
Digital Twin based Asynchronous Federated Learning enabled

IDS for False Data Injection Attacks in Vehicular CPS

Sunitha Safavat and Danda B. Rawat
Department of Electrical Engineering and Computer Science

Howard University, Washington, DC, 20059, USA

{sunitha.safavat, danda.rawat}@howard.edu

Abstract—Cyber Physical Systems (CPS) consist of integration
of cyber and physical spaces through computing, communication,
and control operations. In vehicular CPS, modern vehicles with
multiple Electronic Control Units (ECUs) and networking with
other vehicles help autonomous driving. Vehicular CPS is vulner-
able to multitude of cyber attacks, including false data injection
attacks. This paper presents an Asynchronous Federated Learning
(AFL) with a Gated Recurrent Unit (GRU) model for identifying
False Data Injection (FDI) attacks in a VCPS. The AFL model
continuously monitors the network and constructs a digital twin
using the data obtained from a VCPS for intrusion detection. The
proposed model is evaluated using different evaluation metrics.
Numerical results show that the AFL model outperforms other
existing models.

I. INTRODUCTION

Vehicular Cyber Physical Systems (VCPS) is regarded as

one of the solutions to provide better traffic efficiency, traffic

safety, and improve the overall transportation system [1], [2].

However, with the massive number of connectivity of personal

vehicles and the critical nature of VCPS, malicious users and

cyber attackers can launch a multitude of cyber attacks [3]. The

securing any CPS including VCPS has gained huge attention

in recent times due to the increased number of cyber-attacks

[3], [4]. False Data Injection (FDI) attack is one of the attacks

used in VCPS to mislead users. There are different Intrusion

Detection System (IDS) proposed for detecting attacks in VCPS

networks [4], [5]. In general, signature and anomaly-based IDS

are used to identify intrusions. Signature-based IDS identifies

unauthorized intrusions in the network based on predefined

rules or signatures of the attacks [6]. A typical anomaly-based

IDS monitors the network traffic in real time and compares the

output with the previously learned network traffic patterns to

identify the cyber attacks within the network [7]. Alternatively

while information is received from multiple vehicles, malicious

data (which is not aligned with majority of the vehicles) can

be discarded for further consideration. Both signature and

anomaly-based IDS exhibit better performance in terms of

detecting intrusions, but these techniques fail to identify new

or unknown attacks. Furthermore, an IDS in VCPS needs to

handle large volumes of data (approx. 25 GB of data per

vehicle per hour) with a very minimum processing time to

identify the intrusions in the early stage. Recently, different

Machine Learning (ML) techniques, including Deep Learning

(DL) have been used extensively in the design of IDS [7],

[8] by overcoming the drawbacks of conventional rule-based

techniques, which depend on predefined strategies, labeled data,

and feature sets for performing a specific task. ML and DL

models can automatically learn from the dataset and do not

require any predefined strategies for detecting intrusions. How-

ever, ML algorithms require labeled data samples to identify

the attacks, and their performance is affected when applied to

larger datasets. On the contrary, DL models use supervised or

unsupervised learning. While supervised learning in DL does

require a labeled dataset, an unsupervised learning mechanism

for creating a hierarchical representation of the data helps

them to provide solutions for complex and dynamic security

problems without requiring a labeled dataset. However, to avoid

risk of privacy leakage in ML and DL models, Federated

Learning (FL) is used where model parameters are shared

but not the actual data [9]–[11]. Furthermore, synchronous FL

can suffer from communication bottlenecks and heterogeneity

of participants. To overcome these problems, we propose an

asynchronous FL model for detecting unknown intrusions in

heterogeneous VCPS. The main contributions of this paper are

as follows:

• We propose an asynchronous FL with GRU-based IDS

for identifying unknown or new intrusions, including false

data injection attacks in VCPS.

• A new statistical feature extraction technique is imple-

mented for extracting contextual features for IDS.

• A Digital Twin model is implemented to work on unla-

beled data samples and learn continuously in real-time for

VCPS for IDS.

The paper is further structured as follows: Section II explains

the system and attack models. Section III provides the details

of the digital-twin based IDS for identifying FDI attacks on a

vehicular CPS. Section IV deals with the details of experimental

analysis and outcomes. Section V is the conclusion, which

highlights the observations.

II. SYSTEM MODEL AND THREAT MODEL

A. System Model

A typical system model is shown in Fig. 1, which consists of

Road Side Units (RSUs), the Base Station (BS), and vehicles.

The RSUs cache the data from the BS and other vehicles.

The architecture consists of smart data transformation and an

attack detection component to detect FDI attacks in vehicles

and RSUs. Vehicles (RSU is considered as a vehicle with 0
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Fig. 1. Architecture of a secure VCPS model with vehicles, road side units,
base stations, and Vehicle-to-vehicle (V2V) and Vehicle-to-Roadside (V2R)
communications.

mph speed) use asynchronous federated learning and transform

the heterogeneous data into a learned model parameters for the

global learning model. Information caching and sharing are the

two prominent data-aware methods in VCPS. During caching,

the RSUs collect and cache data from the vehicles or BS to

minimize the delivery latency to its users/vehicles. Simultane-

ously, during the data-sharing process, the information is shared

through V2X ( X being vehicle, RSU, BS) communications.

B. Threat Model

In VCPS, threat model consists of malicious users (less

than 50% of all VCPS participants) manipulating the vehicular

information to mislead the other users or vehicles by manipu-

lating the information or injecting the false data in the system.

Furthermore, malicious users also manipulate the actual data or

learned parameters in federated learning based VCPS.

III. THE PROPOSED APPROACH

The Flow diagram of the proposed approach is shown in Fig.

2. The IDS is designed to detect unknown or new intrusions in

the VCPS network, which is not possible using conventional

rule-based techniques. The IDS integrates the advantages of

Fig. 2. The Flow diagram of the proposed approach

federated learning in the Digital Twin enabled VCPS to achieve

the desired intrusion detection performance. Unlike traditional

FL, the asynchronous FL used in this paper updates the model

continuously based on the responses obtained from the devices

without waiting to receive learning model parameters from

all precipitants. The expected accuracy is within the tolerable

limit, parameters reported by participants in FL are considered

for updating global model, otherwise received parameters are

considered as malicious ones and discarded for global model.

This helps the model to access updated information about

the network behavior and combats the potential FDI attacks

either in VCPS data in each participant or in learned param-

eters for FL. Furthermore, the Digital Twin Model (DTM)

generates adversarial samples for training the model, and this

optimizes the size and volume of the training data. The DTM

is considered as the virtual representation of the VCPS in

Metaverse [12] form and VCPS is susceptible to adversarial

attacks. For example, hackers mounted a two inch piece of tape

in front of 35 mph road sign which fooled the Self driving

Tesla car’s camera and made the Tesla car accelerate by 50

miles per hour [13]. The generation of adversarial examples

for VCPS data using DTM and the Digital Twin Capability

(DTC) helps make the learning models robust. There are two

factors that motivated this research to design a digital twin-

based IDS for attack detection. Firstly, the model can be trained

in an unsupervised manner without requiring any previous

knowledge about the spatio-temporal distribution and statistical

characteristics. Secondly, the concept of federated learning is

effectively utilized to learn the nonlinear representation of the

VCPS data and share the sensitive information through learned

model parameters (instead of actual data) with multiple entities

without compromising privacy. The vehicular CPS model is

combined with the digital twin model, which can learn from

historical and real-time data to identify FDI attacks. Next, the

generation of DTM is given below.

A. Digital Twin Model

In general, the DTM is created using a finite Time Au-

tomaton (TA) approach and is generated manually using the

domain knowledge of the experts [14]. The formation of TA

is represented using a tuple A = (U, T, δ), where these terms

represent a finite set of states, transitions, and transition timing

constraints in VCPS, respectively. In this work, each state in

U i.e., (u ⊆ U) is considered to be an observed state and

the values obtained from sensors and actuators are included in

the set defined as; u = [us1, us2, us3, . . . . . . , ua1, ua2, ua3, ....].
Similarly, the term T ⊆ U × U represents the transition set,

which is defined as {< u, u′ >}, and {u, u′ ∈ U} for source

and destination states respectively. The constraint used for

determining the transition timing δ is determined as δ : T → I ,

where I is the set of probability distribution functions that varies

with respect to time. This term also defines the time required

for the transition. As mentioned previously, the DTM generates

adversarial samples for attack detection, and the DTC acts as

an IDS in an asynchronous federated learning enabled VCPS.
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B. Asynchronous Federated Learning and IDS

The proposed IDS is designed to detect intrusive events

along with FDI attacks in a VCPS network using DTM and

asynchronous federated learning. In general, federated learning

allows multiple vehicles and RSUs (vehicles with 0 mph can be

considered as RSUs for simplicity) to learn from their own data,

which minimizes the latency and ensures data privacy while

sharing their information with other vehicles in the network.

For every iteration i, the model computes the updates for each

vehicle vi and sends the updates to the base station through

V2R communication. The base station combines all updates

obtained from the vehicles (FL Clients) and distributes them

to all vehicles in the network. Further, the next iteration is

started, and the process is continued to get an optimal global

model. As FL, actual data is not shared but the learned model

parameters, the risk of FDI attack is significantly reduced when

attackers tries to inject false data (far from model parameters’

values which would be outliers for FL) in VCPS. However,

model parameters can be manipulated which is combated by

either discarding the parameters which do not give model closer

to optimal global or lowest possible weight is given to false

data injected model parameters. In VCPS, it is difficult to

maintain a synchronous FL. To overcome this problem, this

paper proposes an asynchronous FL for the vehicles, which

does not depend on all vehicles need to report all the time

before calculating a global model. Alternatively vehicles could

form a local cluster and calculate their aggregate model. This

reduces the risk of waiting long time for FL approach and

improves the robustness of the model from either malicious

users or slow reporters of FL. The problem of FL is formulated

as an optimization problem wherein the main objective is to

reduce the loss function Fi(w). The objective function for the

asynchronous FL is given as (1)

min
w∈Rd

f(w) =
1

|D|
N∑

i=1

|Di|Fi(w) (1)

where Di is defined as the local dataset, Rd is the subset

with random data samples belonging to Di, w is the weight,

|D| is the cardinality of the whole dataset, and N defines the

number of clients. If two vehicles vi and vj participate in the

data transmission, their respective local models are defined as

mi(t− 1) and mj(t− 1). During the learning phase, all other

participants in the VCPS network send the updated models to

the vehicle vj , denoted as
∑

mi(t). The vehicle collects and

aggregates the data and updates the existing model with the

updated data, as shown (2)

mi(t) = mi(t− 1)
1

sk

∑

k

m̂k(t) (2)

where sk is the previous local gradients for the device k, m̂k(t)
is the local server model at time instant t. After a few iterations,

each vehicle vi attempts to obtain the global model mi by

aggregating all models.

M =
∑

t

mi(t) (3)

Eq. (1) to eq. (3) are used to train the AFL model, which is up-

dated asynchronously either in a cluster based distributed learn-

ing in FL or centralized RSU based FL. The IDS implemented

in this research mainly incorporates three phases, namely, data

processing, feature extraction, and FDI attack detection. During

feature extraction, the GRU model takes raw data as input and

extracts network features, mainly statistical features, to improve

the attack detection performance. This stage generates multi-

dimensional feature vectors for identifying FDI attacks [15].

GRU requires fewer parameters, and hence it is easier to train

the model. Unlike the RNN model, GRU has only three gates

without any internal cell state. The data is stored in the internal

cell state and is embedded into the hidden state of the GRU,

and this data is forwarded to the next layer and so on. The two

main gates of GRU are an update gate (z) and a reset gate (r).

In addition to these two, a current memory gate ĥ(t) is also

included [16]:

1) Update Gate (z): The Update gate measures the amount

of past information that needs to be forwarded into the

future layers similar to the output gate in the LSTM.

2) Reset Gate (r): The Reset gate measures the amount of

past information to forget similar to the operation of the

input gate and the forget gate in the LSTM.

3) Current Memory Gate (ĥt): The current memory gate is

incorporated into the reset gate, which is similar to the

incorporation of the input modulation gate into the input

gate. This is done to introduce nonlinearity into the input

and make the input zero mean. Another important fact

of incorporating the memory gate into the reset gate is

to minimize the influence of previous information on the

current state, which is being forwarded to the next gates.

The gates of the GRU model can be expressed as follows:

ht = (1− zt)
⊙

ht−1 + zt
⊙

ht (4)

ĥt = g(Whxt + Uh(rt
⊙

ht−1) + bn (5)

where xt is the external feature vector, W , U , and b are the two

weights and the bias, respectively, g is the activation function,

zt is the update gate, and rt is the reset gate. The update and

reset gates are described as follows:

zt = σ(Wzxt + Uzht−1 + bz) (6)

rt = σ(Wrxt + Urht−1 + br) (7)

where σ is the logistic nonlinearity. The statistical features are

fed to the GRU model, and the network layer of the model

captures both latent and spatial attributes of the FDI attack. In

this research, the GRU model is used to design IDS to detect

FDI attacks. The stages involved in the IDS are as follows:

1) Data Collection and Preprocessing: The data for the

experimental analysis of the attack detection approach is ob-

tained from the Aegean Wi-Fi Intrusion Dataset (AWID). The

fundamental AWID dataset is modified as AWID3 dataset in

[17]. The AWID3 dataset is considered one of the most effective

datasets for designing and evaluating IDS. The data in this

dataset is in the pcap format along with their Pairwise Master
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Key (PMK) and TLS keys. This format is highly flexible

for extracting relevant features from the data based on the

requirement. In this research, features related to FDI attacks

are extracted. The extracted features are spread across the

network layers of the VCPS environment and are distinguished

based on the corresponding layer. The dataset consists of 254

manually extracted features in CSV format, wherein 253 are

generic features with one additional feature for labeling. This

study focuses on the attacks against local (internal) and external

nodes. Attacks such as SSH brute force, Botnet, and malware

are considered attacks against local nodes, while SQL injection

and SSDP are considered attacks against external nodes. The

raw data from the AWID3 dataset is preprocessed to filter out

uncertainties such as redundant data, null values, and missing

values. During preprocessing, all empty features and features

with constant values were removed, and missing values were

replaced with training data.

2) Feature Extraction: In this stage, the essential features

are extracted to achieve better attack detection performance. It

is important to select only relevant features from the dataset to

reduce the computational burden on the learning model and

to improve the time required for training the GRU model.

Besides, feature extraction also overcomes the problem of data

dimensionality and enhances the accuracy of attack detection.

Based on the FDI attack-related features, the model identifies

the changes in the normal behavior of the VCPS network and

flags the FDI attacks. In certain cases, the destination ID is

not mentioned in the communicated data, and in such cases,

two distinct features are extracted for training and validating

the IDS model. The first feature is the total number of data

packets transmitted by the source, and the second feature is

the size of the data transmitted from the source ID. The

extracted features are the statistical features that contain the

attack pattern, and some of the statistical features that are used

to train the proposed IDS model are as follows: traffic initiated

from the source ID, data transmitted from the source ID to

the destination ID, the time required for data transmission,

bits per second, and data sent from source to destination and

vice versa. The extraction of statistical features is expected to

improve the accuracy of the AFL-GRU model while detecting

FDI attacks. It is assumed in this research that the statistical

attributes of the normal behavior of the VCPS model will

exhibit sudden change, and as a result, more stable performance

can be achieved.

3) FDI Attack Detection: Here in this research, the layers

of the GRU model reconstruct the VCPS data, and in this

stage, the reconstruction error (which is calculated as the

difference between the original and the reconstructed data) is

reduced, and an optimal value is selected for classifying the data

sequences based on the reconstruction error. In the final stage,

the reconstruction errors are used as a validation dataset for

distinguishing normal and malicious data. The data sequences

whose reconstruction error is higher than the selected optimal

value are considered malicious.

IV. PERFORMANCE EVALUATION

The proposed federated learning and digital twin-based IDS

is evaluated using the AWID3 dataset in terms of its ability

to detect potential attacks. For simulation, multiple vehicles

are considered, and the dataset is divided into multiple subsets

based on their categories and aggregated to form multiple

datasets. The number of vehicles considered for simulation

analysis is 50, and the maximum number of features considered

for the analysis is 130. The attack detection performance is

evaluated based on the detection accuracy. The dataset was

split into a ratio of 80% for training and 20% for testing the

performance of the model, respectively. The approximate con-

sideration of the split ratio reduces the problem of overfitting

and ensures that the model exhibits better performance. The

IDS model was trained using both normal data and malicious

data, which includes different types of attacks, including FDI

attacks. Nine different VCPS attributes were selected for sim-

ulation analysis, namely, source IP, destination IP, source port

and destination port, duration, source bytes, destination bytes,

source TTL, destination TTL, source load, destination load,

source packets, and destination packets. In addition, the per-

formance of the digital twin-based IDS was evaluated in terms

of various performance evaluation parameters, and the results

obtained were compared with another existing model/algorithm

to validate the effectiveness of the proposed approach. The

dataset is split into 10 samples sequentially to find the optimal

parameters for the experimental evaluation. The last sample

will be considered the testing data, and the remaining samples

will be used as the training data. A 9-fold cross-validation is

performed on the training dataset, and the hyperparameters are

set based on the validation result. The proposed IDS model

is trained using both real-time data and historical data. The

simulation results of the proposed IDS for different metrics are

shown in Table I.
TABLE I

ATTACK CLASSIFICATION REPORT OF THE PROPOSEDIDS

Accuracy Precision Recall f1-Score AUC

Class 0 0.988 0.98 0.95 0.92 0.93

Class 1 0.988 0.97 0.98 0.96 0.95

Class 2 0.992 0.98 1.00 0.99 0.98

Macro Avg 0.993 0.976 0.976 0.956 0.953

Weighted Avg 0.993 0.976 0.976 0.956 0.953

It can be inferred from the Table I that the proposed classifi-

cation model achieved an accuracy of 99.3%. At the same time,

the macro average of the precision, recall, F1 score, and AUC

TABLE II
COMPARATIVE RESULTS OF THE PROPOSED IDS WITH OTHER TECHNIQUES

Techniques Accuracy Precision Recall F1-Score AUC
RF 0.95 0.93 0.93 0.91 0.9
NB 0.79 0.74 0.77 0.79 0.83

SVM 0.93 0.89 0.92 0.91 0.94
Decision Tree 0.94 0.92 0.91 0.91 0.93

XGBoost 0.73 0.82 0.74 0.72 0.85
DQN 0.988 0.964 0.958 0.951 0.950
DBN 0.966 0.975 0.963 0.928 0.937

Proposed AFL-GRU 0.993 0.976 0.976 0.956 0.953
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(Area under the ROC Curve) is found to be 97.6%, 97.6%,

95.6%, and 95.3%, respectively. The performance of the pro-

posed IDS was validated by comparing the simulation results of

the proposed approach with other existing classification models.

In this work, the performance of the digital twin-based AFL-

GRU model was compared with existing Random Forest (RF),

Naive Bayes (NB), Support Vector Machine (SVM), Decision

Tree, XG boost, Deep Q-Networks (DQN), and Deep Belief

Networks (DBN) model and presented in Table II.

Simulation results show that the proposed IDS model outper-

forms existing models such as RF, Decision Tree, SVM, NB,

and XGBoost. In addition, models such as DQN and DBN

are also considered for the comparative analysis. These models

can achieve a higher classification accuracy since they learn

data effectively while capturing essential features. As a result,

these models are compared against the proposed AFL-GRU

model. The proposed model achieves a high precision and

accuracy of 97.6% and 99.3%, respectively, which is higher

compared to other models. The second-best performance is

achieved by the DQN model, which achieves an accuracy of

98.8%. Results show that the proposed IDS achieves better

results and performance than other models. There are multiple

reasons for the proposed IDS to exhibit excellent performance.

Firstly, extracting the spatial and temporal attributes of VCPS

models is important in making relevant predictions. During

simulation, it was observed that the proposed model required

less epochs to reduce the training time to acceptable limits.

However, extracting the statistical features helped the model

achieve better performance irrespective of the longer training

time. Several works have implemented CNN and LSTM models

for learning spatial features. However, the dynamic behavior

of the VCPS model makes it challenging for these models to

learn spatial features, thereby affecting performance efficiency.

Hence, in this research, a GRU model is included instead

of conventional CNN. The GRU model effectively captures

the nonlinear spatial features, which improves the intrusion

detection performance with better precision. On the other

hand, it was observed from the experimental analysis that the

existing models suffered from the problem of data sparsity. It is

difficult to manually acquire the labeled data in a dynamic and

heterogeneous VCPS environment since it can be expensive.

This problem is addressed in this research by training the model

with both adversarial samples and normal samples. Lastly, the

model is trained to learn continuously while the VCPS model

is operating. In addition, asynchronous federated learning helps

the model obtain updated information continuously using real-

time data to prevent new intrusions. Hence, the model is

trained online, leveraging the real-time data obtained from the

VCPS model. Otherwise, the VCPS model can become more

susceptible to attacks and intrusions not present in the training

dataset.

V. CONCLUSION

In this paper, we have presented an asynchronous Federated

Learning based digital twin enabled IDS for detecting FDI

attacks in VCPS, which detects unknown attacks. The digital

twin concept employed in this paper evaluates the ground truth

labels and enables the proposed approach to work effectively

with a large amount of unlabeled data samples, which does

not need labeled data samples to achieve better performance.

The performance of the proposed IDS model is evaluated using

the AWID3 dataset, and results show that the proposed model

outperforms the other models in terms of accuracy and other

metrics.
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