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Abstract  — With the recent surge in AI popularity, neural 

networks have been used in a number of solar cell applications, 
including for materials discovery, processing optimization, and 
high-throughput characterization. One such implementation 
involves using neural networks to predict the physical parameters 
of solar cells. Researchers have employed simple device 
parameters, such as current-voltage characteristics, to estimate 
more complex materials parameters, such as carrier mobility. In 
this study, we propose a novel approach to data input for neural 
networks. Compared to the conventional practice of utilizing a 
single current-voltage curve as the predictive input, our novel 
approach involves the integration and layering of multiple 
experimental curves. This introduces heightened dimensionality to 
the data and thereby improves the overall performance of 
predictive models for solar cell optimization and non-destructive 
rapid characterization. 

I. INTRODUCTION 

The increasing popularity of machine learning and artificial 
intelligence has led to increased usage of neural networks 
within photovoltaics research. Applications include using 
neural networks to map and characterize defect regions, assist 
in the device optimization/design process, as well as in device 
physics modeling/simulation [1-3]. Another application is the 
use of neural networks for the prediction of materials 
parameters. The purpose of this is threefold: to reduce the cost 
of characterization, to expedite the characterization process, 
and to gain insights in the patterns that emerge from 
investigations into the structure of the network themselves. 
Parameter prediction algorithms typically use simple parameter 
inputs, such as current-voltage curves, to predict more 
complicated, and therefore more-costly-to-measure, parameter 
outputs such as carrier mobilities, electronic trap state density, 
and carrier lifetimes, to name a few. 

In terms of experimental inputs for machine learning 
algorithms, solar cell current-voltage (JV) curves have the 
advantages of measurement simplicity and ubiquity; another 
important advantage is that they naturally contain all of the 
physics of the device. According to Nelson (2003) [4], the short 
circuit current for a p-n junction under illumination is given by 
Equation 1. 
 

   𝑗𝑠𝑐(𝐸) = −𝑗𝑛(𝐸, −𝑤𝑝) − 𝑗𝑝(𝐸, 𝑤𝑛) − 𝑗𝑔𝑒𝑛(𝐸) (1)  
 

Even just one of these terms contains a wealth of information. 
For example, The electron current (𝑗𝑛) is given in Equation 2, 
where 𝑤𝑝 is the depth of the depletion region into the p layer, 
𝑅  is the reflectivity, 𝐿𝑛 = √𝜏𝐷𝑛  is the electron diffusion 
length, 𝐷𝑛  is the diffusion coefficient, 𝑆𝑛  is the surface 
recombination velocity, 𝛼  is the probability of photon 
absorption, and 𝑏𝑠 is the flux density of photons [4]. What this 
equation illustrates is that the JV curve of a photovoltaic device 
is dependent on all of the relevant physical properties of that 
device. 
 
𝑗𝑛(𝐸, 𝑤𝑝)

= [
𝑞𝑏𝑠(1 − 𝑅)𝛼𝐿𝑛
(𝛼2𝐿𝑛2 − 1)

]

×

{
 

 (𝑆𝑛𝐿𝑛𝐷𝑛
+ 𝛼𝐿𝑛)

𝑆𝑛𝐿𝑛
𝐷𝑛

sinh(𝑥𝑝 − 𝑤𝑝)𝐿𝑛
+ cosh(𝑥𝑝 − 𝑤𝑝)𝐿𝑛

−
−𝑒−𝛼(𝑥𝑝−𝑤𝑝) (𝑆𝑛𝐿𝑛𝐷𝑛

cosh (𝑥𝑝 − 𝑤𝑝)𝐿𝑛
+ sinh (𝑥𝑝 − 𝑤𝑝)𝐿𝑛

)

𝑆𝑛𝐿𝑛
𝐷𝑛

sinh (𝑥𝑝 − 𝑤𝑝)𝐿𝑛
+ cosh (𝑥𝑝 − 𝑤𝑝)𝐿𝑛

− 𝛼𝐿𝑛𝑒−𝛼(𝑥𝑝−𝑤𝑝)

}
 

 
 

 
In addition to the physics motivation, the relatively fast 
acquisition speed, ease of measurement, and ubiquity of this 
characterization method in the field make JV curves an ideal 
candidate for applications involving large amounts of 
experimental data. 

II. METHODS 

This section outlines a new method of integrating several JV 
curves as inputs into neural networks for materials parameter 
extraction and prediction. To demonstrate this method, we 
fabricated PbS colloidal quantum dot (CQD) solar cells, 
characterized them in a custom multi-modal optoelectronic 
scanning setup [5], and trained custom-designed neural 
networks on the collected data from multiple devices.  
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A. Physical Experimental Setup 

PbS CQD solar cells were chosen as they are relatively easy 
to manufacture, enabling high-throughput device production, 
and have complicated and not fully understood electronic 
transport physics that may not conform to the standard solar cell 
diode models used in the field. This is advantageous as neural 
networks generally require large amounts of training data, and 
could potentially be used to elucidate novel transport physics. 
PbS CQDs were synthesized [6] and solar cells were fabricated 
[7] using slight modifications of standard procedures. A custom 
optoelectronic characterization setup [5] was used to measure 
spatial maps of JV curves, photoluminescence, transient 
photovoltage, and transient photocurrent values. The system 
utilizes a 520 nm laser and white LED which is collimated onto 
the device. The device is mounted on a 3-axis translation stage 
allowing for the collection of multiple data points as well as the 
creation of parameter maps.   

B. Network 

The performance of the new layering technique was assessed 
by comparing several neural networks, each with distinct 
hyperparameters but subjected to identical training conditions. 
The neural networks employed in this study were based on the 
encoder model from Ren, et al.’s denoising autoencoder [8]. In 
total, 3 networks were trained and evaluated: Network 1 utilizes 
a fully connected architecture with three hidden layers, 
Network 2 has three hidden layers, but with 1D convolution 
layers, and Network 3 has three hidden layers, but with 2D 
convolution layers. Network 3 is the network that utilizes the 
new layering scheme. 

C. Layered Input 

The illuminated current voltage curves are measured at 28 
different biases. Therefore, the inputs into Networks 1 and 2 are 
single 28x1 vectors. In contrast, the input into Network 3 is a 
28x9x2 “image.” The new layering method, depicted in the 
bottom left of Figure 1, involves selecting eight surrounding 
points for a given central point (green) and stacking them 
together. The surrounding points (magenta) are at a distance 𝑛 
from the central point. This new variable adds an additional 
hyperparameter for the network. Layering these curves creates 
a new 28x9 input matrix with 2 channels: one representing 
voltage and the other the current. This new input can be treated 
as an image, and 2D convolutions and other conditions typical 
of image-based networks can now be applied, which allows for 
more robust and enhanced training features. 

III. DISCUSSION/RESULTS 

Table 1 contains the mean absolute percentage error between 
the measured and predicted network values for various 
materials parameters: photoluminescence (PL), transient 
photovoltage (Δ𝑉) , and transient photocurrent ( Δ𝑄) . The 
results in this table show that regardless of the depth or 

complexity of the network, the training error is improved when 
employing the new layered input method. 
 

 PL Δ𝑉 ΔQ 
Network 1 31.30% 32.19% 15.73% 
Network 2 33.74% 23.66% 17.78% 
Network 3 27.76% 18.12% 10.28% 

 
Notably, the training error is lowest with the new method even 
across several different parameters. This affirms the capability 
of the new method to enhance neural network performance. 
Qualitative results of network performance are provided in 
Figure 1 through the measured and predicted parameter maps. 
The key factor contributing to the improved performance of the 
new method is the existence of points with similar JV curves 
but vastly different material parameters across large areas of the 
devices. This phenomenon creates a challenge for the network 
because it leads to an averaging effect: the network must 
balance between the similar points as the weights of the 
network will move in opposite directions during gradient 
descent. The new method resolves this issue by introducing 
extra dimensionality and more variation so that the network can 
distinguish between these points. 
 

 
 
Fig. 1. a) Experimentally measured relative PL intensity map. b) 
Network prediction of the PL intensity map from a using the new 
layering technique. c) Layering of JV curve inputs with spacing size 
𝑛 = 3. d) Network prediction of the PL intensity map without the new 
layering technique applied. Figures a, b, and d use the same scale bar, 
which is located on the bottom left. 
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IV. CONCLUSION 

In conclusion, this study introduced a novel layered input 
method for neural networks, specifically applied in the context 
of materials parameters prediction in solar cells. The 
methodology involves treating the JV curve input as an "image" 
with two “color” channels, enabling the application of 2D 
convolutions and other conditions typical of image-based 
networks. The results, as summarized in Table 1, demonstrate 
superior training error performance regardless of the depth or 
complexity of the neural network. The enhanced robustness of 
the new layered input method signifies its potential to improve 
predictive accuracy in materials parameter estimation. This 
research can be applied as a strategy for various neural 
networks in different photovoltaic applications, paving the way 
for further advancements in predictive modeling and analysis. 
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