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INTRODUCTION

Mosquito-borne diseases are some of the most persistent
health challenges globally. This distinction is underpinned

David Hyon' | Samantha Sambado®® |

Abstract

Mosquito-borne diseases contribute substantially to the global burden of
disease, and are strongly influenced by environmental conditions. Ongoing
and rapid environmental change necessitates improved understanding of the
response of mosquito-borne diseases to environmental factors like tempera-
ture, and novel approaches to mapping and monitoring risk. Recent develop-
ment of trait-based mechanistic models has improved understanding of the
temperature dependence of transmission, but model predictions remain chal-
lenging to validate in the field. Using West Nile virus (WNV) as a case study,
we illustrate the use of a novel remote sensing-based approach to mapping
temperature-dependent mosquito and viral traits at high spatial resolution and
across the diurnal cycle. We validate the approach using mosquito and WNV
surveillance data controlling for other key factors in the ecology of WNV, find-
ing strong agreement between temperature-dependent traits and field-based
metrics of risk. Moreover, we find that WNV infection rate in mosquitos
exhibits a unimodal relationship with temperature, peaking at ~24.6-25.2°C,
in the middle of the 95% credible interval of optimal temperature for transmis-
sion of WNV predicted by trait-based mechanistic models. This study repre-
sents one of the highest resolution validations of trait-based model predictions,
and illustrates the utility of a novel remote sensing approach to predicting
mosquito-borne disease risk.

KEYWORDS
Central Valley, California; Culex tarsalis; ECOSTRESS; field-based model validation;
temperature-dependent Ry; trait-based models; West Nile virus

by their rapid response to changing environmental
and sociopolitical conditions including suitable tem-
perature (Paz, 2015), available breeding habitat
(Bowden et al., 2011), political turmoil (Kilpatrick &
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Randolph, 2012), and the increasing pace of introduc-
tions of vector species and pathogens to novel regions
(e.g., global invasion of Aedes spp. and flaviviruses to the
Americas; introduction of Anopheles stephensi to
sub-Saharan Africa). These characteristics of mosquito
vectors and pathogens complicate efforts to control them,
despite substantial funding and public health interven-
tions, as well as research efforts.

Mosquito-borne disease risk is further compounded
by the pace of global change, leading to potentially rapid
changes in environmental suitability for disease transmis-
sion (Bowden et al., 2011; Kilpatrick & Randolph, 2012).
Will mosquitos and the pathogens they transmit expand
or shift their distributions (Ryan et al., 2019)? Will they
adapt in situ, through behavioral responses like shifting
seasonality, or through evolutionary adaptation (Couper
et al, 2021)? The potential for rapid response of
mosquito-borne diseases to environmental change has
underscored the importance of prediction and forecasting
to understand consequences for health.

One important approach to forecasting impacts of
changing climate on mosquito-borne disease risk is charac-
terizing the temperature dependence of transmission
through mosquito and pathogen trait-based mechanistic
models (Mordecai et al., 2013; Shocket et al., 2020). Key
mosquito and pathogen traits—from biting rates and mos-
quito lifespans, to transmission efficiency—are sensitive to
temperature (Mordecai et al., 2019). Combining the influ-
ence of these traits on the relative R, of mosquito-borne dis-
eases through mechanistic models has led to improved
predictions of the optimal temperature for malaria trans-
mission (Mordecai et al., 2013) and future forecasts of the
shifting suitability for arboviruses (Ryan et al., 2019).
However, these models rely on temperature-trait relation-
ships measured in laboratory studies, and field-based model
validation remains a challenge (Mordecai et al., 2019).

Previous model validation efforts have relied on
pairing relatively coarse weather data with either simi-
larly coarse (e.g., county-level case reporting for West
Nile virus [WNV]; Shocket et al., 2020) or sparse (e.g.,
aggregation of the results of limited field studies;
Mordecai et al., 2013) transmission data. However, such
scales may not represent ecologically relevant associa-
tions of temperature with metrics of disease risk, like
entomological inoculation rates or human case reporting.
Here, we use a novel remote sensing approach (Boser
et al., 2021) in combination with highly spatially resolved
vector surveillance data to both provide novel field-based
validation of trait-based mechanistic models (Mordecai
et al., 2019; Shocket et al., 2020) and assess the perfor-
mance of the remote sensing approach of Boser et al.
(2021) in predicting mosquito-borne disease risk.
Specifically, using WNV in California’s Central Valley

as a case study, we quantify temperature—and
temperature-dependent mosquito and viral traits—
across the diurnal cycle at high spatial resolution (70 m),
and use this information to predict adult female Culex
tarsalis mosquito abundance and infection with WNV.

We find key temperature-dependent traits, transmission
efficiency and mosquito abundance, reliably predict metrics
of WNV risk—minimum infection rate (MIR) and adult
female mosquito abundance, respectively—in the field, con-
trolling for key biotic and abiotic conditions relevant to
WNV dynamics. Moreover, WNV infection rates in vector
mosquitos peak almost precisely at the optimal temperature
for WNV transmission predicted by Shocket et al. (2020).
These results provide robust, high spatial resolution valida-
tion of temperature-dependent, trait-based mechanistic
models, as well as validate a novel remote sensing-based
approach to high spatial resolution mosquito-borne disease
risk mapping and prediction (Boser et al., 2021) that could
prove valuable to vector-borne disease ecology across
regions and ecological contexts.

METHODS
Study region

This study was conducted in the northern Central Valley
of California, which encompasses the Sacramento metro-
politan area, smaller cities and towns, part of the
Sacramento River delta, and diverse agricultural landscapes
that include rice production, row crops, and orchards.
Rainy winters and crop irrigation provide breeding habitat
for mosquitos, while hot, dry summers are ideal for mos-
quito development and population growth.

WNV surveillance data

Mosquito and WNV surveillance is conducted throughout
the year by California’s mosquito and vector control dis-
tricts, and includes number of mosquitos by life stage,
sex, and species collected by trap type and per trap night.
Mosquito pools are also screened for WNV infection, pri-
marily during peak transmission season from late spring
to early fall. All trap stations include latitude and longi-
tude, and date of collection. Mosquito and WNV surveil-
lance data were acquired from VectorSurv, through a
CalSurv data request (#000058), for the northern Central
Valley—Sacramento, Solano, Napa, Yolo, Colusa, Sutter,
Placer, Yuba, Nevada, Contra Costa, San Joaquin,
El Dorado, and Amador counties—from 2010 to 2020
(Figure 1a). To group nearby trap stations that were
unlikely to represent independent samples based on daily
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FIGURE 1

Maps illustrating (a) location of mosquito trap stations within the northern Central Valley study region (inset map of

California) and (b) ECOSTRESS-based air temperature estimates averaged across the diurnal cycle for the summer season when mosquito

abundance and West Nile virus transmission peak.

dispersal distances of Culex mosquitos (Reisen &
Lothrop, 1995), trap stations were spatially aggregated
using hierarchical clustering. In brief, clusters were cre-
ated using a complete-linkage hierarchical clustering
method with tree height cutoff of ~3000 m using the
hclust function in the stats package (R Core Team, 2022),
resulting in ~1500 m (1.5 km) radius buffers around trap
station cluster centroids. Each cluster contains distinct
trap stations, so clusters of trap stations do not contain
duplicate surveillance data.

Following trap station -clustering, we calculated
weekly averages of (1) number of mosquitos per trap
night and (2) minimum WNYV infection rates (MIR) for
each trap station cluster by week observation using
the following equation: MIR = ([number positive pools +
number specimens tested] X 1000). The surveillance data
were then subset to the beginning of June through end of
September 2018-2020, to match available imagery from
the ECOSTRESS sensor (see below). This data subset was
then collapsed by trap station cluster to obtain a single
observation per cluster of average MIR and average num-
ber of mosquitos per trap night over the peak transmis-
sion season. Data processing was restricted to only adult
Cx. tarsalis females, the primary rural WNV vector in the
agriculturally dominated Central Valley.

Temperature-dependent traits

We employ a novel method developed and outlined in
Boser et al. (2021) for measuring air temperature across
the diurnal cycle at high spatial resolution using remote
sensing. These high spatial resolution temperature

measurements (Figure 1b) are then used to calculate and
map temperature-dependent mosquito and viral traits
(Boser et al., 2021). In brief, ECOSTRESS is a NASA sen-
sor onboard the International Space Station, capable of
collecting highly accurate land surface temperature (LST)
at high spatial resolution (70 m). Temperature measure-
ments occur at variable times of day due to the non-sun
synchronous orbit of the sensor, with sensor revisit times
averaging approximately once every two days in this
region resulting in high spatial resolution temperature
measurements across the diurnal cycle. From LST, we
model air temperature using meteorological station tem-
perature measurements across the Central Valley (Boser
et al., 2021), since LST tends to be higher during the peak
of the day and cooler at night than air temperature.

We then apply the mechanistic relationships for key
mosquito and viral traits for Cx. tarsalis and WNV across
the diurnal temperature cycle produced from ECOSTRESS,
following Boser et al. (2021). Specifically, we focus on:
(1) transmission efficiency, b(T), the proportion of infected
mosquitos that become infectious, with virus present in
saliva; and (2) mosquito abundance, M(T), which is
influenced by egg-to-adult development rate (MDR), sur-
vival probability (pg,), and lifetime fecundity (eggs per
female per day, EFD, times lifespan, 1/p) Equation (1;
Mordecai et al., 2019)

_ EFD(T) py, (T) MDR(T)
u(T)? '

M(T) (1)

We focus on transmission efficiency, b(T), as a modeled
proxy for WNV MIRs, and mosquito abundance, M(T),
as a modeled proxy for mosquitos per trap night from
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WNV surveillance (Appendix S1: Figures S1 and S2).
Finally, we summarize temperature-dependent traits
within ~1500m radius buffers, to approximate average
weekly Culex mosquito dispersal distances reported in
the literature (Reisen & Lothrop, 1995), centered on each
trap station cluster to assess the relationship between
modeled traits and field surveillance.

Abiotic and biotic controls

Many other factors may influence WNV risk, including
humidity (Paz, 2015), standing water for breeding (Kovach
& Kilpatrick, 2018), land cover (Bowden et al., 2011) and
host abundance, including reservoir bird hosts (Kilpatrick
et al., 2007). To capture these factors in our analysis, we
include additional key biotic and abiotic characteristics,
summarized by trap station cluster across the summer
months of 2018-2020 (Appendix S1: Table S1). We include
abundance of key passerine bird hosts—house sparrows,
house finches, western scrub jays, American robins, and
American crows—both individually and summed to quan-
tify overall “competent” bird abundance, as well as overall
bird diversity using modeled bird abundance data from the
Cornell Lab of Ornithology, ebird Status and Trends (Fink
et al., 2020). We also include human and livestock (cattle
and chickens) density as a measure of overall blood meal
host availability from WorldPop (www.worldpop.org) and
the UN FAO, respectively (Gilbert et al., 2018). We
also include cumulative precipitation (mm) and average
vapor pressure deficit (in kilopascal) from gridMET
(Abatzoglou, 2013), enhanced vegetation index (EVI) from
MODIS, drought severity (Palmer Drought Severity Index)
from gridMET (Abatzoglou, 2013), standing water from the
European Commission’s Joint Research Centre Global
Surface Water database (Pekel et al., 2016), area of irrigated
agriculture from irrMapper (Ketchum et al., 2020), and a
categorical variable for the dominant land cover type from
the 2019 National Land Cover Dataset—agriculture (refer-
ence category in models), developed, natural and wetland
(Dewitz & USGS, 2021). Finally, we include other
temperature-dependent mosquito traits (i.e., biting rate,
a(T), and abundance, M(T), in the WNV MIR models)
that might influence the relationship between the focal
trait and vector surveillance (Mordecai et al., 2019). Data
availability is described in Appendix S1: Table S1
(MacDonald, 2024).

Statistical analysis

All analyses were conducted in R version 4.2.2 (R Core
Team, 2022). To remove the effects of spatial autocorrelation,

we spatially thinned the trap station clusters so that the
distance between trap station cluster centroids was at
least 3 km, resulting in a random subset of trap station
clusters that maximizes the number of retained data
points, and that avoids overlap of the 1500-m-radius
buffers around each trap station cluster centroid
(Appendix S1: Figure S3). Spatial thinning was achieved
using the ensemble.spatialThin function in the
BiodiversityR package (Kindt & Coe, 2005). If residual
spatial autocorrelation was still present in full or best fit
models (see below), according to Moran’s I tests on
model residuals, the x and y coordinates of trap station
clusters were added as additional controls in the final
models.

To model the relationship between temperature-
dependent traits, derived from ECOSTRESS, and
field-based WNV surveillance, we use generalized lin-
ear models (GLMs) with a Tweedie response dis-
tribution and log link function using the package
glmmTMB (Brooks et al., 2017). The Tweedie dis-
tribution is in the exponential family and is useful
for modeling outcome data that have a point mass at
zero and a skewed positive distribution when gre-
ater than zero (Gilchrist & Drinkwater, 2000), as is
the case for MIR and mosquitos per trap night in
our surveillance dataset. We standardized (z-score
transformed) all variables, with the exception of cate-
gorical land cover, to allow for interpretation of rela-
tive effect sizes.

We first specified models with just the focal trait
(i.e., MIR as a function of modeled transmission effi-
ciency and mosquitos per trap night as a function of
modeled mosquito abundance). We then specified full
models with all relevant control variables, and used
backward stepwise variable selection by Akaike infor-
mation criterion (AIC) using the stepAIC function
in the MASS package (Venables & Ripley, 2002) to
select the best fit models, ensuring limited collinearity
in the final set of predictors using the performance
package (Liidecke et al., 2021). To ensure that model
results were robust to model selection approach, we
undertook an all possible model comparison with
model selection by AIC, using the dredge function in
the MuMIn package (Barton, 2023). Finally, we spe-
cified full and best fit models, as above, using a
quadratic function of air temperature in place of
the temperature-dependent traits. We do so to assess
the shape of the relationship between tempera-
ture alone, derived from ECOSTRESS, and field
surveillance-based estimates of WNV risk (i.e., MIR).
The full suite of model results and diagnostics
is presented in Appendix S1: Figures S4-S6,
Tables S2-S9.
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RESULTS

The best-fit models predicting adult female Cx. tarsalis
per trap night included temperature-dependent mosquito
abundance modeled from ECOSTRESS (M(T)), compe-
tent bird abundance, bird diversity (Shannon index), pre-
cipitation, area of irrigated agriculture, EVI, vapor
pressure deficit, area of standing water, cattle density,
dominant land cover, and x and y coordinates of trap sta-
tion clusters. The model estimates a strong positive
association between temperature-dependent mosquito
abundance and mosquitos per trap night from
field-based surveillance (exp(ﬁ) =142 [1.02-1.97],
Figure 2a; Appendix S1: Figure S4, Tables S2-S4).
Specifically, for a one SD increase in temperature-
dependent mosquito abundance, the model predicts a 42%
increase in the number of mosquitos per trap night. In
addition, mosquitos per trap night were positively associ-
ated with competent bird host abundance, precipitation,
area of irrigated agriculture and wetland land cover, and
negatively associated with overall bird diversity, EVI,
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Temp-Dependent Mos. Abund.

Temp-Dependent Mos. Abund. Fo—
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FIGURE 2

WNV MIR

vapor pressure deficit, area of standing water, and
developed land cover (Figure 2a; Appendix SI:
Figure S4, Tables S2-S4).

Best fit models predicting WNV MIRs in adult female
Cx. tarsalis included temperature-dependent transmission
efficiency modeled from ECOSTRESS (b(T)), bird diversity,
EVI, vapor pressure deficit, mosquito biting rate, area of
standing water, human population and chicken density,
dominant land cover, and x and y coordinates of trap sta-
tion clusters. The model estimates a strong positive associ-
ation between temperature-dependent transmission
efficiency and MIR (exp(ﬁ) =1.84 [1.14-2.95], Figure 2b;
Appendix S1: Figure S5, Tables S5-S7). Specifically, for a
one SD increase in temperature-dependent transmis-
sion efficiency, the model predicts an 84% increase in
MIR. In addition, MIR was positively associated with
bird diversity and EVI, and negatively associated with
mosquito biting rates (a(T)) and human population den-
sity (Figure 2b; Appendix S1: Figure S5, Tables S5-S7).

In models predicting MIRs from field surveillance
with ECOSTRESS-based air temperature in place of

b) MIR ~ Transmission Efficiency
Transmission Efficiency :
Bird Diversity

Enhanced Vegetation Index

,
F
Vapor Pressure Deficit -’
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Coefficient plots for (a) adult female Culex tarsalis mosquitos per trap night predicted by temperature-dependent mosquito

abundance (M(T)); (b) West Nile virus minimum infection rates (MIR) in Cx. tarsalis predicted by temperature-dependent West Nile virus
transmission efficiency (b(T)); and (c) West Nile virus MIRs in Cx. tarsalis predicted by air temperature. Panel (d) is a partial residual plot

illustrating the nonlinear relationship between ECOSTRESS-based air temperature estimates and West Nile virus MIRs in Cx. tarsalis.

Partial residual plot is based on models predicting standardized MIR for the purposes of visualization (Appendix S1: Table S9).
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temperature-dependent traits (Figure 2c; Appendix S1:
Figure S6, Tables S8 and S9), we identify a clear
unimodal relationship between temperature and MIR
that peaks at ~24.6-25.2°C (Figure 2d), almost pre-
cisely in the center of the range of predicted optimal
temperature for transmission of WNV by Cx. tarsalis
(22.9-25.9°C) (Shocket et al., 2020).

DISCUSSION

Mosquito-borne diseases threaten human health globally
and remain a significant public health challenge due to
the sensitivity of mosquito vectors and pathogen trans-
mission to rapidly changing environmental conditions
(Bowden et al., 2011; Kilpatrick & Randolph, 2012;
Paz, 2015). There has therefore been significant interest
in modeling the response of mosquito-borne diseases to
key environmental parameters like temperature (Hartley
et al., 2012), as well as in mapping transmission risk to
better understand current and future threats to human
health (Ryan et al., 2019). Recent advances in trait-based
mechanistic modeling of the temperature dependence of
pathogen transmission (Mordecai et al., 2019) have
improved understanding of the potential responses of
mosquito-borne diseases to changing climate. However,
field-based validation of model predictions has been a sig-
nificant challenge, due in part to a dearth of high spatial
resolution temperature estimates that can be combined
with similarly high resolution surveillance data
(Mordecai et al., 2019).

Here, we overcome these challenges using a novel
remote sensing approach to estimating air temperature
at high spatial resolution, and across the diurnal cycle
(Boser et al., 2021). We find good agreement between
temperature-dependent mosquito and viral traits, and
entomological metrics of risk from high resolution field
surveillance data, as well as validate predictions of
optimal temperature for transmission of WNV by Cx.
tarsalis from trait-based mechanistic models (Shocket
et al., 2020).

Importantly, these temperature-dependent traits are
significant predictors of entomological metrics of WNV
risk from field-based surveillance even in models control-
ling for other biotic and abiotic factors relevant to mos-
quito biology and WNV ecological dynamics (Bowden
et al., 2011; Kilpatrick et al., 2007; Reisen & Lothrop,
1995). Bird host abundance and land cover characteristics
relevant to mosquito breeding are also important predic-
tors of the field-based metrics of WNV risk. For example,
area of irrigated agriculture and wetland land cover
are positively associated with mosquito abundance.
Interestingly, area of standing water is negatively

associated with mosquito abundance, which may be a
function of the region of interest; large areas of standing
water in this part of the Central Valley are primarily asso-
ciated with the brackish Sacramento and San Joaquin
Delta, which may be less ideal for Cx. tarsalis breeding
than other water sources like irrigation ditches, storm
drains, and seasonal wetlands (Reisen & Lothrop, 1995).
EVI, a metric of vegetation greenness, is positively associ-
ated with WNV MIR, as is overall bird diversity, which
may be the case if overall abundance of highly competent
hosts is elevated in high diversity bird communities.

While our novel remote sensing-based approach to
risk mapping of WNV yields good agreement between
temperature-dependent traits and field-based WNV sur-
veillance, validating mechanistic model predictions, the
approach does have some limitations. First, the mecha-
nistic models from which our temperature-dependent
traits are derived are necessarily simplified representa-
tions of the mosquito development and viral transmission
processes (Mordecai et al, 2019). For example, the
egg-to-adult development rate (MDR), encompasses mul-
tiple developmental stages and processes from timing of
eggs to hatch, to development from larvae to pupae and
adults. Each of these stages may respond differently to
temperature, as will timing from adult emergence to
female maturity and oviposition. This simplification is
often necessary to make mechanistic models more inter-
pretable and to simplify their parameterization while still
capturing relevant dynamics. However, simplification
may also lead, in our context, to disconnects between
trait-based predictions and observed abundance or infec-
tion rates in the field, if for example some process is
not accurately captured that has an outsized impact on
the system. Another important limitation is that the
revisit time of the ECOSTRESS sensor limits our tem-
perature estimates to a single high spatial resolution
diurnal temperature profile during the peak summer
season. This may be more useful in regions with rela-
tively consistent temperatures during distinct transmis-
sion seasons, like the Central Valley, but perhaps less
so where conditions are more variable and transmis-
sion occurs variably year-round. Thus, the results we
present from our study region may not be generalizable
to these different ecological contexts. Cloud cover is
also an issue for many applications of remote sensing,
so this approach may be more challenging to imple-
ment in regions with significant cloud cover, particu-
larly in tropical regions where vector surveillance may
be limited, and remote sensing approaches potentially
more valuable. Finally, the approach relies on meteoro-
logical station data to model air temperature from LST,
so regions with sparse meteorological stations may also
present a challenge.
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High spatial and temporal resolution, globally consistent
satellite imagery is increasingly available, and presents
novel opportunities for mosquito-borne disease ecology, risk
mapping, and future forecasting. Here we assess the
performance of a novel remote sensing approach to
temperature-dependent risk mapping (Boser et al., 2021) in
predicting entomological metrics of WNV risk in the
Central Valley of California, and present one of the highest
resolution validations of temperature-dependent mechanis-
tic model predictions (Mordecai et al., 2019; Shocket
et al., 2020) of mosquito-borne disease transmission to date.
We show that our approach, integrating across the diur-
nal temperature cycle, is well suited to capturing the
nonlinearity of temperature-trait relationships, and to
predicting mosquito-borne disease risk in the field.
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