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Abstract — With the recent surge in Al popularity, neural
networks have been used in a number of solar cell applications,
including for materials discovery, processing optimization, and
high-throughput characterization. One such implementation
involves using neural networks to predict the physical parameters
of solar cells. Researchers have employed simple device
parameters, such as current-voltage characteristics, to estimate
more complex materials parameters, such as carrier mobility. In
this study, we propose a novel approach to data input for neural
networks. Compared to the conventional practice of utilizing a
single current-voltage curve as the predictive input, our novel
approach involves the integration and layering of multiple
experimental curves. This introduces heightened dimensionality to
the data and thereby improves the overall performance of
predictive models for solar cell optimization and non-destructive
rapid characterization.

I. INTRODUCTION

The increasing popularity of machine learning and artificial
intelligence has led to increased usage of neural networks
within photovoltaics research. Applications include using
neural networks to map and characterize defect regions, assist
in the device optimization/design process, as well as in device
physics modeling/simulation [1-3]. Another application is the
use of neural networks for the prediction of materials
parameters. The purpose of this is threefold: to reduce the cost
of characterization, to expedite the characterization process,
and to gain insights in the patterns that emerge from
investigations into the structure of the network themselves.
Parameter prediction algorithms typically use simple parameter
inputs, such as current-voltage curves, to predict more
complicated, and therefore more-costly-to-measure, parameter
outputs such as carrier mobilities, electronic trap state density,
and carrier lifetimes, to name a few.

In terms of experimental inputs for machine learning
algorithms, solar cell current-voltage (JV) curves have the
advantages of measurement simplicity and ubiquity; another
important advantage is that they naturally contain all of the
physics of the device. According to Nelson (2003) [4], the short
circuit current for a p-n junction under illumination is given by
Equation 1.

Jsc(E) = _jn(Er _Wp) _jp(ErWn) _jgen(E) n
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Even just one of these terms contains a wealth of information.
For example, The electron current (j,,) is given in Equation 2,
where w, is the depth of the depletion region into the p layer,
R is the reflectivity, L, = ,/tD,, is the electron diffusion
length, D, is the diffusion coefficient, S, is the surface
recombination velocity, a is the probability of photon
absorption, and by is the flux density of photons [4]. What this
equation illustrates is that the JV curve of a photovoltaic device
is dependent on all of the relevant physical properties of that
device.
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In addition to the physics motivation, the relatively fast
acquisition speed, ease of measurement, and ubiquity of this
characterization method in the field make JV curves an ideal
candidate for applications involving large amounts of
experimental data.

II. METHODS

This section outlines a new method of integrating several JV
curves as inputs into neural networks for materials parameter
extraction and prediction. To demonstrate this method, we
fabricated PbS colloidal quantum dot (CQD) solar cells,
characterized them in a custom multi-modal optoelectronic
scanning setup [5], and trained custom-designed neural
networks on the collected data from multiple devices.
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A. Physical Experimental Setup

PbS CQD solar cells were chosen as they are relatively easy
to manufacture, enabling high-throughput device production,
and have complicated and not fully understood electronic
transport physics that may not conform to the standard solar cell
diode models used in the field. This is advantageous as neural
networks generally require large amounts of training data, and
could potentially be used to elucidate novel transport physics.
PbS CQDs were synthesized [6] and solar cells were fabricated
[7] using slight modifications of standard procedures. A custom
optoelectronic characterization setup [5] was used to measure
spatial maps of JV curves, photoluminescence, transient
photovoltage, and transient photocurrent values. The system
utilizes a 520 nm laser and white LED which is collimated onto
the device. The device is mounted on a 3-axis translation stage
allowing for the collection of multiple data points as well as the
creation of parameter maps.

B. Network

The performance of the new layering technique was assessed
by comparing several neural networks, each with distinct
hyperparameters but subjected to identical training conditions.
The neural networks employed in this study were based on the
encoder model from Ren, et al.’s denoising autoencoder [8]. In
total, 3 networks were trained and evaluated: Network 1 utilizes
a fully connected architecture with three hidden layers,
Network 2 has three hidden layers, but with 1D convolution
layers, and Network 3 has three hidden layers, but with 2D
convolution layers. Network 3 is the network that utilizes the
new layering scheme.

C. Layered Input

The illuminated current voltage curves are measured at 28
different biases. Therefore, the inputs into Networks 1 and 2 are
single 28x1 vectors. In contrast, the input into Network 3 is a
28x9x2 “image.” The new layering method, depicted in the
bottom left of Figure 1, involves selecting eight surrounding
points for a given central point (green) and stacking them
together. The surrounding points (magenta) are at a distance n
from the central point. This new variable adds an additional
hyperparameter for the network. Layering these curves creates
a new 28x9 input matrix with 2 channels: one representing
voltage and the other the current. This new input can be treated
as an image, and 2D convolutions and other conditions typical
of image-based networks can now be applied, which allows for
more robust and enhanced training features.

II1. DISCUSSION/RESULTS

Table 1 contains the mean absolute percentage error between
the measured and predicted network values for various
materials parameters: photoluminescence (PL), transient
photovoltage (AV), and transient photocurrent (AQ). The
results in this table show that regardless of the depth or
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complexity of the network, the training error is improved when
employing the new layered input method.

PL AV AQ

Network 1 31.30% 32.19% 15.73%
Network 2 33.74% 23.66% 17.78%
Network 3 27.76% 18.12% 10.28%

Notably, the training error is lowest with the new method even
across several different parameters. This affirms the capability
of the new method to enhance neural network performance.
Qualitative results of network performance are provided in
Figure 1 through the measured and predicted parameter maps.
The key factor contributing to the improved performance of the
new method is the existence of points with similar JV curves
but vastly different material parameters across large areas of the
devices. This phenomenon creates a challenge for the network
because it leads to an averaging effect: the network must
balance between the similar points as the weights of the
network will move in opposite directions during gradient
descent. The new method resolves this issue by introducing
extra dimensionality and more variation so that the network can
distinguish between these points.
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Fig. 1. a) Experimentally measured relative PL intensity map. b)
Network prediction of the PL intensity map from a using the new
layering technique. ¢) Layering of JV curve inputs with spacing size
n = 3. d) Network prediction of the PL intensity map without the new
layering technique applied. Figures a, b, and d use the same scale bar,
which is located on the bottom left.
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IV. CONCLUSION

In conclusion, this study introduced a novel layered input
method for neural networks, specifically applied in the context
of materials parameters prediction in solar cells. The
methodology involves treating the JV curve input as an "image"
with two “color” channels, enabling the application of 2D
convolutions and other conditions typical of image-based
networks. The results, as summarized in Table 1, demonstrate
superior training error performance regardless of the depth or
complexity of the neural network. The enhanced robustness of
the new layered input method signifies its potential to improve
predictive accuracy in materials parameter estimation. This
research can be applied as a strategy for various neural
networks in different photovoltaic applications, paving the way
for further advancements in predictive modeling and analysis.
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