
Handling Detector Characterization Data (Metadata) in
XENONnT

Luis Sanchez1,∗, Yossi Mosbacher2,∗∗, and Aaron Higuera1,∗∗∗ Christopher Tunnell1

1Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
2Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 7610001,
Israel

Abstract. Effective metadata management is a consistent challenge faced by
many scientific experiments. These challenges are magnified by the evolving
needs of the experiment, the intricacies of seamlessly integrating a new sys-
tem with existing analytical frameworks, and the crucial mandate to maintain
database integrity. In this work we present the various challenges faced by ex-
periments that produce a large amount of metadata and describe the solution
used by the XENON experiment for metadata management.

1 Introduction

Many experiments collect a large amount of very homogeneous primary data, usually in the
form of massive collections of time series. The challenges associated with these large time
series are mostly centered around the sheer scale of the data and the complexity associated
with partitioning and versioning such large datasets while ensuring data integrity. While these
primary datasets comprise the overwhelming majority of data by size, these experiments tend
to produce a large number of smaller auxiliary datasets. These auxiliary datasets (metadata),
sometimes referred to as conditions data[1], track auxiliary elements like the detector con-
ditions, data correction values, manual operations, and other auxiliary measurements, each
with their own schema and time resolution. The main challenges of managing metadata
comes mostly from the heterogeneity of these datasets and their usage.

Experiments, especially those with large datasets, need 2 key components: a place to store
the data and a way for scientists to access this data, [2, 3]. Particle physics experiments such
as those at the Large Hadron Collider (LHC) have a rich history when it comes to metadata
management [4]. As such, most of the literature in the field is in the context of collider
experiments. Despite the difference in experimental setup, we face similar challenges when
it comes to metadata management. The ATLAS collaboration, for instance, wrote about some
of the challenges they face with conditions data, its management, and its interface [5]. Here
we will iterate on some of these issues, express the requirements we need for a metadata
management system, discuss our implementation of a system to manage our metadata, and
discuss its integration with the current software used in the XENON experiment for data
processing.
∗e-mail: las19@rice.edu
∗∗e-mail: joe.mosbacher@gmail.com
∗∗∗e-mail: ahiguera@rice.edu

EPJ Web of Conferences 295, 01033 (2024) https://doi.org/10.1051/epjconf/202429501033
CHEP 2023

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative
Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

2 Background

2.1 Metadata characteristics

We will start by listing some of the main characteristics of our metadata so the reader can
better judge whether our experience and solutions are relevant to them.

1. Heterogeneity: Metadata can span from simple information, like timestamps and run
numbers, to more complex calibration and environmental data, including temperature,
pressure, and electromagnetic conditions. Standardizing and managing diverse types
of metadata is a significant challenge.

2. Multiple Sampling Frequencies: Metadata can be sampled with frequencies ranging
from seconds to months.

3. Immutability: Most of our metadata is used to produce scientific results and therefore
is immutable to ensure reproducible outputs. This does not mean that updates are not
made, just that those updates are stored as new versions instead of replacing the existing
values.

2.2 Requirements on metadata management

2.2.1 Single Source of Truth

Experimental metadata used for processing scientific results is required to be consistent and
immutable in order to achieve reproducible results. There are two common patterns when
it comes to the storage of versioned data: the centralized "single source of truth" and the
distributed git-like approach. Both have various advantages and disadvantages, but in the
case of metadata used for processing, it is necessary to have a single data repository that is
used for all "production" processing.

2.2.2 Development Environments

It is important to understand that the processing chain is a collection of complex software
components that are under constant development. Given that the metadata is used in the
processing chain, it is effectively part of this development process and therefore needs to
accommodate small development environments that can be used easily during development.
The flexibility of a distributed system is necessary for analysts doing the preliminary analysis.
The preliminary corrections and quality cuts are used in producing the metadata in the first
place. Detector condition corrections, for example, can be highly inter-dependent, requiring
a flexible and rapid development cycle. Such a rapid development cycle would be highly
impaired by a centralized immutable database taking part of the development process. It is
therefore crucial to have the ability to set up small, local staging databases for analysts to use
during development and the review process.

2.2.3 Multiple Data Access Patterns

There is a large variety of access patterns required for scientific metadata. Many researchers
from various institutions often collaborate on projects sharing the same data. The data needs
to be accessed by analysts from around the world as well as from within high-performance
computing (HPC) environments when processing experimental data. The metadata should be

EPJ Web of Conferences 295, 01033 (2024) https://doi.org/10.1051/epjconf/202429501033
CHEP 2023

2

easily accessible to all collaborators regardless of their physical location, requiring a well-
designed database and network infrastructure. Here again, a hybrid approach must be taken
to allow for access over https via multiple REST APIs when connectivity is limited. This
approach also enables direct connections via binary protocol to allow for high throughput
when needed.

2.2.4 Versioning Support

A large part of experimental metadata is used in the processing of the experimental data.
Some examples include data selection parameters, data correction parameters, various tuned
settings of the processing algorithms, and even machine learning models. These values need
to be immutable for analysis results to be reproducibility, but they also need to be versioned
so that they can be tuned as the analysis improves.

2.2.5 Queries and Indexing

Most experiments produce a large variety of datasets, each with unique indexing require-
ments. Each dataset needs to be indexed by a unique key to support versioning. The unique
key can be a composite of multiple fields. For numerical values, their dependence on the
index can be either discrete or continuous. For continuous fields, there are two common
ways of describing the dependent variable: step-wise (i.e. interval of validity) and sampled.
The step-wise description is efficient for storing fields with a very low sampling rate or non-
numerical values and sampling is more suitable for numerical metadata with a higher rate of
change that can be approximated via sampling and interpolation. As the amount of stored
data grows, efficient querying mechanisms become vital. It should be easy for a researcher to
efficiently extract relevant subsets of data for analysis based on specific criteria.

2.2.6 User Interfaces

Providing intuitive user interfaces for researchers to input, retrieve, and analyze metadata is
crucial for effective data management.

2.2.7 Access Controls

Given the importance and sensitivity of the data, robust access control measures are required
to prevent unauthorized access and potential tampering as well as accidental data deletion
and alterations.

2.2.8 Future-Proof Storage and Flexible Schemas

As the understanding of the detectors and their backgrounds improve, analysis techniques
evolve. Metadata must be stored in a manner that is flexible enough to accommodate these
evolving techniques. Furthermore, some data might need to be re-analyzed in the future as
detection techniques improve or new theories emerge. Ensuring the long-term preservation
of data and metadata in a format that remains accessible and understandable is crucial.

EPJ Web of Conferences 295, 01033 (2024) https://doi.org/10.1051/epjconf/202429501033
CHEP 2023

3

Figure 1. Diagram showing some of the data backends, APIs and in-memory data types supported by
rframe. Each backend can use any of the available APIs and each API can handle all supported data
types and vice versa.

3 Implementation

Previously, the XENON collaboration developed a simple conditions database, the correc-
tions management tool (CMT) [6], which consisted of a collection of tables, all indexed by
time with a column added for each version. These tables were stored in a central MongoDB
instance which acted as the single-source-of-truth for our metadata. The advantage of such a
system is in its simplicity, ease of implementation, and compatibility with pandas DataFrame
structures that all analysts are familiar with. Unfortunately, our processing pipeline became
very complex and required additional complexity to be added to our metadata management.
The main limitations of such a straightforward approach were inefficient queries, the central-
ization of the data management, and uniform indexing.
rframe [7] is a Python package developed in XENON to satisfy the more complex

requirements that arose with the complexity of our processing pipeline. rframe provides
unified data selection APIs, pydantic-based definition and schema validation, and multiple
data storage interfaces. The package has built-in support for multiple discrete and continuous
data values and indexes as well as being extensible for custom data types. The package also
provides support to assign arbitrary rules for inserting, editing, and deleting data which can
be defined on a per dataset basis by simply implementing them as methods on the schema
definition class. At the heart of rframe is the schema definition class which expands on the
pydantic BaseModel and includes three main components: index fields, value fields and
validation rules. The index fields define how data selections on stored values are converted
to in-memory data, value fields define the name, types, and constraints on the values, and
validation rules include arbitrary code that can be used to set complex validation rules on
data before it is inserted, changed, or deleted from the database.
xedocs was built on top of the rframe framework as a separate codebase to address

specific needs of the XENON collaborations. It consists of a collection of schemas for the
metadata stored by the experiment as well as helper functions to set up various access patterns
to the data. These access patterns include direct database access, a REST API, a Github API,
and local files. To facilitate easy schema definitions, we have a collection of base classes
where, at the highest level, we implemented the basic rules (such as forbidding the overwrit-
ing of data) that gets inherited by all the child classes. We then extend this collection with
more specific rules for various categories of data. This allows us to minimize the amount of
code needed for each schema, as most of our metadata can be inherited from one of the base

EPJ Web of Conferences 295, 01033 (2024) https://doi.org/10.1051/epjconf/202429501033
CHEP 2023

4

classes as described in Fig. 2 and have most if not all the required functionality. Overall these
classes cover most of our use cases:

• VersionedXeDoc(XeDoc): Imposes a version index.

• BaseCorrectionSchema(VersionedXeDoc): Ensures that the alias is always unique and dis-
allows changing already set values.

• TimeIntervalCorrection(BaseCorrectionSchema): Adds an Interval index of type datetime
and adds rules on which data can be appended to the database.

• TimeSampledCorrection(BaseCorrectionSchema): Adds time index of type datetime that
can interpolate data and enforces rules one when these corrections can be updated.

• CorrectionReference(TimeIntervalCorrection): Base class for documents that are refer-
ences to files or other documents in other storage systems.

• BaseResourceReference(TimeIntervalCorrection):Each document defines a reference to a
file in our file database (internally referred to as the "resource" database).

• BaseMap(BaseResourceReference): A base class for a very common correction data struc-
ture that contains the definition of an interpolating-map instance used in our processing
pipeline.

The schemas used directly for the corrections metadata consist of the descendants of
BaseCorrectionSchema. The parents of BaseCorrectionSchema are used in xedocs to handle
other metadata aspects that do not need such strict requirements. If more complex classes
need to be made, these can be written directly when making a schema for the new correction,
or we can make a new class that other schemas can inherit from with the desired properties.
This makes the system very flexible and allows us to take full advantage of Python’s object-
oriented features when defining data schemas.

One example of how we use the flexibility of insertion rules as arbitrary Python code
is in the treatment of what we call ONLINE and OFFLINE versions. These versions have
different rules as to when each can be updated as they each serve different purposes. The
ONLINE versions are used as a quick way to process our data on the data acquisition system
(DAQ) in semi-realtime as data is collected. This online processing, while not very precise,
allows us to quickly identify issues that can only be detected by looking at high-level data
such as reconstructed energy deposition events in the detector. As such, ONLINE versions
of interpolated datasets are extrapolated from their last known values. This means that as far
as data immutability rules are concerned, the values from that last timestamp in the database
are always set until the current time and cannot be modified. OFFLINE versions on the other
hand are not extrapolated and so are only set until the last timestamp. Such a complex set of
insertion rules is straightforward to implement using the rframe framework since it supports
arbitrary pre-validation of inserts and updates using Python methods.

Furthermore, the rate-of-change for our time-dependent corrections varies greatly from
correction to correction. As such, most corrections metadata are separated into time-sampled
corrections and time interval corrections. The difference between these two conditions is
whether we want to capture the time dependence as a series of time-sampled values that are
interpolated when queried or to define a piece-wise interval-of-validity for each value. An
example of a correction suitable for time-sampling is the measure of the electron lifetime [8].
Since the XENONnT experiment relies on the electrons produced by interactions with the
liquid xenon atoms to reconstruct the energy of the interaction, we need to keep track of the
purity of our liquid xenon, as more impurities could result in more electrons being absorbed
before they produce an observable signal. We know that the number of these impurities
should have a relatively continuous time evolution between short time periods. As such, it

EPJ Web of Conferences 295, 01033 (2024) https://doi.org/10.1051/epjconf/202429501033
CHEP 2023

5

Xedoc

default_datasource()

help()

BaseResourceReference

fmt

url_config

value : str

load()

pre_insert(datasource)

VersionedXeDoc

version : str

BaseCorrectionSchema

comments : str

created_date : datetime

normalize_tz(v)

pre_delete(datasource)

pre_update(datasource, new)

TimeIntervalCorrection

time: rframe.Interval[datetime]

pre_delete(datasource)

pre_update(datasource)

run_id_to_time_interval(values)

time_string_to_interval(values)

url_protocol(attr)

validity_intervals(datasource)

TimeSampledCorrection

time: rframe.Interval[datetime]

pre_delete(datasource)

pre_update(datasource)

freeze_values(datasource)

normalize_time(datetime)

run_id_to_value(values)

validity_intervals(datasource)

url_protocol(attr)

CorrectionReference

alias : str

attribute

config_dict

correction

labels : dict

time: rframe.Interval[datetime]

url_config

version : str

load(datasource)

BaseMap

algorithm : Literal['mlp','gcn','cnn']

file

fmt

local_file

map

value:str

Figure 2. Diagram showing the class structure for the conditions data in xedocs. All conditions that
are needed for event reconstruction are based on the time interval and the time-sampled schemas or
their child classes. Other metadata that does not need the strict requirements of these are derived from
the parent classes of base corrections but we will not be discussing these in this paper.

is best to sample the values at a high enough frequency and interpolate the values between
measurements. On the other hand, we have conditions metadata such as the positions from
machine-learning position reconstruction algorithms [9], which are valid for longer periods
of time as the detector conditions to not change much. These cannot and should not be
interpolated in time, so we simply assign to them an interval of validity for the time range on
which they were validated by the analyst that created them.

EPJ Web of Conferences 295, 01033 (2024) https://doi.org/10.1051/epjconf/202429501033
CHEP 2023

6

4 Integration

4.1 Choice of storage

For our primary source of truth storage we chose to use our existing MongoDB replica-set
with 3 replicas in Italy, Chicago and Texas for high-availability. A significant advantage
of using MongoDB is its optimization for performance on reads. Our metadata is mostly
immutable so it is only written once but it can be read at a very high rate due to our use of
massively parallel processing on high-throughput HPC systems like Open Science Grid. For
our staging databases we use a git repository with a centralized fork hosted on Github. The
Github ecosystem is used mostly for its excellent review tools and automation via Github
Actions. The git repository holds the code used by analysts to produce the data they insert
into the database and also the data itself as json/parquet files.

4.2 Review process for data insertion

Direct insertion of data into the database is avoided as much as possible. When new data
becomes available, it is first added to the git repository in a new branch and a pull request is
opened on Github. When a pull request is created, an automated test runs on the proposed data
to ensure it follows all the rules for the dataset it is trying to append data to, including schema
and insertion rules. Beyond the automated tests, reviewers can access the data directly from
Github or their local repository for testing processing with the new data. After a pull request
is reviewed and authorized, it is merged into the master branch. Merging into the master
branch triggers an automated synchronization script that inserts the new data into the central
MongoDB database, in this insertion stage each document is validated once more against the
insertion rules defined on the schema class prior to insertion.

4.3 Data access from processing workflows

Integration of xedocs into our current analysis software required very little modification of
our analysis software straxen [10], built using the strax framework, a framework also built
in xenon for stream processing. Thanks to its configuration management system which allows
the use of abstract "URLs" that are evaluated at runtime and can run arbitrary code to retrieve
the configuration values. The configuration system was simply extended to recognize URLs
that start with the protocol "xedocs://" to run a xedocs query and fetch the configuration
specified in the URL path selecting based on the URL arguments.

The specific version or correction we use for a specific analysis can change over time,
either due to an improvement in the calculation of the values of these conditions or due to
errors in previous conditions. To track the global configuration used for our entire processing
pipeline, we also have a metadata collection that holds the various versions of each conditions
dataset used for a given "global version" of the entire pipeline. These global versions consist
of a collection of URLs that contain a fixed version of all conditions in order to make our
analysis reproducible. When loading our analysis framework, one needs only to specify a
global version and this will automatically set all the versions to use from each correction. As
such, with very few modifications to the existing codebase, we were able to integrate this new
system into our analysis software.

5 Discussion

The choice of which metadata management system to use for an experiment will mainly fall
on the needs of said experiment. The level of complexity of the metadata and the size of the

EPJ Web of Conferences 295, 01033 (2024) https://doi.org/10.1051/epjconf/202429501033
CHEP 2023

7

collaboration will likely be the most important factors. Here we discussed CMT, a relatively
simple metadata management system, which is ideal for small collaborations with simple
metadata management requirements. xedocs on the other hand was our solution to address
the growing complexity of our metadata structure, offering many features and safeguards that
could be ideal for larger experiments.

6 Conclusion

The change to using xedocs for our conditions metadata has greatly removed the amount
of manual labor needed to maintain the conditions database. The increased flexibility of
each schema allows them to be changed without having to change the structure of existing
metadata. Furthermore, the restrictions of when a given collection can be updated and how
it can be updated, helps preserve the integrity of the system, and creating new conditions
is very easy. Furthermore, the original analysis framework does not need to be changed
to accommodate changes in the metadata. Given the successful application of rframe in
XENON, other experiments could take advantage of the existing structure in rframe to build
their own conditions database system.

References

[1] I. Bird, Annual Review of Nuclear and Particle Science 61, 99 (2011)
[2] J. Shiers, Nuclear Physics B-Proceedings Supplements 150, 312 (2004)
[3] M. Jurić, J. Kantor, K.T. Lim, R.H. Lupton, G. Dubois-Felsmann, T. Jenness, T.S. Ax-

elrod, J. Aleksić, R.A. Allsman, Y. AlSayyad et al., The lsst data management system
(2015), 1512.07914

[4] P. Laycock, M. Bracko, M. Clemencic, D. Dykstra, A. Formica, G. Govi, M. Jouvin,
D. Lange, L. Wood, Hep software foundation community white paper working group –
conditions data (2019), 1901.05429

[5] J. Fulachier, J. Odier, F. Lambert, on behalf of the ATLAS Collaboration, Journal of
Physics: Conference Series 898, 062001 (2017)

[6] X. Collaboration, Corrections management tool (cmt), https://straxen.readthedocs.io/
en/latest/cmt.html (2022)

[7] J. Mosbacher, rFrame, https://github.com/jmosbacher/rframe (2023), version 0.2.19
[8] E. Aprile, K. Abe, F. Agostini, S.A. Maouloud, L. Althueser, B. Andrieu, E. Angelino,

J. Angevaare, V. Antochi, D.A. Martin et al., Physical Review Letters 129 (2022)
[9] C. Peters, A. Higuera, S. Liang, V. Roy, W.U. Bajwa, H. Shatkay, C.D. Tunnell, A

method for quantifying position reconstruction uncertainty in astroparticle physics us-
ing bayesian networks (2022), 2205.10305

[10] J.R. Angevaare, J. Aalbers, D. Wenz, E. Shockley, P. Gaemers, D. Xu, A. Higuera,
G. Volta, Y. Mosbacher, C. Tunnell et al., Xenonnt/straxen: v2.1.1 (2023), https://
doi.org/10.5281/zenodo.8122941

EPJ Web of Conferences 295, 01033 (2024) https://doi.org/10.1051/epjconf/202429501033
CHEP 2023

8

