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Multi-head-self-attention (MHSA) mechanisms achieve state-of-the-art (SOTA) performance across natural lan-
guage processing and vision tasks. However, their quadratic dependence on sequence lengths has bottlenecked
inference speeds. To circumvent this bottleneck, researchers have proposed various sparse-MHSA models,
where a subset of full attention is computed. Despite their promise, current sparse libraries and compilers
do not support high-performance implementations for diverse sparse-MHSA patterns due to the underlying
sparse formats they operate on. These formats are either too specialised, failing to cover a wide-range of
sparse patterns, or too general, incurring high metadata overhead when computing on the moderately sparse
(10-50% non-zeros) matrices present in sparse-MHSA.

We bridge this gap, achieving both generality and performance, by proposing a novel sparse format:
affine-compressed-sparse-row (ACSR) and supporting code-generation scheme, SPLAT, that generates high-
performance implementations for diverse sparse-MHSA patterns on GPUs. Core to our proposed format and
code generation algorithm is the observation that common sparse-MHSA patterns have uniquely regular
geometric properties. These properties, which can be analyzed just-in-time, expose novel optimizations and
tiling strategies that SPLAT exploits to generate high-performance implementations for diverse patterns. To
demonstrate SPLAT’s efficacy, we use it to generate code for various sparse-MHSA models, achieving speedups
of up-to 2.05x and 4.05x over hand-written kernels written in Triton and TVM respectively on A100 GPUs in
single-precision.
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1 Introduction

Transformers have enjoyed widespread adoption in industry [5, 40]. However, to effectively train
and serve models at scale, transformers must: (1) have high model quality, and (2) utilize manycore
GPU architectures effectively. Nevertheless, achieving both simultaneously is challenging as datasets
and tasks [48, 51] are demanding increasingly longer input sequences. This increases the memory
consumption of multi-head-self-attention (MHSA) layers, which increases quadratically with respect
to input sequence lengths, and reduces the largest permissible batch size (LPBS) a model can operate
on. Since sequences across batches are independent and can be processed in parallel, large models
operating on long contexts are forced to use small batches and do not realize their high-throughput
potential despite being embarrassingly parallel.

To mitigate the memory bottleneck of MHSA, researchers have proposed several sparse-MHSA
methods [8, 16, 24, 34, 35]. These methods compute a subset of the entire attention matrix using a
statically fixed mask. However, unlike the sparsity levels encountered in widely studied scientific
and high-performance computing applications [3, 33] which are extremely sparse (<10% of the values
are non-zero), state-of-the-art (SOTA) sparse-MHSA methods are moderately sparse, computing
10-50% of the full attention matrix [8, 16, 34, 35, 52, 59]. Computing fewer values degrades model
quality while computing more values consumes additional memory. These moderate sparsity
ranges place unique challenges in adopting existing sparse formats to implement high-performance
sparse-MHSA kernels.

On one end, general sparse libraries [36, 57] and

optimizations usually operate on general sparse for- 25 5

mats (GSFs) that incur high metadata overhead at the " _ SEQSIS /

moderate sparsity levels present in sparse-MHSA. —— CUSPARSE °

Such formats, like the compressed-sparse-row (CSR) € 15 /

and coordinate (COO) formats, contain metadata g 0 ®

that represent the dense coordinates of each non- ~ ° 1

zero value, consuming memory in O(nnzs). To ex- s ((“;:’" :;S""

tract performance out of sparse kernels operating on 0 s-e—e—

GSFs, sparse libraries and optimizations propose var- 0.0 02 0.4D ) 06 08 1.0
ensity

ious strategies [15, 26, 32]. Nevertheless, every non-
zero value read from a GSF must also read its respec-
tive metadata to uncover its dense coordinate. This
at least doubles the data read from high-bandwidth
memory within the inner loops of sparse primitives. of the sparse input across: [0.4, 0.8, 1.6, 3, 6, 12,
Since sparse-MHSA layers are moderately sparse, 24, 44, 75, 100]. The sparse input takes the shape
producing megabytes of non-zero values per layer ¢ ihe blocked pattern (figure 2 right).
[24, 34], doubling the data read from high bandwidth
memory (HBM) exacerbates contention of L1 caches
and register-file resources, inhibiting performance. As we see in figure 1, even hand-optimized
vendor libraries like cuSPARSE [2] that employ the CSR format are outperformed by their dense
counterparts, cuBLAS [1], for density levels as low as 20% despite doing 1/5th of the compute.
On another end, hand-written kernels usually operate on custom sparse formats (CSFs) that are
specialised to a single sparse-MHSA pattern and need to be redesigned to extract performance from
different patterns. This specialisation permits format designs with lower metadata storage, and
custom sparse-schedules with favorable thread access patterns. For example, triton’s block-sparse
kernels [29] are hand-written kernels that operate on a CSF curated to represent block-like sparsity
patterns, giving up to a 9x speedup over using GSFs like CSR & COO [57]. However, naively

Fig. 1. Run-time results for a sparse primitive
used in sparse-MHSA (R-SpMM) comparing cuS-
PARSE, cuBLAS and SPLAT. We vary the density
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adopting its CSF to a non block-like sparsity pattern, such as the window pattern (figure 2 - 2"¢
from left), results in redundant storage and compute, reducing the LPBS of models (see section 3 for
an example). To recover this lost performance, practitioners need to rewrite hand-written kernels
and the CSFs they operate on to specialise the indexing of sparse-structures to the sparse-MHSA
pattern in question, like [8] which specialises to the windowed and strided patterns. Since indexing
sparse structures requires non-trivial arithmetic involving nested layers of indirection, it is difficult
to reason about which optimizations are effective, resulting in a concerted engineering effort to
hand-write high-performance sparse-MHSA kernels for a variety of patterns.

We observe that no general data format facilitates high-performance implementations for various
sparse-MHSA patterns. GSFs require O(nnzs) metadata storage to permit generality at the cost of
performance while CSFs reduce metadata storage to permit performance at the cost of generality.
We plug this gap and propose a novel data-format: affine-compressed-sparse-row (ACSR) and
supporting GPU code-generation scheme, SPLAT (SParse reguLar ATtention) that can cover a
wide range of sparse-MHSA patterns while achieving good performance. However, in order to do
so, we had to solve several challenges.

First, reducing metadata below O(nnzs) typically reduces the generality of a format, potentially
reducing its coverage of sparse-MHSA patterns. Fortunately, we observe that a variety of com-
monly used sparse-MHSA patterns are static with regularly repeating non-zero sub-structures.
We introduce a novel geometric property that describes these regularly repeating sub-structures:
affine-compressibility, and term sparse-MHSA patterns that are affine-compressible as regular.
This allows us to lift their regularity into the design of the ACSR format, enabling compressed
metadata storage in O(rows), an asymptotic reduction of O(nnzs) compared to GSFs. Importantly,
our notion of affine-compressibility is general, enabling us to represent a variety of current and
potential future affine-compressible sparse-MHSA structures without incurring extraneous padding
& compute, unlike CSFs. For example, the ACSR format can precisely represent: longformer-strided
and windowed [8] (12.5% density), gemma-two [24] (37.5% density), reformer [35] (25% density),
and big-bird global (10.9% density) amongst others [16, 34, 42].

Second, with the introduction of our novel ACSR format, it is a challenge to code-generate
high-performance sparse-MHSA kernels. Sparse-primitive schedules are intricately linked to the
underlying sparse-format they operate on. Therefore the ACSR, in its unique layout of both its non-
zero values and meta-data, requires novel optimizations and schedules to achieve high-performance.
To overcome these challenges, we develop a GPU code-generation framework, SPLAT, that produces
high-performance sparse-MHSA patterns with the ACSR as the underlying representation.

To demonstrate SPLAT’s efficacy, we implement 4 widely used sparse-MHSA patterns at various
sparsity levels. SPLAT-generated SDDMM and SpMM kernels, two core primitives of sparse-MHSA,
outperform vendor libraries cuBLAS and cuSparse at moderate sparsity levels by 2.81 & 5.61x
respectively. Moreover, SPLAT’s end-to-end generated sparse-MHSA outperforms handwritten
kernels in triton and TVM by up to 2.05x and 4.05x respectively in single-precision.

In summary, this paper makes the following contributions:

e We introduce a novel geometric property of sparse-MHSA patterns: affine-compressibility
and leverage this to propose the ACSR format (Sections 4 & 5).

e We develop novel optimized GPU code-generation schemes for regularly sparse primitives,
what we term as R-SDDMM and R-SpMM kernels, that use the ACSR (Sections 6 & 7).

e We use the optimized sparse operations to provide GPU code-generation strategies for end-
to-end globally efficient sparse-MHSA models (Section 8).

e We implement these code generation schemes in a framework called SPLAT, and evaluate
SPLAT against against hand-optimized kernels (Section 9).
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2 Background

Full Attention. The backbone of the transformer is multi-head-self-attention (MHSA) [55]. MHSA
computes the following matrix: Concat(Head;, Head,, ..., Heady,) where Head; is:

soﬁmax(QWl.Q (Kwf )T vw) e RN dm/h and the concatenation happens across the columns of

Aj
AiVWl.V. The matrices Q, K & V € RNX%m are the input matrices consisting of N vectors of size
R, where N is the input sequence length. W'iQ, WK and WY € Rm*dn gre linear transformations.
The matrix A; is known as the attention matrix and the softmax is taken row-wise in the product
QWI.Q (K WIK )T. Self-attention is expensive due to the matrix A; being of size O(N?).

Sparse Attention. To alleviate the quadratic computation in self-attention. Researchers have
proposed a variety of sparsification techniques to reduce the size and memory of computing A;.
These techniques compute some subset of the values of A; controlled by a mask matrix M, reducing
the runtime of MHSA [8, 16] by computing: , .

[softmax(M & QW;° (KW/)T)] vw;” (1)

45

R-SpMM
where mask M is a mask of 0s and 1s and ® is a pair-wise product. The product: M® (QWl.Q (K WIK )Ty
in traditional sparse computing terminology is a sampled dense dense matrix multiplications (SD-
DMM), whilst the product: ASVW," is a sparse matrix dense matrix multiplication (SpMM). However,
compared to the sparsity levels studied in sparse computing literature, M is both moderately sparse
and regular. Hence we term these operations appropriately prefixed with regular as R-SDDMM
and R-SpMM respectively. We define regularity in section 4.

Sparse-MHSA Patterns. A variety of sparse
transformers have been proposed in the liter-
ature [8, 16, 35, 61]. For example, the strided
and windowed patterns (figure 2 far left and
2" from left) which implement Longformer
(written in TVM) [3, 12], and the blocked pat- Fig. 2. Examples of 4 commonly occurring sparse-

d . . .
tern (figure 2 2" from r.lght) which imple- 4154 patterns in the literature. Strided (far left figure),
ments Reformer (written in JAX), and sparse- \yindowed (2" from left) [8], Blocked (2 from right)

transformer (written in Triton) [10, 16, 53]. [16, 35], and Global (far right) [59]. Full attention com-
Sparse Formats. To obtain memory savings putes all points

and performance benefits, sparse-kernels oper-

ate on data structures that only store the non-zero values in a sparse matrix. These data structures
consist of non-zero values and their respective metadata. The metadata indicates the index of the
trailing and leading dimension of a non-zero value. For example, the compressed-sparse-row (CSR)
representation in figure 3 (b) contains the rowPtr and collnd arrays, indicating the leading and
trailing dimensions of non-zero values in the values array. Many sparse formats have been proposed
in the literature including: COO, CSC, BCSR, ELLPACK, DIA, CSF [17, 28], to name a few.

3 Motivation

In this section, we study the implications of using GSFs and CSFs in the moderately sparse context
of sparse-MHSA for a particular pattern. Consider two sparse-formats: the CSR [23] general sparse-
format and BCSR-like [21] custom sparse-format (used in triton blocksparse kernels [29]). The CSR
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1|2
3|45 1 int x = blockIdx.x * blockDim.x + threadIdx.x;
6|7 (s 2 int y = blockIdx.y * blockDim.y + threadIdx.y;
5 |10 ; float answer = 0;
for (int k = row_ptr([x]; k < rowptrl[x + 1]; k++) {
Window Pattern ] int col = col_idx[k]; // Metadata brought up memory hierarchy
(a) 6 answer += A_vall[k] * B[colllyl;
__________________________ 7}
rowPtr |0 2|58 |10 ()

[
colind [oJ1ofs]2]s]2]3]2]3]

values |1]2|3|415|5|7]8|9110| int tx = threadIdx.x; int ty = threadIdx.y;

2 int x = blockIdx.x * blockDim.x + tx;
CSR Format 3 int y = blockIdx.y * blockDim.y + ty;
(b) 1 float answer = 0;
___________________________ 5 int block_x = x / block_size;
¢ for (int k = 0; k < K / block_size; k++) {
©, 0 ©, D 7 if (A_vallblock_x]1[kl) {
S oTo 8 float #*xtile = A_vall[block_x][k];
for (int k_one = 0; k_one < block_size; k_one++) {
Bl ¢ 3]0 // Redundant compute
a, o a, n answer += tile[ty]l[k_onel * B[k_onelltyl;
ol6 7|8 }
3 ¥
ofo 9 |10 3

Specialized Sparse Format

(c) (e)

Fig. 3. A comparison between SpMM implementations that use the CSR format (b), and a specialized format
(c). (d) and (e) are naive SpMM implementations of C = AB, when A is represented as a CSR and the specialized
format of (c) (resembling a BCSR), respectively.

allows storage of arbitrary sparse patterns without extra zero-padding, while the BCSR is curated
to store patterns with block-like sparsity. However, since sparse-MHSA has a variety of patterns,
we investigate the performance characteristics of using the CSR and BCSR-like formats in figure
3 on the windowed sparsity pattern (figure 2 2"? from left) at moderate sparsity (24% non-zero).
Figures 3 (b) and 3 (c) show how the windowed pattern in figure 3 (a) is represented in the CSR and
BCSR-like formats respectively. We focus on the SpMM kernel, C = AB where A is a sparse tensor.
For illustrative purposes, figures 3 (d) & 3 (e) show the naive implementations of the SpMM kernel
when using the CSR and BCSR-like formats respectively, while figure 4 shows the performance
profiles of optimized versions of the same kernel.

General sparse formats incur high metadata overhead. GSFs are designed to store random
& extremely sparse patterns (with <10% of the values computed) by storing metadata for each
non-zero value, occupying O(nnzs) space. However, their metadata storage results in considerable
data moved through the GPU memory hierarchy at moderate sparsity levels. Consider the naive
SpMM implementation operating on a CSR in figure 3 (d). When reading a value from sparse matrix
A, its respective column index must be read (line 5) to multiply with the correct row from B which
results in 3 loads of (1) col_idx, (2) A, and (3) B to L1-caches and register files. However, the sparsity
levels of sparse-MHSA layers are moderate, with up to 2048 megabytes of data produced per layer
in SOTA sparse architectures [24, 34], resulting in non-zero data (from A and B) and metadata (from
col_idx) contending for space in caches and register files. Moreover, this contention occurs within
every iteration of the inner loop (lines 4-6) resulting in frequent cache evictions and extraneous
data moved from L2 to L1. This is not mitigated even in heavily optimized vendor-libraries for
sparse computations like cuSPARSE, which operate on CSRs. As seen in figure 4, cuSPARSE’s
SpMM transfers 4.73x more data from L2 to L1 compared to cuBLAS’s dense matrix-multiplication,
despite executing 1/3rd of the compute instructions.
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Custom sparse formats lack generality. 20- _20
CSFs are designed to store specific sparsity pat- [ A nstuctons
terns, reducing the metadata storage required =
to represent the coordinates of non-zero values. <
However, using these formats to store sparsity 10 8
patterns that these formats were not designed 05 -
for results in redundant compute and storage. ll
Consider the naive SpMM implementation op- 0.0- -— I . -0
SPLAT cuBLAS cuSPARSE Triton

Method

o
1
|

o

FFMA Instructions (B)
5
1

erating on the specialized format that is curated
to store block-like sparsity patterns in figure 3

(c). When naively adopting the same format to Fig. 4. Profile of R-SpMM sparse-primitive imple-
represent the window pattern, boundary con- - enied in SPLAT, cuBLAS, cuSPARSE and Triton. Ma-
ditions result in redundant storage of 0s in tiles  trices are 1024x1024 with sparse matrices in the win-
(0,1) and (1,0), incurring redundant compute in  dow format (see figure 2 - 2@ from left) at 24% density.
line 11 within the inner loop of lines 6-14. More- FFMA is an FP32 fused multiply-add instruction and
over, more data is read than is necessary, result- L2 read is the amount of data-traffic (in GB) from L2
ing in extraneous traffic through the memory to L1 cache. Lower is better.

hierarchy. This is not mitigated even in hand-

written kernels. As seen in figure 4, the highly optimized block-sparse kernels [29], hand-written
kernels written in triton that operate on a similar CSF, execute 1.4x the floating point operations
compared to cuSPARSE. To recover this lost performance, the sparse-kernel in figure 3 (e) needs to
be rewritten and performance engineered with another CSF specialized to the windowed structure,
resulting in a unique hand-written kernel for each sparse-MHSA pattern.

SPLAT. In this work, we recognize that an appropriate sparse-format for sparse-MHSA should
ideally incur low metadata overhead and high coverage of a variety of patterns without redundant
compute & storage. We bridge this gap by introducing a new sparse-format: affine-compressed
sparse-row (ACSR). Core to its design is the observation that commonly used sparse-MHSA patterns
are static with regularly repeating non-zero sub-structures, requiring metadata only in O(rows) as
opposed to O(nnzs) like in GSFs, and without compromising generality like in CSFs. Moreover,
we introduce a code-generation mechanism, SPLAT, that produces sparse-MHSA kernels which
operate on the ACSR format, reducing the number of compute instructions and data traffic across
the memory hierarchy as we observe in figure 4.

4 Overview

Figure 5 shows the workflow of SPLAT. SPLAT takes an input mask and code-generates high-
performance sparse-MHSA implementations just-in-time. Its code-generation strategy proceeds in
three phases. First, it proceeds with two analysis passes. The first pass analyzes the input mask and
ensures that pre-conditions are met for the correctness of later code-generation passes. The second
pass generates information required for certain optimisations later code-generation passes can
exploit. Second, it proceeds with 3 kernel code-generation passes, producing the R-SDDMM (section
6), Softmax, and R-SpMM (see section 7) kernels used to implement sparse-MHSA. Third, it proceeds
with an end-to-end code-generation pass (see section 8) that allocates the necessary memory and
creates auxiliary objects required for the correctness of kernel optimizations. The output of the
end-to-end code-generation phase is a compiled function that can be used in transformer models to
implement the sparse-MHSA mechanism. Our code-generation scheme produces high-performance
sparse-MHSA implementations that store sparsity in our novel custom format: affine-compressed-
sparse-row - ACSR (see section 5) that leverages the regularity of these patterns.
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SPLAT Inp(g &:n\s;;)rs
frm s ‘ i | R-SPMM Code-Generation (§8) | | ay Objeat ) |
(o) ' s |
Mask ——s- | | — | — | |
i T : | Softmax Code-Generation ] { T !
) |
i\ | R-SDDMM Code-Generation (§7) | ! i ]

Just-In-Time : ’ h g Inference

Fig. 5. An overview on SPLAT’s inner mechanics and how its just-in-time strategy produces compiled sparse-
MHSA kernels for inference.

Affine-Compressibility and Regularity. As observed in section 3, appropriate sparse formats
for sparse-MHSA kernels should compress metadata, reducing the number of bytes used to store the
indices of each non-zero value. Moreover, such a compression scheme should be able to precisely
represent non-zero values’ metadata across a variety of sparse-MHSA patterns without redundancy.
We achieve both by observing that the point-set of commonly occurring sparse-MHSA structures
(like in figure 2), consists of rows that are affine-compressible, and are therefore regular. This
observation enables us to create a novel sparse-format that symbolically stores the metadata for
each row of a regularly sparse structure through an affine function.

Point-Sets. To analyze the geometric properties of sparse-MHSA structures, we interpose their
input-masks onto the cartesian coordinate system. For a mask, M, consisting of 0s and 1s, we map
the point M[i][j] to the point (j, i). We define the point-set of an input-mask as the set of all points
that are 1, i.e. the set of all (j, i) such that M[i][j] = 1.

Affine-Compressibility. Affine-compressibility is a property of sets of points on the cartesian
coordinate system. It states that a set of points can be compressed, such that they consecutively
neighbor each other along the x-dimension (trailing-dimension of a matrix).

DErFINITION 1. Consider a set of points: P = {(x1, y1), (%2, y2), ..., (Xk, Yx) } on the coordinate system.
P is affine-compressible if and only if:

i—b i1—b
da, b € Ny, such thatVi € [k — 1], Xi +1= Xit1
a

a
We denote a, b as the affine-indices of P.

For example, the set P; = {(0,0), (2,0), (4,0), (6,0)} is affine-compressible with affine-indices:
a =2,b =0, however the set P, = {(0,0), (2,0), (4,0), (5,0)} is not.

Regularity. Regularity is a property of a sparse-MHSA mask, building upon the concept of
affine-compressiblity. We define a sparse-MHSA mask, M, to be regular iff every row in its cor-
responding point-set, P, is affine-compressible. Hence, a regularly sparse mask is amenable to
metadata compression by symbolically storing the dense indices of the trailing-dimension of a
sparse matrix. For example, in figure 6 (b), we see for each row of the window pattern the respective
linear-transformation (denoted as a) and translation (denoted as b).

5 Affine-Compressed Sparse-Row

We introduce the ACSR format to store regularly sparse matrices. The ACSR format leverages the
regularity of sparse-MHSA matrices to store metadata in the order of number of rows with its
metadata, the affine-indices, exposing various optimization opportunities. We detail the construction
of the ACSR in section 5.1, and the optimizations its metadata exposes in section 5.2.
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5.1 ACSR Construction

The ACSR comprises of two arrays: non-zero values, and metadata. The metadata symbolically
records the index of the trailing dimension for each non-zero value in a particular row. ACSR
represents a sparse matrix by computing the affine-indices per row and compressing data across
the trailing dimension such that non-zero values consecutively neighbor each other. For example,
in figure 6, the original 2-D matrix in figure 6 (a) is compressed across the trailing-dimension to 6
(b). Each row in 6 (b) has the triplet: a (linear-transformation), b (translation), and nnzs (number of
non-zero-values) as metadata. If sparse; is the index of a non-zero value’s trailing dimension in
the ACSR, then (sparse; - a) + b is the index of the trailing dimension in the original sparse matrix.
Consider the location with value 14 in figure 6 (b); it is at sparse; = 1 and hasa =1,b =1, and
nnzs = 4 as metadata. The index of its trailing dimension in figure 6 (a) is thus (1- 1) + 1 = 2. The
metadata consists of the (a, b, nnzs) triplet per row, occupying O(rows) rather than O(nnzs) space.

However, to construct an ACSR, the affine-indices for each row of a sparse 2-D matrix need to
be computed. This can be error-prone for a user to implement and can be avoided by observing
that for a given row, y, in a regularly sparse 2-D matrix: a = iy y — ioy and b = i1, where i,
& iy,y are the first two points’ column indices in row y. Once the affine-indices for each row is
computed, we can check to see if the entire pattern is then affine-compressible by computing:

ivy=by _ ix_1y—b . ) _ ) _
% = # + 1 and checking (ix—1,y — by) mod ay = 0 A (ix,y — by) mod a, = 0, where

ay, by are the affine-indices of row y, and iy, , is the x*" non-zero value in row y.

5.2 ACSR Properties

The ACSR exposes novel optimization oppor-
tunities for R-SDDMM and R-SpMM kernels at
the moderate sparsity levels observed in sparse-
MHSA.

Reduction in Predicated Execution. Op-
erating on sparse inputs may result in an im-

8 |13]17

12| Transpose 3 10[15[19

11]16

<o [w]s
©
=

7
8|ofwofn)i2

balance of work across threads within a warp 13[4 16 Tals
. . . . 17 18|19

as certain input regions are potentially more @  Col-compressed [s]9[10]1s ot Transpose 5 T alal
dense than others. The ACSR, in storing the & B e

. K . i K Row-major Layout 17 12]16] 19
dense indices of the trailing dimension symbol- @ ©
ically via affine-indices, exposes which regions ] 12 iz nels

> ] 2| 5| 9[14]18] Row-compressed & 2[5]913 Col-compressed &

of a sparse tensor are identical at the granular- 5[ [10]15[1] Col-major 3 [0} cof major
. . . 7 [11]16 Memory access pattern | 7 [11[15]18 Memory access pattern
ity of a row. For example, if different rows have 2 12[ 1619

. . . . . ) 2)
identical linear-transformations, translations, ¢

and number of non-zero values, then they have
data placed in identical trailing indices. Rows
with identical affine-indices can be re-mapped
to operate on threads within a warp to reduce

Fig. 6. The 4 different data-layouts an ACSR can take:
(b) row-wise compressed row-major, (c) row-wise com-
pressed col-major, (d) col-wise compressed row-major,
(e) col-wise compressed col-major. For (f) and (g), colors
predicated execution. represent elements of the same column. The g, b, and

Favorable read/write access patterns. In  pnnzs represent a row’s linear-transformation, transla-

R-SpMM kernels, memory accesses to conven- tion, and number of non-zero values respectively, con-
tional sparse-formats can be un-coalesced. To stituting the metadata. The a and b variables are the
coalesce these accesses, contiguous elements affine-indices of a row.

in a column need to be laid out in contiguous

memory addresses, which our construction in section 5.1 does not do. Fortunately, regularly sparse
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kernels are also column-wise affine-compressible. When compressing data across the trailing di-
mension and laying out data in column-major, contiguous memory addresses in the ACSR contain
contiguous elements in a column of a sparse matrix as shown in figure 6 (g).

Fast indexing. Certain sparse kernels check whether an index in a sparse 2-D matrix is non-zero
by traversing a region of values in a sparse-format. For example, to identify if a point (dense;, dense;)
(leading, trailing dimensions resp.) is non-zero in a CSR requires a traversal of all the points
[rowPtr[dense;], rowPtr[dense; + 1]]. However, the ACSR can compute the answer in O(1) time
and metadata accesses by computing: dense;%(a) == 0 A dense; — b > 0, where a and b are the
affine-indices of row dense;.

6 High-Performance R-SDDMM

An important optimization applied to GPU implementations of SDDMM kernels is tiling to improve
reuse and reduce thread-divergence. This involves deciding a mapping of thread-blocks to outputs.
Different tiling strategies have been explored within the context of random and extreme sparsity [27,
32, 38] (see section 10 for more details). However such strategies either target extremely sparse
matrices or operate on specific sparse-formats.

Comparatively, we leverage the regular nature of the sparsity patterns and the ACSR format
to provide a novel, inexpensive tiling strategy for the R-SDDMM kernel (see section 6.3). We
show that our tiling approach increases cache reuse, and memory coalescing whilst reducing
thread-divergence and redundant compute with strong optimality guarantees (see section 6.3).

6.1 Observations

The geometric diversity of sparse-MHSA patterns gives rise to several possible arrangements
of thread-blocks over the output, C. Each arrangement trades off different factors that impact
performance. We categorize each sparse pattern as either polygonal or strided. Polygonal patterns
comprise of non-zero values that are clustered together, with no gaps between them like the
windowed and blocked pattern. Strided patterns consist of non-zero values which have constant
gaps between them, each non-zero value having no neighbor.

Polygonal Patterns. Figures 7 (c) and 7 (d) show two valid tiling arrangements for the same
polygonal pattern. 7 (d) incurs more threads with divergent control-flow compared to 7 (c), as
more threads within a thread-block exceed the boundary of the pattern and are predicated to
terminate, diverging from the threads that compute output values. Instead 7 (c) incurs threads with
redundant compute as thread-blocks that overlap (orange points) compute the same values. The
more performant tiling arrangement between the two will depend on the relative costs associated
with thread-divergence, redundant compute, and number of thread-blocks.

Strided Patterns. Figures 7 (g) and 7 (h) show two valid tiling arrangements for the same strided
pattern. 7 (h) exhibits low spatial locality compared to 7 (g), as thread-blocks operate on outputs that
do not re-use rows and columns from the input. Instead, thread-blocks in 7 (g) issue un-coalesced
reads to input matrices as they operate on outputs with a constant stride. Additionally, 7 (h)
exhibits increased divergent control-flow and uses more thread-blocks compared to 7 (g). The more
performant tiling arrangement between the two will depend on the relative costs associated with
un-coalesced memory accesses, divergent control flow, spatial locality, and number of thread-blocks.

Our observations indicate that 4 factors impact the performance of a tiling arrangement. (1)
The amount of redundant compute between thread-blocks that overlap and compute the same
output. (2) The amount of thread-divergence within a thread-block by being placed on irregular
boundary conditions. (3) The amount of reuse within a thread-block by computing outputs that
share either rows or columns of input matrices A and B. (4) The number of memory access/write
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Fig. 7. Different ways thread-blocks can tile strided and polygonal patterns. (a) and (e) are the two patterns.
(b) and (f) demonstrate our novel poset tiling strategy. (c) and (d) show two strategies to tile polygonal
patterns. Gray represents thread-divergence, and orange represents redundant compute. (g) and (h) show
two strategies to tile strided patterns. Numbers on the mask represent what iteration in the for-loop (line 4 of
algorithm 1) the thread-block was placed.

requests issued by a warp that are coalesced by reading/writing to contiguous memory locations. A
good code-generation scheme should generate a tiling arrangement that reduces the cost of each.

6.2 R-SDDMM Performance Characterisation

We first develop a cost model that explicitly reasons about each of the four factors that affect the
performance of a tiling strategy. We achieve this by developing expressions to compute each of
these factors as a function of the thread-block arrangement of a given tiling strategy.

Thread-Blocks. We define a thread-block to be a mapping between a logical rectangle of threads
of size m X n to points on a mask, M.

DEFINITION 2. A thread-block TBy consisting of m X n threads that partially covers a point-set
P is defined by a tuple: (t,s),t € N XN, s € N. We further define the compute of a thread-block as
Comp(TBy) ={t+ (i*s,j*s)|ie{0,....m—1},j€{0,...,n—1}}.

Finally, we define its cover, anchor-point, and stretch factor as:

Cou(TBy) = Comp(TBy) N P, Anc(TBy) =t, Str(TBg) =s

The cover and anchor-point represent the points a thread-block computes and its top-left corner
(its translation from the origin) respectively. For example, in figure 7 (g), the cover of the two thread-
blocks is Cov(TBy) = {(0,0), (0, 2), (2,0), (2,2)} (green thread-block), with Anc(TB,) = (0,0), and
Cou(TBy) = {(1,1),(3,1),(1,3),(3,3)} (blue thread-block), with Anc(TB;) = (1,1). The stretch
factor of a thread-block determines how far apart threads in neighboring rows and columns will be
placed when covering a point-set. For example, the two thread-blocks in figure 7 (g) have a stretch
factor of 2.

6.2.1 Factors affecting performance. Definition 3 gives the mathematical formulation of the four
factors impacting the performance of a R-SDDMM kernel. We give intuitions for those definitions
next. Note that thread-divergence and redundant compute are aggregate sums, while reuse and
memory coalesced requests are averages across all thread-blocks.
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Thread-divergence. Within a thread-block, threads that exceed the boundary conditions of a
mask deviate control flow from threads that do not. Although thread-divergence happens within
a warp, due to the irregular boundary conditions in regularly sparse masks, oftentimes threads
that exceed the boundary of a mask exhibit thread-divergence. Therefore, we define the collective
thread-divergence of an arrangement as the number of threads that do not cover a point in the
point-set. (See ¢rp in definition 3).

Redundant Compute. An arrangement’s redundant compute is the number of excess threads
that do not do useful work across all thread-blocks. This amounts to a sum of all the threads in the
arrangement subtracted by both the number of points in the point-set and the number of threads
that have divergent control flow. (See ¢ in definition 3).

Reuse of Thread-block. Threads within a thread-block that do useful work usually reuse values
of the input rows or columns. The threads that do not do useful work fall into two categories: (1)
Divergent threads, (2) redundant threads. To compute the reuse of a thread-block, we compute the
fraction of threads within a thread-block that are both not divergent and redundant. Hence, we
define the reuse of an arrangement to be the average reuse across all thread-blocks. (See ¢ry in 3).

Degree memory requests are coalesced. The degree to which memory requests of a warp
within a thread-block are coalesced is inversely proportional to a thread-block’s stretch factor. Since
both the inputs are dense, the larger the stretch factor, the larger the stride in reads issued to inputs,
and writes issued to outputs. Hence, we define the amount of memory coalescing as the average
stretch factor across all the thread-blocks in an arrangement. (See ¢cpr in 3).

DEFINITION 3. Consider an arrangement of thread-blocks, TB = {TBy, TBy, ...TB,} each containing
m X n threads, covering a point-set, P such that |\ J7p,c1g Cov(TB;) = P. We define its collective thread-
divergence (¢rp), redundant compute (¢pr), reuse (¢pru ), and coalesced memory-requests (pcmr ):

érp = ( U Comp(TBl-))\P‘ $r = Amn — |P| - ¢rp
TB;€TB
Pk il W L4 y D
RU = = CMR =
mn Amn /1 rhchs Str(TB )

We illustrate divergent threads and redundant threads in figure 7 (c) as gray and orange respectively,
with ¢rp = [{(1,3), (3, 1), (6,4),(6,7),(7,7), (7,6)}| = 6,and ¢g = 7 % 4 — 20 — 6 = 2. We compute
the reuse of 7 (g): ZXZ 0 % =1 and 7 (h): % = %, as well as the coalesced memory requests
of 7 (g): 2(2 2) = 2, and 7 (h): 1.

Cost Model. A performant tiling arrangement will minimize redundant compute, thread-
divergence, and stretch-factors of thread-blocks whilst maximizing reuse and coalesced memory
requests. This amounts to minimizing ¢rp, and ¢, whilst maximizing ¢ry and pcpr.

On one hand, minimizing both ¢rp and ¢r and maximising ¢ry corresponds to reducing A,
since the dimensions of thread-block: m, n and the size-of the point-set: P, are all fixed. Therefore,
optimal tiling arrangements that reduce the costs of thread-divergence, redundant-compute, and
low reuse will minimize the number of thread-blocks used. On the other hand, maximising ¢cpr
corresponds to reducing Str(TB;) for all thread-blocks in the arrangement. Therefore, a good cost
function will increase with the number of thread-blocks used, and decrease when ¢cpg increases.

DEeFINITION 4. Consider an arrangement of thread-blocks, TB = {TBy, TB,, ...TB,} each containing
m X n threads covering a point-set, P. Its cost is denoted as Cost(TB) and is computed as follows:
Cost(TB) =

¢CMR
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6.3 Poset Tiling

We develop a tiling strategy - poset tiling - to tile patterns with optimality guarantees according to
our cost model. Given a mask, M, whose point-set is P, it outputs an arrangement of thread-blocks
that covers P by computing the anchor-points where thread-blocks should be placed. It computes
these anchor-points by successively computing a set T, using the comes-before (CB) relation.

DEFINITION 5. Suppose we have a point-set, P that is partially tiled by TB = {TBy, TB,, ...TB}.
Then given two points, (x1,Y1), (x2,Y2) € P, we say that x < y (i.e. x CB y) iff x1 < x2 Ay < yo.
Moreover, let P’ be the set of un-covered points of P. We define T to be the set of points in P’ such that:
Vpi € T,Ap; € P’ such that p; « p;.

Intuitively, the set T defined over a partially
covered point-set, P, represents a set of un-
covered points that, when used as the anchor-
points of thread-blocks, cover a large uncovered

Algorithm 1: Poset Tiling
Inputs :P,m,n

portion of P. For example, in figure 7 (b) (Iter- ! AncPt « 0;

ation 2) when the points in T = {(4,5), (5,4)} 2 Rem < P;

are treated as the anchor-points of thread- 3 $ < stretchFactorSelection(P);
blocks, we produce the arrangement in 7 (b) 4 while Urp,erpCover(TB;) # P do
(Iteration 3). These additionally placed thread- 5 Teurr < fr(Rem);

blocks cover 6 uncovered points. 6 AncPt < AncPt U Ty

~

Algorithm 1 demonstrates how poset tiling for (x,y) € Teurr do

covers a point-set, P, using the set T. It takes s Rem « P — {Ujem) X +i X s} X
as input a point-set, P, to cover, and the di- {Ujermy+Jxsh

mensions of the thread-blocks (m x n) usedto end

cover P. It outputs a list of points representing ; ond

the anchor-points of an arrangement of thread- Output: AncPt
blocks that covers P. It begins by initializing
the answer (AncPt) to 0 in line 1, and the set of
uncovered points (Rem) to P in line 2. It decides a suitable stretch factor to apply to thread-blocks
(line 3) by calling a sub-routine stretchFactorSelection (described in 6.3.1). The main loop in line
3 iterates until Rem is 0, which occurs when we have a cover of P. At each loop iteration, line
4 computes the current T (T ) over the uncovered points Rem, adding this to the solution set
AncPt. Finally, using T, as the anchor-points of thread-blocks stretched by a factor of s, lines
6-8 remove points from Rem that will be covered.
Figure 7 (b) Iterations 0-4 represent each iteration of the main loop in poset tiling.

THEOREM 1. Given point-set P and an arrangement of thread-blocks
TBposer = {TBy,TBy, ..., TBAposet}’ each of size m X n, generated by algorithm 1 to cover P. Let
TBopr = {TB1,TB,, ..., TBAOP,} be the arrangement of lowest possible cost to cover P. For the definitions
of the windowed, blocked & strided patterns in appendix B, we have for the windowed and blocked
pattern that:
Cost(TB
0s ( poset) <1 E (2)
Cost(TB,pt) l
Where | is the maximum number of points in a row of the mask. Moreover, for the strided pattern,
the cost of the arrangement is optimal. See Appendix E for the proof.

6.3.1 Stretch Factor Selection. The stretch factor of thread-blocks may influence the number of
thread-blocks used in a tiling arrangement. For example, take the strided pattern in figure 7 (g) and
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7 (h). By increasing the stride from 1 to 2, we go from the arrangement in 7 (h) which uses 4 thread-
blocks, to the arrangement in 7 (a) which uses 2 thread-blocks. Therefore, a good stretch factor will
balance the cost of issuing un-coalesced memory requests with the number of thread-blocks used
in an arrangement.

A naive stretch factor selection sub-routine
will run poset tiling for every possible stretch 1rSDDMMKernel (map<int, coord> idxToOut,

factor, enumerating the cost of each ar- 2 int s, coordx metadata, float*x A,
. _ B float*x B, float*xxC) {
rangement and selecting the factor that cor- ,  °Z threadldx.x: ty = threadIdx.y;
responds to the lowest cost arrangement. 5  bx = blockIdx.x; by = blockIdx.y;
Since the stretch-factor is bounded by the ¢  blockld = byxgridDim.x+bx;
. . 7 out_ix = idxToOut[blockId].x+tx*s;
sequence length, N, this will return: s = g out_iy = idxToOut[blockId].y+ty*s:
. Al i i -
argmin; -2 Where A' and ¢, ,, are the 9 out = 0;
EMMMie[N] g7 0 Pcmr 10 for (k = 0; k <= K; k++) {
number of thread-blocks and degree of coa- 11 out+=ALout_iyJ[kI*B[kI[out_ix1;
_ _ 12 3
lesced memory reiq.uests.ofanarrangement.pro 13 7/ fast indexing to place in ACSR
duced by poset tiling with stretch factor i, re- 14 a = metadatalout_iy].a;
spectively. However, we make two observations 15 b = metadatalout_iy].b;
16 CLiyJ[(ix-b/a)] = out;
that reduces the number of arrangements to ;7

search through.

For polygonal patterns, stretching a thread-
block will only reduce its cover (see Appendix
C for the proof). Hence, for polygonal patterns,
we return 1.

However, for strided patterns, stretching a
thread-block may increase its cover. To aid ;| .yqaFunc codeGenRSDDMM (mask M) {
us in cutting down the space of stretch fac- // Runs Algorithm 1.

. int TBCount,
tors to se.arch thI‘Ol.lgh, we make the follow1.ng map<int, coord> anchorPoints
observation. Consider a strided pattern with int s = gen_map(M);
mask, M. Define its stride to be the number of é/dg?mgéli :éth number of TBs.

. . u u u s
points between two successive non-zero values compile(launcher<TBCount,bs>);
in a row of M, denoted as X. Then we have 9  return func,anchorPoints;3}
that the cost of an arrangement is minimized °

g 11template<int TBCount, int s>

when applying algorithm 1 with stretch factor 12void launcher(A,B,metadata,C,

_ . i . 13 map<int, coord> idxToOut) {
s_argmlnd,-efactors(X) ¢di (See Appel’ldIXC 14 // Launch kernel.
CMR 15 Dim3 TBDim(/*TB Size.*/);

Listing 1. R-SDDMM naive Kernel

0 U W

for the proof). 16 rSDDMMKernel<<<TBCount,
17 TBDim>>>(idxToOut ,
6.4 R-SDDMM Kernel Code-Generation 18 s, A, B,C);}

We show the code—generation pass and a naive Listing 2. R-SDDMM code-generator and launcher
R-SDDMM kernel in listing 2 and listing 1 re-
spectively. The code-generation pass takes in
an input-mask (line 1) and first applies poset
tiling to generate the thread-block count, anchor-points, and stretch factor (line 5). It then uses the
thread-block count to instantiate the R-SDDMM launcher and compiles this function (lines 7-8),
returning the function pointer, func. Finally, it returns the function pointer and anchor-points (line
9).

We illustrate a naive implementation of the R-SDDMM kernel for brevity. The R-SDDMM kernel
takes as input the anchor-points (idxToOut), stretch-factor (s), left (A), and right (B) input matrices,
and space to store the output (C). Lines 7-8 use the thread-block id to index the map to recover the
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anchor-point of the thread-block the current thread belongs to. It uses this anchor-point to compute
the row of A, out;y, and column of B, out;y, to dot-product in lines 10-12. Finally, it indexes the ACSR
metadata to get the affine-indices for the out;, row, applying the correct linear-transformation and
translation to store the answer, out, at the correct index in the ACSR non-zero values array, C (in
lines 14-16).

7 High-Performance R-SpMM

Similar to the R-SDDMM kernel, we need to devise novel techniques to generate high-performance
R-SpMM code to leverage the full potential of the ACSR properties mentioned in Section 5. We
first show how to construct a naive R-SpMM kernel that uses the ACSR format, then incrementally
present two optimizations that enables SPLAT to generate high-performance R-SpMM implementa-
tions.

7.1 Observations

The Algorithm in listing 3 shows a naive implementation of the R-SpMM kernel C = AB, where A
is a sparse matrix represented in the ACSR format and B is a dense matrix. Traditionally, SpMM
kernels iterate over the non-zero values of A and multiply these with a corresponding value from
B (see figure 3 (d) for an example). However, in R-SpMM kernels, up to 50-70% of A can contain
non-zero values. Rather than iterating over only the non-zero values, we treat the R-SpMM kernel
as a dense computation and iterate over the size of the entire trailing dimension (leading dimension
of B) of matrix A. To reduce redundant computation, we place a guard condition (see listing 3 line
10) to skip iterations where values in A are 0. We can leverage the ACSR metadata to implement
the guard condition in O(1) through the observation that A[dense,][dense,] exists iff:

dense,%Af finelndices[dense,].a == O) A (densex — Af fineIndices[densey].b >= 0

Nevertheless, listing 3 has two issues. (1) In SpMM kernels, non-zero values in the product of AB
are produced only when non-zero values from A multiply with non-zero values from B. However,
by letting the loop in line 4 iterate across the entire trailing dimension of A (leading dimension of B),
we end up with identical loop counts regardless of the degree of sparsity in A. (2) The predicate in
line 10 will result in control divergence between threads in a warp when corresponding attempts to
read values from A are non-zero for certain threads, but zero for others. Moreover, this divergence
is exacerbated by being placed within a loop that may run for 1000s of iterations. We propose
optimizations to mitigate each issue in section 7.2.

7.2 Optimizations

Span specialisation. To mitigate issue 1, we observe that sparse-MHSA structures tend to have
chunks of non-zero values. For example, the windowed pattern contains all its non-zero values in
chunks surrounding the matrix’s main diagonal. Therefore, a thread-block reading a selection of
rows from a sparse matrix A in the window pattern need not iterate across all dense indices in the
trailing dimension and can start at the first non-zero value and end at the last non-zero value: its
column-span. Suppose a thread-block is reading a collection of rows, ry, r3, ...y from sparse matrix
A. Its column-span can be computed in O(k) time through:

span(ry,ra, ...rg) = [ min (AI[r;].b), max (Al[r;].nnzs - Al[r;].a+ Al[r;].b)]
ri€[ryr] ri€[ryril
where Al are the Af fineIndices. Figure 8 (a) demonstrates this span-specialisation. The thread-block
that reads values from the first two rows of A iterates from index 0 to 2 in line 4 of listing 3.
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Fig. 8. Different SpMM optimizations. (a) span-specialisation, white are redundant reads. (b) - linear-
transformation-alignment, colors represent points whose affine-indexes are identical (aligned), hashed boxes

correspond to values loaded into the same thread-block.

Linear transformation Alignment. To
mitigate issue 2, we observe that if rows in
the ACSR have the same affine-indices, data is
placed in identical indices across the trailing di-
mension. We can re-map threads within a warp
to operate on rows with identical affine-indices,
ensuring that threads execute the body of the
main loop in tandem. Figure 8 (b) demonstrates
this optimization; when loading from A, only
2 out of 9 threads diverge in control flow, as
opposed to 4 out of 9 without this optimization.

7.3 R-SpMM Code-Generation

The R-SpMM code-generation pass, shown
in listing 4, ingests ACSR metadata and code-
generates a R-SpMM kernel. It returns an R-
SpMM kernel (spmmFunc), thread-block count
(TBCount), metadata required for optimizations
(spmmMetaOpt), and layout of the ACSR (lay-
out), (see lines 5-7). The optimizations meta-
data, spmmMetaOpt, contains a map of thread
indices to 2 pieces of information. (1) The
respective start and end loop indices, imple-
menting span-specialisation. (2) The respec-
tive row of the ACSR to load, implementing
linear-transformation-alignment. The boolean
layout flag indicates the data-layout the ACSR
should be for correct data indexing. For high-
performance, the layout of the ACSR depends
on the density of the input mask, see section 8
for more details.

l1template<int layout>
2rSpMMKernel (A,B,metadata,metaOpt) {

ix = threadIdx.x + blockIdx.x
* blockDim.x;
iy = threadIdx.y + blockIdx.x
* blockDim.x;
out = 0;
for(dense_i=0;dense_i<=K;dense_i++){
// Leverage 0(1) indexing
if (index(A,iy, dense_i,layout)){
out += value(A,iy,dense_i,
layout)*B[dense_iJ[ix];}}
CLiyJ[ix] = out;}

Listing 3. Naive SpMM Kernel With Guard Clause

1void codeGenRSpMM(densityCls,metadata,

metaOpt) {
// The spmm kernel and optimisations
// depend on the metadata.
spmmFunc spmmFunc, TBCount,
spmmMetaOpt , layout=genSpMM(metadata,
densityCls);
// Compile the launcher
launchFunc func
= compile(launcher<TBCount,
spmmFunc, layout>);
return func, spmmMetaOpt;}

l4template<int TBSpmm, typename spmm,

15

int layout>

16void launcher (A,B,metadata,C,metaOpt){

17
18
19

dim3 TBDim(/*TB dimensions*/);
spmm<layout><<<TBSpmm, TBDim>>>(AT,
B,C,metadata);}

Listing 4. RSpMM code-generation
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1 codeGenSparseMHSA(float*x Mask, int sequencelLength) {

2 // Analsis passes

3 checkRegularity (Mask);

4 metadata = generateACSRMetadata(Mask);

5 densityCls = densityAnalysis(metadata, sequencelength);

6 // Code-generation passes.

7 rsddmmFunc, anchorPoints = codeGenRSDDMM(Mask); // Section 7
8

softmaxFunc = codeGenSoftmax (Mask, metadata);
9 rspmmFunc , rspmmMetaOpt = codeGenRSpMM(densityCls, metadata); // Section 8
10 // Memory allocator & Auxiliary Data creation.
11 rsddmmOut, softmaxOut, transposeOut, rspmmOut = allocateMemory(metadata);
12 auxiliaryData.memoryAllocations={rsddmmOut,h softmaxOut, transposeOut,rspmmOut
}
13 ... // Store: metadata, anchorPoints and rspmmMetaOpt in auxiliaryData.
14 // data layout reordering optimisation
15 transposeFunc = codeGenTranspose (Mask, metadata, densityCls);
16 // Finally, sparseMHSA function generation.
17 sparseMHSA = compile(sparseMHSAlauncher <rsddmmFunc, softmxFunc,
18 transposeFunc, rspmmFunc>);
19 return sparseMHSA ,auxiliaryData;}
20

21 template<typename rsddmm, typename softmax, typename transpose, typename rspmm>
22 sparseMHSAlauncher (Q,K,V,auxiliaryData) {

23 // Unpack memory allocations, metadata, anchor-points, and metadata

24 rsddmmOut , softmaxOut , transposeOut ,rspmmOut=auxiliaryData.memoryAllocations;
25 ... // Unpack the rest.

26 // Launch all kernels in sequential order.

27 rsddmm(Q,K,metadata, rsddmmOut ,anchorPoints);

28 softmax (out ,metadata, softmaxOut);

29 transpose (out,metadata, transposeOut);

30 rspmm(out,V,metadata, rspmmOut) ;

31 return rspmmOut;

32 }

Listing 5. End-to-End Code-generator Psuedocode

8 Final Code-Generation of Sparse-MHSA

Tying everything together, SPLAT generates high-performance code for end-to-end implementa-
tions of sparse-MHSA. Its code-generation mechanism is shown in algorithm 5, proceeding in four
passes. (1) An analysis pass (see lines 3-5) analyzes the input mask to generate information used
by later code-generation passes and ensures the legality of optimizations and code-generation. (2)
A code-generation pass (see lines 7-9), which ingests the information produced by the analysis
pass to generate: R-SDDMM, Softmax, and R-SpMM kernels. (3) A memory allocation and auxiliary
data creation pass (see lines 13-15) which allocates enough memory to hold output tensors and
creates a data object required for any optimizations for R-SDDMM and R-SpMM kernels. (4) A
data-layout reordering pass (see line 15), which reasons about the data-layout of the input tensor
to the R-SpMM kernel, inserting a relevant transposition whenever necessary.

Analysis pass. The analysis pass first checks if the mask is regular (see line 3), terminating
otherwise. It then generates the affine-indices (see line 4) as described in section 5. Finally, it
analyzes the number of non-zero values in the mask (density analysis - see line 5), and if this
number is greater than a threshold «, sets the classification returned to dense, else to sparse. This
information is required for data-layout re-ordering optimizations for good end-to-end sparseMHSA
performance.

Code-generation. The code-generation passes (see lines 7-9) produce high-performance imple-
mentations of the R-SDDMM (see section 6) and R-SpMM (see section 7) kernels, as well as objects
required to implement optimizations correctly. We use cuDNN’s softmax kernel to implement the
softmax over the ACSR.
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Memory Allocation & Auxiliary Data Creation. Lines 13-15 allocate the necessary amount
of memory required to store the output tensors of each of the kernels: R-SDDMM, Softmax, and
R-SpMM, and create an auxiliary data object. This data object contains information required for
the correctness of the optimizations detailed in sections 6.3 and 7.1. It contains the metadata (the
affine-indices and non-zero-values of the ACSR) required for fast-indexing, the anchor-points
for poset-tiling, and a rspmmMetaOpt structure that contains thread-level mappings for linear-
transformation-alignment and span-specialization.

Data-layout reordering. Reasoning about the data-layout of the ACSR in the R-SpMM kernel
is important for a high-performance implementation of sparse-MHSA. At moderate sparsity levels,
reading from an ACSR within the R-SpMM kernel is more expensive than writing to it within the
R-SDDMM kernel. The R-SDDMM kernel only writes to each output value once, but the R-SpMM
kernel reads each input multiple times (across multiple thread-blocks). We select the best format
for the R-SpMM kernel by considering the global computations and their formats and inserting
a transpose kernel before it whenever necessary according to the output of density analysis. For
input-masks with high-density, we transpose the ACSR to a column-compressed & column-major
layout, while for input-masks with low-density, we transpose the ACSR to a row-compressed &
row-major layout before the R-SpMM kernel. The column-compressed & column-major allows
threads to issue coalesced memory requests but requires complex arithmetic to index compared to
the row-compressed & row-major layout. At higher density levels, these un-coalesced requests
bottleneck kernels as the amount of data read is greater. Our ablations in section 9.5 illustrate this.

9 Evaluation

We evaluate SPLAT against state-of-the-art vendor-libraries (SOTA) and hand-optimized implemen-
tations across a variety of sparse patterns to demonstrate SPLAT’s generality and high-performance.
To this end, we conduct a series of run-time performance studies (section 9.3), memory & compute
profile analysis (section 9.4), and ablations & sensitivity studies (section 9.5). We perform run-time
performance studies at different granularities: individual sparse-kernels (R-SDDMM & R-SpMM),
single layer sparse-MHSA, and end-to-end transformer to demonstrate the efficacy of SPLAT’s
code-generation framework.

In summary, our results show that SPLAT exhibits considerable speedups against vendor-libraries
and hand-optimized implementations over a variety of sparse-MHSA patterns. SPLAT can achieve
speedups of up to 2.07x and 5.68x over cuBLAS and cuSPARSE across desired sparsity ranges of
[10%, 50%], respectively, further, it achieves up-to 2.05x and 4.05x over hand-optimized kernels in
Triton and TVM, respectively.

9.1 Implementation

We implement SPLAT’s GPU code-generation mechanism in C++ and Python. Currently, SPLAT is
a CUDA code generation system compatible with JAX. SPLAT outputs CUDA implementations of
sparse-MHSA that are just-in-time compiled through JAX’s CUDA compatible foreign-function-
interfaces (FFIs). We use the following software versions: cudatoolkit 11.6, jaxlib 0.4.6, triton 2.1.0,
TVM 0.6.0, and pytorch 2.1.0.

9.2 Experimental Setup

We evaluate SPLAT on multiple sparsity patterns, comparing SPLAT generated kernels to real world
sparse-MHSA implementations. For each sparsity pattern, we conduct experiments on different
granularities in single-precision.
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Sparsity Patterns. We evaluate SPLAT’s effectiveness across 4 patterns: windowed, blocked,
strided, and global. We select these patterns due to their popularity in the deep-learning commu-
nity [8, 11, 16, 24, 34, 35, 59] as well as the availability of hand-optimized implementations of each
sparse-MHSA mechanism. We compare SPLAT generated kernels against each baseline on the
sparse-MHSA pattern the respective baseline was designed for.

Experimental Granularity. We compare SPLAT generated code to SOTA implementations at
three different granularities: individual sparse-kernel primitives (comparing against caSPARSE and
cuBLAS), single-layer sparse-MHSA (comparing against TVM and triton) & end-to-end transformer
(comparing against TVM and JAX), demonstrating speedups across each case.

Baselines. We compare SPLAT generated kernels to a variety of tensor-compilers, deep-learning
frameworks and vendor libraries. All individual kernels are compared against cuBLAS & cuSPARSE.
For single-layer sparse-MHSA and end-to-end transformer we give, for each pattern, the baseline
we compare against.

Strided Pattern. Sparse-MHSA transformer: longformer-strided. Single-Layer sparse-MHSA and
end-to-end transformer implementation: TVM!.

Windowed Pattern. Sparse-MHSA transformer: longformer-windowed. Single-layer sparse-MHSA
and end-to-end transformer implementation: TVM!.

Blocked Pattern. Sparse-MHSA transformer: reformer & sparse-transformer. Single-layer sparse-
MHSA implementation: triton? (sparse-transformer). End-to-end transformer implementation: JAX®
(reformer).

Global Pattern. Sparse-MHSA transformer: big-bird. Single-layer sparse-MHSA and end-to-end
transformer implementation: JAX*.

We note that triton is a competitive baseline for block-sparse patterns, and is upto 5x faster
than cuSPARSE (NVIDIA’s sparse library) [57]. The TVM and JAX baselines are hand-written
implementations of longformer and reformer & big-bird respectively, where the index arithmetic is
specialised to a particular pattern.

Density Levels. Unless otherwise stated, all our comparisons are conducted at the density levels:
[0.4, 0.8, 1.6, 3, 6, 12, 24, 44, 75, 100] except for the triton block-sparse baseline which imposes a
lower limit on the block size of inputs (to 16x16). We tune the sparsity of each pattern by varying
the width of the stride (strided-pattern), the size of the window (windowed pattern), the size of the
block (blocked pattern), or the number of rows/columns computed (global pattern).

Matrix and Model Sizes. All the matrix sizes for the sparse-kernel primitives are 1024x64
corresponding to a sequence length of 1024 and a head dimension of 64. We set the batch size to 32
with 12 attention heads resulting each kernel computing 32x12=384 matrix multiplications. For the
rest of the model (in the case of the end-to-end transformer baselines), we set the FFN hidden size
to 3072 and set the number of layers to 12. These are common configurations for models such as
BERT [20], GPT-1 [58] and GPT-2 [43] base models.

Gemma-2 2B Transformer. Due to the rising popularity of sparse-MHSA, billion parameter
sparse-MHSA models have recently been pre-trained [24, 34]. Hence, we use SPLAT generated
sparse-MHSA kernels to implement the gemma-2 2B variant [24]. Its architecture consists of
alternating layers of dense full-attention and sparse-MHSA (the window pattern) with the window
size set to half the sequence length. We note that gemma-2, despite being a sparse-MHSA model, is
implemented as a dense computation with appropriate masking to simulate sparse-MHSA. Hence,
we fix the density level at its original 37.5% and vary the sequence length instead. Given that

Ihttps://github.com/allenai/longformer
https://github.com/ptillet/triton/tree/triton-mlir/python/triton/ops/blocksparse
Shttps://github.com/google/trax/tree/master/trax/models/reformer
“https://github.com/huggingface/transformers
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Fig. 9. Run-time performance of sparse-primitives: R-SDDMM and R-SpMM, comparing: SPLAT, cuBLAS
and cuSPARSE. The top and bottom rows are the R-SDDMM and R-SpMM results, respectively. The desired
density levels observed in sparse-MHSA are in the [10,50]% and are highlighted within the dashed lines.

gemma-2 is trained at a sequence length of 8192, we evaluate on the sequence lengths [2048, 4096]
as 8192 results in an OOM on a single GPU. SPLAT only applies to the prefill stage of gemma-2 2B,
see our limitations section (section 11) for further clarification.

9.3 Run-Time Performance Study

The primary motivation of the run-time performance study is to answer the question: Can SPLAT
be used to accelerate end-to-end sparse-MHSA-based models, and is this speedup as a result of
SPLAT’s code-generation methodology? To answer the first part of the question, we evaluate SPLAT
at three levels of granularity. To answer the second part of the question, we analyze the memory
profiles of individual kernels and conduct a breakdown analysis of single layer sparse-MHSA
showing this speedup is a result of SPLAT’s code-generation mechanism.

9.3.1 Individual Kernels Speedups. Figure 9 shows our results for runtime performance. For the
R-SDDMM, SPLAT experiences geomean speedups of 2.46x & 5.68x (blocked pattern), 1.29x & 3.17x
(windowed pattern), 1.24x & 2.93x (strided pattern), 3.05x & 4.20 (global pattern) over cuBLAS and
cuSPARSE respectively. For the R-SpMM, SPLAT experiences geomean speedups of 2.81x & 3.37x
(blocked pattern), 2.07x & 2.47x (windowed pattern), 1.51x & 2.33x (strided pattern), 3.12x & 1.68
(global pattern) over cuBLAS and cuSPARSE respectively. All these speedups are reported in the
10%-50% density range.

9.3.2 Single Layer Sparse-MHSA Speedups. Figure 10 (top row) shows our results for runtime
performance. SPLAT realizes geomean speedups of 2.05x, 4.05x%, 2.12x, and 2.78x over triton, TVM-
windowed, TVM-strided, and JAX respectively across the entire density range.

9.3.3 End-to-End Sparse Transformer Speedups. Figure 10 (bottom row) shows our results for
runtime performance. SPLAT experiences geomean speedups of 1.03x, 1.31x, 1.49x, and 1.78x over
Reformer (blocked pattern) implemented in JAX, Longformer (windowed and strided pattern)
implemented in TVM, and Big-bird (global pattern) implemented in JAX, respectively across the
entire density range.
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Fig. 10. Runtime performance of a single-layer MHSA and end-to-end sparse transformer, comparing SPLAT
against sparse transformer (implemented in Triton), longformer (implemented in TVM), reformer (imple-
mented in JAX), and big-bird (implemented in JAX). The top and bottom rows are the single-layer sparse-
MHSA and end-to-end transformer implementations, respectively. Unplotted points are due to OOM issues,
except the Triton baseline, which places a lower limit on the block size. The desired density levels are high-
lighted within the dashed lines.

9.3.4 Gemma-2 2B. We use SPLAT generated sparse-MHSA kernels to implement the gemma-2
2B variant on the sequence lengths [2048, 4096].
Speedups. Figure 11 shows our runtime
performance results. For a single-layer sparse-
MHSA SPLAT experiences speedups of 1.105x
and 1.109x at sequence lengths of 2048 and 4096

0015
respectively. For an end-to-end transformer
SPLAT experiences speedups of 1.011x and 3 0010
1.021x at sequence lengths of 2048 and 4096 | II

s SPLAT B Pytorch

1.0
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0.0

2048 4096 2048 4096
Sequence Length Sequence Length

Tim

) 0.005
respectively.
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9.4 Analysis of Performance Results

We now analyze how SPLAT’s sparse-primitives

achieve speedups over optimized vendor- Fig. 11. A comparison of gemma-2 2B’s original imple-
libraries and hand-written kernels in Triton mentation (Pytorch) against when its sparse-MHSA
and TVM. We show that SPLAT’s novel code- mechanism is replaced with SPLAT generated kernels
generation algorithms leverage the meta-data (SPLAT) at varying sequence lengths. Left is a single
stored in the ACSR effectively to produce fa- sparse-MHSA layer and Right is an end-to-end trans-
vorable memory access and write patterns bal- former.

anced with enough inter-warp parallelism to

hide read/write latencies. We show this by ana-

lyzing the memory profiles of all vendor-libraries, hand-written kernels, and SPLAT at a density
level of 24% for the blocked pattern (except TVM, which is the windowed pattern). Favorable
memory access patterns will read similar amounts of data from global memory to L2 cache, and
from L2 to L1 cache, reducing extraneous data-movement through the memory hierarchy; we
compute how much more data is transferred from L2 to L1 (denoted as L2 — L1), compared to
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Table 1. Memory profiles of SPLAT, cuBLAS, cuSPARSE, Triton and TVM of the blocked pattern (except TVM
which is the window pattern) at a density level of 24%. Global — L2 and L2 — L1 is the amount of data
transferred from global-memory to L2 cache, and L2 to L1 cache, respectively, as a result of memory reads.
L1 — L2 and L2 — Global is the amount of data transferred from L1 to L2 cache, and L2 to global-memory,
respectively, as a result of memory writes. TVM spawns 32 kernels, hence the (x32) notation.

Kernel ‘ Method ‘ Threads/SM ‘ Read (GB) ‘ Write (GB) ‘ Cache Hit Rate (%)
\ \ | Global - L2 L2—L1|L1 —>L2 L2—Global | L1 L2
SPLAT 1152 0.190 3170 | 0377 0.346 4425 9291
cuBLAS 512 0.201 1.610 1.610 1.590 0041 9234
SDDMM | cuSPARSE 576 0.206 7.830 | 0.662 0.365 4202 96.98
Triton 128 0.201 0.432 0.681 0.360 5921 82.25
TVM (x32) 2048 0.006 0358 | 0.035 0.001 7523 98.19
SPLAT 1152 0.101 0.602 0.805 0.084 5753 91.10
cuBLAS 512 1.720 2420 | 0.100 0.970 00.10 4343
SpMM | cuSPARSE 1536 0.203 11330 | 1100 0.089 5371 97.57
Triton 128 0.482 3.880 2.090 0.126 2224 9033
TVM (x32) 2048 0.002 0.172 0.060 102KB | 8994 9235

global memory to L2 (denoted as Global — L2) for all hand-written kernels, libraries, and SPLAT.

We apply a similar argument to memory write-back patterns, computing the excess data written

from L1 to L2 (L1 — L2), compared with L2 to global memory (L2 — Global). Our results are in

table 1. We systematically compare SPLAT to each vendor library and hand-written kernel.
Vendor-libraries. Analyzing thread access

patterns, we report the excess data moved = R-SDDMM Softmax  mmm R.SpMM

across the memory hierarchy due to the read-  20- Titon s T 200
ing of data: 2.98GB (0.501GB), 1.409GB (0.7GB), our o 180
and 7.624 (11.127GB) for SPLAT, cuBLAS, and 15 109 T NN

5.65

cuSPARSE respectively for the R-SDDMM (R-
SpMM) kernel. We observe SPLAT’s thread- \ ..
access patterns move significantly less data ot T""" >

Triton 5.10
. 5- SPLAT
across the memory hierarchy compared to cuS- Triton . 5.65 Mspiat- 20
-SPLAT

o
o
Time (ms)

10 -

Time (ms)

PARSE, and slightly more compared to cuBLAS. =i’” L] .,
We note cuBLAS, as a dense mat-mul, has reg- 0.03 0.24 003 024 1
ular thread access patterns indexing dense 2- D:?ty D?S'ty

D arrays (as opposed to complex sparse struc-

tures), and is thus amenable to favorable access Fig. 12. A breakdown analysis of the three components:
patterns. Nevertheless, SPLAT spawns more R-SDDMM, Softmax and R-SpMM of SPLAT, Triton
threads per streaming-multiprocessor (SM), and TVM’s sparse-MHSA primitives. (a) is the blocked
thus effectively latency hiding expensive mem- pattern, (b) is the windowed pattern.

ory read operations through inter-warp paral-

lelism. Since cuBLAS’s kernel is compute-bound, there is enough reuse to circumvent the need to
latency hide memory reading costs.

We similarly report the excess data moved across the memory hierarchy as a result of write-backs:
0.031GB (0.721GB), 0.02GB (0.87GB), and 0.257GB (1.01GB) for SPLAT, cuBLAS, and cuSPARSE
respectively for the R-SDDMM (R-SpMM) kernel. We observe that the write-back pattern profile
of SPLAT is comparable to cuBLAS, and moves significantly less extraneous data compared to
cuSPARSE. Overall, since SPLAT computes less than 1/4th of the values compared to cuBLAS, and
has favorable access/write-back patterns it is the fastest of the three.
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Hand-written Kernels. Analyzing thread access patterns,
we report the excess data moved across the memory hierarchy: m— Triton
2.98GB (0.501GB), 0.231 (3.398GB), and 0.352GB (0.17GB) for  5_

SPLAT, Triton and TVM respectively for the R-SDDMM (R-

SpMM) kernel. We observe that SPLAT’s access patterns are 1

better than Triton’s R-SpMM and both of TVM’s kernels (TVM m I

spawns 32 kernels, one for each batch, thus operates on 1/32nd 0 512 768 1024
the amount of data compared to SPLAT and Triton). Though Sequence Length
Triton’s R-SDDMM access patterns are slightly better than
SPLAT’s, it spawns 9x fewer threads per SM, inadequately
hiding read/write latencies. A closer inspection of the kernel
indicates this is a result of overusing shared-memory.

Similarly, we report the excess data moved through
the memory hierarchy as a result of write-backs: 0.031GB
(0.721GB), 0.321GB (1.964GB), and 0.034GB (0.06GB) for SPLAT,
Triton and TVM, respectively for the R-SDDMM (R-SpMM) kernel. We observe that SPLAT’s write-
back patterns are better than both Triton and TVM’s.

Breakdown Analysis. To show that end-to-end sparse-transformers are accelerated due to
SPLAT’s high-performance code-generation mechanism, we break down the run-times of SPLAT’s
R-SDDMM, softmax, and R-SpMM kernels in a single sparse-MHSA layer and compare it to triton
and TVM in 12. We breakdown these run-times across high, moderate, and low sparsity levels. We
see that across all sparsity levels, the collective run-time of SPLAT’s kernels is faster than Triton
and TVM’s.

mmm SPLAT

s)

Time

Fig. 13. A comparison of SPLAT gen-
erated single layer sparse-MHSA layer
with triton’s block-sparse kernels on
randomly generated regularly sparse
matrices at various sequence lengths.

9.5 Ablation & Sensitivity Studies

9.5.1 Randomly Generated Regular Matrices.
We compare SPLAT generated sparse-MHSA
kernels to triton’s block-sparse kernels on ran-
domly generated regularly sparse matrices at
a density level of 37% for a variety of matrix
sizes. We generate these matrices by randomly
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generating the affine-indices, fixing the number
of non-zeros for each row to 37% of the size of
the trailing dimension. We pick this density be-
cause the newest SOTA sparse-MHSA models
have a density level of 37% [24, 34]. We vary
the sequence length of the matrix in [512, 768,
1024] and fix the head hidden dimension to 64
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Fig. 14. A comparison of the number of thread-blocks
used between different Tiling Strategies for the window
(left) and blocked (right) pattern. Lower is better.

with 12 attention heads and a batch size of 32
(resulting in matrices of size: [512, 768, 1024]x64). We compare a single layer sparse-MHSA only to
triton because of: (1) growing popularity of triton [4, 57], and (2) our experiments indicate that
they are the strongest baseline.

Speedups. Figure 13 shows our runtime performance results. SPLAT experiences speedups of
2.42x, 1.77x, and 1.58x on sequence lengths of 512, 768 and 1024 respectively.

9.5.2 R-SDDMM Tiling. High-performance arrangements use a minimal number of tiles. We
compare the number of thread-blocks used in poset-tiling against a Naive tiling approach for the
blocked and windowed pattern. We use a sequence length of 1024 and vary the density of each
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pattern across all possible values. The results are in figure 14. Poset tiling reduces the number of
thread-blocks by 1.098 and 1.095 for the window and blocked pattern respectively, on average. The
maximum reduction is 1.83 and 1.72 which uses 13568 and 12544 fewer threads for the window and
blocked pattern respectively.

9.5.3 R-SpMM Optimisations. We evaluate
the benefit of the optimizations: span-specialization — Span-specialized Loop  —— Naive Loop
and linear-transformation alignment on R- )

ot

L 2R ]

[}

SpMM kernels at varying density levels by com- _° «ee—e e woo—0—o
paring these optimizations to implementations % . . / /’
where they are disabled. £ o -

Figure 15 shows the results for the effects of €2 .,0/
span-specialisation on the runtime of R-SpMM s 4
kernels. We fix a sequence length of 1024 and 00 Donaity oo 00 Doncity 10

vary the density of the window and blocked
pattern in [0.4, 0.8, 1.6, 3, 6, 12, 24, 44, 75, 100]. Fig. 15. A comparison between the runtimes of the
Across these density levels, span-specialization R-SpMM kernel with and without span-specialisation.
results in geomean speedups of: 3.4x and 3.96x  Left and right are the window and blocked patterns
for the windowed and blocked pattern respec- respectively.
tively. This shows for the density ranges ob-
served in sparse-MHSA [10,50]%, span-specialization achieves speedups. However, for extremely
dense inputs where loop counts span the entire trailing dimension, span-specialization can be
costly due to extra integer arithmetic to compute the loop start and end indices.

Figure 16 shows the results for the effects of
linear-transformation alignment on loads from

. —— Linear Transformation Aligned Loads
aregularly sparse matrix in the R-SpMM kernel 9

— Naive Loads
(algorithm 3 line 8). We fix a sequence length of
1024 and vary the density for the strided pattern g
across all possible values (varying the stride § 08
from 1 to 1024). We compare to a R-SpMM %0_6
kernel without this optimization (naive loads). 5
Linear-transformation alignment reduces con- § 0.4
trol divergence of loads by 2.73, on average, E 0.2
with a maximum reduction of 8.1. 2
9.5.4 Data-Layout Exploration. We evaluate 0.2 0.4 0.6 0.8 10
the benefits of different ACSR layouts in R- Density

SpMM kernels in figure 17. We compare two
layouts combined with the cost of transposing  Fig. 16. A comparison between the percentage of
data into these layouts: row-compressed & row- threads that exhibit control divergence of loads to a
major against column-compressed & column- regularly sparse matrix in the R-SpMM kernel for the
major as these produce the fastest R-SpMM ker-  strided pattern (figure 2 middle). Lower is better.
nels across various density levels. We compare
the runtimes of the R-SpMM kernels with these
layouts across density levels [0.4, 0.8, 1.6, 3, 6, 12, 24, 44, 75, 100], categorizing these density levels
into sparse inputs (density <10%) and dense inputs (density >10%).

Sparse Inputs. Across density levels lower than 10%, the R-SpMM kernel which uses the
row-compressed & row-major layout experiences a geomean speedup of 1.37x compared to a
column-compressed & column-major layout. The row-compressed & row-major layout requires
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less complex index arithmetic to reference data at the cost of un-coalesced accesses to non-zero
values which happens due to contiguous elements in a column being placed far apart in memory. At
these sparsity levels, the bandwidth has not yet saturated, hence the cost of un-coalesced accesses
is relatively low, resulting in faster R-SpMM kernels in this layout.

Dense Inputs. Across density levels greater
than 10% the R-SpMM kernel which uses the
column-compressed & column-major layout ex-
periences a geomean speedup of 1.6x compared g2

mmm  Row-compressed & Row-major mmm  Col-compressed & Col-major

3
to a row-compressed & row-major layout. The g
column-compressed & column-major layout en- é I I I II I I
ables coalesced reads of data, since contiguous . | o Hm Il
l . l 1 d . 0.01 0.02 0.03 . 0.12 024 044 075 1.00
elements in a column are placed in contiguous Density Density

memory addresses, at the cost of more com-

plex arithmetic to reference this data. For dense  Fig 17 A comparison of the combined runtimes of the
inputs where we read a lot of data, the perfor- transposition and R-SpMM kernels for different ACSR
mance benefits of memory coalescing outweigh layouts at various density levels. We use the window
that of simplified arithmetic, resulting in faster pattern. Lower is better.

R-SpMM kernels in this layout.

10 Related Work

Sparse Compilers TACO [36] uses iteration graphs and merge lattices to generate code for
compositions of sparse kernels. SparTA [60] proposes sparse tensor annotations to capture the
sparsity of moderately sparse pruned nerual networks. Sympiler [13] leverages symbolic analysis to
guide an inspector to perform code transformations that are specific to the structure of non-zeros
in a matrix. Parsy [14] extends this idea by proposing to inspect sparse kernel data dependencies
to produce efficient parallel codes for sparse kernels. These compilers are effective and support
a variety of data-formats, however do not support the ACSR format we introduced since it is
challenging to leverage the symbolic affine-indices (that represent a variety of indexes in the
trailing dimension of a matrix) in sparse-kernels.

Sparse Kernel Optimizations [32] proposes a lightweight tiling strategy for SDDMMs and
SpMM:s to enhance reuse but is tied to the CSR. [26] proposes a novel 1-d tiling and load-balancing
strategy for moderately sparse inputs but is also tied to the CSR. [56] proposes a novel inspector-
executor approach that uses an ILP formulation to produce high-performance SpMMs on CPUs.
[15] proposes a novel inspection and code-transformation strategy to fuse two sparse kernels where
at least one has loop-carried dependencies. [18] proposes a data-aware SpMM that considers input
dynamics, targeting GPUs. Though effective, these optimizations do not target the ACSR with its
unique metadata layout.

Compiling compositions of regular and irregular sparse programs. There has been a
variety of work gone into exploiting the structure of irregular programs at compile time [6, 45, 47, 50],
similar to SPLAT. [6] leverages polyhedral compilation to operate on sparse-immutable data-
structures, proposing novel algorithms to uncover regular sub-structures within the non-zero
coordinates of a sparse structure, however they target the sparse-matrix vector kernel, whereas
SPLAT targets the R-SDDMM and R-SpMM kernels. [45] proposes a technique to compile loop nests
that have both regular and irregular compute, using static analysis to compile the regular portion
combined with an inspector for the irregular portion. [47] is a dynamic analysis technique that
proposes a novel folding-based analysis which uses run-time information from instrumented binaries
to build compact polyhedral program representations; their technique can support programs that are
not fully affine. However, these compilation techniques do not support the ACSR, with its compact
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representation of sparse-MHSA patterns, that we introduced. General polyhedral frameworks such
as tiramisu [7], PLUTO [9] and others [30, 37, 54] that perform optimizations on regular loops are
ineffective in performing the same on sparse-MHSA kernels with indirect array accesses.

Structured Sparsity NVIDIA introduced a new specialized data-path in the Ampere [39]
architecture to compute structured-sparsity [41]. These instructions and special hardware units
compute 1:2, 2:4 structured-sparsity where the largest absolute value of every 2 (or two largest
values out of every 4) elements is kept, and the rest are pruned. Although these instructions target
moderate sparsity levels, they can only represent the strided pattern with a stride of 2 (see figure 7 e
for an example), and cannot represent the global, blocked or windowed patterns precisely. Adapting
these instructions to represent the global, blocked, or windowed sparse-MHSA patterns will result
in storing extraneous non-zeros as padding, similar to CSFs.

Sparse Formats There have been a wide variety of sparse-formats proposed in the literature,
please look at the survey in [28] for further details (e.g. CSR, COO, ELLPACK, DCSR, DIA, BCSR,
CSB, CSF to name a few). We categorize sparse formats into: general sparse-formats or custom
sparse-formats. General sparse-formats (e.g. CSR, COO, CSF, DCSR [23, 46, 49]) incur high metadata
in O(nnzs), while custom sparse formats (e.g. BCSR, DIA [21, 22]) are specialized to a particular
sparse-MHSA pattern. The ACSR format we introduce has low metadata in O(rows), lower than
GSFs, whilst having greater coverage of sparse-MHSA patterns over CSFs.

11 Limitations and Future Work

The ACSR and its supporting code-generation scheme, SPLAT, represent an advancement in code
generating high-performance sparse-MHSA kernels. Though SPLAT is able to generate high-
performance kernels for a variety of sparse-MHSA patterns, it has some limitations.

Regularity constraint. Input sparse-MHSA patterns need to be regularly sparse and therefore
row-wise affine-compressible, placing a constraint on the types of sparse patterns the ACSR can
represent. However, there are several sparse-MHSA patterns that do not fit this constraint [31, 44].

Static sparsity. SPLAT’s code-generation scheme relies on a static sparsity pattern. However,
several sparse-MHSA patterns are input dependent and dynamic like in [59].

Applications beyond sparse-MHSA. Leveraging statically structured sparsity to enhance the
performance of deep learning algorithms has been explored beyond sparse-MHSA. For example,
butterfly matrices [19] have been introduced to sparsify the dense feed-forward networks (post
attention) as well as linear transformations (pre attention). Mixers [25] have been introduced to
replace dense full-attention with a sub-quadratic variant using short and long convolutions. We
leave an investigation into extracting performance from such methods to future work.

Autoregressive Decoding. SPLAT’s code-generation scheme is specialised to the R-SDDMM
and R-SpMM kernels present in the prefill stage of sparse-MHSA. However, autoregressive decoding
operates on individual tokens resulting in sampled dense dense matrix-vector and sparse-matrix-
dense-vector multiplications instead. We leave an investigation into extracting performance in
these kernels to future work.

12 Conclusion

We have described SPLAT, an optimized code-generation framework that targets a variety of
sparse-MHSA patterns. SPLAT exploits the regular nature of sparse-MHSA patterns, introducing
a new sparse-format: ACSR, that enables SPLAT’s code-generation schemes to have favorable
memory-access patterns. We use SPLAT to implement a variety of sparse-MHSA patterns and
transformers, demonstrating its generality and high-performance. Our experiments show that
SPLAT realizes geomean speedups of 2.05x and 4.05x over hand written kernels written in Triton
and TVM respectively in single-precision.
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Data Availability Statement

Our artifact is a repository of code written in Python and C++ that implements a CUDA code
generation system compatible with JAX. These pieces of code can then be just-in-time compiled
through JAX’s CUDA compatible foreign-function-interfaces (FFIs).
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