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We present a new scheme for Majorana modes in systems with
nonsymmorphic-symmetry-protected band degeneracy. We reveal that when
the gapless fermionic excitations are encoded with conventional super-
conductivity and magnetism, which can be intrinsic or induced by proximity
effect, topological superconductivity and Majorana modes can be obtained.
Weillustrate this outcome in a system which respects the space group P4/nmm
and features a fourfold-degenerate fermionic mode at (17, m) in the Brillouin
zone. We show that in the presence of conventional superconductivity, dif-
ferent types of topological superconductivity, i.e., first-order and second-
order topological superconductivity, with coexisting fragile Wannier
obstruction in the latter case, can be generated in accordance with the dif-
ferent types of magnetic orders; Majorana modes are shown to exist on the
boundary, at the corner and in the vortices. To further demonstrate the
effectiveness of our approach, another example related to the space group P4/
ncc based on this scheme is also provided. Our study offers insights into
constructing topological superconductors based on bulk energy bands and
conventional superconductivity and helps to find new material candidates and
design new platforms for realizing Majorana modes.

M Check for updates

Topological superconductors'™ (TSCs) are renowned for hosting
a special kind of quasiparticles, the Majorana modes, whose anti-
particles are themselves. Owing to their potential application in
fault-tolerant quantum computation®®’, a substantial effort has been
made to search for the Majorana modes, and great advances have been
achieved both in theory>*™ and in experiment'®~?® over the past few

the heterostructure between a conventional superconductor and a
topological insulator® or the Rashba electron gas'®", and experimental
evidence for the Majorana modes have been observed”-”. Despite the
progress, an efficient way towards platforms realizing the numerous
exotic topological superconducting phases™***%, especially the high-
order topological superconducting states, is still elusive.

decades. The p-wave superconductors have been suggested as pro-
mising candidates for the TSCs, and experimental signatures of p-wave
superconductivity have been detected”.. Various artificial devices
have been proposed to support topological superconductivity, such as

In recent years, remarkable strides have been made in under-
standing the topological states of matter. It is realized that the topo-
logical property of a system can be indicated by the symmetry
information of its occupied bands at high-symmetry points, and the
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system must be topologically nontrivial if its symmetry information
at these points differs from that of an atomic insulator*™. A
parallel formalism has also been developed for the TSCs***. Motivated
by these achievements, we suggest a new scheme to realize TSCs, built
on the heterostructure sketched in Fig. 1, based on symmetry-
protected band degeneracies near the fermi energy and conven-
tional superconductivity. Such fermionic modes, i.e.,, the band
degeneracies, always carry different quantum numbers, such as rota-
tion eigenvalues, mirror eigenvalues, etc. To make the core of our
proposal clearer, let us start with the time-reversal symmetric BdG
Hamiltonian with conventional superconductivity, i.e., the uniform s-
wave pairing. In such a system, the chiral symmetry, which is the
combined operation of the time-reversal symmetry and the particle-
hole symmetry, maps a negative-energy state to a positive-energy
state. Moreover, the unitary chiral symmetry commutes with the
crystalline symmetries>**, leading to that the two states related by
the chiral symmetry carry the same quantum numbers. This property
implies that in the system, the information of the symmetry eigenva-
lues corresponding to all the negative-energy states at the high-
symmetry point in the Brillouin zone is always the same as the condi-
tion where the normal-state electronic states are fully occupied or fully
unoccupied, which must be topologically trivial’>. Notice that the
above conclusion is always true, regardless of the location of the Fermi
energy. Therefore, in the sense of the symmetry indicator, any time-
reversal symmetric superconductor with uniform s-wave pairing is
topologically trivial’>>*. However, if the time-reversal symmetry is
broken, such as by the magnetic orders, the above symmetry con-
straint fails. Moreover, as long as the eigenvalues of the crystalline
symmetries carried by the negative-energy states are different from
that in the time-reversal symmetric case, some nontrivial topology is
indicated in the superconductor, and such a condition is most likely to
occur when there is band degeneracy near the Fermi energy. More
specifically, when the band degeneracy is encoded with magnetism, it
will split; If the chemical potential resides within the split band gap, in
the superconducting state, the symmetry eigenvalues carried by the
positive-energy states will no longer match those of the negative-
energy states, indicating the presence of nontrivial topology (more
details in Supplementary Note 1). We illustrate this scheme in a system
respecting the space group P4/nmm and show various topological
superconducting states can be achieved in accordance with the
different magnetic orders. To further show the effectiveness of
our approach, we provide another example related to the space group
P4/ncc in Supplementary Note 10. Compared with earlier
proposals*'®"% the key advantage here is that by leveraging the
nonsymmorphic crystalline symmetries, the resulting phases of

conventiong] Superconductor

Fig. 1| A sketch for platforms realizing topological superconductivity. It is
based on systems with gapless fermionic excitations (the intermediate layer) pro-
tected by nonsymmorphic crystal symmetries. In the system, the magnetism (top)
and the conventional superconductivity (bottom) can be induced through either
the proximity effect or the intrinsic properties of the intermediate layer. The
colored balls, black arrows and colored cones represent the different lattice sites,
the magnetic moments and energy dispersion, respectively.

topological superconductivity are much richer. In recent years, the
distinct irreducible representations (IRs) of the little group of the
crystalline symmetries can assist in identifying different types of
free fermionic excitations, such as the unconventional quasiparticles
beyond Dirac and Weyl fermions*®. Based on those abundant fermionic
excitations, our method can be applied to a wide range of systems, and
opens up a new direction of searching for novel topological super-
conducting phases in these materials.

In the following, we focus on the space group P4/nmm, which has
a four-dimensional irreducible projective representation at the Bril-
louin zone corner. We show that the antiferromagnetic (AFM) order
and ferromagnetic (FM) order can both split the fourfold degeneracy
into two twofold ones. In the presence of conventional super-
conductivity, the AFM order drives the system into a second-order TSC
state coexisting with fragile Wannier obstruction, while the FM order
results in a first-order TSC, as long as the chemical potential lies in the
magnetic gap. These results may be relevant to iron-based super-
conductors and heterostructures thereof, which host intrinsic AFM
order and high-T, superconductivity.

Results

Fourfold degenerate fermion with SG 129

We begin with an introduction of the space group G = P4/nmm (#.129),
i.e., the symmetry group governing the iron-based superconductors.
We focus on the quasi-two-dimensional (2D) case and consider the
lattice in Fig. 2a, which is similar to the monolayer FeSe. The space
group P4/nmm is nonsymmorphic, and it has a special group structure
as follows®’

G/T=Dyy ® Z,, @

where T is the translation group, D, is the point group at the lattice
sites, and Z, is a two-element group, including the inversion symmetry,
which switches the two sublattices in the lattice in Fig. 2a. As D, and
Z, are defined on different points, Eq. (1) holds in a sense that symmetry
operations are equivalent if they differ by a lattice translation,
hence the quotient group on the left-hand side. According to Eq. (1),
G/T can be generated by the generators of D,; and Z,, including
the inversion symmetry {/|7o}, the mirror symmetry {M,|0} and the
rotoinversion symmetry {S4,J0}. Here, we express the symmetry
operations in the form of the Seitz operators. In the generators, the
point group parts act on the Cartesian coordinates as /: (x, y, 2) — -
(=x, -y, -2, My: (x, 3, 2) » (x, =), 2), and S, : (x, ¥, 2) = (¥, —x, —2), and
To = ay/2 + a,/2 with a; (a,) the primitive lattice translation along the x (y)
direction in Fig. 2a.

For electronic systems in the presence of spin-orbit coupling,
group P4/nmm has only one single 4D IR at (i, m), i.e., the M point in the
Brillouin zone, where all the symmetry operations in G/T are respec-
ted. It describes the fourfold degeneracy composed of two Kramers’
doublets, J, = +1/2 and J, = £3/2, with opposite parities, where J, is the
angular momentum defined according to {S4,|0}. The degeneracy can
be understood from the group structure in Eq. (1). The point group ng
(double group version of the point group D,,) supports two different
2D IRs corresponding to Kramers’ doublet J, = +1/2 and J, = +3/2
separately. At the M point, {S4,/0} in ng and {/|to} in Z, satisfy the
following anticommutation relation

{84:10}{/170}|@(K)) = {17(}{S4; 125} (K)
= (1|75 }1{S,,10}|@(K)) = — {/1To}{S,10}|@(K)),

which enforces the degeneracy between the two 2D IRs labeled by
J-=11/2 and J, = +3/2 at M (more detailed analysis in Supplementary
Note 2). In the paramagnetic state, besides crystalline symmetries, the
time-reversal symmetry 7 also exists. Correspondingly, the system

@
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Fig. 2 | Lattice structure and band structure of paramagnetic state. a shows a
quasi-2D lattice respecting group P4/nmm. The green and red balls label the two
sublattices. The orange and brown dashed lines indicate the different edges con-
sidered in the text. The black dashed arrows represent a bending process from the
(10) edge to the [11] and [11] edges. b presents the bands obtained from Eq. (4), with
G, X, M representing (0, 0), (1, 0), (1, m) in the Brillouin zone, respectively, with the
other parameters set to be {¢,¢,1} ={—1.0,0.8,0.5}. The blue dashed line in (b)
represents the chemical potential considered in the text.

actually respects the type-ll magnetic space group P4/nmml
(#.129.412), which reads

Gom/T=D% ® Z, ® {{E|0},T}. 3)

Notice that the time-reversal symmetry does not affect the 4D
fermionic IR at M.

Assuming trivial band structure at other high-symmetry points,
we describe the fourfold degenerate fermion at M by the following
tight-binding model****

k k
Ho(K) = 2t(cos k, + cos k,)s,0¢ +4t' cos 7" cos 2 550,

2 “)

— 2Asink,s$,05 — 2Asink,s$,03,

where a single s orbital is assumed at each site in the lattice in Fig. 2a. In
Eq. (4), the Pauli matrices s; and o; (i = 1, 2, 3) stand for the spin and
sublattice degrees, respectively. ¢ (¢’) is the nearest-neighbor intrasu-
blattice (intersublattice) hopping. A is the inversion-symmetric Rashba
spin-orbit coupling, which arises due to the mismatch between the
lattice sites and the inversion center®®®', The band structure based on
'Ho (k) is plotted in Fig. 2b. We set the Fermi energy near the fourfold
band degeneracy, as indicated in Fig. 2b, and consider conventional
superconductivity in the system. The corresponding BdG Hamiltonian
takes the form

Hpac(K) =[Ho(K) — tlK3 + Ay SoO0Ky, S)

in the basis ¢'(k) = (c'(K), is,00c(-K)). In Eq. (5), the Pauli matrix ;
describes the Nambu spinor, u is the chemical potential, and Ay, is the
superconducting order parameter. In the superconducting state, the
matrix form for the symmetry generators are 7 =s,0,ko, M, =is,03K
and S,,=e""*03k,*, where I,M, and S,, correspond to
{llte}, {M,|0}, {S4.10} respectively. The time-reversal symmetry takes
the form 7 =is,04k,K and the particle-hole symmetry P=s,04k,K,
with K the complex conjugation operation. It is easy to check that the
system described by Hy4; in Eq. (5) is topologically trivial.

AFM order induced second-order TSCs

We study possible topological superconductivity in the structure
sketched in Fig. 1, based on the above fourfold degenerate fermion.
First, we consider the checkboard AFM order preserving the transla-
tional symmetries in the system as illustrated in Fig. 3a, and we assume

the magnetic polarization along the z direction. Correspondingly, the
system is described by the following Hamiltonian

Hedc.arm = Hedc + AarmS303K0, (6)

with Appm the strength of the AFM order. It is easy to check that, the
system respects the type-lll magnetic space group P4'/n’'m'm
(#.129.416)

Garn/T =54 ® {EIO}, {M,1T0}} ® ({E1O}, ({170} T ). @)

We consider the effect of the AFM order on the fourfold degeneracy at
M. Obviously, all the symmetry operations in G,p, /T preserve at the M
point. A direct analysis shows that the fourfold degeneracy is broken
into two twofold degenerate ones. It is the /,=1/2 (/,=-1/2) state that is
degenerate with the /,=3/2 (J,= —3/2) state. A detailed group analysis is
presented in the Supplementary Note 3. Such twofold band degen-
eracies arise from the relation {S,,|04{M,,|7o}= {Mxleo}{_4z lag},
which at M leads to

{S4z10}{M 7o} lop(K)) = — {Mxylro}{giz‘0}|¢(k)>' ®)

Recalling that S,, =S3,, one immediately comes to the above conclu-
sion. We simulate the bands in the presence of the AFM order
numerically, and show the results at Ayrpy = 0.5 in Fig. 3a. Here, it is
worth mentioning that the bands in Fig. 3a are always twofold
degenerate due to the symmetry {/|7,}7 which exists at every k point
in the Brillouin zone and satisfies ({I|T0}T)2 =1

As the magnetism breaks the time-reversal symmetry but pre-
serves the particle-hole symmetry, the system belongs to class D which
in the 2D case is characterized by a Z topological index, i.e., the Chern
number, according to the Altland-Zirnbauer classification®. The Chern
number can be calculated efficiently based on the symmetry eigen-
values carried by the occupied bands at the high-symmetry points. In
systems respecting the fourfold rotational symmetry C,, in the weak-
pairing condition, the Chern number Cj, satisfies*?

2
ei2mCn/4 = w 2 Noce) + Noce (M) -2Noee X1 ©)
&(M)

where m is the angular momentum carried by the Cooper pair, &)
and §(M) are the products of the C, eigenvalues of the occupied
bands at I and M, respectively, and Nycc(I), Nocc(M) and Noyo(X) are
the number of the occupied bands at I, M and X, respectively.
Since C, is equivalent to S, in 2D systems, the formula in Eq. (9) applies
to our consideration (In fact, in the nonsymmorphic group P4/nmm
besides the S,, symmetry, there is also the C,, symmetry which is
defined at the center of the square formed by the four nearest neigh-
boring lattice sites in Fig. 2a, and we have specified this point in the
Supplementary material. As group P4/nmm merely has one 4D IR at M,
all the analyses related to S,, also work for Cg,.). The conventional
superconductivity carries zero angular momentum, ie., m = O.
Therefore, the Chern number is completely determined by the S,,
eigenvalues of the occupied bands at I"and M, and for the condition in
Fig. 3a, we find that C, = 0, which is also confirmed by the gapped
modes on the (11) and [11] edges (see Supplementary Note 5). None-
theless, the system is topologically nontrivial, as evidenced by the
helical edge mode on the (10) edge in Fig. 3b. In fact, the system is a
TSC protected by the antiunitary symmetry M, 7. We focus on high-
symmetry line k, = , where M, T and the particle-hole symmetry
P preserve. Moreover, M,T serves as a pseudo time-reversal
symmetry on line k, = m satisfying (M, T )’ =1. Therefore, the k, = 1
line can be viewed as a 1D subsystem of the whole system, which
belongs to symmetry class BDI. The topological property of such a
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Fig. 3 | Distinct manifestations of topology in the AFM case. a shows the normal
bands for the system in Eq. (6) at Axpm = 0.5, with the AFM order illustrated in the
inset. The blue dashed line represents the chemical potential at u = 4.0. b shows the
superconducting edge modes corresponding to the bands in (a) on the (10) edge.
The edge modes on the right and left edges are degenerate. ¢ shows an atomic
insulator constructed by placing two Wannier orbits (WOs) with J, = +1/2 at 2¢
Wyckoff positions (the center of the square formed by the red and green balls), one
WO with/, = +1/2 at one of 2a Wyckoff positions (red balls) and one WO with /,=-1/2
at the other 2a Wyckoff position (green balls). d shows an atomic insulator con-
structed by placing one WO with /, = +3/2 at one of 2a Wyckoff positions and one

WO with /, = =3/2 at the other 2a Wyckoff position. e shows the low-energy
superconducting spectrum (inset) and the real-space wavefunction profiles of the
zero-energy modes, corresponding to the bands in (a). Open boundary conditions
are set in both the [11] and [11] directions. f shows the low-energy superconducting
spectrum in the presence of a single vortex in (e). In the shadow region, among the
three zero-energy modes, there are two vortex-bound Majorana modes (V.M.) and
one corner-bound Majorana mode (C.M.). g and h show the real-space wavefunc-
tion profiles of the two V.M. in the shadow region in (f), and the C.M. in (f) has a
similar wavefunction to that in (e). The color bars in (e), (g), and (h) are in the unit of
107, In the calculations, the superconducting order is set to be Ag. = 0.2.

system is featured by the winding number,

Tdk ~
w= _/ TTI)'( Tr[CHEéGrAFM(k)akXHBdG,AFM(k)]: 10)
m

with E:MyTP being the pseudo-chiral symmetry on k, = m. We
calculate the winding number straightforwardly, and it turns out w =2
(details in Supplementary Note 4), which is consistent with the two
zero-energy modes at k, =  on the (10) edge presented in Fig. 3e.
More interestingly, the above even winding number state is
actually a second-order TSC state™~* protected by M, 7. We demon-
strate it numerically. As presented in Fig. 3e, a single Majorana mode
exists at the corner between the neighboring (11) and (11) edges. To
understand the phenomenon, we start with the helical mode in Fig. 3b.
On the (10) edge, the symmetry {M,|0}T and the particle-hole sym-
metry preserve. Considering the two symmetries, we can get the
effective theory on the (10) edge as Hq, =vk,n;, with v the Fermi
velocity and n; the Pauli matrices in the space spanned by the helical
edge mode. Then, we bend edge (10) into a right angle, with the two
sides along the [11] and [11] directions, as illustrated in Fig. 2a. The
helical mode on each edge gains a mass, since {M,|0}7 breaks on the
(11)/(11) edge. The gapped edge modes are depicted by the following
effective theory
Hey = UKy + Mgy, H g = vk +m g 1, 1)
wherem;, ; is the mass term on the (11)/(11) edge. Moreover, {M,|0}T
requires my;, = — Therefore, Eq. (11) describes a massive Dirac
theory, with the mass changing sign at the corner between the (11) and
(11) edges. The mass domain results in a single Majorana mode at the
corner®®, Due to the pseudo-chiral symmetry C, the corner Majorana
modes carry chirality, and the modes with the same chirality cannot
hybridize with each other. Thus, the classification for the second-order
TSC here is Z. Moreover, it is worth pointing out the above second-

m(ﬁ).

order TSC state exists in the condition (4¢+)? +A2. < A%y, ie., the
chemical potential in the AFM gap in the weak-pairing condition, and it
belongs to a 7 classification corresponding to the winding number
along k, = m protected by {M,|0}7. We present more detailed analyses
of the above effective edge theory and the topological phase transitions
in Supplementary Note 5.

Interestingly, the negative energy states of the BAG Hamiltonian in
Eq. (6) display both fragile Wannier obstruction and second-order
topology. To this end, we treat the BAG band structure as an insulator,
i.e., ignoring the particle-hole symmetry. Noting that particle-hole
partners in the BAG bands carry opposite angular momenta, the
angular momenta of the four “occupied” (negative energy) BAG bands
are/,=+1/2,+1/2 atG,/,=-1/2,-1/2,-3/2,-3/2 at M, and J, = +1/2, +1/2 at
X. By exhaustion, one can show that no Wannier representation exist.
However, if one includes two additional trivial bands (e.g., from core
electrons) that are equivalent to two Wannier orbitals with /, = +3/2
each at one of the 2a Wyckoff positions shown in Fig. 3d, the combined
six bands, nevertheless, become Wannier representable. The six
Wannier orbitals are centered at Wyckoff position 2c with angular
momenta J, = +1/2, +1/2 and Wyckoff position 2a with J, = -1/2, 1/2, as
shown in Fig. 3c. Therefore, the occupied bands, despite not being
Wannier representable, can be viewed as the difference between two
Wannier representable systems, with six and two occupied bands,
respectively, as shown in Fig. 3c, d. By definition, the four occupied
bands display the fragile Wannier obstruction®. Formally, using the
modern language of magnetic elementary band representation®®, we
express the fragile Wannier obstruction protected by the magnetic
space group symmetries in Supplementary Note 6.

The elucidation of the fragile Wannier obstruction enables an
alternative understanding of the second-order topology invoking only
S4z. Ignoring the particle-hole symmetry, the stable second-order
topology degenerates into the fragile Wannier obstruction. More
specifically, from Fig. 3c, the six-orbital Wannier representation dis-
plays a filling anomaly. Indeed, viewed as an insulator, if we neglect the

Nature Communications | (2024)15:7971


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-024-52156-1

Table 1| Summary table for the J, of occupied band, the roles
played by symmetries and the corresponding protected
topology in different cases

J, Symmetry Topology Classification
AFM -1/2, -3/2 M, T, P Winding number 7
S4z Fragile. Wan. Obs. Zy
FM +1/2, -3/2 \ Chern number Z

difference between two 2a sites in Fig. 3¢, and combine both the ionic
charge and electronic charge at 2a, the configuration is exactly the
same as the Benalcazar-Bernevig-Hughes model* for higher-order
topology protected by fourfold rotation symmetry (equivalent with
our Sy,), only rotated by 45 degrees. It can be verified from ref. 67 that
our model hosts a corner charge e/2 because of the mismatch of
charge neutrality and rotation symmetry, which ensures a degeneracy
of four corner states. In our system, corner states are pinned at zero
energy by the particle-hole symmetry and they are Majorana zero
modes. Since the filling anomaly requires only S4,, the corner zero
modes are stable even when the corner is asymmetric under {M,|0}. In
fact, to reveal the corner charge in an S,, symmetric sample, one only
needs to avoid the edge terminations (10) and (01) where gapless edge
modes are present due to additional mirror symmetries {M,|0}. Con-
sidering the various topology in the system, for clarity we summarize
the relation between the symmetry and the topology in Table 1.

Vortex-bound Majorana modes

In the the second-order TSC state in the above, each vortex can bind
two Majorana modes which are stable due to the S,, symmetry. The
phenomenon is closely related to the fact that for group P4/nmm, the
effective theory near M in the normal state can be viewed as a direct
sum of two Rashba electron gas systems with angular momenta /, = +1/
2 and J, = £3/2 separately. To make it clearer, we consider the low-
energy theory near M in the second-order TSC state, for instance,

Her () = [—H(q3 + ;) + 2A(q5,05 + G,5103)1K3

, (12)
+q,qy01K3 + AppyS303 + Agky,

where q is defined with respect to the M point and the identity matrices
are omitted for simplicity. Ignoring the high-order ¢'q,q, term, it is
obvious to notice that H.; can be decoupled in the o space, i.e., the
sublattice space. In the ¢ = +1 subspace, it describes a superconducting
Rashba electron gas in the presence of a Zeeman field +Aary; and in
each subspace, the vortex can bind a single Majorana mode™ carrying
8,4, eigenvalue 1. Notice that in the presence of a vortex, the S4,
symmetry takes eigenvalues *1and +i. However, the o = +1 subspace is
spanned by the Kramers’ doublet /, = +1/2, while ¢ = -1 subspace is
spanned by J, = ¥3/2, which can be inferred from the basis of H.;. When
we consider the S, eigenvalue of the Majorana mode, in the o= -1 sub-
space, the basis contributes an additional phase factor €™ = -1.
Therefore, the vortex-bound Majorana mode in the ¢ = +1 subspace
has S,, eigenvalue =+1. The two Majorana modes are immune to
perturbations preserving the S,, symmetry, such as the ¢'q,q, term in
Eq. (12). Namely, the second-order TSC state in the above supports two
Majorana modes in each vortex protected by the S,, symmetry, i.e., one
with S,, eigenvalue +1 and the other -1. We carry out numerical
simulations for the vortex-bound states and present the results in
Fig. 3f-h. It is interesting to notice that in the second-order TSC state, the
corner MZMs in Fig. 3e coexist with the two vortex-bound MZMs. This
arises from the fact that, the vortex core is far away from the corners,
making the corner MZMs can hardly feel the effect of the vortex.

FM order induced first-order TSCs
We also consider FM order in the system in Eq. (5), and we assume the
magnetic polarization along the z direction. Correspondingly, the

G X M G

Fig. 4 | Lattice structure, band structure and corresponding edge modes in the
FM case. a The bands in the presence of the FM order with Ay = 0.3. The inset in (a)
illustrates the real-space configuration of the FM order. The blue dashed line in (a)
represents the chemical potential at ¢ = 4.0. b shows the superconducting edge
modes on the (10) edge corresponding to the bands in (a), with the edge modes on
the right (left) edge marked by the red (green) color. In (a) and (b), the other
parameters are the same as those in Fig. 2.

whole system can be depicted by the following Hamiltonian

Hpac kv = Hpdc + ApmS300K0, 13)
where Apy is the strength of the FM order. We first study how the FM
order affects the fourfold degenerate fermion at M in the normal state.
According to the real-space configuration in Fig. 4a, the symmetry of
the system is lowered to the type-Ill magnetic space group P4/nm'm’
(#.129.417)

Gem/T =S4 ® Z, ® {{E|0}, {M,|0}T ), (14)
with Sf the double group generated by {S4,|0}. All the symmetry
operations in Gpy,/T maintain at the M point. A direct group theory
analysis shows that the 4D IR in the paramagnetic state at M splits into
two 2D IRs, similar to the AFM case. However, differently in the FM
case, one corresponds to twofold band degeneracy between the /,=1/2
and_/,=-3/2 states and the other between the /,=-1/2 and J, = 3/2 states
(more details in Supplementary Note 3). Such degeneracies can be
understood from the anticommutation relation between {S,,/0} and
{l|To} at M, proved in Eq. (2). We confirm the above analysis numerically
in Fig. 4a.

To study the topological property in systems depicted by Hpyg rum
corresponding to the normal bands in Fig. 4a, we first calculate the
Chern number. Based on the formula in Eq. (9) and the above analysis,
the Chern number can be calculated to be |Cy| = 2, whose sign depends
on the sign of Apv. To verify this, we simulate the superconducting
edge modes numerically. As shown in Fig. 4b, two chiral modes appear
on each edge corresponding to the normal state in Fig. 4a, which is
consistent with the above analysis. In fact, the above chiral TSC state
arises through a gap-close-reopen process at M as the FM order
becomes stronger, and the phase transition occurs at
(4t +p1)® + A2, = A%,. Accordingly, in the weak-pairing condition, the
system is a TSC with |Cy| = 2, as long as the chemical potential is in the
FM gap (details in Supplementary Note 4). Moreover, the vortex in the
chiral TSC state can also bind two Majorana modes, and the analysis is
similar to that of the AFM case. We present a more detailed analysis
and simulate the vortex-bound states numerically in Supplemen-
tary Note 8.

Discussion

We discuss the effects of the symmetry-breaking perturbations (For the
TSC states, more essential are the symmetries in the magnetic states
rather than the specific magnetic orders considered in Figs. 3a and 4a.
Therefore, here we refer to the perturbations breaking the magnetic
group symmetries.), which may arise from tilting the magnetization off
the z direction in Figs. 3a and 4a, on the above TSC states. Obviously,
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the vortex-bound Majorana modes are sensitive to the {S4,/0} breaking
perturbations and will gap out immediately. However, the Majorana
edge and corner modes can persist against the perturbations. The
chiral TSC state is robust as long as the bulk energy gap is not closed.
For the second-order TSC state, perturbations breaking {M,|0}7 gap
out the helical Majorana mode on the (10) edge and break the 7 clas-
sification of the corner Majorana modes to a Z, one. Nevertheless, the
corner Majorana modes can be more robust due to a S, protected
filling anomaly, or due to the boundary obstruction*’*%,

In the proposal, the FM order can be replaced by an external
magnetic field. More difficult is to construct the antiferromagnetic
heterostructures, which require well-matched lattices between the
magnetic layer and the layer offering the band degeneracy. A possible
candidate is the heterostructure between the antiferromagnetism
ACo5As, (A = Ca, Ba, Sr) and the iron-based superconductors, whose
lattice constants are similar®’°, A more feasible scheme lies in
the magnetic materials. For example, in Eu;_JlaFeAs,” and
Sr,VO5_sFeAs”, magnetic layers exist next to the superconducting
FeAs layer; and in Ba;_,Na,Fe,As,”” and Ba,_,K,Fe,As,”, a tetragonal
AFM phase may coexist with the superconductivity. By methods of
doping or gating, one may tune the chemical potential in the iron-
based superconductors near the fourfold band degeneracy, and
topological superconductivity can possibly be realized. We use the
genuine bands of the iron-based superconductors to simulate the
topological superconductivity in Supplementary Note 9.

In the above analysis, we have mainly focused on the TSC states in
the space group P4/nmm and the possible material realization. However,
as pointed out, our method can be applied to a wide range of systems
with band degeneracy near the Fermi energy. To further demonstrate the
effectiveness of our method, we analyze another case where the lattice
respects the space group P4/ncc. The group protects an eightfold band
degeneracy at (m, m, m) in the normal state. When conventional super-
conductivity is introduced, both the FM order and the C-type AFM order
drive the system into the nodal TSC states, but the topological properties
are different. More detailed analyses are presented in the Supplementary
Note 10. Another interesting point worth mentioning is that the symmetry
of the system in the presence of the magnetic order is determined by both
the type of the magnetic order and the direction of the spin polarization,
and it is possible that the higher-order TSC states can be realized by
the simpler FM order, which deserves further study in the future.

In summary, we propose a general method that is based on the
bulk energy bands and the conventional superconductivity to realize
topological superconductivity. We show that by manipulating systems
with crystal symmetry-protected fermionic excitations with magnet-
ism, TSCs, including the high-order ones, can be generally obtained
when conventional superconductivity is introduced, and the property
of the TSCs is thoroughly determined by the property of the mag-
netism. Thus, our study provides a new method to realize the various
types of topological superconductivity and can help to find new plat-
forms to realize the Majorana modes.

Near the end of the paper, we became aware of a work™ in which
the vortex-bound states in high-order TSCs are studied, and the con-
clusion of the work is consistent with our results in the second-order
TSC state in the AFM case.

Methods
Symmetries in time-reversal invariant superconductors
Generally, a superconductor can be described by the following BdG

superconductor, it respects the following three symmetries: the time-
reversal symmetry 7, the particle-hole symmetry P and the combined
chiral symmetry C="P7. These symmetries act on the Hamiltonian as
follows

T Hpa(K)T ™ = Hpge(—k),
PHpag(KP ' = — Hpgo(—K),
CHpac(K)C = — Hpya(K).

6)

Moreover, in the basis for Hpy(K) in Eq. (15), the above symmetries
take the form 7 =is,k K, P=sy,k;K and C=is,k;. Besides the above
local symmetries, the system also respects the crystalline symmetries.
The crystalline symmetry g transforms the BdG Hamiltonian as
EHpac(KE " =Hpgo@ k), and has the form

(5 )
ng

In the above equation, n is determined by the pairing symmetry, i.e.,

gAK)g" = nA(K). In the present study, we focus on the conventional

superconductivity, which belongs to the trivial irreducible repre-

sentation of the crystalline symmetry group. Namely, n always equals 1
for g in Eq. (17) in our consideration.

Then, we consider the commutation relation between the unitary

chiral symmetry C and the crystalline symmetries. It can be directly
shown

a7

cget= (€ O as)
0 sgs,)

where we have taken use of the fact 7 =1 in g. Recall that in a time-
reversal symmetric system, the time-reversal symmetry commutes
with all the crystalline symmetries, and in the normal state, it demands
TgT '=g=(is,K)g(is,K) " =s,g’s, where T stands for the time-
reversal symmetry in the normal state. Therefore, we have CgC'=g
in Eq. (18), namely [C, g]= 0. The above commutation relation leads to
that for any eigenstate |¢(K)) of Hpy:(K) carrying energy E(K), its chiral
partner C|g(k)) possesses energy —E(k) but the same symmetry
eigenvalue with | (k)) for any crystalline symmetry. This means that in
the level of the symmetry indicator, the system must be equal to the
topological trivial superconductor. More detailed analyses are
presented in Supplementary Note 1.

The calculation of winding number

To analytically calculate the winding number at k, = m in the AFM
case, we rewrite Hpygapm iN EQ. (6) in the basis diagonalizing the
pseudo-chiral symmetry C. After the basis transformation, Hpdc.Amm
takes an off-diagonal form in the Nambu space. In the specific AFM
case, the off-diagonal block matrix Q(k,) in the upper right corner is

a9

Q(kx):<q*(k") Y )

0 q_ (k)

with g, (k)= —[2t(cos k, — 1) — t]so £2ASiN k:Sy £ AppmS3 £ iAg.S,.
Accordingly, the winding number along k;, = i can be calculated as

i 2
= 5 J dk, 9y, log[det Q(k,)]

Hamiltonian
i 2
« Ho(k)— pt Ak) s = o / dk, 0 _log[(detq, (k,)detq_(k,))] 20)
H = 5 . ’
BdG( ) Ar(k) —HO(—k) +” ( ) ; o
_ . =37/ @k llog(detq.,)+ log(detq )]
in the basis ¢ (k) = (¢}, . G ++C_kp»C_1,)- Notice that we neglect other
indices except for the spin index here. For a time-reversal symmetric =1q.)+trg).
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Here, v(g.) characterizes the winding number of det g, (k) around the
origin point in the complex plane. See more details in Supplemen-
tary Note 4.

A short review of MEBR
When we place the bases {¢{} of the irreducible co-representations u;
of these on-site magnetic point groups G, at their corresponding
Wyckoff positions x, the induced co-representation (u;), 1 G of the
space group G from the irreducible co-representations of the subgroup
G is referred to as magnetic elementary band representations
(MEBR). In the AFM case, the four negative-energy bands host the co-
representations

* AtGpoint: T, @T,

* At M point: M; & M,

* At X point: X;Xs @ X,X,

Therefore, our target band can only be expressed as a combination of
MEBRs with the negative integer

(Ese 1 Gara ® (E)_ 1 Gan©(Ez), 1 prws @

which implies the fragile topology. See more details in Supplemen-
tary Note 7.

Model Hamiltonian used for SG 130

To illustrate the effectiveness and generality of our method, we
introduce a more complex example for space group P4/ncc (#. 130).
We start with the paramagnetic normal state, where the system actu-
ally respects the type-1l magnetic space group P4/nccl’. The group can
be generated by the following symmetry operations

11 111
{€4210003, {Cou| 55 0L 115550, T

(22)
The magnetic space group P4/nccl’ has one and only one eightfold
irreducible representation at the A point, i.e., the (i1, i, m) point, in the
spinful condition. Namely, all the bands are eightfold degenerate and
respect the same low-energy effective model in the spinful case. In the
lattice model condition, the eightfold band degeneracy can be
captured by the following tight-binding model”

k
Ho(K) = to(COSk, + COSky,+ COSk,) + 1, T, cos%cosjy

+t,1, cos % + AT 4, COS % 23)
k. Kk ky .
+ AT, <0X sin 7" cos % +0, cosj" sin %)

+A,1,(0, sink, — 0, sink,).

Based on this model, we study the possible TSC states in the
system when conventional superconductivity and different magnetic
orders are introduced. More details are presented in Supplementary
Note 10.

Data availability
All data needed to evaluate the conclusions in the study are present in
the paper and/or the Supplementary Information. The data that sup-
port the findings of this study are available from the corresponding
authors upon request.

Code availability

The computer code used for numerical calculation and theoretical
understanding is available upon request from the corresponding
authors.
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