1) with particles, where each particle is a trajectory.
Consider the variational inference problem

q"(x) = arg zr(l)i(l)l KL (q(x)[|p(x)) an

where x € R? and p and ¢ are two probability density functions
supported on R?. SVGD uses a particle representation of ¢(x) =
+ vazl §(x — x*), and iteratively updates these particles in
order to minimize KL (q(x)||p(x)). SVGD updates the particle
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set with the update equation

Xip1 = X}, + €07 (x},) 12)
where € > 0 is a step-size parameter, & is the iteration number,
and ¢ is the particle index. The update ¢* is computed using a

differentiable positive definite kernel function /C via

N
¥(oi 1 i i j i od
o (x},) = N E K(xk,xfg)vxi log p(x7,) + inlC(xk,xi).
Jj=1

(13)
The first term of this objective maximizes the log probability
p(x) for the particles, with particles sharing gradients according
to their similarity defined by XC. The second term is a repulsive
term that acts to push particles away from one another and
prevents the particle set from collapsing to alocal MAP solution.
We will now give further details on the derivation of the
SVGD algorithm and demonstrate that it does indeed minimize
KL(q(x)||p(x)). We will use the developments in this section
to show that the fixed points of our algorithm satisfy first-order
optimality conditions in Section VII-A3. SVGD is based on the
kernelized Stein discrepancy (KSD) [62], which is a measure of
the discrepancy between two distributions p and ¢. The KSD is
computed as the result of the following constrained functional
maximization:

S(p,q) = max {Bxg[ App(x)] st [|0lle <1} (4D
where ¢ : R? — R%is a function in a vector-valued reproducing
kernel Hilbert space (RKHS) H¢ with a scalar kernel K : R? x
R? — R. A, is the Stein operator

Apd(x) = Vi log p(x)"¢(x) + Vx - d(x)

where Vy - ¢(x) = ZZ:1 0z, O (x). It was established in [62]
that S(¢, p) = 0 <= p = ¢ for a strictly positive-definite ker-
nel K. To minimize the KL divergence, SVGD considers the
incremental transform x. = X + e¢(x), where x ~ ¢(x) and €
is a scalar step-size parameter. The resulting distribution after
applying the transform is gj.¢). SVGD uses the following result:

VeKL(qep)l[P(x))le=0 = —Exng[Apd(x)]  (16)

which relates the Stein operator and the derivative of the KL
divergence w.r.t the perturbation . We would like to select ¢
that maximally decreases the KL divergence. By considering
o€ {pe€H; ||¢|lys < 1}, the optimal ¢ is the solution to
the following constrained functional maximization:

¢* = arg ;Ié%{—ve’Cﬁ(Q[m]\|P(X))|e:0 s.L|[@]lpa < 1}

)
This maximization has a closed-form solution, derived in [62,
Th. 3.8]. Note that we have used a slightly different definition
of the Stein operator than that used in [62, Th. 3.8], with A, as
defined in (15) as equal to the trace of the Stein operator defined
in [62]. The closed-form solution is given by

0" (1) = Exq[ApK(:, x)]
= EXNq[K:('? x)Vx log p(x) + vx’C('a X”

5)

(18)
19)
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and the resulting gradient of the KL divergence is

Ve’CE(Q[ap*] P(x))|e=0 = =S(p, q)-

This implies that for a suitably chosen kernel K, if the gradient
of the KL divergence is zero then the KSD is also zero, which
means that p = ¢g. We finally arrive at the update rule given in
(13) as the approximation of the closed-form solution in (19)
with a finite set of particles.

(20)

A. Orthogonal-Space SVGD

Recently Zhang et al. [23] proposed O-SVGD, a method for
performing SVGD with a single equality constraint, although
they do not consider the problem of trajectory optimization. In
this section, we give an overview of O-SVGD, but we give an
alternative derivation to that given in [23] based on vector-valued
RKHS and matrix-valued kernels [63]. This alternative deriva-
tion will allow us to analyze our algorithm (see Section VII-A3).
The problem [23] aims to solve is

mqin KL(qg(x)||lp(x)) st. Py(h(x)=0)=1 (21)
where h represents a single equality constraint. For particles x
that are on the manifold induced by h(x) = 0, we would like
them to remain on the manifold after applying the Stein update
in (12). To do this, we replace the function ¢(x) with P(x)¢(x),
where P(x) projects the updates to be in the tangent space of
the constraint and is given by

Vh(x)Vh(x)T
IV (R)[?
We can develop an SVGD algorithm that updates particles
on the constraint manifold by considering the set of func-
tions {P(x)¢(x), ¢(x) € He}. By applying [63, Lemma 2],
we establish that this set of functions is an RKHS H? with
matrix-valued kernel /C, given by

Ki(x',x7) = P(xi)lC(Xi,xj)P(Xj)T
= K(x', x7)P(x")P(x7)

P(x) =1 (22)

(23)
(24)

where we have used the fact that /C is a scalar function and that
P(z) is symmetric to rearrange. Running SVGD with kernel
will therefore solve the constrained minimization problem (17),
maximally reducing the KL divergence while only considering
updates that lie in the tangent space of the constraint. Zhang
et al. [23] also add a term to (12) that drives particles to the
manifold induced by the constraint

P(h(x))Vh(x)
IVA(2)[[?

where 1 is an increasing odd function.

pc = — (25)

VII. METHODS

Our proposed trajectory optimization algorithm uses SVGD to
perform constrained optimization on a set of trajectories in par-
allel. The result is a diverse set of low-cost constraint-satisfying
trajectories. The full algorithm is shown in Algorithm 1. First, we
will introduce the main component of our proposed algorithm,
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which decomposes the Stein update into a step tangential to the
constraint boundary, and a step toward constraint satisfaction.
We will then provide an analysis of the algorithm which relates it
to problem (10). Finally, we will discuss strategies for improving
performance, which include separating the bounds constraints,
an annealing strategy for increasing particle diversity, and re-
sampling particles during the optimization. Fig. 2 demonstrates
CSVTO being applied to a 2-D toy problem.

A. Constrained Stein Trajectory Optimization

Solving the constrained variational inference problem in (10)
is very difficult, since it requires finding a distribution that may
exhibit multimodality and has constrained support. To address
this, we use a nonparametric representation of the distribution
q(T). We use SVGD where each particle is a trajectory, and
iteratively update the particle set while enforcing the constraints
on each particle. To do this, we extend O-SVGD to multi-
ple equality and inequality constraints and use it to generate
constraint-satisfying trajectories.

First, we relate using SVGD for unconstrained trajectory op-
timization to the minimization of the unconstrained variational
free energy F(q) from (7). Consider the iterative transform
Te = T + €¢*(7), where ¢* is the solution to (17) with posterior
log likelihood log p(7|o = 1), 7 ~ q(7) and 7, ~ ey (7). We
can recast (17) for trajectories in terms of the free energy F(q)

¢ (1) = arg gg{){g{—vef(q[w])k:o,s.t.||¢|\7.[d <1}. (26)

Thus, the update 7 + €¢* ensures we maximally decrease the
variational free energy. If ¢*(7) = 0, then ¢(7) is at a local
minimum of F(g). We will now modify the Stein update to
account for constraints.

1) Equality Constraints: We propose a modified Stein update
rule for the th particle, in which we decompose the update into
two components

Thy1 = Th + oy (1) + acde(rh) (27)

where ¢ is an update that is tangential to the constraint bound-
ary, ¢¢ acts in the direction that decreases constraint violation,
oy and ao are scalar step size parameters, and k is the iteration.
We replace the O-SVGD ¢ from (25) with a Gauss—Newton
step to minimize h(7)7 h(T)

oc (1) = Vh(T)T (Vh(T)VRh(r)T) ™ (7). (28)

This uses approximate second-order curvature information for
fast convergence. We then compute the projection matrix P(7),
which projects vectors onto the tangent space of the constraints
as

P(r) = I — V()T (VA(T)Vh(T)T) I Vh(T). (29)

Inverting Vh(7)Vh(7)T is only possible if VA(7) is full rank.
While in Sections VII-A2 and VII-A3, we assume that Vh(7)
is full rank, for numerical stability we compute the pseudoin-
verse of VA(7)Vh(7)T via the singular-value decomposition,
discarding singular vectors corresponding to singular values that
are smaller than 1 x 107%. Once we have P(7), we use it to
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Fig. 2.

CSVTO visualized for a 2-D problem. The posterior is a mixture of three Gaussians, with the log posterior peaks visualized. There is an equality constraint

that the particles must lie on the circle. There is also an inequality constraint that the particles must lie outside the shaded region. (a) Initial particles are randomly
generated and are not necessarily feasible. (b) Due to the annealing discussed in Section VII-A4, early on in the optimization the particles are constraint-satisfying
and diverse. (c)Particles move toward the relative peaks of the objective, however, the circled particle has become stuck in a poor local minimum due to the
constraints, where the gradient of the log posterior is directed towards an infeasible peak. Since the particle is isolated it is not sufficiently affected by the repulsive
gradient term that would help escape the local minimum. (d) Resampling step from Section VII-A8 resamples the particles, applying noise in the tangent space of
the constraints. This eliminates the particle at the poor local minimum. (e) Set of particles converges around the local minimum of the objectives while satisfying

the constraints.

define the tangent space kernel, as in [23]

Ki(r,77) = K(7',79)P(r") P(77). (30)

We then use this kernel for the SVGD update to produce an
update that is in the tangent space of the constraint

o1 (T =N Z’CL 7, 77) Vi log p(r7]o = 1)

+VTjICJ_<Ti,Tj). (31)

Since K is a matrix-valued function, the last term is calculated

(as in [63]) as
Z V[T.}

where the notation [z]; indicates the /th element of x. Equa-
tion (31) has several interesting features. First, two trajectory
particles 7% and 7/ are considered close if they are close
according to the original kernel /C. In addition, expanding
the first term to K (7%, 77)P(7") P(77)V 5 log p(77]o = 1), we
see that if P(7%) = P(77) this reduces to K(7¢, 77)P(77)V 5
log p(77|o = 1).For P(7%) # P(717), the magnitude of this term
will always be reduced. Intuitively this means that particles will
share gradients if particles are close and the tangent space of
the constraint is similar. In addition, all updates will be in the
tangent space of the constraint.

a) Repulsive term in the tangent space: The derivative
Viril [IKL(7%, 77)]1,m can be expanded to

[V Ko(r, )] (KL (%, 77)] (32)

Lm

Vel LT ) ]1m = Vi, (7 77) P(T) P(77)|1m
= [P(r")P(r)))tnVira, K(7, 77)

K, 7 )P(T)]im
X V[-,—j]m[P(Tj)]l’m.

We see from the aforementioned equation that the gradient of the
kernel consists of two terms. The first term projects the gradient
of the unconstrained kernel to the tangent space of the constraints
both at 7% and 77.

(33)

The second term requires computing the derivative of the
matrix-valued projection function. This term is expanded further
in Appendix A, showing that it requires the evaluation of the sec-
ond derivative of the constraint function V2h(7). For problems
with constraints for which the second derivative is unavailable,
we can remove this second term for individual constraints. We
do this by setting the second derivative of a particular constraint
to be the zero matrix (see Appendix A). Doing so effectively
uses a locally linear approximation of the constraint to compute
the repulsive gradient.

We will discuss how we define a kernel on trajectories in
Section VII-AS.

2) Extension to Inequality Constraints: We extend the afore-
mentioned method to inequality constraints with the use of
slack variables. We turn the inequality constraints into equality
constraints with slack variable z as

1
g(t) + 5z2 =0. (34)
The full set of equality constraints then becomes
. h
A (35)
9(1) + 32

Converting inequality constraints to equality constraints via
squared slack variables is often avoided as it can introduce spu-
rious non-local-minima that satisfy the Karush—Kuhn-Tucker
conditions [64]. To mitigate this issue, we make an assumption
on the regularity of the problem, denoted as (R) in [53]. The
details of the assumption are technical and we do not include it
here. The assumption essentially states that Vhis full rank at ini-
tialization and remains so during the optimization. Under these
assumptions, Schropp and Singer [53] proved that the hyperbolic
equilibrium points of the augmented system are local minima of
the equality and inequality-constrained optimization problem.
Optimizing multiple trajectories in parallel provides additional
robustness against this issue. Even should some particles become
stuck at one of these undesirable fixed points, in Section VII-AS,
we propose a method for resampling the set of particles which
redistributes particles away from these fixed points. While we
could avoid this issue by using nonnegative slack variables with
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the transformation ¢(7) + z, where z > 0, we found that this
led to poorer constraint satisfaction in practice.

After introducing the slack variables, we compute the con-
strained Stein update with all constraints as equality constraints.
We augment the state with z as

F= H . (36)
Z
The projection is given by
P(7) =1 —Vh(H)T(VAE)VR(HT)'WVh(7)  (37)
and the kernel is
K (#,#7) = K(r*, 7)) P(#")P(#). (38)

Notice that the kernel uses the original 7 and not the augmented
7. We then perform the constrained Stein update on the aug-
mented state

, 1 & o
PL(T") = NZKL(%ZW)

j=1

Viogp(rijo =1)
0

+ Vi Ky (75, 77)
o () = VA(H)T (VA(F)VR(H)T) ™ h(7).
Once we have performed the iterative optimization, we have

a set of trajectories. We then select a trajectory to execute by
choosing the one that minimizes the penalty function

Gi(7) = C(r) +4 ) [h(7)

3) Analysis: In this section, we provide an analysis of
CSVTO. We demonstrate that stationary points of the gradient
flow satisfy the first-order optimality conditions for the con-
strained variational optimization problem in (10), subject only
to equality constraints.

Theorem 1: Assume that V is full rank. Let ¢* € H% be the
solution to (17) with the unconstrained kernel K, and ¢* € H¢
be the solution to (17) using the tangent space kernel | . If the
following holds:

(39)
(40)

(41)

ay¢1 (1) + acoc(r) =0 (42)

then the following must be true:
" (7) + VA(r) ' =0 43)
h(r)=0 (44)

where 1 is a vector of Lagrange multipliers.

Proof: Since ¢ and ¢7 are orthogonal, then if (42) holds,
then ¢c = ¢ = 0. Next, we note that ¢* (7) = P(7), where
¢ €H? and further P(7)p(r) = 0= P(r)¢*(r) = 0. To
see this, consider P(7)¢*(7) # 0. This would imply that
VKL(qepe|lp(T]o = 1))|c=0 # 0, which implies that there
is a descent direction. This would mean that 3 ¢, such that
—V KL (giesr ) Ip(Tlo = 1)leco < —VKL(gleg, lp(rlo =
1))e—0, which is a contradiction. Expanding P(7)¢* = 0 yields

|1 = Vh(n)T (Th(r)VA()T) ™" Vh(7)] ¢'(7) = 0
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¢*(1) — Vh(r)" {(Vh(T)Vh(T)T)’1 Vh(r)¢* ()| = 0.
(45)

Specitying p = —(Vh(7)Vh(7)T)"Vh(r)¢*(T) results in
(43) being satisfied. Now we expand ¢ = 0 resulting in
Vh(r)"(VA(r)Vh(T)T) () = 0. (46)
To show feasibility at the stationary point, we left multiply (46)
by Vh(7), which for full rank VA results in A(7) = 0. [ |

Theorem 1 holds when we can integrate the expectation in
(19). However, we are approximating the expectation with par-
ticles so (43) may not hold in practice. However, the feasibility
condition (44) remains true when using a particle approximation
for ¢. To extend this proof to inequality constraints, note that in
Section VII-A2, we discussed the regularity conditions under
which hyperbolic stable stationary points of the gradient flow
on the augmented equality-constrained system satisfy first-order
optimality conditions of the original system with both equality
and inequality constraints.

4) Annealed SVGD for Improved Diversity: We employ an
annealing technique for SVGD as proposed in [65]. We use
a parameter v € [0,1] that controls the tradeoff between the
gradient of the posterior log-likelihood and the repulsive gra-
dient. For v << 1, the repulsive term dominates resulting in
trajectories being strongly forced away from one another. As ~y
increases, the gradient of the posterior likelihood has a greater
effect resulting in trajectories being optimized to decrease the
cost. When combined with ¢¢, this results in the optimization
prioritizing diverse constraint-satisfying trajectories first, then
decreasing cost later in the optimization. The annealed update
is given by

¢J_(7A' NZ’}/ICJ_ 7,7 7) [Vlogg(ﬂ )]

+V+jICL(7"i,7“'j). a7
We use a linear annealing schedule with v, = %, where K is the

total number of iterations. When performing online replanning,
we only perform the annealing when optimizing the trajectory
the first time-step.

5) Trajectory Kernel: CSVTO relies on a base kernel
K(7%,77) operating on pairs of trajectories that defines the
similarity between trajectories. As noted by Lambert et al. [20],
high-dimensional spaces can result in diminishing repulsive
forces, which can be problematic for trajectory optimization
problems due to the time horizon. We use a similar approach
to SVMPC [20] in that we decompose the kernel into the
sum of kernels operating on smaller components of the tra-
jectory. We use a sliding window approach to decompose the
trajectory. For a given sliding window length W, let 7t =

[@¢.0+w, ut—14—1+w]" . The overall kernel is then given by

W
K, 77)

(48)

Tt’Tt
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We use the radial-basis function (RBF) kernel K(r/,7/) =
exp(—+||7; — 7|3) as the base kernel, where h is the kernel
bandwidth. We use the median heuristic as in [45] to select the
kernel bandwidth:

b median(||r} — 7'5“2)2
B log(NV)

where N is the number of particles.

6) Bounds Constraint: Bounds constraints can, in principle,
be handled as general inequality constraints as described in the
aforementioned section. However, since this involves adding
additional slack variables incorporating bounds constraints in-
volves an additional T' x 2(d,, + d;) decision variables in the
optimization, where d, and d,, are the state and control dimen-
sionalities, respectively. It is more computationally convenient
to use a simple approach where at every iteration we directly
project the trajectory to satisfy the bound constraints. This is
done by

(49)

(50)

7 = min(max(Tmin, 7) Tmax ) -

7) Initialization: As introduced in Section IV, we have a
user-specified prior on controls p(U). To initialize CSVTO on a
new problem, we proceed by sampling from this prior p(U) and
using the dynamics f(x¢,u;) to generate sampled trajectories.
In this way, we ensure that the initial trajectory satisfies the
dynamics constraints.

We use a different initialization scheme when running tra-
jectory optimization online in a receding horizon fashion as
in Algorithm 2, as it is typical to warm-start the optimization
with the solution from the previous timestep. For a single parti-
cle, the trajectory consists of 7 = (x, .. S Up_y)).
The shift operation computes 7" = (X2, ..., X7, 1, U, ..., up).
Here x7,;,u7 is the initialization for the newly considered
future timestep. The initializations X7, ;, u}, may be chosen
in a problem-specific way. In our approach, we choose them
by duplicating the previous timestep’s state and control, i.e.,
(X1, up) = (X7, ur-1).

When running the algorithm with inequality constraints, for
both the online and warm-start optimizations, we initialize the
slack variable z withz = /2|g(7)| so that trajectories satisfying
the inequality constraint are initialized to satisfy the transformed
equality constraint.

The aforementioned heuristic is motivated by the assumption
that the solution should not vary much between timesteps.
However, the fact that we have a set of trajectories rather than a
single one can invalidate this assumption, since we can only take
a single action. Trajectories that have very different first actions
from the action taken can end up being quite poor initializations,
particularly in the presence of constraints that can render them
infeasible. Over time, these poor initializations can lead to the
degradation in the quality of the particles, which motivates the
next section in which we discuss a resampling technique to
prevent sample impoverishment.

8) Resampling: As discussed previously, the shift operation
can lead to trajectories that are not executed becoming infeasible
and rendering those particles useless for trajectory optimization.
In addition, our cost and constraints are not necessarily convex,

- XT,10, -
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Algorithm 1: A Single Step of CSVTO, This Will Run Every
Timestep.

1: function CSVTO(xg, 7, K, anneal)

2: z+ +/2]g(7)|

32 Frz)"

4: forke {1,....K}do

5: foric {i,...,N} do

6: (;% <+ via (40)

7 if anneal then

8: v %

9: @' < via (47)
10: else
11: gbi + via (39)
12: e b ayel +acdh
13: 7+~ PROJECTINBOUNDS (7).

14: > Get the best trajectory according to penalty function
15 7* « argmin, C; (%)

16: > Discard slack variables

17: 75,7« 757

18: return 7%, 7

so, as with any local optimization method, poor initializations
can lead to infeasibility. We take inspiration from the particle
filter literature [66] and incorporate a resampling step, which
is executed when performing online replanning. Every re-
sample_steps timesteps we resample after performing the
shift operation on the previous trajectory particles. To perform
resampling, we compute weights using the penalty function

exp(— ) -

N Ci (74
>3 exp(— )

where [ is a temperature parameter. We then resample a new set
of particles according to weights w. It is common in the particle
filter literature to additionally add noise, to prevent resampled
particles collapsing. However, in our case, it is undesirable to add
random noise to a constraint-satisfying trajectory as it may lead
to constraint violation. We avoid this issue by sampling noise
and projecting the noise to only have components in the tangent
space of the constraints for a given trajectory. Suppose we have
sampled trajectory 7; from the set of particles. We first sample
e ~N(0,02 T), and then, update the trajectory with

resample

w; =

Toew = Ti + P(73)¢€ (52)

where P(7;) is the projection matrix from (29).

VIII. EVALUATION

We evaluate our approach in three experiments. The first
is a constrained 12-DoF quadrotor task, which has nonlinear
underactuated dynamics. The second experiment is a 7-DoF
robot manipulator task, where the aim is to move the robot end
effector to a goal location while being constrained to move along
the surface of a table. The third experiment is also a 7-DoF robot
manipulator task, where the aim is to manipulate a wrench to a
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Algorithm 2: CSVTO Running With Online Replanning.
1: function CSVTO_MPC(xg, 1)

2: forte{l1,...,T}do

3: > Resample

4. if MOD(t, resample_steps) = 0 then
5: T¢ < RESAMPLE(T})

6: if t =1 then

7 K+ K,

8: anneal + True

9: else
10: K<+ K,
11: anneal < False

12: 7/, 7 < CSVTO(zy, 74, K, anneal)

13: > Select first control from the best trajectory
14: u; + 7%

15: x¢ < STEPENV(u,)

16: > Shift operation

17:  Ty41 < SHIFT(7y)

goal angle. Both of these 7-DoF manipulator tasks involve plan-
ning in highly constrained domains. We perform the manipulator
experiments in IsaacGym [67]. The hyperparameters we use in
all experiments are shown in Table I. For all experiments, the
costs and constraint functions are written using PyTorch [68],
and automatic differentiation is used to evaluate all relevant first
and second derivatives.

A. Baselines

We compare our trajectory optimization approach to both
sampling-based and gradient-based methods. We compare
against [POPT [24], a general nonlinear constrained optimiza-
tion solver, which has been widely used for robot trajectory
optimization [4], [25]. We use the MUMPS [69] linear solver
for IPOPT. When running IPOPT, where second derivatives
are available we use exact derivatives computed via automatic
differentiation in PyTorch, where they are not available we use
the limited-memory Broyden—Fletcher—Goldfarb—Shanno algo-
rithm (L-BFGS) [70] to approximate the Hessian. The method
used will be indicated for each experiment. For CSVTO and
IPOPT, we use a direct transcription scheme; IPOPT solves the
optimization problem as expressed in problem (1). For IPOPT,
we use the open-source implementation provided by Wichter
and Biegler [24].

We additionally compare against MPPI [37] and
SVMPC [20]. MPPI and SVMPC are methods for performing
unconstrained trajectory optimization, with constraints com-
monly incorporated with penalties. For these methods, we use
the penalty function é(%u) (1) =C(r) + 22 |h(T)|+u>]
lg(T)|*, where |g(7)|* is a vector consisting of only the
positive values of g(7). We use separate penalty weights for
equality and inequality constraints. We evaluate each of these
baselines on two different magnitudes of penalty weights on
equality constraints A. In the SVMPC paper, the authors show
that their method can be used both with and without gradients.

3611

We evaluate against two versions of SVMPC, one using a
sample-based approximation to the gradient and another using
the true gradient. For SVMPC and MPPI, we use a shooting
scheme since they can only handle constraints via penalties,
which can lead to poor satisfaction of the dynamics constraint.
We use our own implementations for MPPI and SVMPC in
PyTorch.

B. 12-DoF Quadrotor

We evaluate our method on a 12-DoF underactuated quadrotor
problem. The goal is to navigate the quadrotor from a start
state to a goal state. We chose this problem to demonstrate our
approach on a problem with complex nonlinear underactuated
dynamics. The experimental setup is shown in Figs. 3 and 4.
The state of the quadrotorisx = [z, y, z,p, ¢, 7, , 9, 2, D, ¢, 7] T,
where (z,y, z) is the 3-D position and (p, ¢, ) are the Euler
angles. The control is the thrust u = [u1, ug, u3, us]? € R We
place bounds constraints on the (z,y) location of the quadro-
tor to be within a 10m x 10m area centered at (0,0). The
goal is to travel from start locations sampled uniformly from
x,y € [3.0m,4.5m] to a goal location of (4,4) within 100
time steps. We place an equality constraint that the quadrotor
must travel along a nonlinear surface 2z = f¢(x, y). For this
surface, we sample z values from a GP prior with an RBF
kernel and zero mean function on a 10 x 10 grid of (z,y)
points. We use the sampled values as observations for a GP with
the same kernel and mean function and use the corresponding
posterior mean function as the equality constraint. We sample
a single surface in this way and use it for all experiments.
The dynamics for the 12-DoF quadrotor are from [71] and are
given by

[SERNSI.

~—

p+ads(p)t(q) + re(p)t(q)
oy _ffp»
s(p) | .cp
o T el
—(s(p)s(r) + c(r)e(p)s(q)) K
—(c(r)s(p) — c(p)s(r)s(q)) K
g—c(p)s ( ) K2
I
(I.—I,)pr+Kus
Iy
(Lo —1y)Ppg+Kuq

L I,

+ At

\s s\H

DI Pl S PR S BN SO S S~ T~ R S SN~
RRW R R AR N’ R

t+1

T
L
~+

(53)
where ¢(p), s(p),t(p) are cos,sin,and tan functions, respec-
tively. We use parameters m = 1 kg, I, = 0.5 kg -m?, I, =
0.1kg-m? I, =03kg - m?> K =5¢9=-98Im-s2. We
use the same dynamics both for planning and for simulation.
We consider three variants of this task with different obstacle
avoidance constraints: We consider the case with no obstacles;
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TABLE I
HYPERPARAMETER VALUES FOR THE THREE EXPERIMENTS

Experiment # particles ay ac € Kuw | Ko | resample_steps 5 O resample A w
Quadrotor 8 0.05 1 0.5 100 10 10 0.55 0.1 1000 3
Manipulator on surface 8 0.01 1 0.1 100 10 1 0.1 0.01 1000 | 3
Manipulator wrench 4 0.01 1 0.25 100 10 1 0.1 0.01 1000 3

(b)
(e) U]

Fig. 3.

(© (d)
(@) (h)

Experimental setup for the quadrotor task. The quadrotor must travel to the goal location, avoiding the obstacle in red while remaining on the blue

manifold. The fading yellow shows the path of the obstacle from previous timesteps. (a)—(d) CSVTO maintains a set of trajectories (dashed), with the selected
trajectory shown as a solid curve. CSVTO can keep a diverse set of trajectories and switches between them to avoid the moving obstacle. (e) and (f) [POPT
generates an initial trajectory that makes good progress toward the goal and obeys the manifold constraint. However, even after the first timestep the obstacle has
moved to render this trajectory infeasible. As the obstacle moves further, IPOPT is unable to find an alternative trajectory and ends in a collision. (a) CSVTO ¢t = 1.
(b) CSVTO t = 5. (¢) CSVTO t = 10. (d) CSVTO t = 15. (e) IPOPT ¢t = 1. (f) IPOPT ¢ = 5. (g) IPOPT ¢ = 10. (h) IPOPT ¢ = 15.

Fig. 4. Experimental setup for the quadrotor with static-obstacles task. The
quadrotor must travel to the goal location, avoiding the obstacles in red while
remaining on the blue manifold.

and we consider the case of static obstacles. For the static-
obstacles case, we wish to demonstrate our method in a cluttered
environment with arbitrarily shaped obstacles. We do this by
generating the obstacles similarly to the surface constraint,
which results in a smooth obstacle constraint. We consider a
constraint function fops(z, y), where the obstacle-free region is
{(x, ), foos(x,y) < 0}. We sample values for fops(z,y) from
a GP prior with an RBF kernel and a constant mean function
of —0.5 so that there is a bias toward being obstacle free, on a
10 x 10 grid of («,y) points. We then use these points as the
observations for a GP with the same mean function and kernel
as the GP prior. We also add observations at (—4, —4) and (4, 4)
of —2, to ensure the start and goal regions are obstacle free. We
use the resulting GP posterior mean function as fous(, y). We
do this once and keep the same obstacle constraint for all trials.
The resulting obstacle constraint is shown in Fig. 4. Finally,
we consider a cylindrical obstacle in the x—y plane that moves

during the trial in a path that is unknown to the planner; at every
timestep, the planner plans assuming the obstacle will remain
fixed. If the quadrotor collides with an obstacle during execution,
then we consider the task failed.

The planning horizon is 12. The posterior log p(7|o) for this
problem is a quadratic cost given by

logp(tlo) = (vr — xgoal)TP(xT — Tgoal)

T-1
+ Z(xt - xgoal)TQ(xt - xgoal) + UzllRutfl-

t=1
(54)

The control cost is equivalent to the prior on controls p(u;) =
N(0,2R™1). The values we use for the costs are

Q =Diag(5,5,0.5,2.5,2.5,0.025, 1.25,1.25,1.25, 2.5, 2.5, 2.5)

(55)
P =2Q (56)
R = Diag(0.5, 128, 128, 128). (57)

For this problem, we use automatic differentiation to compute
all required second derivatives for both IPOPT and CSVTO. We
run IPOPT with two different maximum iteration settings. For
the first, we limit the maximum number of iterations to 100 for
the initial warm start and to 10 for subsequent time steps. We
limit the number of iterations so that IPOPT has a comparable
computation time to other baselines. The next setting is to set
the maximum iterations to 1000, which allows IPOPT to run
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Fig.5. Comparison between CSVTO and IPOPT with multiple initializations

on the quadrotor task with static obstacles. We compare CSVTO with eight
trajectory samples versus eight runs of IPOPT, both from the same initializations
and record the minimum cost achieved from the eight trajectories over 200
iterations of both. We run ten trials for each method. The shaded regions show
the range of the minimum cost achieved over the ten trials. We see that from the
same initializations, CSVTO finds a solution with a lower cost.

until convergence for most queries. We refer to this method as
TPOPT-1000. As we will show in Section VIII-E, this method is
substantially slower than other baselines and prohibitively slow
for MPC applications, but we included this baseline to see how
well IPOPT performs when computation time is not an issue.
For the baselines using a penalty method, we use ;¢ = 2000 and
test two variants for A: A = 100 and A = 1000.

In Fig. 5, we compare CSVTO and IPOPT run for 200
iterations for a single planning query with multiple differ-
ent initializations, indicating that for the same initializations,
CSVTO finds a lower cost local minimum. To generate these
initializations, we sample a nominal control sequence from the
prior p(U) and use small Gaussian perturbations with o = 0.01
around this nominal control sequence as the initialization. The
initial state sequence is found by applying these controls with
the dynamics. We repeat this process ten times for a different
nominal control sequence. The results demonstrate that parallel
trajectory optimization with CSVTO is beneficial even when the
initial trajectory distribution is not diverse.

We ran the quadrotor experiments for the three different
obstacle cases for 20 trials with randomly sampled starts. The
results are shown in Fig. 6. CSVTO succeeds for 20/20 trials
for the no-obstacles and dynamic-obstacles cases, and 19/20 for
the static-obstacle case, all with a goal threshold of 0.3 m. For
the static-obstacle and dynamic-obstacle experiments, [POPT
is the next best performing with 20/20 trials for no obstacles
at a goal threshold of 0.4 m, but success falls to 15/20 for
both the static-obstacles and dynamic-obstacle case. We see that
running IPOPT with more iterations improves performance for
the static-obstacles case, but in the other two cases, there is no
significant difference in performance when allowing IPOPT to
run until convergence. However, running IPOPT to convergence
has substantially higher computation time, which we will discuss
further in Section VIII-E. For the no-obstacles and dynamic-
obstacle cases, we see that sample-based methods perform well
according to the task success rate, however, they fail to satisfy the
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surface equality constraint. In addition, both MPPI and SVMPC
fail for the static-obstacles case.

Trajectories generated from IPOPT versus CSVTO for the
dynamic-obstacles case are shown in Fig. 3, IPOPT generates a
trajectory aiming to go around the obstacle, but the movement of
the obstacle renders that trajectory infeasible as time progresses.
IPOPT is not able to adapt the trajectory to go around the
obstacle. In contrast, CSVTO generates a multimodal set of
trajectories that go either way around the obstacle. It is then
able to update the trajectories effectively, avoiding the obstacle
and reaching the goal. We do see that IPOPT achieves the lowest
constraint violation in the case of no obstacle or a static obstacle,
while CSVTO achieves the lowest constraint violation when
there is a dynamic obstacle.

C. Robot Manipulator on Surface

In this task, we consider a 7-DoF robot manipulator where
the end effector is constrained to move in SE(2) along the
surface of a table. The robot must move to a goal location
while avoiding obstacles on the surface. The setup is shown in
Fig. 7. This system’s state space is the robot’s joint configuration
g € R%. The actions are the joint velocity ¢ and the dynamics
are given by Euler integration q.11 = ¢+ + ¢; dt, with dt = 0.1.
The prior distribution over actions is p(U) = N (0, 0%I), where
o = 0.5. The planning horizon is 15. The cost is C(7) =
2500] [p3 — pLyl[2 + 250 S [Ip5¥ — L, where pi¥ is
the end effector z,y position, which is computed from the
forward kinematics. The equality constraints on this system are
p; = 0.8, which is the height of the table, and additionally, there
is an orientation constraint that the z-axis of the robot end effector
must be orthogonal to the table, i.e., the inner product of the table
z-axis and the robot z-axis should be equal to —1.

While obeying the table constraint the robot must also
avoid three obstacles from the Yale-CMU-Berkeley object
dataset [72]. We enforce this with a constraint that the signed
distance to the obstacles must be positive, which we compute
from the meshes of the objects. Since signed distance functions
(SDFs) are composable via the min operator, we combine the
SDFs of the three obstacles into a single inequality constraint per
timestep rather than an inequality constraint per obstacle. This is
to reduce the total number of inequality constraints, as introduc-
ing more inequality constraints results in more slack variables
and a higher dimensional problem. To evaluate this constraint,
offline we generate points on the surface of the robot. Online, we
use forward kinematics to map all of these points to the world
frame and evaluate their SDF value, selecting the minimum SDF
value as the value of the constraint. To compute the gradient
of the constraint, consider that for any surface point, we can
compute the gradient of the SDF value with respect to the point
from the object mesh. We then use automatic differentiation to
backpropagate this gradient through the forward kinematics to
compute a gradient of the SDF value with respect to the joint
configuration. Finally, to calculate an overall gradient, we use
a weighted combination of the gradients for each surface point,
with the weight computed via a sof tmin operation on the SDF
values.
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Fig. 6.

Results for quadrotor experiments. The top row shows the success rate as we increase the size of the goal region. The bottom row shows the average

surface constraint violation as a function of time. (Left) No obstacle. (Middle) Static obstacles. (Right) Dynamic obstacle.

Fig. 7. Snapshots from CSVTO used for the robot manipulator on a surface
experiment. The robot must move the end effector to a goal location while
remaining on the surface of the table and avoiding the obstacles. CSVTO
generates trajectories that explore different routes to the goal.

The resulting inequality constraint is not twice differentiable,
both because of nonsmooth object geometries and because
of composing SDFs with the min operator. Due to this, for
CSVTO, we omit the second-order term in (33) for the inequality
constraint, and for IPOPT, we use L-BFGS to approximate
second-order information. Computing the SDF value and gradi-
ent is a computationally expensive operation, so we precompute
grids of the SDF values and the SDF gradients and do a lookup
when performing the optimization. We use a 320 x 320 x 480
grid with a resolution of 2.5mm. There are also joint limit
constraints on all of the robot joints.

For the penalty-based baselines, we use penalty parameters of
= 2000 and variants with A = 100 and A = 1000. For IPOPT,
we found that running until convergence was prohibitively
costly, taking several minutes to converge per optimization.
For this reason, we limited the maximum number of iterations
for IPOPT to be the same as CSVTO, resulting in a similar
computation time. This is discussed further in Section VIII-E.

—— CSVTO (Ours)  —— MPPIA = 1000 ~— SVMPC-grad A = 100
—— IPOPT —— SVMPCA=100  —— SVMPC-grad A = 1000
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Fig. 8. Results for the robot manipulator on surface experiments. (Left)

Success rate as we increase the size of the goal region. (Right) Average constraint
violation as a function of time for both the height constraint and the orientation
constraint.

Due to contact with the table, the dynamics of the system used
for planning can deviate from those in the simulation. When
computing the constraint violation, we use the actual constraint
violation in the simulator rather than the planned constraint
violation.

We run this experiment for 20 trials with random goals and
show the results in Fig. 8. Our results show that CSVTO succeeds
in all 20 trials with a goal threshold Of 0.1 m and achieves
the lowest constraint violation of all methods. The next closest
baseline, IPOPT succeeds 19/20 times, with the failure case
resulting from a poor local minima with ¢, and ¢, on either
side of an obstacle, but a large distance from one another. This
resulted in the robot becoming stuck on the obstacle and unable
to make progress.
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Fig.9. Robot manipulator turning a wrench experimental setup. The goal is to
turn the wrench by 90°. End-effector planned path at the first time-step visualized
for three different initial trajectories generated by (top) CSVTO and (bottom)
IPOPT. CSVTO’s end-effector path traces an arc around the wrench center to
turn the wrench, while IPOPT paths are often poor, containing very large steps
and lacking smoothness.

D. Robot Manipulator Using Wrench

In this task, we consider a 7-DoF robot manipulator in which
the goal is to manipulate a wrench to a goal angle. To turn the
wrench, the robot must be able to supply at least 1 Nm of torque.
The setup is shown in Fig. 9. The state space is [¢ ¢ 6]7.
q € R7 is the configuration space of the robot. ¢ parameterizes
the distance between the robot end effector and the wrench in the
x—y plane as [ + ¢ where [ is a nominal distance. 0 is the wrench
angle. The actions are the joint velocities ¢. The dynamics of
the joint configuration are given by Euler integration ¢,y =
G+ + ¢+ dt, with dt = 0.1. We use a simple geometric model
for dynamics of ¢ and 6. Assuming that the robot end effector
remains grasping the wrench, we compute the next ¢ as ¢ =
||pec’ — Pymencnl|2 — 1. To compute the next joint angle 6, we

use 0,11 = 0; + tan 22 <¢ The prior distribution over actions is

p(U) = N(0,0%I), where o = 1.

The equality constraints of the system are that pZ, should
be at a fixed height, and additionally, that 67 = 0goa. There is
also a constraint that the end-effector orientation of the robot
remains fixed relative to the wrench. To do this, we compute
the desired end-effector orientation from the wrench angle, and
compute the relative rotation between the desired and actual
end-effector orientation in the axis—angle form, constraining the
angle to be zero. In total, combining the dynamics constraints
for ¢ and 0 with the other equality constraints, there are four
equality constraints on the pose of the end effector per time
step. When reporting the constraint violation, we report the
maximum violation of these four constraints. The inequality
constraints of the system are that the desired torque should
be achievable within the robot joint limits. This constraint
is min_torque < J(¢)T (I + ¢) < max_torque, where .J
is the manipulator jacobian. There are also joint limit bound
constraints, and a bound constraint on ¢. Computing the sec-
ond derivative of this constraint requires computing the second
derivative of the manipulator Jacobian, which is costly. To avoid
this, for CSVTO, we omit the second-order terms in (33), and for
IPOPT, we use L-BFGS. There is no cost C' for this experiment,
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Fig.10.  Results for the robot manipulator using the wrench. (Left) Success rate

as we increase the size of the goal region. (Right) Average constraint violation
as a function of time, where we compute the constraint violation at a given time
via the maximum violation among the equality constraints.

instead, the inference problem reduces to conditioning the prior
on constraint satisfaction. The planning horizon is 12.

For the penalty-based methods we use = 1000 and vari-
ants with A = 1000 and A = 10000. We run IPOPT both until
convergence with a max number of iterations of 1000, and
additionally, with a max iterations of 200 at warmup and 20
online, which results in a similar computation time to CSVTO.

We run this experiment for 20 trials with random initializa-
tions and show the results in the bottom row of Fig. 10. This prob-
lem is challenging because the dynamics are based on a simple
inaccurate geometric model. Compliance in the gripper causes
deviation from this geometric model, and the model is only
accurate so long as all constraints hold. Our results show that
CSVTO can succeed in all 20 trials with a goal threshold of 0.06
radians and achieves the lowest constraint violation. The next
closest baseline, SVMPC-grad with A = 10000 succeeds 19/20
times with a goal threshold of 0.09 radians, dropping to 11/20 at
0.06 radians. We find that running IPOPT to convergence leads
to poor performance, as the solver is unable to converge to a
feasible solution. Limiting the maximum iterations to 200 for the
initial warm-start and 20 for subsequent online iterations leads
to improved task performance, achieving a success rate of 12/20.

We also demonstrate CSVTO on real hardware for the robot
manipulator manipulating a wrench task, shown in Fig. 1. After
generating a configuration-space trajectory using CSVTO, we
command the robot to move to the first configuration waypoint of
that trajectory using a joint impedance controller. Once the robot
has reached the desired waypoint, we perform replanning to
generate a new configuration-space trajectory. We use the same
hyperparameters as those in the simulator for this experiment.
During execution, we applied disturbances by perturbing the
robot end effector. The impedance controller can reject small
disturbances, but larger disturbances require re-planning from
the perturbed location. Fig. 1 shows one such perturbation.
Despite large disturbances, our method was able to readjust the
grasp and complete the task successfully.

E. Computation Time

To determine the computation times for CSVTO and each
baseline, we ran ten trials for each experiment on a computer
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TABLE II
MEAN AND STANDARD DEVIATION OF COMPUTATION TIMES FOR CSVTO AND ALL BASELINE METHODS FOR THE 12-DOF QUADROTOR EXPERIMENTS

No obstacles Static obstacles Dynamic obstacles
Method Koy Ko tw (s) to (s) tw (s) to (s) tw (s) to (s)

CSVTO (Ours) 100 10 5.92+0.235 0.589 £ 0.003 6.56 £ 0.39 0.650 £0.025 | 6.47 +£0.344 | 0.643 £ 0.021
IPOPT 100 10 4.36 +2.29 0.429 +£ 0.008 7.19+2.48 0.768 £ 0.069 3.19 +1.89 0.479 £ 0.097

TPOPT-1000 1000 | 1000 17.5 £30.2 2.40+1.10 39.24+32.0 15.8 +£10.1 10.8 £24.5 2.45 4+ 2.26
SVMPC-grad 100 10 8.25 + 0.080 0.771£0.217 | 8.24 £0.061 0.765 £ 0.23 8.28 £ 0.054 | 0.850 £ 0.014
SVMPC 250 25 4.26 +0.030 0.439 +£ 0.002 6.07 £0.031 | 0.621 £ 0.003 4.35+0.24 0.449 £0.017
MPPI 250 25 3.63 +0.021 | 0.366 4 0.0019 | 5.45+ 0.039 0.55 + 0.003 3.66 £0.13 0.373 £0.016

t,,and ¢, are the average times taken to generate the trajectories for the warm-up phase and online phase, respectively.

AVERAGE COMPUTATION TIMES FOR CSVTO AND ALL BASELINE METHODS FOR THE 7-DOF ROBOT MANIPULATOR EXPERIMENTS

TABLE III

Surface Wrench

Method Ky Ko tw (S) to (S) K Ko tw (S) to
CSVTO (Ours) 100 10 9.41 +0.42 1.124+0.19 100 10 9.62 + 0.84 0.64 £+ 0.004
IPOPT 100 10 10.26 £+ 3.5 1.14 +0.27 200 20 5.82 +£0.54 0.493 + 0.028

IPOPT-1000 1000 | 1000 — — 1000 | 1000 30.8 £2.51 22.7+2.84

SVMPC-grad 100 10 8.55 +0.072 1.10 £0.27 100 10 9.54 £0.071 | 0.732 4+ 0.004
SVMPC 100 10 7.27 +£0.097 | 0.758 +0.010 100 10 7.44 £0.15 0.571 + 0.007
MPPI 100 10 6.91 +£0.12 0.691 + 0.028 100 10 7.05+£0.11 0.506 4+ 0.006

t,,and ¢, are the average times taken to generate the trajectories for the warm-up phase and online phase, respectively.

with an Intel i9-11900KF Processor with an NVIDIA RTX
3090 GPU. We record the average computation times for the
initial trajectory as well as subsequent online trajectories, which
we refer to as t,, and t,, respectively. We also record the
standard deviations of the computation times. The number of
iterations used for the warm-up and online phase is K, and K,
respectively. For IPOPT, this is a maximum number of iterations,
and the solver may terminate early. For all other methods, all
iterations are used.

1) 12-DoF Quadrotor: The average computation time of
CSVTO compared to baselines for all quadrotor experiments is
shown in Table II. For this experiment, computing the gradient
was a major computational bottleneck, thus for the sample-based
methods, we allowed them more iterations. We see that MPPI
and SVMPC are faster than CSVTO with online trajectory
computation times of 0.366s, 0.439 s, and 0.589 s, respectively.
For the no-obstacles and dynamic-obstacle cases, IPOPT is
also faster than CSVTO with an average online computation
time of 0.429 and 0.479 s due to early termination. However,
for the static-obstacles case, this rises to 0.768 s compared to
CSVTO at 0.650s. When running IPOPT to convergence, the
solving time is substantially larger, with an average computation
time for the static-obstacle case of 15.8s. We also see that
the standard deviations are very large, due to the variability in
how quickly the solver converges. Combining these with the
results from Section VIII-B, we see that CSVTO outperforms
IPOPT to convergence with substantially faster computation
times.

2) Robot 7-DoF Manipulator: The computation times for all
methods on both 7-DoF manipulation experiments are shown
in Table III. For the manipulator on a surface experiment, the
difference in computation speed of the sample-based versus
gradient-based algorithms per iteration was less pronounced
than for the quadrotor experiment. We thus kept the number
of iterations the same for all experiments, with 100 warm-
up iterations and ten online iterations. CSVTO and IPOPT

have similar computation times at 1.12s and 1.14s to com-
pute a trajectory online. MPPI is again the fastest algorithm
at 0.691 s to generate a trajectory online, although the perfor-
mance is lower both in terms of task success and constraint
violation. Initial attempts to run IPOPT with a maximum of
1000 iterations took several minutes to solve, which rendered it
impractical.

For the wrench task, CSVTO and SVMPC-grad have similar
computation times. While CSVTO requires the computation of
the second derivative of the constraints, the cost evaluation of
SVMPC-grad requires a loop through the time horizon, slowing
down both cost and gradient evaluation. Since CSVTO em-
ploys a collocation scheme, this process is vectorized. Whether
CSVTO or SVMPC-grad is faster depends on the relative cost
of computing the second derivatives versus looping through the
time horizon. Each iteration of [POPT was faster than CSVTO
for this experiment, as [IPOPT using the L-BFGS approximation
computes no second derivatives, whereas CSVTO only ne-
glected the second derivatives of the force inequality constraint.
We thus allowed IPOPT more iterations, as seen in Table III.
Attempting to allow IPOPT to run with a much larger maximum
iteration number resulted in much slower solving times and
worse performance.

IX. DISCUSSION

In this section, we will discuss some of the advantages of
CSVTO over baselines, and then, discuss some limitations and
finally highlight areas for future work.

A. Local Minima

CSVTO produces diverse approximately constraint-
satisfying trajectories. By encouraging diversity through
the course of the optimization, the algorithm searches the
solution space more widely and can result in multimodal sets of
solutions; for example, see Fig. 3. We found that this behavior
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is beneficial for escaping from local minima. This was most
clearly demonstrated in the 12-DoF Quadrotor experiment.
We found that in the case of no obstacles, IPOPT was
consistently able to get relatively close to the goal, achieving
a 100% success rate at a goal region of 0.4 m. However, it
was unable to escape a local minimum in the vicinity of the
goal region. This local minimum appears to be induced by
the surface constraint, as [IPOPT frequently became stuck at a
position where it needed to climb in height to reach the goal
while satisfying the constraint, incurring a large control cost.
In contrast, CSVTO was able to achieve a 100% success with a
much smaller goal region of 0.2 m.

B. Initialization

CSVTO optimizes a set of trajectories in parallel. Each of
these trajectories has a different random initialization, and, as
mentioned, the objective encourages trajectory diversity. We find
that this approach is effective at making the algorithm more
robust to poor initialization. This is most clearly seen in the
7-DoF wrench manipulation experiment, shown in Fig. 9. This
system is highly constrained, and we can see from Fig. 9 that the
trajectories generated by IPOPT can be very low quality when
poorly initialized. This is reflected in the success rates, where in
our experiments CSVTO succeeds for 20/20 of the trials versus
12/20 for IPOPT.

C. Limitations and Future Work

1) Differentiability: Our method requires that all costs and
constraints are differentiable. This is a restrictive assumption,
particularly when treating dynamics as a constraint. Many
contact-rich robot manipulation tasks exhibit discontinuities that
invalidate this assumption.

2) Slack Variables: Our approach converts inequality con-
straints to equality constraints by introducing slack variables.
While this is a natural way of incorporating inequality con-
straints into our method, it results in increasing the number
of decision variables by the number of inequality constraints.
This is likely to be problematic for long-horizon planning tasks
with many inequality constraints. A possible solution would be
solving a QP subproblem at every iteration to determine the
active inequality constraints as in [56], however, this has the
issue that we would need to solve an individual QP subproblem
for every particle.

3) Computation Time Inadequate for Real-Time Control: We
note from Table II, in the dynamic-obstacle quadrotor task, the
average computation time for online trajectory generation is
0.643 s for CSVTO, compared to MPPI, the fastest baseline,
taking 0.373s. In this case, the solve times for the current
implementation of CSVTO and all baselines are insufficient for
real-time reactive control. Our method, all baselines other than
IPOPT, and all cost and constraint functions were implemented
in Python, using automatic differentiation in PyTorch to compute
the relevant first and second derivatives. Implementing these
methods in C++, using a library such as CasADI [73] for
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automatic differentiation, may enable real-time performance on
these systems in future work.

4) Kernel Selection: While our approach decomposes the
kernel into a sum of kernels operating on subtrajectories, each
of these kernels is an RBF kernel. While the RBF has attractive
properties, such as strict positive definiteness and smoothness,
we believe that exploring task-specific kernels for trajectory
optimization is an interesting avenue for future work.

X. CONCLUSION

In this article, we presented CSVTO, an algorithm for
performing constrained trajectory optimization on a set of
trajectories in parallel. To develop CSVTO, we formulated con-
strained trajectory optimization as a Bayesian inference prob-
lem, and proposed a constrained SVGD algorithm inspired by
O-SVGD [23] for approximating the posterior over trajectories
with a set of particles. Our results demonstrated that CSVTO out-
performs baselines in challenging highly constrained tasks, such
as a 7-DoF wrench manipulation task, where CSVTO succeeded
in 20/20 trials versus 12/20 for IPOPT. In addition, our results
demonstrated that generating diverse constraint-satisfying tra-
jectories improves robustness to disturbances, such as changes
in the environment, as well as robustness to initialization.

APPENDIX
MATRIX DERIVATIVE OF P(7)

In (33), we showed that the repulsive gradient is split into two
terms, one of which contains the matrix derivative V, P(7).
In this section, we show how to compute this derivative. For no-
tational convenience, let 7 € RY (thus P(7) € RV*N), h(7) €
RM (where M is the number of constraints), and we omit the
dependence on T when writing the constraint derivative V(7).
V7, P(7) is a matrix of shape N x N. We refer to the second
derivative of the Ith constraint V?h,(7) as H;, which is an
N x N matrix. The matrix derivative V), P(7), as defined in
(33), can be expanded into the following three terms:

Ve [P(T)lik = 245k — Bik (58)
where A, B € RV*N Jand i,k € {1,...,N}. A; . is given by

M
Avk =Y [Hi]kil(VRVAT) " V]
l

(59)

To compute B; i, we first consider the matrix D, € RM*M:

N
[Diliom =Y (Hkj[Vl1j + [Hilj s [Vhlm)  (60)
J
forl,m € {1,..., M}. We then finally compute B, ;, as
M M .
Bix = Y_> [Dilim[VE" (VRVET) i

I m

x [(VAVAT) " Vh] . 1)
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When neglecting second-order terms for the /th constraint h;(7)
(as discussed in Section VII-Al-a), we set H; = 0 when com-
puting A; ;, and B; .
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