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Abstract

We investigate the consequences of nonideal chemical interaction between silicate and overlying hydrogen-rich
envelopes for rocky planets using basic tenets of phase equilibria. Based on our current understanding of the
temperature and pressure conditions for complete miscibility of silicate and hydrogen, we find that the silicate-
hydrogen binary solvus will dictate the nature of atmospheres and internal layering in rocky planets that garnered
H2-rich primary atmospheres. The temperatures at the surfaces of supercritical magma oceans will correspond to
the silicate-hydrogen solvus. As a result, the radial positions of supercritical magma ocean–atmosphere interfaces,
rather than their temperatures and pressures, should reflect the thermal states of these planets. The conditions
prescribed by the solvus influence the structure of the atmosphere, and thus the transit radii of sub-Neptunes.
Separation of iron-rich metal to form metal cores in sub-Neptunes and super-Earths is not assured due to prospects
for neutral buoyancy of metal in silicate melt induced by dissolution of H, Si, and O in the metal at high
temperatures.

Unified Astronomy Thesaurus concepts: Exoplanet formation (492)

1. Introduction

Super-Earths and sub-Neptunes are the most abundant
extrasolar planets based on our current census of the Galaxy
(e.g., F. Fressin et al. 2013). Super-Earths constitute a
population of rocky exoplanets of roughly Earth-like composi-
tions more massive than Earth, while sub-Neptunes constitute a
population of larger planets likely also with rock/metal cores
(we use the term “core” here when referring to the combination
of the silicate mantle and metal core, and “metal core” when
referring to the iron-rich phase only) but surrounded by
significant H/He envelopes comprising a few percent of the
total mass of the planets (A. Gupta & H. E. Schlichting 2019;
J. G. Rogers & J. E. Owen 2021). It is generally considered that
sub-Neptunes retained their primary atmospheres while the less
massive super-Earths also formed with H2-rich atmospheres but
lost them over time (J. E. Owen & Y. Wu 2013; A. Gupta &
H. E. Schlichting 2020). A revelation from transit surveys of
these planets is, therefore, that hydrogen-rich atmospheres were
apparently integral to their formation and evolution, raising the
specter of the ubiquity of hydrogen-rich atmospheres during
rocky planet formation in the Galaxy (e.g., J. L. Bean et al.
2021). Although there are no representatives of this class of
planets in our solar system, our planets may be the products of
variations on the same theme. Neptune and Uranus could have
formed by similar accretion processes, but involving more
volatile-rich “cores” (R. Helled et al. 2020), while Earth may be
an example of a planet formed from embryos with relatively
meager, but still important, hydrogen-rich atmospheres
(E. D. Young et al. 2023). The picture that emerges is one in
which the various types of rocky planets form a continuum
related by the processes of atmospheric loss and atmosphere–
interior interactions that vary with mass and access to
hydrogen.

The rocky planets and their precursor embryos are evidently
born hot as a result of the conversion of gravitational potential
energy into thermal energy (in addition to other sources of heat
such as short-lived radionuclides) during accretion. As a result,
bodies sufficiently hot to form magma oceans will remain hot for
up to billions of years (Gyr) if blanketed by an optically thick
H2-rich atmosphere (e.g., W. Misener & H. E. Schlichting
2022). Chemical equilibrium between the condensed “cores”
(i.e., silicate and metal) and overlying atmospheres contributes
higher molecular weight species to the primary atmospheres
(E. S. Kite et al. 2019; E. S. Kite 2020; H. E. Schlichting &
E. D. Young 2022), exacerbating the potential for retaining heat.
Interaction between molten silicate, molten metal, and hydrogen-
rich atmospheres is therefore a crucial aspect of subgiant planet
formation and evolution.
In this work, we consider the temperature and pressure

conditions attending the formation of planets with substantial
primary atmospheres, and examine the implications of the
relevant phase equilibria at these conditions for the structure of
the planets. For this purpose, we employ the simplest of
thermodynamic relationships between silicate magma oceans
and overlying hydrogen-rich atmospheres, that of a nonideal
binary mixture.
The paper is structured as follows. In Section 2, we describe

the temperatures and pressures of sub-Neptune cores and
atmospheres in the absence of chemical exchange between the
reservoirs. In Section 3, we describe reactions between silicate
magma oceans and hydrogen atmospheres in terms of their
miscibility. Section 4 describes the implications of complete
miscibility of silicate and hydrogen for sub-Neptune cores and
atmospheres, and Section 5 presents a general structure for sub-
Neptunes based on the miscibility of silicate and hydrogen.
Conclusions are summarized in Section 6.

2. Temperatures and Pressures at Magma Ocean Surfaces

Temperatures and pressures at atmosphere–magma ocean
interfaces early in the life of a planet can comprise extreme
conditions that go beyond the bounds of our present
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understanding of the physical chemistry of silicate melts, oxide
melts, and impure atmospheres. In some cases, these phases are
likely completely miscible, for example, defying our concept of
a planetary surface. We are accustomed to these circumstances
for the interiors of giant planets in relatively simple chemical
systems (e.g., supercritical hydrogen), but the implications for
rocky planets or planets whose mass budget is dominated by
“solids” rather than hydrogen (i.e., sub-Neptunes, Uranus, and
Neptune) are just beginning to be explored.

In models meant to constrain the mass–radius relationships
in sub-Neptunes, the focus is correctly placed on the
temperature and pressure structures of the hydrogen-rich
envelopes. As a result, the temperatures and pressures at the
base of hydrogen-rich envelopes are well studied (e.g.,
H. Chen & L. A. Rogers 2016; S. Ginzburg et al. 2016). As
an approximation, the magma ocean “cores” are often
considered to be isothermal because differences in temper-
ature on the order of a factor of ∼2, as imposed by adiabatic
temperature–pressure profiles (V. S. Solomatov 2009;
Y. Chachan & D. J. Stevenson 2018; E. D. Young et al.
2019), for example, are not especially important for the
overall thermal budget (e.g., J. J. Fortney et al. 2007;
E. D. Lopez & J. J. Fortney 2014; S. Ginzburg et al. 2016;
M. G. Brouwers et al. 2018). Given the relatively loose
constraints from planet formation models, the initial condi-
tions at the surfaces of the magma oceans beneath H2-rich
envelopes are often treated as free parameters (e.g., H. Chen
& L. A. Rogers 2016; Y. Chachan & D. J. Stevenson 2018;
A. Vazan et al. 2018; D. Modirrousta-Galian & J. Korenaga
2023). However, in the present work, factors of order 2 are
critical to interpretations of the phase equilibria of the core–
envelope interface, and we therefore seek tighter constraints
on the likely temperatures and pressures in the planet’s
interior. The issue is, what are the conditions that satisfy both
the potential temperatures of vigorously convecting magma
oceans and the temperatures and pressures imposed by the
overlying atmospheres?

In this section, we offer some simple calculations to illustrate
the ranges of temperatures and pressures relevant for atmos-
phere–magma ocean interfaces. To do so, we constrain the
relevant temperatures and pressures for the phase equilibria with
a reprisal of the basic features of planet accretion with H2-rich
atmospheres. The key result is that accretion of the hydrogen-
rich primary atmospheres evidenced by many exoplanets with
masses of ∼2–10M⊕ results in temperatures at the base of the
atmospheres of several thousands of degrees at GPa pressures.
We show that this is a robust conclusion (e.g., S. Ginzburg et al.
2016) that can be illustrated with the salient features of different
models for planets that accrete atmospheres from their host
protoplanetary disks. The same conclusion can also be inferred
from fitting mass–radius relations for planets with rocky cores
and hydrogen-dominated envelopes to the observed sub-Neptune
exoplanet population (e.g., E. D. Lopez & J. J. Fortney 2013;
H. Chen & L. A. Rogers 2016).

2.1. Gas Accretion

We envision a rocky core of mass Mc and radius Rc accreting
rapidly compared to the disk lifetime. The core captures gas
from the disk, forming an atmosphere of mass M. This captured
atmosphere initially has luminosity sufficiently large that heat
can be transported through the atmosphere only by convection
so that the temperature profile is adiabatic. For a convecting,

isentropic gas, =d T d P R Cln ln P, where R is the gas
constant and CP is the molar isobaric heat capacity. Treating
the hydrogen atmosphere as an ideal gas composed of H2
molecules, R/CP= γ/(γ− 1), where γ= 7/5 is the ratio of
isobaric to isochoric heat capacity. For hydrostatic pressure as a
function of radial position r, ( )m= -d P dr g k Tln B , where μ
is the mass of a gas molecule, kB is the Boltzmann constant,
g=GMc/r

2 is the acceleration due to gravity, and G is the
universal gravitational constant. We have, therefore, a temp-
erature profile given by dT/dr= ((1− γ)/γ)μg/kB. We assume
the atmosphere blends into the disk at the Bondi radius, so it
proves convenient to recast the constants in terms of the Bondi
radius,
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g
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2
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In the regime of interest, ¢ > >R RcB , so that the temperature
at the surface of the magma ocean Tc= T(Rc) is largely
independent of the properties of the surrounding disk, in which
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where we have assumed that the µ bR Mc c with β= 1/4
(D. Valencia et al. 2006).
This analysis shows that the base of the atmosphere is

expected to have temperatures far exceeding the melting point
of silicates. For example, for Mc= 4M⊕ and Tc= 14,300 K,
compared with the melting temperature of silicates of
∼2000 K. An initially molten surface is also likely from the
point of view of rocky core accretion, as shown below.

2.2. Adiabatic Core Accretion

The maximal temperature of the core as a whole is obtained by
assuming adiabatic conversion of gravitational potential energy
into heat during accretion (e.g., A. Treves et al. 1988), i.e., with no
radiative losses, and recognizing that latent heats of melting are
negligible. In this case, we have T= (3/5)GMc/(Rpc), where c is
the specific heat. For a fiducial planet mass of 4M⊕ and a typical
silicate melt c of 1500 J/(kg K) (e.g., from Cp∼ 4nR with n=
5 atoms per formula unit and 0.1 kgmole−1 for melt; N. de Koker
& L. Stixrude 2009), T= 70,700K. A body with this mass-
integrated temperature would have an isentropic potential
temperature (i.e., magma ocean surface temperature if blanketed
by a dense atmosphere) of ∼50,000K based on the equations for
melt adiabats used here. However, in order to retain a H2-rich
atmosphere comprising 10% by mass of the body, or for that
matter an atmosphere of just a few percent hydrogen, with an
equilibrium temperature of about 300 K (a relatively low value to
be conservative), reasonable values for hydrogen-rich sub-
Neptunes, a maximum temperature of ∼14,000K at the base of
the atmosphere is allowed (S. Ginzburg et al. 2016). The surface
temperature of the magma ocean as calculated in the adiabatic
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accretion scenario is therefore far greater than the maximum
surface temperature for retention of a H2-rich atmosphere. Here it
is the atmosphere that controls the temperature structure of the
core by setting the T and P boundary conditions for the magma
ocean once the core is cool enough to bind the atmosphere.

2.3. Diabatic Core Accretion

An alternative method for estimating the temperature of the
surface of the core might be to calculate the luminosity due
to nonadiabatic (i.e., diabatic) accretion. Here, a protracted
accretion of planetesimals and/or pebbles is spread over some
accretion time interval with quasi-continuous radiative losses.
The luminosity for protoplanets in the absence of atmospheres
is then =L GM m Racc c p (A. Benfield 1950; J. Frank et al.
2002; R. R. Rafikov 2006). With this scenario, the surface
blackbody radiation temperature is ( ( ))s p=T L R4B acc p

2 1 4,
yielding a value of TB= 830 K for a 4M⊕ planet with an
accretion rate of  = Å

-m M1 Myr 1. Ten times higher accretion
rates, i.e.,  = Å

-m M10 Myr 1, required for the most massive
sub-Neptune exoplanets to ensure formation before the gas disk
dissipates, yield values for TB of about 1660 K. However, once
these bodies approach the size of Mars, they will accrete
primary atmospheres, and their internal temperature and
luminosity will be controlled by radiation through their
atmospheres. Once an optically thick atmosphere accretes,
diffusion across the radiative–convective boundary yields a
luminosity of

(( ) ) ( )p s g g
k r

=
-

L
T R64

3
1

, 5atm
rcb
4

B

rcb

where κ and ρrcb are the mean opacity and density at the
radiative–convective boundary, respectively (S. Ginzburg et al.
2016). For a 1M⊕ protoplanet with a 2% by mass atmosphere, we
find that the ratio of Latm/Lacc is 0.11. The timescale required to
dissipate the entirety of the gravitational potential energy for this
body, ( ) ( ) ( )= Å ÅE G M R3 5 1 1grav

2 , is Egrav/Latm= 6× 106 yr.
Although comparable in magnitude, this timescale is longer than
typical observed gas disk lifetimes. Therefore, core temperatures
of typical protoplanets forming with a primordial atmosphere
should exceed the temperature for the atmosphere-free case, TB,
by at least a factor of several, since their interiors can’t radiate
away all of their internal energy between successive accretion
events. Here, again, the magma ocean surface temperatures are
expected to be at least several thousand degrees.

2.4. Cooling

As the atmosphere cools, the luminosity L diminishes, and
the atmosphere develops an upper zone in which heat is
transported by photons. From Eddington’s equation for
radiative diffusion, the temperature gradient in this radiative
zone, ∇rad= dT/dr, is

( )kr
ps

 = -
L

T r
3

64
, 6rad 3 2

where κ is the opacity, ρ is the density, and σ is the Stefan–
Boltzmann constant. For the opacity κ= κ(P, T), we adopt the
parameterization of R. S. Freedman et al. (2014). For the

density, we assume hydrostatic equilibrium:

( )r m
= -

d
dr

GM
k Tr

ln
, 7c

B
2

and for the pressure, we adopt the ideal gas equation of state:

( )r
m

=P k T. 8B

At any radius in the atmosphere, we assume that the
temperature gradient is

( )=
 

 + 
dT
dr

, 9rad conv
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where the convective temperature gradient is adiabatic such
that
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g
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1
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B
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Equations (6)–(10) complete our formulation of atmospheric
structure.
In our approach, the radiative–convective boundary does not

appear explicitly, as it does in many previous studies, which
assume an abrupt switch from radiative to convective heat
transport at the radiative–convective boundary Rrcb (e.g.,
S. Ginzburg et al. 2016; J. E. Owen & Y. Wu 2017). Instead,
heat transport switches over gradually from radiative to
convective with increasing density, according to Equation (9).
We derive the radiative–convective boundary from our atmo-
spheric structure solutions, taking Rrcb to be that radius r at
which ∇rad(r)=∇conv(r).
As an illustration, we integrate Equations (6)–(10) with

boundary conditions suitable for many observed sub-Neptune
exoplanets with Mc= 4M⊕, Teq= T(r= RB)= 1000 K, and
ρdisk= ρ(r= RB)= 10−6 g cm−3, corresponding to an orbital
radius of 0.08 au (orbital period 8 days) in a minimum mass
solar nebula (C. Hayashi 1981). Decreasing luminosity yields a
family of atmospheric structures upon cooling (Figure 1).
Initially, the atmospheric structure is adiabatic, with no
radiative zone. As the atmosphere cools and the luminosity
diminishes, the radiative zone grows and Rrcb shrinks,
producing a nearly isothermal outer region. As the planet
cools, the atmosphere grows in mass M by accretion from the
surrounding disk (Figure 1). The phenomenon of accretion on
cooling has been examined in previous studies (E. J. Lee &
E. Chiang 2015; S. Ginzburg et al. 2016).

2.5. Mass Loss Following Disk Dispersal

Atmospheres are susceptible to erosion by photoevaporation
for planets proximal to their host stars (J. E. Owen &
Y. Wu 2017; J. E. Owen 2019), core-powered mass loss
(S. Ginzburg et al. 2016), and “spontaneous mass loss”/“boil off”
once the confining protoplanetary disk dissipates (S. Ginzburg
et al. 2016; J. E. Owen & Y. Wu 2016; J. G. Rogers et al. 2024a).
In the case of some sub-Neptunes, atmospheres can be stable for
of order 109 yr (S. Ginzburg et al. 2018; J. G. Rogers &
J. E. Owen 2021; S. Markham et al. 2022). On the other hand, in
other circumstances (e.g., with favorable disk dispersal timescales
compared to planetary accretion and cooling timescales),
significant fractions of the primary atmospheres (e.g., >90%)
can be lost in 106 yr during disk dispersal (S. Ginzburg et al.
2016; J. G. Rogers et al. 2024a). Here, we consider a simple
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representation of atmospheric mass loss with implications for the
temperature structure of the planet.

Following dispersal of the protoplanetary disk, the planet’s
primary atmosphere is no longer supported by the pressure of
the surrounding disk, and the planet loses atmospheric mass on
a timescale

( )=t M M. 11loss

As mass is lost, the planet continues to cool on a timescale

( )=t E E. 12cool

The atmospheric mass is effectively

( ) ( )ò pr=M r r dr4 13
R

R
2

c

B

while the total energy of the atmosphere and core is

( )= +E E E , 14catm

where

⎜ ⎟⎛⎝ ⎞⎠ ( )ò g m
pr= - +

-
E

GM
r

k T
r dr

1
1

4 15
R

R
c
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B 2

c

B

and

( )ò pr=E cT r dr4 16c

R

0

2
c

represent the energy of the atmosphere and the core,
respectively.

We calculate the evolutionary history of our planet following
disk dispersal by assuming tcool= tloss, an equality found
to hold approximately in previous studies (W. Misener &
H. E. Schlichting 2021). In this case, thermal evolution and

mass loss are linked such that the fractional loss of mass in any
time interval is equal to the fractional loss of energy:
M/Md= E/Ed, where the subscript d refers to the values at
the time of disk dispersal. For our initial condition along this
trajectory, corresponding to the time of disk dispersal, we take
our atmospheric structure computed above at M= 0.16Mc,
similar to one of the cases studied by W. Misener &
H. E. Schlichting (2021). The trajectory of the planet in this
phase is very different from the trajectory that it follows while
the disk is present (Figure 1). Atmospheric mass and Rrcb
shrink together. The atmosphere is stable against mass loss:
Eatm< 0, i.e., the gravitational potential energy of the
atmosphere exceeds in magnitude the thermal energy of the
atmosphere.

2.6. Temperature and Pressure at the Magma Ocean Surface
with Time

We find that the pressure and temperature at the core surface
follow two distinct trends (Figure 2). During accretion, the core
surface follows a nearly isothermal path in which pressure
grows with atmospheric mass by a factor of 200 up to
M= 2Mc/3, while the temperature decreases by only 20% as
the outer radiative zone grows. Following disk dispersal, the
core surface follows a nearly isobaric path, with temperature
decreasing by a factor of 3, while the pressure varies
nonmonotonically by a factor of 2. The reason the pressure
changes little with mass loss is that Rrcb diminishes during mass
loss (Figure 1), concentrating a greater proportion of the
atmospheric mass close to the core surface. For comparison, we
also show in Figure 2 the case for cooling with no mass loss. In
this scenario, pressures are greater at the magma ocean surface
as again Rrcb decreases (closer to the condensed surface), but
with no compensating loss of mass.
The temperature–pressure structure of the planet core

(silicate magma ocean and metal core) can be constructed by
matching the potential temperature of the adiabatic magma

Figure 1. Evolution of the structure of the atmosphere during the accretion
(red) and mass-loss (blue) phases of planetary evolution, with arrows indicating
the direction of evolution. (Main figure) Atmospheric mass in units of Mc

plotted against the radiative–convective boundary Rrcb in units of Rc. (Inset)
Temperature structure of the atmosphere at different points during the
evolution: the three red curves correspond to the conditions at the three open
circles in the main figure, with the leftmost curve being the most evolved; the
blue curve corresponds to the blue circle in the main figure.

Figure 2. Evolution of the conditions at the surface of the core during the
accretion phase (red) and the mass-loss phase (blue solid). Surface temperature
vs. surface pressure is shown in the main figure, and surface temperature vs.
atmospheric mass is shown in the inset. Also shown is a cooling path without
mass loss (green). The symbols in the main figure and the inset correspond to
those states highlighted by symbols in Figure 1.
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ocean to the basal atmospheric T. For the core, we assume a
layered structure, consisting of a rocky mantle and an Fe-rich
metallic core in relative mass proportion equal to that of Earth
(2:1). We assume that the interior is isentropic with surface
conditions matching those at the base of the atmosphere at
r= Rc: T= Tc and P= Pc. To derive the core structure, we
solve the system of equations (e.g., S. Seager et al. 2007):

( )p r=
dm
dr

r4 , 172

( )r
= -

dP
dr

Gm
r

, 18
2

and

( )r
=

GdT
dr

T g
K

, 19
S

where m is the mass contained within radius r, Γ is the
Grüneisen parameter, and KS is the adiabatic bulk modulus,
together with the equations of state of mantle and core material
(see Appendix). Numerically integrating Equations (17)
through (19) for the metal core and mantle yields a density
and temperature profile for the planet core (see Appendix).

We use Equations (17) through (19) to calculate the core
pressures and temperatures in equilibrium with the atmospheres
with time (see Appendix). The core in our example maintains
very high temperatures through time, reaching 45,000 K at the
center immediately following disk dispersal, cooling to
18,000 K at the center following atmospheric mass loss
(Figure 3). The temperature throughout the core exceeds the
melting temperature; the core is a magma ocean that is
completely molten from center to surface. The pressure reaches
1200 GPa at the center, more than 3 times that at Earth’s center,
and the density reaches 16 g cm−3, 20% greater than at Earth’s
center.

Because the dT/dP slopes of silicate melt adiabats are
shallower than those of their liquidi and solidi (e.g., L. Stixr-
ude 2014), cooling will lead to progressive solidification of the
magma oceans from the interior outward, locking in the results
of phase equilibria incurred at higher temperatures.

3. Silicate-H2 Miscibility

The simplified examples of atmosphere and core accretion
described above would suggest that hydrogen-rich atmospheres
and magma oceans are in contact during much of the evolution
of sub-Neptunes, with magma ocean surface temperatures of
∼5000 to >10,000 K, and pressures of order ∼1–50 GPa (e.g.,
Figure 2). While a useful guide to relevant conditions, the
results outlined above are predicated on simple physical systems
with no chemical interaction. What is more, they assume
immiscible molten rock and atmospheres regardless of T and P.
Consider, for example, that the meaning of surface temperature
or pressure as described above where the core and atmosphere
become completely miscible is lost at these conditions.
The complexities of these chemical systems are the subject of
a number of recent studies (e.g., E. S. Kite et al. 2019;
E. S. Kite 2020; S. Markham et al. 2022; H. E. Schlichting &
E. D. Young 2022; W. Misener et al. 2023; J. G. Rogers et al.
2024b). In particular, S. Markham et al. (2022) and W. Misener
et al. (2023) considered feedback between the chemical
interactions between atmospheres and magma oceans and the
density structure of the planet’s atmospheres and their capacity
for convection. Most relevant to the present study, S. Markham
et al. (2022) highlighted the fact that a silicate-hydrogen system
might approach supercriticality at conditions expected to occur
at atmosphere–magma ocean interfaces (hereafter referred to as
AMOIs). The structure of the planets in question changes
markedly where miscibility is obtained at conditions that would
otherwise define the AMOIs.
Mapping the T- and P-dependent silicate-hydrogen misci-

bility would move us toward a more thorough and unified
understanding of planetary evolution, from Earths to Neptune-
like planets. Two-phase ab initio calculations for mixing
between silicates and H2 (T. Gilmore & L. P. Stixrude 2023)
suggest that, indeed, the conditions predicted to occur at
AMOIs appear to broadly coincide with silicate-H2 miscibility.
To facilitate communication across disciplines, we will use the
phase equilibria term “solvus” for the coexistence curve
separating the regions of two-phase and single-phase thermo-
dynamic stability for silicate and hydrogen. The boundary,
more generally referred to as the binodal, could alternatively be
described with a spinodal curve if it demarcates the conditions
for spontaneous decomposition of one phase into two phases.
The spinodal refers to the boundary for spontaneity of the phase
transition rather than thermodynamic stability (Figure 4; e.g.,
A. Allabar & M. Nowak 2018). T. Gilmore & L. P. Stixrude
(2023) provide a detailed analysis of the system MgSiO3-H2
using density functional theory molecular dynamics simulations,
including relevant thermodynamic parameters. Here, we are
concerned with the implications of the mere existence of the
solvus at conditions relevant for hydrogen-rich envelopes and
hydrogen-rich silicate melts. For this purpose, it is sufficient to
consider the results for a bulk hydrogen composition of about
4% by mass, indicating that the silicate-H2 system is completely
miscible above about 4000K at 3.5 GPa while two phases exist
at 3000K at similar pressures. These results suggest that the
implied T and P for the solvus for this bulk composition are near

Figure 3. Temperature of the planet at disk dispersal (red) and after mass loss
(blue) compared with estimates of the melting temperature of silicates and iron-
rich alloy (gray lines) shown over the domains of rock (0.5 < r/Rc < 1.0) and
metal (r/Rc < 0.5), respectively. The red and blue curves correspond to the
states highlighted by symbols in Figure 1 at disk dispersal (M = 0.16Mc) and
after mass loss (M = 0.025Mc). The vertical line shows the surface of the core.
The inset shows the density (blue) and pressure (black, right-hand axis) of the
planet following mass loss.
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those expected for a sub-Neptune with a few weight percent H2.
We note that we are exploring the consequences of complete
miscibility between the hydrogen-rich gaseous phase and silicate
melt. Our emphasis is not the precise temperature and pressure
of the solvus (binodal), and our analysis is generally robust with
respect to uncertainties in these details.

The implications for silicate-hydrogen miscibility can be
portrayed using simple binary phase diagrams. Such diagrams
could be constructed assuming symmetrical, nonideal mixing
(on a molar basis), conforming to a regular solution in which
the interaction parameter W is related to the consolute
temperature, Tc (peak T of the symmetrical mixing solvus) by
W= 2RTc. The molar change in enthalpy associated with
mixing, referred to as the excess enthalpy, is then ˆD =HEX
x x Wsil H2 , where xi refers to the mole fraction of species i. The
change in the Gibbs free energy due to mixing, ˆDGmix, is
computed from this nonideal enthalpy of mixing and an ideal
entropy of mixing, yielding

ˆ
( ( ) ( )) ( )

D =
+ + - -

G x x W
RT x x x xln 1 ln 1 , 20

mix sil H

H H H H

2

2 2 2 2

where the entropy of mixing is ˆ (D = - +S R x xlnmix H H2 2

( ) ( ))- -x x1 ln 1H H2 2 . The Gibbs free energy of mixing for
the W implied by a consolute temperature of 4000 K is
66500 J mole−1. The entropy of mixing here is based on
mixing of the two molecular moieties. It is a placeholder for a
more realistic formulation for the configurational entropy that
involves speciation in the melt.

By analogy with the water-H2 (A. Gupta et al. 2024) and
albite-water (K. Mibe et al. 2007; A. R. Makhluf et al. 2016)
systems, the more general case would include the possibility
that the nonideal mixing is asymmetrical, reflecting greater
solubility of the simpler molecular species in the melt as
opposed to the reverse. In this case, a subregular solution
model (H. K. Hardy 1953), or a quasi-regular solution model,
can be used to describe the binary system. The excess enthalpy
of mixing is in this case defined by two interaction parameters,
where ˆ ( )D = +H W W x x xEX A B sil H sil2 . The nonideal mixing can

then be described by the excess free energy, ˆDGEX, of the form
(S. Onel & T. Ando 2016)

ˆ ( ) ( ) ( )tD = + -G W W x x x T1 , 21EX A B sil H sil S2

where τS accounts for the temperature dependence of the
excess free energy term, and the excess entropy of mixing is by
definition ˆ ( ) tD = +S W W x x xEX A B sil H sil S2 . The free energy of
mixing is, in the asymmetrical case,

ˆ ( ) ( )
( ( ) ( )) ( )

tD = + -
+ + - -

G W W x x x T
RT x x x x

1 S
ln 1 ln 1 . 22

mix A B sil H sil

H H H H

2

2 2 2 2

Figure 4 shows an example of the asymmetrical free energy
of mixing as a function of temperature and the mole fraction of
H2 that satisfies the inference that the crest of the solvus may lie
toward hydrogen, again by analogy with the albite-water
system where the crest of the solvus is further from the silicate
melt in composition, and that the crest of the solvus is at about
4000 K. The temperature-dependent equilibrium compositions
in this binary system, specified by the mole fractions of
hydrogen comprising the silicate and H2-rich atmosphere
phases, respectively, are obtained by the tangents to the free
energy surfaces at each temperature in Figure 4.
The isobaric phase diagram derived from the free energy

surfaces in Figure 4 is shown in Figure 5, where the
composition axis has been converted to weight percent of
hydrogen (assuming MgSiO3 for the formula unit of silicate)
for comparison with the convention of describing planet
compositions. In Figure 5, the concentrations of H2 that define
the compositions of two coexisting phases are obtained from
two points on the solvus curve at a given temperature. The
lever rule can be used to specify the relative mass fractions of
the two phases represented by the points. For example, the
mass fraction of exsolving gas (“atmosphere”) at 3700 K is
obtained from the length of line segment x divided by the total
distance between the two points on the solvus at that
temperature, x+ y.

Figure 4. The free energy of mixing as a function of temperature and the mole
fraction of hydrogen for a binary silicate-H2 system based on an asymmetrical
mixing model and a consolute temperature near 4000 K. The black points demarcate
the coexisting equilibrium compositions of silicate (left side) and atmosphere (right
side) for different temperatures that define the solvus curve in Figure 5. The dashed
tangent line for the 3773 K isotherm illustrates the derivation of coexisting phase
compositions. The open points define the spinodal curve. A single phase with a
composition between the spinodal points spontaneously decomposes into two phases
with the metastable compositions indicated by the spinodes. The curves were
produced using WA = 130,000 J mole−1, WB =−50,000, and τS = 10,100.

Figure 5. A simple subregular solution solvus for a binary silicate-H2 system
based on the free energy surface shown in Figure 4. Compositions of coexisting
phases along the solvus curve are represented by points at equal temperature.
Representative coexisting phase compositions are shown by the horizontal lines
connecting the two compositions. The lever rule can be applied to obtain the
mass fraction of each phase (using line segments x and y, as shown). Cooling
paths with increasing distance from planet center (R/Rp) for 1% H2 by mass are
shown for illustration by the arrows. Planets symbolize relevant regions of bulk
composition. (Planet image credits: Pablo Carlos Budassi; NASA).
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The crest of this hypothetical, asymmetrical solvus occurs at
about 4% H2 by mass. The crest of the solvus would be at about
2% H2 in the case of symmetrical mixing. Planets, or regions in
planets, with �4% hydrogen are completely miscible mixtures
of silicate and hydrogen at temperatures above ∼4100 K in this
example. At these temperatures, there is no discrete core and
atmosphere, and the concept of solubility of H2 in a magma
ocean, for example, does not apply. Taken literally, and
ignoring pressure effects for the moment, with cooling outward
through the planet, a distinct atmosphere exsolves with a
composition that is more hydrogen rich than the bulk (first
atmosphere, Figure 5), but still of relatively high molecular
weight due to the large fraction of silicate present. This breach
of the solvus defines the surface of the planet. If the surface
cools, more exsolution of atmosphere occurs. The molecular
weight of the atmosphere decreases as the mass fraction of
atmosphere increases.

Conversely, for supercritical magma oceans with >4%
hydrogen by mass, cooling below ∼4100 K (the precise T of
the solvus depends on the bulk composition) results in rainout
of silicate from the silicate-hydrogen mixture as the temper-
ature of the solvus at that composition is attained (Figure 6).
Here, the mass of the envelope is dominated by the more
hydrogen-rich phase, with silicates remaining subordinate in
mass until temperatures are significantly below the solvus. For
the 10% H2 bulk composition case (Figure 6), silicate first
exsolves at a temperature of about 3800 K, but the mass of
silicate is subordinate to the mass of H2 until T is <3300 K.
Continuous removal of the silicate by settling to the core would
result in distillation of the envelope to more and more
hydrogen-rich compositions.

The situation is more complicated than described above,
however, because the solvus must be pressure dependent. One
can hypothesize, for example, that the topology of the silicate-
hydrogen system might resemble that of the peridotite-water
system (peridotite representing ultramafic silicate), in which the
temperature of the solvus decreases with pressure (Figure 7). In
this case, pressure gradients can cause silicate-hydrogen phase
separation or homogenization that in turn define the surfaces of
“cores,” or the silicate “weather” in hydrogen-rich envelopes.

The distribution of volatile species between primary atmo-
spheres and magma oceans is another critical issue that affects the
chemistry and structure of rocky planets. For example, it is clear
that water is not only partitioned according to solubilities (e.g.,
C. Dorn & T. Lichtenberg 2021), but also is manufactured by
reactions between silicates and H2 (M. Ikoma & H. Genda 2006;
E. S. Kite 2020; E. Kite & L. Schaefer 2021; H. E. Schlichting &
E. D. Young 2022; E. D. Young et al. 2023).

4. Implications of Silicate-H2 Miscibility

4.1. Atmosphere Structure

The existence of a silicate-hydrogen solvus not only changes
the definition of the AMOI, but also the structure and chemistry
of the atmosphere. Regardless of the total entropy of the core,
the temperature and pressure at the AMOI will be defined by
the solvus. One can think of the surface of the supercritical
magma ocean and its interface with the overlying hydrogen-
rich envelope as an isotherm for a given pressure, the location
of which depends on the thermal state of the planet at a
specified time. It is the radial position of the AMOI surface that
will depend on mass and time, rather than the T and P at
the AMOI.
The structure of the atmosphere is influenced by silicate-

hydrogen miscibility because saturation at the surface of the
supercritical magma ocean is maintained upward in the
atmosphere as the silicate-rich and hydrogen-rich phases
continue to unmix from one another with decreasing T and P
(e.g., Figure 7). This would not be the case for a simple phase
change that is univariant in T versus P space. To see this,
consider the application of the Gibbs phase rule to our binary
system: f= c− p+ 2, where c is the number of components
defining the chemical system, p is the number of coexisting
phases, and f is the degrees of freedom among intensive
variables. For two phases in a binary chemical system, the
degrees of freedom for intensive variables is 2, meaning that
the two exsolving phases coexist over a range of temperatures
and pressures. This is evident from inspection of Figure 7.
Most paths starting in the supercritical region of the phase

Figure 6. The same as Figure 5 but with paths with increasing distance from
planet center (R/Rp) for 10% H2 by mass shown by arrows. Planets symbolize
relevant regions of bulk composition. (Planet image credits: Pablo Carlos
Budassi; NASA).

Figure 7. A schematic representation of a possible topology for the silicate-H2
system as a function of temperature and pressure, adapted from the peridotite-
water system as portrayed by K. Mibe et al. (2007). Here, the composition axis,
xH2, represents the mole fraction of H2. Arrows show an illustrative path
through the planet toward the surface. Also shown is a 2D polybaric section
corresponding to the increasing T and P path shown by the arrows in the 3D
diagram. The arrows in both diagrams show the change in compositions of the
melt and coexisting H2-rich fluid once the solvus is breached. Letters “a,” “b,”
and “c” indicate corresponding compositions along the solvus.
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diagram in which T and P both decrease will lead inexorably to
contact with the solvus comprising a hull in Figure 7. We
therefore have some leeway in what follows to ascribe changes
in compositions of the two phases in our isobaric phase diagram
to the effects of both T and P in the atmospheres. We note,
however, that as pressure decreases upward in the atmosphere,
the temperatures corresponding to the solvus may increase (e.g.,
Figure 7). This would have the effect of driving the condensing
melt toward MgSiO3 and the host vapor toward H2.

A self-consistent treatment of planet formation and evolution
that includes shifts in the radial position of the solvus with time
is postponed for future work. For now, for simplicity of
presentation, we will continue to represent the position of the
solvus as being at = µ bR R Mc cp with β= 1/4 (D. Valencia
et al. 2006), mindful that Rp actually varies, by definition, with
the position of the solvus.

We can illustrate the structure of the atmosphere above first
contact of the T–P path with the solvus by using the phase
diagram in Figure 5 (appearing in Figure 6 as well) to define
the composition of the gas and the melt condensing from the
gas, with the lower boundary conditions for the atmosphere
temperature and pressure set by the first contact with the solvus
(e.g., point a in Figure 7). Analogous to the case for the core in
Section 2.6, the structure of the atmosphere is obtained by
integrating the equations

( )p r=
dm

dr
r4 , 23Atm 2

( )r
= -

dP
dr

Gm
r

, 24
2

and

( )=
 

 + 
dT
dr

, 25rad conv

rad conv

where mAtm is the mass of the atmosphere, m is the total mass
contained within radius r, and the numerical integration is from
the magma ocean outward. The ideal gas law is used for the
equation of state relating density and pressure (Equation (8)).

Because the vapor and silicate melt are in equilibrium, we use
the moist pseudoadiabat of R. J. Graham et al. (2021) to evaluate
∇conv in Equation (25). Molar heat capacities required to
evaluate the pseudoadiabat from R. J. Graham et al. (2021) are
obtained from the NIST thermodynamic database (M. Chase
1998) where we assume the vapor silicate component speciates
to SiO, Mg, and O2. Hindrance of convection due to the mass
load of heavy elements at relatively high temperatures must be
included, as described previously for similar circumstances by
W. Misener et al. (2023).

By including the Ledoux criterion rather than just the
Schwarzschild criterion for convection, the calculations permit
development of a radiative layer at the base of the atmosphere
that transports the intrinsic heat coming from the magma ocean
upward (T. Guillot 2010; W. Misener et al. 2023). The intrinsic
luminosity due to the heat emanating from the core to space
becomes a determining factor for the structure of the
atmosphere. Accordingly, we use Equation (9) as before to
calculate temperature gradients, but with modifications. Since
Eddington’s equation for radiative diffusion relies on the local
luminosity, the temperature gradient due to radiative diffusion
includes the radially dependent luminosity, L(r). At depths well
below the radiative–convective boundary, stellar radiation
cannot penetrate the atmosphere. Therefore, at these depths,

the radiative diffusion is given by

( ) ( )kr
ps

 = -
L r
T r

3
64

, 26rad 3 2

where L(r) is related to the intrinsic luminosity, Lint, by
( ) ( )( )t=L r L r Rint

2
B
2 , and τ is the optical depth evaluated in

our numerical calculation as κ(r)ρ(r)dr for each layer of
thickness dr. The optical depth accounts for the mean free path
of photons. The intrinsic luminosity is manifested by the
outgoing thermal radiation at the top of the atmosphere as
the difference between the effective radiation temperature and
the equilibrium temperature, ( )s p= -L T T R4int eff

4
eq
4

B
2.

We use the criterion for convective inhibition given by
S. Markham et al. (2022), expressed in terms of the mole
fraction of heavy elements relative to H2, 1− xH2:

( ) (( ˆ ( ) )( )) ( )- = D - -x H RT1 H 1 1 1 , 272 critical c

where ˆDHc is the latent heat of condensation per mole of
condensate and ò is the ratio of the mean molecular weight of the
condensable gas to H2, where we assume MgSiO3 in the gas
phase instantly speciates to SiO, Mg, and O2. The heat of
condensation is calculated as ˆD =Hc ˆ ˆ ˆ- - -H H HMgSiO SiO Mg3

ĤO2, where the poorly known effect of H dissolved in the
condensate on the latent heat is assumed to be of minor
importance. Molar enthalpies as a function of temperature
are obtained from the NIST thermodynamic database
(M. Chase 1998). Where the mole fraction of heavy elements
exceeds ( )- x1 H2 critical, the temperature gradient is given by
Equation (26).
Results for the case of a 4M⊕ planet where the bulk

composition of the system, at least near the surface, is 4% by
mass H2, is shown in Figure 8. The temperature profile exhibits
a radiative layer adjacent to the surface of the magma ocean,
where ∇T is markedly superadiabatic due to the heavy load of
silicates in the saturated vapor phase. Above this layer is a
convective region corresponding to a moist adiabat, and above
that is the radiative–convective boundary at R/Rp= 3.1. These
calculations were performed assuming the pressure for the
AMOI (i.e., the solvus) is 5 GPa. The pressure effects on solvus
temperatures are beyond the scope of this present work but are
roughly constrained to be relatively modest at GPa pressures by
the simulations by T. Gilmore & L. P. Stixrude (2023). The
mass of the atmosphere in this example is 2.24% of the planet,
with most of the hydrogen residing in the condensed core. Most
of the mass of the atmosphere resides in the lowest radiative
layer where convection is inhibited by the gradient in molecular
weight (Figure 8).
The atmosphere in this example is unlike those depicted in

Figures 1 and 2. For example, consider the position of a ∼2%
by mass hydrogen atmosphere with a basal temperature about
4000 K and a basal pressure of 5 GPa in Figures 1 and 2. The
position corresponding to these conditions lies at the lowest
part of the evolution curves in the figures, implying that the
4M⊕ planet had experienced extensive cooling and mass loss.
However, the conditions and masses of the atmospheres in the
evolution paths depicted in Figures 1 and 2 are replaced by
exsolution of the silicate-rich and H2-rich phases along their
solvus. The T, P, and mass of the atmosphere are therefore not
directly reflective of the cooling and/or mass-loss path taken
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by the planet. Rather, the radial position of the solvus would be
affected by the accretion, cooling, and mass-loss history.

The radius of the planet is affected by the solvus. In the
present example, assuming a silicate mantle and iron core in
Earth-like proportions, the radius defined by the line-of-sight
optical depth (chord optical depth) of unity for H2 opacities is
3.5R⊕. For comparison, using the methods described in
Section 2 for a planet with the same mass of H2 atmosphere
(2.2%), a similar Teff of 1010 K, and a comparable surface
temperature of 3900 K, Rrcb/Rp in the latter case is ∼2
compared with ∼3 in the model in Figure 8. The transit radius
is therefore smaller, with a value of 2.2R⊕. Differences in radii
due to density deficits in the silicate and metal cores are
important but relatively small in comparison to the effects of
the solvus on the structure of the atmosphere (J. G. Rogers
et al. 2024b). Evolutionary calculations will be needed to
produce more meaningful comparisons between models with
and without the silicate-hydrogen solvus controlling conditions
at AMOIs.

4.2. Detectability: Silicate Rain or Fog?

The structure and composition of the atmosphere, and thus
the ability to detect the chemical signatures of a magma ocean,

depend on whether condensing silicate rains out of the
atmosphere or remains suspended; that is, does it form rain
or fog? Efficacious rainout at all depths in the atmosphere
would drive the vapor phase to a pure H2 composition by
distillation, scrubbing it of silicate, and returning the silicate to
the magma ocean below. This in turn would render detection of
silicate in the atmosphere difficult if not impossible. It would
also limit convective inhibition by decreasing the silicate load
in the atmosphere, thus altering the transit radius of the planet.
Evaporation of condensed droplets will be matched by

condensation at a steady state by virtue of the effectively infinite
supply of silicate from the magma ocean. Since silicate will
continue to exsolve from the gas phase (Figure 6), we do not
consider the longevity of droplets in the aggregate to be controlled
by evaporation (compare to K. Loftus & R. D. Wordsworth 2021).
Rather, we address the fate of silicate condensates by comparing
the absolute values of their terminal velocities, vt, to net vertical
turbulent velocities, u, in atmospheres. Where terminal velocities
exceed turbulent velocities, so that vt/u> 1, silicate condensate
droplets can fall as precipitation. Where turbulent velocities exceed
terminal velocities, with vt/u< 1, condensates can be suspended in
the atmosphere. We use the term “fog” in the latter case because
the existence of the silicate-hydrogen solvus dictates that the vapor

Figure 8. Atmosphere for the case of a 4M⊕ planet where the bulk composition of the system is 4% by mass H2. The calculations are based on an equilibrium temperature of
1100 K, resulting in an effective radiation temperature of 1400 K. (A) Temperature vs. normalized radial position above the magma ocean where R is the radial distance from
the center and Rp is the core radius, showing the three distinct regions: a radiative layer adjacent to the surface of the magma ocean where dT/dr is superadiabatic;
a convective region corresponding to a moist adiabat; and the radiative layer above the radiative–convective boundary, Rrcb, at R/Rp = 3.1. (B) Density profile for the vapor
phase. (C) Fraction of atmosphere mass contained within radial position R/Rp. (D)Mass fraction of the atmosphere composed of silicate condensate. The gaseous atmosphere
comprises 2.24% of the planet by mass, with the remainder of the hydrogen in the condensates and in the interior of the planet.
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phase is saturated in silicate at “ground level” at the surface of the
magma ocean. Saturation persists upward with decreasing
temperatures as long as the supply of silicate persists (Figure 6).
As shown below, terminal velocities increase with height in the
atmosphere while turbulent velocities decrease (for a fixed vertical
eddy diffusivity), so suspension of droplets is favored at ground
level near the solvus; condensates suspended in a turbulent
atmosphere are favored near ground level where the magma ocean
provides a steady source of silicate.

Estimates for the sizes of silicate condensate droplets are
required to determine their fate. Maximum radii for droplets
occur because drag forces from the enveloping gas eventually
overwhelm droplet surface tension. We estimate these max-
imum droplet radii using the Weber number, We—the
dimensionless ratio of inertial forces (drag) to surface tension,
σc, in combination with estimates for the headwind velocity, v,
encountered by the droplets. In this approach, the maximum
radii for condensate droplets against disruption by drag forces
is given by

( )s
r

=r
We

v
, 28c

max 2

where ρ is the density of the gas medium, and the critical value
for We is usually taken to be 4 (K. Loftus & R. D. Wordswo-
rth 2021). We evaluate Equation (28) with v= vt+ u, so that
the maximum radii of the droplets is set by disruption due to
turbulence where terminal velocities are negligible, and
vice versa. The turbulent velocity in the vertical direction can
be obtained from (e.g., G. R. Swenson et al. 2021)

( )
( )

( )=u r
K

H r
, 29zz

where H(r)= kBT/(μ(r)g(r)) is the scale height for the
atmosphere with mean molecular mass μ(r), and Kzz is the
vertical eddy diffusion coefficient (m2 s−1). Estimates for Kzz

based on observations of sub-Neptunes (D. Blain et al. 2021)
and theory (e.g., A. N. Youdin & J. L. Mitchell 2010) suggest
that appropriate values for Kzz are likely between 10 and
105 m2 s−1.

Condensate droplets exsolving from the supercritical fluid
will experience viscous drag that controls their terminal
velocities through the gas. The drag force on a spherical
droplet, FD, in this case is

( )p r=F r
C

v4
2

, 30D d
2 D

t
2

where ρ is the density of the surrounding gas, rd is the radius of
the droplet sphere, here taken to be rmax, vt is the velocity relative
to the enveloping gas, and CD is the drag coefficient. The drag
coefficient for turbulent flow with a no-slip condition at the
surface of the drops is (Z.-G. Feng & E. E. Michaelides 2001)

⎛⎝ ⎞⎠ ( )= +C
24
Re

1
1
6

Re , 31D
2 3

where Re is the Reynolds number such that n= v rRe 2 t d and ν
is the kinematic viscosity for the gas.

The drag force is combined with the buoyancy force,
( )p r=F r g4 3B

3 , and the force of gravity, Fg= (4/3)πr3ρdg,
to yield the force balance FD+ FB= Fg. This balance can be

solved for the velocity of the condensates:

( ) ( )r r
r
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-

v
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C
2
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d d
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We solved Equations (28), (29), (31), and (32) simulta-
neously by iteration to yield self-consistent models for
turbulent drag in terms of Reynolds number for spheres of
silicate melt descending through the gas phase of the
atmosphere model in Figure 8. We used the equation of state
for enstatite to approximate MgSiO3-rich melt densities and a
high-T, high-P surface tension σc of 0.5 Nm−1 for the melt
(D. Walker & O. Mullins 1981; S. Colucci et al. 2016) (results
are insensitive to the range of published values). We calculate
kinematic viscosities of the atmosphere gas from dynamic
viscosities of H2, assuming the gas behaves like H2, and gas
densities at each elevation. The dynamic viscosities of H2 are
obtained from the temperature-dependent Sutherland constants
for hydrogen gas from J. Braun et al. (2018) and the densities
shown in Figure 8.
Results (Figures 9 and 10) show that, if eddy diffusivities,

Kzz, are greater than ∼102, droplets of silicate condensate may
be suspended in the basal radiative layer. For example,
following the contour for Kzz= 103 downward in R/Rp in
Figure 10, maximum drop radii near 10−3 m decrease to
∼5× 10−4 m at R/Rp∼ 1.06 due to disruption as they travel
through the gas phase. Below this level, these smaller droplets
are suspended in the gas phase (Figure 9). For this degree of
turbulence, raindrops are dispersed as they descend to
become “fog.”
For Kzz� 104, condensates have the opportunity to be

suspended in the atmosphere well into the convective layer
(Figures 9 and 10). At still greater values for Kzz, condensates
are predicted to be fully entrained in the atmosphere with no
rainout. Under these circumstances, the vapor phase may
remain saturated, and silicates derived from the magma ocean
may be detectable high in the atmosphere. In reality,
trajectories of droplets in Figures 9 and 10 will cut across Kzz
contours as the drivers of turbulence vary at different levels in

Figure 9. Terminal velocities relative to turbulent velocities of silicate
condensates in the atmosphere shown in Figure 8 based on Equations (28),
(29), (31), and (32). Results for four different values for Kzz are shown.
Shading demarcates the boundary between falling rain and “fog,” where
condensates are entrained by the vertical component of turbulence. Velocity
ratios are shown as absolute values, ignoring the opposing directions.
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the atmospheres (e.g., when crossing from radiative to
convective layers).

4.3. Molecular Weight of the Atmospheres

The atmospheres produced by the existence of a silicate-
hydrogen solvus will have relatively high molecular weights at
high temperatures near the base, and progressively lower
molecular weights higher up where temperatures decrease. In
the example shown in Figure 8, the molecular weight of the
vapor phase is 13.3 g mole−1 just above the surface of the
magma ocean, and the molecular weight of the condensed
phase is 39.5 g mole−1; the two phases differ in molecular
weight by just a factor of 3 rather than the factor of 50 for pure
MgSiO3 and H2. Outward from the surface, the molecular
weight of the vapor phases decreases and the molecular weight
of the condensate increases, as prescribed by the shape of the
solvus. The result is that, above the convectively inhibited
radiative layer, at R/Rp> 1.06, silicate condensates dominate
the mass fraction of the atmosphere.

It is arguably difficult to visualize mass fractions of species
with such large differences in molecular weight, so we recast
the concentrations of condensate into number densities and
volume fractions. The gradients in molecular weight are shown
in Figure 11 for the case where Kzz= 1× 104. Here, in the case
of droplets, the number of dots at each height in the atmosphere
is in proportion to the number densities of droplets, and their
size is proportional to the size of the droplets. In the case of the
gas phase, the number of dots is proportional to the number
density for the molecules. In both cases, each dot is color coded
for the molecular weight (melt) or mean molecular weight
(gas), where in the case of the gas, speciation to
SiO+Mg+O2 is assumed. Curves showing absolute number
densities as a function of height R/Rp are overlain for
comparison. Number densities for the condensate droplets are
obtained from the maximum radii (Figure 10). The number
density of condensate droplets is 14 orders of magnitude
smaller than that of the molecules comprising the gas near the
top of the convectively inhibited layer, above which there is a
sharp drop-off in number density into the convective layer

(Figure 8) even as the molecular weight of the condensates
approaches that of pure MgSiO3. The number density and size
of droplets correspond to volume-filling fractions for the
atmosphere (analogous to liquid water content in the terrestrial
atmosphere) of about 20% at this level. This is indeed a dense
fog, as it is roughly five orders of magnitude greater than that
for a thick water fog in the terrestrial atmosphere.
The gas phase exhibits a sharp gradation in molecular

weight, with values 5 times that of pure hydrogen just above
the magma ocean. Where the lower radiative layer gives way to
convection at R/Rp∼ 1.06, the molecular weight of the vapor
phase is still well above that of pure H2. However, at the height
of the Rrcb (above the maximum in Figure 11), the molecular
weight of the gas is essentially that of hydrogen in this model.
Silicate exists at trace levels, which may or may not be
detectable depending on the circumstances. The present simple
model is inadequate to capture the critical details of trace
amounts of condensables.
It is straightforward to layer onto the calculations above the

expected equilibrium concentrations of H2O and SiH4 using
equilibrium constants among the gas species, as in W. Misener
et al. (2023). Including these species does not change the
salient features of the model described above.

4.4. The Compositions and Densities of Metal Cores

The high concentrations of hydrogen in silicate melt implied
by the miscibility of silicate and hydrogen has consequences
for the formation of metal cores. High-temperature reactions
between cores and hydrogen-rich atmospheres are expected to
greatly affect the compositions of metal cores sensu stricto.
H. E. Schlichting & E. D. Young (2022) used extrapolations of
existing thermochemical data to suggest that, at relevant
temperatures, metal cores should acquire significant fractions
of H as well as Si and O, and, by inference, perhaps some other
light elements. It has been proposed that the density of Earth’s
core was determined by this process (E. D. Young et al. 2023),
albeit at less extreme conditions. These first results raise the
possibility that not all rocky planets form discrete metal cores.
If chemical equilibrium is rapid at the atmosphere–magma
ocean interface, substantial masses of H enter Fe-rich metals,
along with Si, O, and other light elements. The precise
compositions depend critically on equilibration temperatures,
but at T� 3000 K, our existing chemical equilibrium models
(e.g., H. E. Schlichting & E. D. Young 2022; E. D. Young et al.
2023) suggest that light elements can introduce density deficits
approaching 50% or greater. While the stoichiometries of these
alloys resemble oxides and hydrides (e.g., Fe0.2 Si0.1 H0.6 O0.1),
previous ab initio calculations suggest that they may retain a
metallic character (R. Scipioni et al. 2017), comprising a phase
distinct from silicates and oxides even in a molten state.
Even where a discrete metal phase is assured, light elements

in metals affect the prospects for forming a discrete metal core
at the center of a planet. A self-consistent model for turbulent
drag for liquid metal within the silicate magma oceans suggests
that differentiation into a discrete metal core may not be
feasible.
We assume that the silicate magma oceans are generally

turbulent due to the high Rayleigh numbers, Ra, where
Ra= (gαΔTL3)/(κν), κ is the thermal diffusivity for the melt,
ν is the kinematic viscosity, L is the depth of the magma ocean,
ΔT is the change in temperature from the base to the surface of
the magma ocean, and α is the expansivity. Using typical

Figure 10. Maximum droplet radii for silicate condensates in the atmosphere
shown in Figure 8 based on Equations (28), (29), (31), and (32). Results for
four different values for Kzz are shown. Shading shows the boundary between
falling rain and “fog,” where condensates are entrained by the vertical
component of turbulence.
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values for silicate melt, Ra∼ 1030 for our fiducial 4M⊕ planet,
which is more than sufficient for vigorous convection by many
orders of magnitude. Metal segregating from the silicate will
therefore not experience Stokes settling, which would imply a
laminar enveloping flow field, but rather viscous drag. The drag
force on a spherical segregation of metal, FD, and the
associated velocity, is in this case given by Equations (30),
(31), and (32), where now the medium is silicate and the
spherical body passing through the medium is metal. In this
application, ρ is the density of the surrounding medium, ρd is
the density of the molten metal, rd is the radius of the molten
metal sphere, and vt is the velocity of the metal sphere relative
to the silicate melt.

Here, again, because CD depends on Re, Re depends on vt,
and vt on CD, self-consistent solutions are obtained for

viscosity, Reynolds number, and velocity by iteration. This
self-consistent model for turbulent drag in terms of Reynolds
number for a sphere of liquid metal alloy descending through a
molten silicate magma ocean yields, for example, Re= 63,100,
CD= 0.101, and ν= 2.9× 10−5 m2 s−1, corresponding to a
dynamic viscosity η of 0.1 Pa s, for an alloy sphere 50 cm in
radius with a 50% density deficit. Solutions for a variety of
radii and density deficits (Figure 12(A)) show that a point of
neutral buoyancy is obtained at density deficits of about 55%
using the nominal equations of state for silicate and alloy in the
Appendix.
Analysis of metal droplet sizes stable against disruption

suggest that larger masses of metal settling through silicate melt
will break up until they reach diameters of ∼10−2 m (D. Rubie
et al. 2003). Metal spheres less than about a cm in size will be

Figure 11. Number densities of condensate droplets and gas molecules, and their respective molecular weights, as a function of height R/Rp for the atmosphere shown
in Figure 8 with Kzz = 1 × 104. Left: numbers of dots at each height in the atmosphere represent the relative number densities of droplets, and the symbol sizes are
proportional to droplet sizes. Right: numbers of dots represent the relative number densities of molecules. In both plots, colors indicate molecular weights at each
height (note the different color scales in the two panels). Curves for absolute number densities of droplets (left) and gas molecules (right) are overlain for comparison.

Figure 12. (A) Terminal velocities for Fe metal droplets of different radii settling through silicate melt as a function of density deficits due to light elements in the
metal. The light element concentrations in the metal depend on temperature (H. E. Schlichting & E. D. Young 2022), and thus depth. The curves correspond to a fixed
temperature of 5000 K and a pressure of 10 GPa. For a given density deficit, the calculation is not critically dependent on the precise T and P. For comparison, melt
convective velocities should be <1 m s−1 (V. S. Solomatov 2009; E. D. Young et al. 2023). (B) Settling vs. diffusion timescales as a function of metal density deficit
and radius. For values of τsettle/(τdiff + τsettle) < 0.5, metal droplets can settle before achieving equilibrium concentrations of H. For values >0.5, equilibration occurs
prior to settling to the core.
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well coupled with the turbulent magma ocean, frustrating metal
core formation (T. Lichtenberg 2021). Here we find that
centimeter and larger metal droplets will settle to a radial level
in the body determined by the amount of alloying light
elements (especially H; Figure 12(A)). Rising above the neutral
buoyancy level results in lower temperatures of equilibration,
fewer light elements, and an increase in density. Sinking below
the point of neutral buoyancy results in higher temperatures of
equilibration, more light elements in the metal, and lower
density. Under conditions of high-T equilibration between
magma oceans and H2-rich atmospheres, therefore, metals may
become stranded at horizons corresponding to neutral buoy-
ancy that are nearer to the surface of the bodies, hindering the
formation of a central metal core. Rocky planets without metal
cores were previously postulated to exist by L. T. Elkins-Tan-
ton & S. Seager (2008), but by a different mechanism. These
authors hypothesized complete oxidation of iron metal by water
to convert Fe metal to an FeO component in the silicate melt
rather than incorporation of light elements into the metal phase.

Several caveats to the calculations above require evaluation.
One is whether the rate of exchange of light elements between
the metal and surrounding silicate medium is too slow to
achieve equilibrium at each depth. One expects metal droplets
to experience internal circulation due to their relatively low
viscosity (T. W. Dahl & D. J. Stevenson 2010), and thus to be
well mixed. Nonetheless, in the less likely circumstance where
internal circulation is absent in metal droplets, chemical
equilibration will be limited by diffusion of light elements in
and out of the metal. The possibility that diffusion limits
equilibration prior to settling to the core can be evaluated
by comparing the timescale for diffusive equilibration,
t = r Ddiff d

2 , to the settling timescale τsettle= 0.5Rc/|vt|, where
D (m2 s−1) is the diffusivity of a light element in metal. We
evaluate the timescale for settling using half the radius of the
planet core, Rc, to accommodate buildup of an Earth-like metal
core fraction. Where τdiff is greater than τsettle, metal droplets
can reach a growing metal core prior to acquiring equilibrium
concentrations of light elements, thus avoiding being trapped
by neutral buoyancy.

Hydrogen is by far the most effective light element for
reducing the density of metal, so we evaluate τdiff for hydrogen.
Diffusivities for H in Fe metal at the temperatures of interest here
are similar at high pressures (L. Yuan & G. Steinle-Neumann
2023) and low pressures (P. J. Depuydt & N. A. D. Parlee 1972)
to within one order of magnitude, with values ranging from 10−8

to 10−7 m2 s−1 from 4000 to 10,000 K, respectively. Values for
τdiff can be evaluated using ( )= - -D RTlog 6.2 44, 000H in
SI units, from L. Yuan & G. Steinle-Neumann (2023). For
convenience, the parameter τsettle/(τdiff+ τsettle) is used to
compare timescales, ranging from 0 to 1 (settling timescales
can go to zero, but diffusion timescales do not). Values <0.5
indicate that metal droplets settle to the site of metal core
formation faster than they can exchange light elements with the
supercritical silicate medium. Values>0.5 indicate that diffusion
is sufficiently fast to allow light element equilibration prior to
reaching a metal core, thus encountering neutral buoyancy.

Results in Figure 12(B) show that, at 5000K, we can expect
metal droplets less than about 100 cm to reach neutral buoyancy,
while larger droplets may sink too fast and reach the center of
the planet if they have density deficits of less than about 0.4.
Higher temperatures yield higher diffusivities, lower diffusive
timescales, and τsettle/(τdiff+ τsettle) closer to 1. Larger droplets

may therefore achieve neutral buoyancy as higher temperatures
are encountered with depth in the magma ocean.
Another caveat is that the flow regime encountered by the

descending droplets of metal may be less turbulent than we
assert. If we assume that Stokes settling obtains, for example,
the settling velocities are much greater than those based on
viscous drag. In the case where diffusion limits exchange
between metal droplets and the surrounding supercritical
silicate medium, metal droplets greater than a few centimeters
in size settling with Stokes velocities would readily reach the
center of the planet without acquiring their full complement of
light elements. However, it is not clear that the laminar flow
implied by Stokes settling is relevant. Magma ocean Rayleigh
numbers on the order of 1030 imply Reynolds numbers of 1015

using a commonly used scaling between the two for natural
convection where ~Re Ra1 2 (S. Grossmann & D. Lohse 2002).
Such high Reynolds numbers are orders of magnitude greater
than the critical value for turbulence that is on the order of 102

or less (F. Witham & J. C. Phillips 2008).
We repeated the calculations shown in Figure 12 using drag

coefficients suitable for a no-shear boundary at the surface of
the metal, replacing the no-slip boundary (e.g., E. D. Young
et al. 2022). The no-shear boundary might arise for the
relatively low viscosity of the metal melt. The results are
similar to those in Figure 12.
Another mitigating circumstance may be en masse motion

where the mass of metal droplets exceeds a threshold.
Experiments show that, where the mass of the suspended
phase (metal in this case) becomes high enough in the medium
(silicate in this case), en masse settling can be triggered
(R. S. Sparks et al. 1993). However, these observations do not
involve a continuously changing density of the suspended
phase that is capable of neutralizing the density contrast
entirely. With no density difference, the critical mass of the
settling phase required for rainout becomes infinite (Equation
(1) in R. S. Sparks et al. 1993).
One final caveat to raise is the magnitude of the density

deficit of metal relative to the density of the supercritical
silicate-hydrogen phase. We do not yet have an equation of
state for the latter phase, so the density deficit in the metal
required to match the density of the supercritical silicate-
hydrogen phase is uncertain. We used MgSiO3 densities in our
calculations here. Lowering the density of the silicate-hydrogen
phase would require a greater density deficit in metal to achieve
neutral buoyancy. These are likely achievable, however, as
metal density deficits greater than 0.55 (see Figure 12) are
possible at temperatures >5000 K (H. E. Schlichting &
E. D. Young 2022).
We conclude that, where reactions between the atmosphere

and the core can provide a negative feedback between
temperature and the density of the metal, there will be a point
of neutral buoyancy that limits settling of metal to form a
central metal core unless turbulence is lower than expected in
the supercritical magma oceans, or droplet sizes exceed
hundreds of centimeters.

5. Implications for the Physical and Chemical Structures of
Planets

Consideration of silicate-hydrogen miscibility provides
insights into the structure and chemistry of silicate-metal-
hydrogen planets. Figure 13 shows a schematic of the structure
of a sub-Neptune planet where the interior is still sufficiently
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hot to be supercritical. The location of the silicate-hydrogen
solvus defines the surface of the magma ocean and depends on
the total entropy of the system, which in turn depends on the
age of the planet. Immediately above the solvus, one predicts
there should be a convectively inhibited layer in which silicate
“fog” is present in the atmosphere if turbulence is sufficiently
vigorous. Higher in the atmosphere, droplets of condensate
may grow sufficiently large that silicate precipitation is
possible. The silicate raindrops eventually sink at break-up
velocities deeper in the atmosphere, feeding the layer of
suspended droplets above the magma ocean. The longevity of
the AMOI corresponding to the solvus in principle keeps the
system in a steady state of silicate saturation. This structure
makes the boundary between the magma ocean and the
overlying atmosphere less sharp.

The picture in Figure 13 is based on our fiducial 4M⊕ planet
with a bulk hydrogen concentration of 4% by mass, with much
of the hydrogen in the supercritical core. Planets formed with
less hydrogen, to the low H2 side of the crest of the solvus (e.g.,
Figure 5), and those formed with greater concentrations of H2,
to the high side of the crest of the solvus (e.g., Figure 6), will
have silicate with less hydrogen and vapor phases with less
silicate as a result of encountering the solvus at lower
temperatures. This is because, at lower temperatures, the melt
and gas limbs of the solvus are closer to the pure silicate and
hydrogen-rich compositions, respectively. In the case of bulk
hydrogen concentrations less than the solvus crest, atmospheres
have nearly pure silicate condensates and only small fractions
of gas, so the mass fraction of silicate condensate approaches
unity throughout the atmosphere. Conversely, for bulk
compositions with greater H2 than the crest of the solvus, the
mass fraction of condensate is less than that shown in
Figure 8(D).

Metal stranded by a neutral density contrast is shown
schematically in Figure 13. Extensive miscibility of silicate and
hydrogen may be yet another reason to consider that sub-
Neptunes may not have well-defined central cores of metal
(L. T. Elkins-Tanton & S. Seager 2008; T. Lichtenberg et al.
2021).
The predictions for mass fractions of primary atmospheres by

S. Ginzburg et al. (2016) can be used to show that, where
conditions are suitable for a 4M⊕ planet to accrue 4% H2 by
mass, a 1M⊕ planet would acquire about 1% H2 by mass from the
protoplanetary disk. From calculations like these, one anticipates
that planets to the low H side of the solvus will include Earth-like
bodies prior to loss of their primary atmospheres and the sub-
Neptune progenitors of lower-mass super-Earths with core masses
of <2M⊕. Planets with bulk compositions to the high H side of
the solvus will include the progenitors of higher-mass super-
Earths, sub-Neptunes, and, where more volatiles are involved,
Neptunes, with core masses �2M⊕.

6. Conclusions

An assessment of the pressures and temperatures associated
with rocky planets with dense H2-rich atmospheres suggests
that a solvus depicting the miscibility of silicate and hydrogen
will dictate the structure of many sub-Neptunes and their super-
Earth descendants. Temperatures and pressures at the base of
the primary atmospheres will be controlled by the solvus at the
hydrogen concentration of the bulk system. In general, the
maximum temperatures experienced at the surfaces of magma
oceans should be less than predicted in the absence of silicate-
hydrogen miscibility. The structures of the atmospheres differ
from those calculated by omitting the miscibility of silicate and
hydrogen.

Figure 13. Interpretive diagram representing the consequences of the silicate-hydrogen solvus on the structure of sub-Neptunes. Moving inward from the outermost
regions, the planet is composed of layers of nearly pure H2, a layer of silicate precipitation in a silicate-rich atmosphere, a layer of silicate fog in a high-molecular-
weight gas phase just above the surface defined by the silicate-hydrogen solvus, and a supercritical silicate-hydrogen magma ocean where temperatures are greater
than the solvus. The position of the solvus depends on the thermal state of the planet. Under-dense metal segregations trapped near points of neutral buoyancy are
shown in lieu of a central metal core.
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The schematic applications of the silicate-hydrogen solvus
presented here illustrate the rich chemical and physical impacts
of even the simplest representation of the nonideality in
hydrogen-silicate mixing. They also provide an a priori means
of estimating the conditions at the surfaces of magma oceans.

Based on this analysis, many sub-Neptunes are not expected
to exhibit an Earth-like layering with a discrete atmosphere,
silicate mantle, and iron-rich core. Indeed, it is not clear that
metal cores will form due to the high solubilities of H, Si, and
O in iron metal at relevant conditions.

In future, there remains a need for phase equilibria data in
the system Mg–Si–Fe–O–H at conditions of approximately
3000–10,000 K and 1–50 GPa, and higher T and P for metal-
silicate equilibrium conditions. While such conditions can be
accessed in dynamic, laser-driven shock experiments where
rapid, real-time characterization is required (e.g., Y. Fei et al.
2021; M. E. Alabdulkarim et al. 2022), they are generally
beyond those accessible for phase equilibria studies in which
posterior characterization of products can be done (e.g.,
M. A. Baron et al. 2019). Ab initio calculations provide
flexibility in both the conditions and the chemical systems to be
interrogated, especially where machine learning can be used to
accelerate coverage of composition space.

Also in future, self-consistent models for planet formation
that account for the role of the silicate-hydrogen solvus are
required. This is a work in progress. Such a model is likely to
modify our understanding of the structures of sub-Neptunes
and their evolved super-Earth descendants.
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Appendix

We determine the structure of the core by solving
Equations (17) through (19) together with a specification of
the thermodynamic properties of liquid silicate and liquid iron.
We use the fundamental thermodynamic relation (or thermo-
dynamic potential) approach of N. de Koker & L. Stixrude
(2009). All thermodynamic properties are determined by an
analytical representation of the Helmholtz free energy as a
function of volume and temperature, F(V, T), that is fit to the
results of ab initio molecular dynamics simulations. The
analytical form is inspired by Eulerian finite strain theory
(F. Birch 1978) and the universal behavior of simple liquids
(Y. Rosenfeld & P. Tarazona 1998). Details of the functional
form are given in N. de Koker & L. Stixrude (2009). The
required material properties are then computed using analytical
derivatives, including
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where KT is the isothermal bulk modulus, and α is the thermal
expansivity.
For liquid silicate, we use the fit to MgSiO3 liquid properties

previously determined by N. de Koker & L. Stixrude (2009),
with an augmented molecular weight to account for the presence
of iron in the rocky portion of planets (μ= 20.34 g mol atom−1).
For liquid iron, we fit to the ab initio molecular dynamics results
of F. Wagle & G. Steinle-Neumann (2019) and adjust the
molecular weight to match the density of Earth’s core
(μ= 52 g mol−1) in order to allow for the effects of light
elements in the metal.
We estimate the liquidus temperature of the mantle, TL, as

that for MgSiO3 (J. Deng et al. 2023), where
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corresponding to melting of the bridgmanite (lower pressure)
and postperovskite (higher pressure) phases. We estimate the
liquidus temperature of the metal core, where there is one,
following L. Stixrude (2014):
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1

with the compositional variable x0= 0.79.
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