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in the sense that U minimizes the energy on any compact

set among competitors agreeing with U outside that set.
Furthermore, we show that along subsequences, the ‘blow-
downs’ of U given by Up(x) := U(Rx) approach a minimal
triple junction as R — oo. Previous results had assumed
various levels of symmetry for the potential and had not
established local minimality, but here we make no such

symmetry assumptions.

1 | INTRODUCTION
We will construct an entire solution U : R? — R? to the system
AU =V, W (), 1)

which is minimizing on compact sets with respect to the associated energy

E(u)=/%|Vu|2+W(u)dx,
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where W : R? — [0, 0) is a C? ‘triple-well’ potential. That is, we assume that
{peR’: W(p)=0}=P :={p1,p,,ps},
and we assume non-degeneracy of the potential wells in the sense that
DZW(pg) > bl for¢ =1,2,3 for some b > 0, where [ is the 2 X 2 identity matrix. (1.2)
Additionally, we assume that for some M > 0,

p-VW(p)>0 for |p| > M. (13)

As in many studies of vector Allen-Cahn, we will make extensive use of the following
degenerate Riemannian metric on R2:

1
d(p,q) :=inf {\/5/ W2y (e)|y' ()] dt = y € C1([0,1],R?), y(0) = p, y(1) = q}, (1.4)
0
and we denote by ¢;; := d(p;, p;) fori # j. We will assume that the strict triangle inequality holds
between the wells py, p,, and ps:
Cip <C13+0C3, €13 <Cyp+Cy3, and Cy3 < C13 +Cq3. (15)

Under these assumptions, for 1 < i < j < 3 there exists at least one length-minimizing geodesic
{ij joining p; to pj, see for example [3, 21, 29]. We will make the generic assumption that there is
a unique such geodesic for each i, j € 1,2, 3, i # j, though perhaps this can be relaxed.

We also note that an equivalent variational description of the ¢;;’s is given by

¢ij = inf { / WU+ OF dr s f e HL R, S = pi, (o) =) } (L6)
Under an appropriate parametrization, we then find that each {;; : R — R? satisfies the system
s’{J’-(t) =V, W(S;;(1)) for —oo <t < o0, §;j(=00) = p;, {jj(0) = pj. (L7)

From the perspective of ODE’s, these geodesics {;; represent heteroclinic connections between

the potential wells.
We now denote by A the set of all functions u* : R? — R? taking the form

p1 onS;
u*(x)=4p, onsS, (1.8)
p3 onSs,

where for ¢ = 1,2 and 3, Sy is a single (infinite) sector emanating from the origin with the three
opening angles a, given by

sin(ay) _ sin(ay) _ sin(as) (1.9)

€23 €13 C12

See Figure 1.
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FIGURE 1 A locally minimizing partition of R? with a triple junction.

The partition {S;, S,, S5} represents a locally minimizing partition of R? with respect to the
weighted perimeter functional

{Sl,Sz,S3} = Z Cinl (5Sl nasj), (110)

1<i<j<3

where H! refers to one-dimensional Hausdorff measure, and the condition (1.9) naturally arises
as a criticality condition. As we will recall in Section 2, this partitioning problem represents the
I'-limit of a scaled version of the energy E, namely, Er(u, Q), defined for any planar domain Q,
any R > 0 and any u € H'(Q R?), via

Ep(u, Q) = / RW) + — |Vul® dx. (1.11)
o 2R

We will write simply E(u, Q) when referring to E; (i.e., R = 1).

We will establish a connection between the structure at infinity of our entire solution U to
(1.1) and the triple junction partitions given by (1.8) by studying the asymptotic behavior of the
blowdowns of U.

Our main result is the following:

Theorem 1.1. There exists an entire solution U : R — R2 to
AU =V, ,W(U) (1.12)

which is a local minimizer of energy in the sense that for every compact set K C R? and for every
ve Hlloc(Rz; RZ) Satisfying v=UonR? \K one has

E(U,K) < E(v,K). (1.13)

Furthermore, defining Uy as the blowdown of U via

Ur(x) := U(Rx), (1.14)
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4166 | SANDIER and STERNBERG

we have that on any compact set K C R?:
diStLl(K;RZ)(UR, A) —0asR — oo. (115)

That is,

pm <u1’*%i;l U = “*”Ll(K;RZ)) =0.
Remark 1.2. We believe that a stronger conclusion holds, namely, that there exists a u* € A such
that

Rh—I}c}o “UR - u*llLl(K;RZ) =0.

A step in the proof of the above theorem is the following result, of independent interest.

Theorem 1.3. Assume U : R?> — R? is an entire solution to (1.12) which is a local minimizer of
energy such that for some sequence R; — +oo, the sequence Ug, converges locallyin L' to the function

up(x1, %) = {pi yx; <0. (1.16)

pj ifx;>0."
for some pair p; # pj. Then U(xy, x,) = {;j(x, + A), for some A € R.

To place these results in context, we note that there is a large, and growing, collection of work
on the general topic of finding entire solutions u : R” — R™ to the vector Allen-Cahn system
under various assumptions on the potential W : R™ — R, on n and on m. See, for example [1, 4,
9, 10, 13, 18]. A source for a number of these results is the book [5]. Most of these results, how-
ever, include some form of symmetry assumption on W. We also mention the recent work [11]
addressing concentration of general vector-valued critical points of Allen-Cahn in the plane.

Regarding the case under consideration here, namely, n = m = 2 and W a triple well poten-
tial, an important first result on entire solutions appears in [13], where the authors assume the
potential is equivariant by the symmetry group of the equilateral triangle. The convergence to
the minimal triple junction partition (1.8)-(1.9) they achieve under these symmetry assumptions
(with necessarily each o, = 27r/3) is much stronger than (1.15). In particular, they show that

lim U<t%> = py for x € S; off of the three rays S, NdS, for 1 <k < ¢ < 3.

t—o0

On the other hand, since they work within the class of equivariant competitors, there is no claim of
stability with respect to general perturbations. In a more recent contribution to this problem [15],
the symmetry assumptions on W are weakened to include only the rotation subgroup of the full
symmetry group of the equilateral triangle, thus relaxing the assumption of reflectional symmetry.

Our proof of Theorem 1.1 proceeds by first appealing to [28] to construct a sequence of L!-
local minimizers of Er on a particular non-convex bounded domain, compare Theorem 2.2. The
candidate for our entire solution arises through a blow-up of this sequence, but care is needed
here to execute the blow-up about a point where the local minimizers take a value far from the
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three heteroclinics. This analysis is carried out in Section 2, culminating in Proposition 2.4, where
the blow-up limit U is shown to be an entire, locally minimizing solution to (1.1) that avoids the
three heteroclinics at the origin.

The next step involves an analysis of the blowdowns of any local minimizer U in the sense
of (1.13). Here we invoke the machinery of I'-convergence, including an identification of the T-
limit for vector Allen-Cahn subject to a Dirichlet condition carried out recently in [16]. We argue
in Proposition 3.1 that, up to passing to subsequences, these blowdowns converge to an L'-local
minimizer u, of the I'-limit given in (2.5), which takes the form of a partitioning problem.

The crucial estimate in our blowdown analysis comes in the form of an asymptotic equipartition
of energy of any local minimizer, namely,

/ <W(U) + %lVU|2 - \/5\/W(U)|VU|> dx < CLbR'™® forR>1, (1.17)
Bg

where By, is the disc of radius R centered at the origin, and C, > 0 and a € (0, 1) are constants
independent of R. This is established in Proposition 3.3. The proof utilizes the regularity theory for
the partitioning of a ball into three sets subject to a Dirichlet condition to obtain an upper bound
on the energy, as well as a comparison between the infimum of such a partitioning problem and
a related, less standard, partitioning problem described below (1.19) to obtain a matching lower
bound. We appeal to the regularity theory for both problems as recently presented in [24]. We note
that in [11] there appear other results on the asymptotic behavior of the ‘discrepancy measure,’
that is, the integrand of (1.17), but these have a different nature given that they are derived only
for critical points, not local minimizers, of the energy E.

From (1.17) and a Pohozaev identity, we are able to establish the convergence of the blowdowns
to a minimal cone via Lemmas 3.4 and 3.5 and Theorem 3.6. It is then simple to conclude that
one of three limits must arise: either (i) the minimal cone is R?, that is, u, = p, for some p, € P,
(ii) the minimal cone is a half-space, that is, uy = p; and p; for i # j on either side of a line, or
(iii) the minimal cone is given by three sectors satisfying (1.9) so that v, is given by (1.8), compare
Proposition 3.7.

Eliminating possibility (i) is easy, but eliminating (ii)-which roughly corresponds to arguing
that at infinity, the entire solution U does not look like a heteroclinic-is much more delicate. This
is the content of Section 4. The proof is by contradiction. We first obtain an upper bound for the
energy that corresponds to the cost of a heteroclinic. Then we obtain a contradictory lower bound
using crucially that U was constructed in such a way that U(0) is far from the three heteroclinics.

In Section 5, we compare the two partitioning problems that emerge in our proof of (1.17). As
one is somewhat non-standard, we hope this section will be of independent interest. The first
problem involves the minimization of the partitioning functional

(819S25 S3) = t1H1(551 N B) + t2H1(552 n B) + t3H1(653 N B), (118)

where B C R? is a ball, t;,t,, and t; are positive numbers, and the admissible competitors
(81,55, S3) are all partitions of B satisfying a Dirichlet condition

3S,NoB = f~Yp;) fort =1,2,3 and f € BV(3B;P). (1.19)

(In the present context of Allen—Cahn, the coefficients ¢, are related to the constants c;; via (3.18),
making (1.18) equivalent to (1.10).) For the second problem, one fixes any number § > 0 and then
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4168 | SANDIER and STERNBERG

minimizes the same partitioning functional (1.18) among triples (S, S,, S3) of disjoint subsets of
B again subject to (1.19), but now under the more relaxed condition that |B \ US| < &. In other
words, the competitors only need to “almost partition” the ball. In Theorem 5.4, we prove that the
infimum of the second, more relaxed problem cannot lie more than O(& 1/ 2) below the infimum
of the first problem.

In a personal communication in October of 2023, Nick Alikakos brought to our attention that
he and Zhiyuan Geng were working on the same type of result. Their efforts eventually led to [6]
and [7]. They obtain the same conclusion as that of our Theorem 1.1, along with information about
the proximity of the entire solution to the three potential wells along sequences of points going to
infinity. The methods are quite different, with their result on convergence of blowdowns relying
on a characterization of minimizing planar partitions into three sets, see Remark 3.8. As described
above, our approach involves a new result on asymptotic equipartition of energy for local
minimizers, along with the analysis of the rather novel geometry problem of “almost partitions.”

2 | CONSTRUCTION OF A CANDIDATE FOR THE ENTIRE
SOLUTION

Throughout this article, we will denote by B,(x) the ball in R2 of radius r and center x, unless the
center is the origin, in which case we will simply write B,.

2.1 | TI'-convergence results

Our approach in this article will at times invoke I'-convergence results relating the energy Ex(u, Q)
from (1.11) for a bounded domain Q C R? to the functional

Ew,Q) := ) ¢;HY@"S;nd"S;nQ), (2.1)

1<i<j<3

where S = u l(p j) for j =1,2,3, and 9*S refers to the reduced boundary of a set S of finite
perimeter, compare [17].

Building on previous I'-convergence results for vector Modica-Mortola in the double-well case,
for example [14, 26, 27], the T-convergence of {Ex(-, Q)} to Ey(-, Q) for bounded Q C R" in the
setting of a multi-well potential and in the topology L' (Q; R") is established in [8].

We will also require a generalization of this I'-convergence result to the situation where a
Dirichlet condition is specified on Q. Modica-Mortola type results that accommodate a Dirich-
let condition appear in [25] in the scalar setting and in [23] in the context of the closely related
Landau-deGennes energy. For our setting, however, we point to the recent result in [16]. For our
purposes, it will suffice to state it for any bounded planar domain Q with smooth boundary and
for Dirichlet data taking values in the potential wells, though it holds more generally. To this end,
let h € BV(3Q; P) and consider any sequence {h%} ¢ H'(dQ; R?) such that

|0;h®| < CR forsome C >0 and hR - hin L'(8Q;R?) as R — oo, (2.2)

and such that

/ RW(h®) + %wshﬂz dH' < C for some constant C independent of R. (2.3)
Elo)
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Next define

_ Er(u,Q) if ue H'(Q;R?), u=hRonadQ,
Er(u,Q) := ) 2.4)
+00 otherwise,
and define
V2 3
2Ey(u, Q) + / d(pj, h(x))dH' if u e BV(Q;P),
EMu,Q) := Z’ simoa ) (2.5)

+00 otherwise,
where E, is defined in (2.1) and d(-, -) is given by (1.4). Then we have

Theorem 2.1 [16]. Assume {h®} satisfies (2.2) and (2.3). Then, asR — co, the sequence {Ex(-, Q)} has
the L' — T-limit Eg(-, Q). That is, for every u € L'(Q; R?) we have the following two conditions:

(i) (Lower-semi-continuity) If {vg} C L'(Q; R?) is any sequence converging to u in L' then

lim inf Er(vg, Q) > El'(w), (2.6)

and
(ii) (Recovery sequence) There exists a sequence {V g} C L'(Q; R?) converging to u in L' such that

Jim Er(Vg, Q) = Ew). (2.7)
2.2 | Construction of the entire solution via blow-up

Our candidate for an entire solution satisfying Theorem 1.1 will be constructed through a blow-up
process, starting from an L!-local minimizer of Ex(-, Q) for a particular choice of Q. This local
minimizer is, in turn, constructed in [28] using I'-convergence techniques.

To place ourselves in the setting of [28], we fix any u*™ € A given by (1.8) and let x;, x, and X3 be
the three points on dB; where the three phase boundaries hit the unit circle. Then let Q C R? be
any bounded, simply connected open set containing B; such that dQ is smooth and 0Q N dB; =
{x1, x5, x3}. Finally, assume that 9Q is strictly concave at these three points. See Figure 2

Under these assumptions on Q, the following theorem is proven in [28], utilizing the local
minimizer property associated with I'-convergence established in [19].

Theorem 2.2. For Q C R? as described above there exists a number &, > 0 such that for all R
sufficiently large, there exists an L'-local minimizer ug of Ex(-, Q) in the sense that

Egr(ug, Q) < Ex(v,Q) provided |[v — ugll ;1 o) < 8- (2.8)
Furthermore,

ug = u* in LY(Q) (2.9)
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4170 SANDIER and STERNBERG

FIGURE 2 The L'-local minimizer u.

and
Er(ug, Q) = Eo(u*, Q). (2.10)

Necessarily, such a local minimizer satisfies the Euler-Lagrange equation associated with Ep,
namely,

1
EAuR = VMW(UR) in Q, (211)

along with homogeneous Neumann boundary conditions on Q.

Referring back to the three geodesics ¢;; defined below (1.5), we note that each is a simple curve
(i.e., no self-intersections) and furthermore, any two of them, after including their endpoints, only
intersect at one of their endpoints, for example, ¢, and ¢;5 only intersect at p;. This is because
any transversal crossing would necessarily create a non-C! geodesic, violating regularity theory
and any tangential intersection would violate the uniqueness of solutions to (1.7) subject to given
initial conditions. As such, if we define A as the union of the closure of the images of these three
geodesics, that is,

A :=PU{HR) U R) UG HR), (212)

then we can identify A as a simple, closed curve in R? passing through p;, p,, and p; which is
smooth except at these 3 points. See Figure 3.
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FIGURE 3 The closed curve A consisting of the three heteroclinics.

An important property of the local minimizers constructed in Theorem 2.2 is the following.

Lemma 2.3. Let {uy} be the sequence of L' local minimizers established in Theorem 2.2. Then there
exists a ball B’ compactly contained in By, a point p inside A and a sequence of points {xz} C B’ such
that ugr(xg) = p. In particular, there is a value a, > 0 such that

dist(ug(xg), A) > ay.

Proof. We have that ||ug — u™||1(5,) tends to zero as R — +oo. Hence, by Fatou’s Lemma,

1
0> / l}eminf lug — u*|l1am,)dr > 0. (2.13)
0 —+00

Similarly, for almost every r € (0, 1), it holds that

liminf Ex(ug,dB,) < +oo. (2.14)
R—+c0

It follows that there exists s € (1/4,1/3) and t € (1/2,2/3), and a subsequence still denoted {uy},
such that uy — u* in L'(8.4), where A = B, \ B and (2.14) holds for r = s, t.

Since it also follows from standard elliptic estimates that |Vug| < CR, we have all the hypothe-
ses of Theorem 2.1 satisfied on Q = A and so we can assert the existence of a recovery sequence,
say {iiz}, associated with u* and the boundary values of ug on d.A. It then follows from the L*-local
minimality of uy (2.8) that

t
(t = $)er +Co3 + 1) 2 _lim / Ex(iig,9B,) dr
R—+o00 s

t

> RliT Egr(ug,0B,)dr > (t — s)(c15 + €23 + C13).
—+00
N
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4172 | SANDIER and STERNBERG

Using (2.13) again, we deduce the existence of some r € (1/4,2/3) such that uz — u* in L}(B,)
and

ER(ug,0B,) — c15 + €3 + €13 (2.15)

From the convergence of {ug} in L'(dB,), we deduce the existence of three angles 6;, i = 1,2, 3,
such that going to a further subsequence uy(re’) converges to the well p; for each i. It then
follows from (2.15) that uy is a minimizing sequence for the one dimensional energy Er on each
of the arcs A;;, where A;; is the portion of 9B, between the angles 6; and 6;.

In light of our assumption of uniqueness for the three heteroclinic connections, we may assert
that for R sufficiently large one has

ug(A;j) is uniformly close to {;;(R) for 1 < i < j < 3.

Consequently, the closed curve uy (0B, ) is uniformly close to the simple, closed curve A.
However, since A is a Jordan curve, it partitions R2 into an inside, say U, and an outside
unbounded set. For any p € U, the index of A with respect to p is equal to +1 and the same must
be true for the curve uy (0B, ) since it is uniformly close to A for R large enough. Therefore, the
latter curve cannot be homotopic to a constant in R? \ {p}, and so p € ug (B(0,r)) for any R large
enough. Selecting any p € U and any x € B(0, r) such that uz(xg) = p, the result follows. []

We now introduce our candidate for the entire solution of Theorem 1.1 by taking a limit of
blow-ups of {up}.

Proposition 2.4. Let {uy} be the sequence of local minimizers established in Theorem 2.2. Let QR

{x: % + xg € Q} where {xg} is the sequence introduced in Lemma 2.3. Also define VR(x) : QF -
R2 via VR(x) := uR(;CT + Xg). Then there exists a subsequence {R;} — oo and a function U : R2 >
R? such that

VR — U in C? on compact subsets of R2 (2.16)

where U solves (1.1). Furthermore, U is a local minimizer of E in the sense of (1.13). Finally, we have
dist(U(0),A) > 0. (2.17)

Remark 2.5. For the remainder of the paper, when we say that a function U is a local minimizer
of E, we will always mean in the sense of (1.13).

Proof. Assumption (1.3) implies through the maximum principle applied to |ug |2 that
lugll Lo SM and so the same is true of {V'z}. In light of (2.11) we observe that V¥ satisfies (1.1)
on QF. Then standard elliptic estimates and bootstrapping leads, in particular, to uniform C>¢
bounds on compact sets for {V’*}. The conclusion (2.16) follows as does the assertion that U solves
(1.1).

To establish the local minimality of U, fix any compact set K and let 0 : R? — R? be any smooth
function supported in K. Let 0x(x) := 0 (R(x — X)) so that Uy, is supported in xp + %K . Then we
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Allen—-Cahn solutions with triple junction structure at infinity 4173

have
1
/ [Or]dx < (mI?X |6|>1§|K| where |K| = Lebesgue measure of K.
K
Now taking R large enough so that (maxy |0|) é K| < % we can invoke (2.8) to conclude that
0 < Eg(ug + O, Q) — Eg(ug, Q)

1 1
= ER ('MR + ﬁR,xR + §K> _ER <MR,XR + §K>

(E(vR +0,K) — E(VR,K)).

| =

Passing to the limit R; — oo in the inequality E(VRi,K) < E(V® + 0,K) we obtain (1.13).
Property (2.17) follows from Lemma 2.3 in light of the uniform convergence of VX — U. [

We conclude this section with a simple but crucial estimate on U given in the following:

Lemma 2.6. There exists a constant C; = C1(W) such that for every R > 0 one has

E(U,Bg) < C1R. (2.18)
Proof. We may as well assume R > 1. Then we appeal to the local minimality of U, namely (1.13),
with v chosen to equal, say, p; on Br_; and then v smoothly interpolating between p; and U on
the annulus By \ Bg_;. Since E(v,Bg_;) = 0 and U and VU are uniformly bounded in terms of
W on the annulus, the result follows. O

3 | BLOWDOWN ANALYSIS

In this section, we will characterize the limits of the blowdowns of any local minimizer of E. For
this purpose we will need the following compactness result associated with local minimizers of E.

Proposition 3.1. Let U : R?> — R? be a local minimizer of E. We have:

(i) Let {R;} — oo be any sequence. Then there exists a subsequence {R; } and a function u, €
BV, (R%; P) such that the blowdowns {Ur,, } of U satisfy

U, = o in L} (R*R?). 3.1)

(it) After perhaps passing to a further subsequence (still denoted by {R;, }), one has for every ¢ € Z*
there exists a radius A, € [€,€ + 1] such that

sup
k (

where C, is the constant appearing in Lemma 2.6.

1 2 1
/ R, W(Ug, )+ ZT|VURJ_k| dH > <30, (3.2)
5Blf Jik
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4174 | SANDIER and STERNBERG

Furthermore,
U, — traceof uy in L'(dB;,;R?). (3.3)

Lastly, u, is a local minimizer of Ey(-, R?) given in (2.1) in the sense that
Ey(up,K) < Eo(v,K) (3.4)
for every compact K C R? and every v € BV,.(R?; P) such that v = u, on R? \ K.
Proof. Since E(U, B;g) = R Ex(Ug, By), it then follows from Lemma 2.6 that
Ex(Ug,B;) < AC; forany 1 > 0. (3.5)
Hence, the sequence {Uy} has uniformly bounded energy on any ball B; and so the proof of (i)

follows from [8], Proposition 4.1 using a diagonalization procedure. To prove (ii), we note that
from (3.5), in particular, it follows that

2
1 2 .
/1 /53/1 RjkW(URjk) + _2Rjk |VURjk| dH'dA <2C, forallk. (3.6)

Letting

. 1 2 1
D) ._/a R, W(Ug, )+ ZT|VURjk| dm’,
B, Jk

let us suppose that (3.2) is false for ¢ = 1. Then necessarily, for every A € [1, 2] it would hold that
lilgn inf f,.(1) > 3C;. (3.7
Then, by Fatou’s Lemma,

2 2
2€, > lim inf / (D) dA > / lim inf f,(2)d2 > 3C,

and a contradiction is reached. Passing to a further subsequence, the existence of a function €
BV(dB;,; P) such that URjk — h in LY(0B; o R?) follows from (3.2) using the same compactness
argument from [8], applied now to the energy restricted to the circle dB; with the full gradient
replaced by the tangential gradient.

To establish (3.3) and the local minimality of u, we observe from the I'-convergence result The-
orem 2.1 that u is the limit of minimizers of ERjk(-,B 2,)- Hence, u, must necessarily minimize

Eé‘(-,B,h )- Indeed, for any v € BV(B,,; P) one has
E}(v,B;) = Jim Eg; (Vi By,) 2 h,?liof,lf ERjk(URjk .B;,) > El'(uo, B;,),
where {V; } is the recovery sequence associated with v guaranteed to exist by Theorem 2.1. We

note that the first inequality above follows from the local minimality of URjk in the sense of (1.13),
since by construction, V; = URjk onodB,, .
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Allen—-Cahn solutions with triple junction structure at infinity | 4175

It follows that in fact, uy = h on 9B, , since, for example, if h = p; along some arc y C 9B,
while the trace of u, = p, ony, then one could produce a lower energy competitor v for the energy
Eé’(-,B 2,) by setting v = p, inside the slice of B;, bounded by y and the secant line L connecting
the endpoints of y. Then

El'(ug, B;,) — ElNv, B;,) = d(py, p) (H(y) - H (L)) > 0,

in light of the strict convexity of B;,, thus contradicting the minimality of u,. Necessarily then, u,
is also a minimizer of E, among competitors agreeing with u, on B, .

We conclude the proof by noting that the same logic allows us to select a value 1, € [¢,€ +
1] for every ¢ € Z* and thus to conclude that u, minimizes E, in every ball B;, among all
competitors that agree with u, on dB;, . Hence, (3.4) holds. O

3.1 | Pohozaev and asymptotic equipartition of energy

With an eye towards utilizing a Pohozaev identity, we next introduce the stress-energy tensor
associated with a solution U : R? — R? to (1.1):

1 2
Tij = Uy Uy, — 5l~j<§|VU| + W(U)).

A standard calculation yields that T is divergence-free. From this fact we get the Pohozaev identity
on the ball Bg:

/ (x lTU) dx—/ 6iTij + xi(Tij)y, dx—/ tr T dx.
B B B

R R R

Applying the divergence theorem leads to

R/ lev]dH = 2/ wW(U)dx,
4By B

R

where v = x/R is the outer unit normal to Bg. Using the definition of T this can be written as

1

—/ 1|Uv|2—1|US|2—W(U)dH1=—l/ W(U)dx, (3.8)
2/, 2 2 R/,
R R

where U, denotes the tangential derivative of U along 6 B;. Through (3.8) we immediately obtain
the following identity.

Proposition 3.2. Any entire solution U to (1.1) satisfies

1 2 1 2
dR( /W(U)dx) ZR/ —|Uv| —§|US| + W(U)dH?! (3.9)

forallR > 0.
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4176 | SANDIER and STERNBERG

Our aim is to obtain a kind of asymptotic monotonicity result. To this end, we define
- 1
W(R) := = W(U)dx. (3.10)
R Jg
R
Then for any two values 0 < R; < R, we integrate (3.9) to find that
! 1 1
W(R,) - W(R,) = / = / S\, 1P = S1U |2 + W) dH" dr
R 2" Js B, 2 2

1

1 1 1
- [ (G- g W) ) ax
Bg, \Bg,

=/ L (ww)-Livur+1u,1?) ax. (3.11)
B, \B 2|x| 2
Ry \PRq
Hence,
- - 1 1 2
WR) - W(R) > - [ S| = 31VUr | dx
Bgy \Bg, X
1 1 1
/—ﬁ/ VW) - —|vU| || VW) + —|VU]| ) dx
1 BRZ\BRl \/z \/5
1/2 1/2
2 2
;-% / <\/W(U)—i|VU|) dx / <\/W(U)+i|VU|) dx
! B, \Br, \/5 B, \Br, \/5
(3.12)
Now in light of (2.18), we have that
1/2
2 1/2
/ <\/_W(U)+LIVUI> dx <x/§{/ (W(U)+§|VU|2> dx}
Bg, \Bg, \/5 Br,\Br,
< V2GR, (3.13)
so that (3.12) implies
1/2
c, R/’ 1 ’
W(Rz)—W(Rl)Z—\/Tlé— / <\/W(U)——|VU|> dxp . (3.14)
1 Br, \Bg, \/5

Inequality (3.14) shows that we can achieve an asymptotic monotonicity-type formula provided
we can establish a sufficiently sharp measure of equipartition of energy.
The key estimate we will show is:
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Allen—-Cahn solutions with triple junction structure at infinity | 4177

Proposition 3.3. There exist constants C, > 0 and o € (0, 1), such that for any local minimizer U
of E and any R sufficiently large one has the estimate

2
/ <\/W(U) - L|VU|> dx < C,RI. (3.15)
Bg V2

Our proof of Proposition 3.3 will involve the construction of a recovery sequence with a quan-
titative error bound, corresponding to a minimizer of Ey(-,B) in a ball B subject to a general
Dirichlet condition h € BV(9B; P), that is, among partitions {S;, S,, S5} of B satistying

3S, NdB =h"Y(p,) for¢ =1,2,3. (3.16)
For this upper bound construction we will require a rather complete characterization of mini-
mizers of this partitioning problem, to be found in Theorem 5.1 and Corollary 5.2. Our proof of
Proposition 3.3 will also require a sharp lower bound for the energy of a related but somewhat non-
standard partitioning problem. To state it, we first observe that given a partition, say {S;, S,, S3} of
a ball B, its cost as given by E,, can be equivalently expressed as
Eo(sl, 52, 53) = tlHl(asl ) B) + tzHl(aSZ n B) + t3H1(6S3 N B), (317)
where the numbers ¢, t,, and ¢; are the solution to the system

t] + tz = C12, tl + t3 = C13, t2 + t3 = 023.

Solving, we find

1 1 1
= 5(012 +cCi3—C), by = 5(012 +ep3—c3), B3 = 5(013 + ¢33 — C12)s (3.18)

and so we note that each ¢; is positive in light of the assumption (1.5).

Then for any § > 0 and any & € BV (9B; P) we consider the minimization of E, as given by (3.17)
among all disjoint subsets {S;, S,, S} of B satisfying the Dirichlet condition (3.16), along with the
constraint

'B\ (ugzlsf) <8 (3.19)

We will require a good bound from below for the infimum of E, subject to (3.19) and Dirichlet
data h € BV(9B; P) in terms of the infimum of E, subject to the same Dirichlet condition but for
actual partitions of B, that is, with § = 0 in (3.19). This is presented in Theorem 5.4.

Proof of Proposition 3.3. The proof of (3.15) will follow by first establishing an upper bound of the
form

1
/ RW(Ug) + §|VUR|2 dx < mp + % for some C > 0 and a € (0, 1), (3.20)
By
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4178 | SANDIER and STERNBERG

where mp, defined below in (3.38), represents the minimal value of the partitioning problem E|,
subject to a certain Dirichlet condition related to Ur. Then we will utilize Theorem 5.4 to establish
a matching lower bound of the form

!’
\/5/ VW(UR)|VUR|dx = mp — % for some C’ > 0. (3.21)
By

If we rephrase the desired upper and lower bounds (3.20) and (3.21) in terms of U instead of its
blowdowns, then the upper bound we seek takes the form

1
W) + 5|VU|2 dx < Rmy + CR™, (3.22)
Bg

and the lower bound we want takes the form
V2 [ VW(@)|VU|dx = Rmy — C'R'. (3.23)
Bg

The desired inequality (3.15) then follows by combining (3.22) and (3.23).

Upper bound construction.

Since by Proposition 2.4, U minimizes Ex(-, B;) among competitors sharing its boundary val-
ues on 0B, we can obtain the upper bound through a construction of a low-energy competitor. In
essence, this is akin to the recovery sequence construction for vector Allen-Cahn with a multi-
well potential, adapted to handle a Dirichlet condition, as in the recent work [16]. The difference
is that here this must be made quantitative with an error that is O(R™%). However, unlike the gen-
eral recovery sequence construction, here we only need to build it for an Ey-minimizing partition
that yields the value my, in the problem (3.38) defined below.

To begin the pursuit of an upper bound, we first note that by (2.18) we have for any R > 0:

2R
/ E(U,8B,)dr = E(U,Bag \ Bg) < 2C;R.
R

Hence, by the Mean Value Theorem, there exists a value R’ € (R, 2R) such that
E(U,3Bg) < 2C;. (3.24)

If we can establish (3.15) for R, then replacing C, by 2!=%C,, we will have established (3.15) for R
as well. Thus, with no loss of generality, we may assume that R satisfies (3.24) as well. Phrasing
this condition in terms of the blowdowns {Uy}, the assumed bound takes the form

Er(Ug,0B;) < 2C;. (3.25)

The upper bound estimate (3.20) will result from the construction of a low-energy competitor for
the minimization of ER(-, By) that agrees with the blown down minimizer Uy on dB;.

From (3.25), it follows that off of a small set on 0B, the function Uy must stay near one of the
three wells p;, p, or p;. We now use this fact to identify a partition of dB; into three sets.
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We note that in light of the non-degeneracy assumption (1.2), there exists a positive number S,
depending only on W, such that

W is strictly convex for |p - pj| <B,j=1,2,3. (3.26)

and furthermore,

b
31pe —al” < W(g) < 2bIp —qI’. (3.27)

Then let us define the set

Agp = {x € 0B, : d(Ug(x),P) > g} (3.28)
This set is necessarily a union of open arcs. If such an arc I possesses a point x such that
d(Ug(x),P) = f3, then since at the endpoints of I, necessarily Uy is at metric distance g from
P, it must be the case that Ep (Ug,I) > C, for some positive constant C depending only on W. We
define T to be the union of all such arcs, and so in light of (3.25), we can assert that T consists of
a finite union of arcs whose total number is bounded by a constant depending only on W. It then
follows from ‘/TR RW(Ug)dH" < 2C; that

H'(Tg) < CR™. (3.29)

On 9B \ T we note that the metric distance from Uy to P is less than f3.

Boundary layer construction on the annulus B; \ By_,

We begin with the construction of a boundary layer on B; \ B;_,, where p will be determined
later. However, we will insist that

(3.30)

’JU.I —

p>

The number of disjoint arcs in T is bounded by a constant depending on W only, hence the same
is true for the complement of T. We split this complement into two sets; Sz and the remainder,
the set Sy being the union of arcs having length less than 4, where 1 < 1 is another parameter to
be determined later. Let us denote the arcs in the remainder by say {I; } for k = 1, 2, ..., Ng, where
Ny is bounded by a constant Ny = No(W). Then each I, will be of length at least 1 and can be
naturally associated with one of the wells in the sense that U remains within a metric distance
of B from that well throughout I;,. We now can expand each I, to a slightly larger arc I, absorbing
arcs of T and of Sy in the process, so as to form a partition of dB;, where in light of (3.29), we
know that

H'(8B; \ UI}) = H' (Ul \ UL}) < C(R™! + A). (3.31)

We note that there is some ambiguity in terms of the assignment of an element of P to arcs com-
prising UI}, \ UI,. That is, if say I is associated with p; and an adjacent arc I, is associated
with p,, then one can either expand I into the gap between them and assign the value p, to the
resulting I;, or expand I ; into the gap and assign the value p, to the resulting I}, ;. As well shall
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4180 | SANDIER and STERNBERG

see, due to the smallness of these gaps guaranteed by (3.31), it will not matter which choice we
make here.
On 0B,_, we define a function V(1 — p, 6) as follows. If e!% e I, and €% is at least a distance

% from the endpoints of T, we take V(1 — p, 0) to be equal to whichever well is associated with
I).. On the rest of aBl_p, we define V(1 — p, 0) through linear interpolation in 6, so that

‘—(1 Ps 6)’ < CR. (3.32)

Now we define V in the annulus A, ;_, := B; \ B;_, taking V(r,0) to linearly interpolate
in r between Uk(1,0) and Vx(1 — p,0) for each 6. We estimate the energy in this annulus as
follows:

We begin with the cost of interpolation from U(1,6) to V(1 — p,8) for e’ € U],j:RlI k- In view
of (3.26) and the fact that V(1 — p, 6) is a constant equal to one of the wells on each I, we can
invoke the convexity of all terms in the energy to assert that for any ¢ € (0, 1) one has

)% 2 U
W(Vr(1 = tp,6)) < (1= OW(U(1,6)) and | =5 (1 = 1p,0)| < (1 t)‘a_eR (3.33)
Estimating the radial derivative, we find
6V Ux(1,6 W(Ux(1,6
R l r( 1 pfl L<C ( 22 ) for some ¢ € {1, 2,3}, (3.34)

for any r € (1 — p,1). Combining (3.25), (3.33), and (3.34), we integrate over that part of the
annulus A, ;_, corresponding to the set of arcs U]]jleI k> Say AQ 1-p> 10 obtain

1
ER(VR’All P) C<p+R p) (335)

Now we turn to an estimate of the energetlc cost in that portion of the annulus, say A1 1-p

corresponding to arcs in the complement of U X Ir. Estimating the tangential derivative in AY 1o
we find in view of (3.32) that

—p’

R)% 2
‘ = < CR?,

and for the normal derivative we have

‘avR

Invoking (3.31), for the potential term we can then estimate that

/ RW (V) dx < CR|A11P| CRo(R7! + 1),
AN

1,1-p
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Allen—-Cahn solutions with triple junction structure at infinity 4181

and so

1 1
ER<VR,A;fl_p) < Cp<§ +/1> (R + @>

1 A
=C —— +pAR+ — ). 3.36
<p + o + pAR + Rp) (3.36)

Therefore, summing (3.35) and (3.36), we see that, sinceA <1andR > 1,

1
Eg(Vg, A11-,) < C<p + Rp + pAR). (3.37)

Construction of the competitor in B;_,

Let us now define V in the ball B, _,. For this, we will introduce the minimization of E, subject
to the Dirichlet condition hg : dB,_, — P satisfying hp(x) = p if x/ |x| € I, where I, is the arc
associated with p, and I, is its expansion, as described above (3.31):

my = inf {Ey(u,B,_,) : u € BV(B;_p;P), u=hzondB_,}. (3.38)

Let u, denote a minimizer for (3.38). By Theorem 5.1 we know that {u, = p,} is a union of no
more than N, convex open sets, which we refer to as chambers. We emphasize that the constant
Ny = No(W) is independent of R. Furthermore, each chamber is bounded by a finite number of
line segments and at least one boundary arc from the collection {I; }. Lastly, from Corollary 5.2,
the number of triple junctions in the configuration u is bounded by a constant depending only
on Ny, thus again a number independent of R.

Because each chamber contains the convex hull of (1 — p)I}, for some k and each I has
arclength at least 4, the thickness of each chamber is bounded below by CA2, where the thickness
is defined as the minimal distance between any pair of parallel supporting planes for the chamber.

The map V is defined in each chamber, say Q, as follows: Consider any segment of QN B;_,
having length at least 27, where 7 is to be determined later, but where we require that

(3.39)

|

n =

We then consider a sub-segment J C I of length smaller by z > 0 on each side of I and consider
a rectangle in Q with base J and height & > 0. It is clear that if 4 > 0 is small enough, then these
rectangles are disjoint and included in Q. We now quantify how large h is allowed to be for this
property to still hold. We will always assume the bound

2h <. (3.40)

To this aim, assume h € (0,7/2] is the largest height for which it holds that the rectangles
are mutually disjoint and included in Q. For this value of h, if it is different from 7 /2, either
two rectangles make contact with each other, or one rectangle makes contact with dB;_,. In any
case, let p be the projection of the contact point onto J. We denote by a and b the endpoints
of I. Necessarily, there exists a point ¢ € dQ \ I such that |p — q| < 2h. Moreover, choosing the
horizontal axis to be the line L through a and b, since the point p is at distance at least 7 from
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4182 SANDIER and STERNBERG

|,
a D b D

FIGURE 4 The configuration described above when two rectangles first touch.

both a and b, and since 2h < 7, we have that the first coordinate of g is between those of a
and b.

Bringing in from infinity a line parallel to L from the half-plane containing q until it first touches
Q, we denote this first contact point by g’, and we denote by p’ the orthogonal projection of g’
onto L. Since g € 49, it cannot lie inside the triangle formed by a, b, and ¢’. This implies that
the segment [ pq] intersects either [aq’] or [bq’]. We assume the former, which implies that g is
further away from p than «, the orthogonal projection of p onto the line containing a and ¢q’. So
we have

lp—al <|p—ql <2h (3.41)

See Figure 4.
The triangles aap and aq’p’ are similar. Therefore

lp—al _|P' =4
la—pl la—-¢'|"

(3.42)

Now |p" — ¢’| is at least the thickness of Q so
|p/ _ql| 2 CAZ

Furthermore, since a and ¢’ lie in B_, we know |a -q | < 2, and since p € J, necessarily
|p — a| > 1. Combining (3.41), (3.42) with these inequalities, it follows that h > CnA?. Therefore,
the rectangles will be disjoint and included in Q as long as

h < Cni?, (3.43)

where this C is 1/4 of the constant C appearing in the previous display. The case where the
segment [ pq] intersects [bq’] also leads to (3.43) in a similar manner.

Assuming (3.40), (3.43) are satisfied, consider a rectangle R belonging to a chamber where
up = p; and sharing a boundary segment J with a chamber where u, = p;. Then, denoting by
s a coordinate orthogonal to J, we take Vi = V(s) in R given by Vi(s) = {(s) := {;;(Rs) for
0 < s < h/2, where {;;(0) is the midpoint of the heteroclinic {;; with respect to the metric d. We
take ¢ to linearly interpolate between ¢;;(Rh/2) and p; for h/2 < s < h.
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Allen—-Cahn solutions with triple junction structure at infinity | 4183

At this point we remark that from the assumption (1.2), it follows that each {;; approaches its
end-states p; and p; at an exponential rate, that is,

'g’,- - pj| <Ce® a5t oo (3.44)

for some constant c(b) > 0, with a similar estimate holding as t - —o0. Indeed, writing (1.7) as a
first order autonomous system, say z’ = G(z), where

1 2 1 2
zZ = (Z17ZZ7 Z3’Z4) = (gfj)’gfj),gfj) ,’gl(J) /)’ G(Z) = (23’24’WZ](ZI’ZZ)’WZI(Zl’ZZ))y

one checks that at any p, € P, the 4 X 4 matrix DG(p,) has eigenvalues i\/y_ , i\/@ where
U1, My = b > 0are the eigenvalues of D>°W(p,). Thus, each p, represents a hyperbolic equilibrium
point from the perspective of first order ODE theory and from local stable manifold theory the
approach of {;; to p; or pj as t — +oco must be at an exponential rate as claimed in (3.44).

In light of (3.44), the modification can be made in such a way that

Ex(Vg,R) < H'@OR N 60)(%0,- i+ Ce‘c(b)Rh/2>. (3.45)

In addition to (3.43), we will insist on a selection of & such that
Rh>1, (3.46)

so that the exponential term in (3.45) will be negligible.
At this point, we consider an extension of Vz(1,0) = Ug(1, ) to the annulus A, := By, \
B; that is constant along rays emanating from the origin. In light of (3.25), we have

Er(Vg, A141) < C. (3.47)

Having defined V' in the rectangles of each chamber, we consider the finite collection of balls of
radius 27 centered at every one of the vertices of the polygonal curves 8Q N B; _ o for every chamber
Q. Any such vertex either coincides with the location of an endpoint of the arc (1 — p)I}; on B, _ 05
namely, a point of discontinuity of hp, or the location of an interior triple junction. Hence, the
number of vertices, say Ny, is bounded by a number N that is independent of R. Referring to the
collection of these balls as {B;77 i\]:Rl
the rectangles R or Uj.\]leén by setting Vz(x) = p;, when x lies in a chamber associated with p;.
This is consistent with the boundary values on B;_, since by construction V(x) is equal to p;

if x is on the boundary arc dB;_, N dQ and at distance larger than 7 from the ends of the arc, a

we next define V in the part of B;_, not belonging to any of

condition satisfied when x is not in any Bén.
It remains to define V5 inside the balls Bén. To this end, we first note that for any ball Bgn -

Bi_,, the boundary values of V' on 5B£77 vary between being constant or being given by a scaled
heteroclinic, hence the tangential derivative of V on this circle is bounded by CR. For any ball
Bﬁn not lying entirely in B;_,, V¢ on aBé77 maybe also be given partially by the linear interpolation
construction carried out in the annulus A, ;_, or, if the ball reaches A, 1, ;, then it could partially
coincide with the extension described above (3.47). However, in light of the assumption (3.30), in
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4184 | SANDIER and STERNBERG

all cases the tangential derivative of V' along 68;7 is bounded by CR for some C independent of
R. o

j.V:RlBé , sequentially as
follows. Starting with Bln, we take Vj, to linearly interpolate between V', as previously defined,

With this estimate in hand, we proceed to fill in the definition of V' in U

on 635;7 and say, p; on an}.. We then take Vi = p; in the ball Bé. For such an interpolation, in
light of assumption (3.39), we have

[VVg| < CRin B;n and so ER(VR,B;]) < CRp. (3.48)

We then proceed to define V5 in B2n’ Bgn, ... in the same manner. However, it could happen that

forsomei < j € {2,..., Ny} one has Bé , 0N B; , # (. For example, this would occur if the centers of
the two balls are vertices constituting endpoints of one side of a polygonal chamber of length less
than 47. When such an intersection occurs, we simply define V7 in the intersection of these two
balls using the recipe for V in Bén. In light of (3.48), the O(R) gradient bound is preserved through
this process so that the O(Rn?) energy bound is as well. Given that N r is uniformly bounded by
N, a constant independent of R, we can total the energy of V inside U]jvleén to find an energetic
contribution bounded by CRn?.

Totaling the energetic cost of the construction

Summing the bounds (3.45) and (3.48) over rectangles and balls, we find that for any & > 0

satisfying (3.43) we have

Er(Vg,B14y) < mg(1+ CeRC) + CRp? + Ex(Vg, Byyy \ B1_p)
< mR+C<Rn2+e‘Rh/C+p+ Rip +,o/1R+77>, (3.49)

where we have used (3.37), (3.47).

We may choose 7, A, p, h — for instance setting = R™%/3, 1 =R/, p=R8/° and h =
CR~11/12 _ 50 that for R large enough the conditions(3.30), (3.39), (3.40), (3.43), and (3.46) are
satisfied. For this choice, (3.49) implies that Ex(Vg, B14,) < mg + CR™% witha = 1/8 —1/9.

Finally, recalling that V(1 + ,6) = Ug(1,0) we must scale down this construction so that it
agrees with Uy on dB;. Thus, with for example the choice 7 = R=%/? as above, we replace the
sequence V : By, g3 — R* with, say, Vi : B; - R? given by

Vir(r,0) := V(1 +R"3)r,0).

Clearly such a scaling will only affect the energy bound by lower order terms, and since
Ex(Ug, B;) < Egr(Vg, By) we have established (3.20) for some a € (0, 1).

Matching lower bound

We turn now to the task of obtaining a matching lower bound, namely (3.21).

Much in the same spirit as was done for the upper bound proof, we will replace the boundary
values Uy on dB; by much simpler boundary values through interpolation. This time, however,
rather than interpolating from the boundary values Uy to the much simpler boundary values
V(1 —p,0) on dB;_, as we did in the argument leading up to (3.35), we now define an exten-
sion, say Up, of Uy to a larger ball By, such that Ur(1 + p,6) = V(1 — p,6). This amounts to
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Allen—-Cahn solutions with triple junction structure at infinity | 4185

reflecting across 9B, the construction in the annulus A, ;_, used in the upper bound argument
to instead obtain an interpolation in the annulus A4, := By, \ B;.

We observe that precisely the same estimate (3.35) for the energetic cost of V3 in the annulus
Ay 1-p Willnow hold in the annulus A4, , ; for the extension Uy. Hence, again making the choices
taking p = R~%/% and 1 = R~/ indicated below (3.49), we conclude from (3.37) that

V2 /B VWU VU dx =
\/_/ VW(Up) |VUR|dx—\/_/ VW(Og)|VUp| dx

1+p 1

> \/5/ VW (UR)|VUg| dx — Eg(Ug, A1451)

B4y

> 2 / VW(OR)|VU| dx — OR™), (3.50)

where, as we did earlier, we have set = 1/8 — 1/9.
We now define three open subsets of By, , via

ng :={x €Byy, 1 d(Ur(x),ps) <t¢} for £ =1,2, and 3,

where t1, t,, and t; are defined in (3.18). These sets are disjoint since, for instance, d(p, p1) < t;
implies that

d(p,pz) > d(p1,p2) =ty =cip — b1 = by,

inlight of (3.18). Then we invoke the property of the metric d that for any fixed ‘base point,’ p € R?,
one has

|qu(p, q)| = v/W(q) for all g € R?, (3.51)

compare for example [26], along with the co-area formula to estimate that

\/—/ VW(OR)|VUz| dx > Z\/_/ VW (OR)|VUy| dx

3

te
/ VA(TR(), po)] dx > 2 / Hi(fx : d(Up(x), py) = s} ds

=1 f
3 1
>y inf  H'({x : d(Ur(x). pe) = S}‘)(ff - 1_/2>
C=15€| —17le
3 ()
> Y et ({x: a0t p0 =5 }) - 3-52)
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4186 | SANDIER and STERNBERG

for some numbers s’; € [# tg] for ¢ = 1,2,3 and some C independent of R. (The lack of R
dependence for C is clear since C represents the minimal length of a level set {d(Ug(x), p¢) = s}
1 -
among s € [W’ tg] within QF.)
With the goal of applying Theorem 5.4 to the triple {x D d(Ur(x), pe) < s, } , € =1,2,3,we

now wish to estimate the measure of the set B; \ U> {x : d(Ugr(x), pr) < s; } Since s; > —

=1 R1/2
we have that
B\ {x ¢ d(Up(0),P) <5} By \ {x © d(Up(x), P) < ﬁ } (3.53)
But with an appeal to the non-degeneracy assumption (1.2) we can assert that if
~ 1 ~ C
d(Ug(x), pe) = W for ¢ = 1,2, and 3, then W(Ug(x)) > W (3.54)

for a constant C depending on W. Indeed, through an appeal to (3.27), the definition of the metric
d and the convexity of W near P, we see that for Uz(x) in a 8-neighborhood of p, € P, one has

1
Iﬁ < d(Ur(), ) < /0 VW = 0p + t0R()|Ug(x) = py | de

1
< [ VIW@GDIOxC0) - pelde < VIR0 - pe
0

Then another appeal to (3.27) yields (3.54).
Then from the bound (2.18), it follows that

C; RW(Ug(x))dx > CRY/?

WV

~ 1
Bl\{x . d(UR(X),P)< _}’
/Bl\{x: d(UR(x),P)<Rl]T} R1/2

Hence, in view of (3.53), we find that

B; \ {x 1 d(Ug(x),P) < s;} < S

Sz (3.55)

for some Cy = Cy(W).

With estimate (3.55) in hand, we would like to now apply Theorem 5.4 to the triple

x 1 d(Ug(x), pe) < s; } , € =1,2,3 with the Dirichlet condition on 8B, , given by h = hg, for
hy as defined above (3.38). However, to do so, we must make minor adjustments to these three
sets near 9B, .. These adjustments entail adding to or subtracting from these sets small slices of
By, bounded by arcs of B, , , and secant lines, so as to ‘fix’ their traces to match those dictated by
hg. By our construction of V(1 — p, 6), hence of Ux(1 + p, 6), these adjustments occur along Ng
arcs that are contained in the set U]]jz"l(l + ). \ U(1 + p)I}, where we recall that N is bounded
by a constant depending only on W. Therefore, in view of (3.31), one can alter the three sets so
as to obtain a triple whose trace on 0B, matches hy exactly, and the extra cost in perimeter
will be O(1) = O(R~1/8). Furthermore, the estimate (3.55) will still hold since the adjustments are
lower order.
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Allen—-Cahn solutions with triple junction structure at infinity | 4187

With this adjustment in hand, we now return to (3.50) and (3.52), and apply Theorem 5.4 with

_ G .
6= FIVEL to obtain

V2 / VWURIVUg| dx
By

3
> 3t H (¢ d(Or).pe) = 51}~
=1

Cor(k) ¢ c ¢
R1/4 Rz R8 R«

c C
RE =R RE

> min {Eo(u,By4,) 1 u=hgondB,,} —

> min {Ey(u,B;_,) 1 u=hgondBy,,} — (3.56)

This is the lower bound (3.21) we were seeking, and so the proof of Proposition 3.3 is complete. []

3.2 | Convergence of the blowdowns to a minimal cone

With the crucial Proposition 3.3 now in hand, we apply (3.15) to (3.14) with Ry =R and R, €
(Ry,2R;] to obtain

—a/2

W(R,) — W(Ry) > —C3R, (3.57)

for C5 depending only on W'.
One consequence of (3.57) is:

Lemma 3.4. Assume U : R> — R? is a local minimizer of E and define Wy by (3.10). Then the
limit Ly := limg_, o, W(R) exists.

Proof. Using (3.57) we will first argue that for any 7 > 0 there exists a value R, > 0 such that
W(R')—W(R) > —-n whenever Ry <R<R. (3.58)

To see this, let k be the largest integer such that 2KR < R’. Then we see that

k-1
W(R') = WR) =W(R)-WER)+ ) (W@*R)-W(2'R))
j=0

k
) 1 1
I G |
j;() Ra/2\ 1 —22/2

Thus, taking R large enough, we obtain (3.58).
Let us now suppose limg_, ., W(R) does not exist and seek a contradiction. Since by (2.18) we
know that0 < W(R) < C; forall R > 0, this would imply that there exist sequences {R;} — oo and
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4188 | SANDIER and STERNBERG

{Ri} — oo such thatlimg, o W(R;) < limg, _,, W(Ry); say
lim W(Ry)— lim W(R;) =L forsome L > 0. (3.59)
Ry—o0 Rj—oo
Hence, there exist J and K such that for j > J and k > K we would have
. - L

However, by perhaps taking j even larger we may find R; such that R; > R, and then an
application of (3.58) with n = % leads to the condition

- - L
W(R;)) —W(Ry) 2 ~3
and the contradiction is complete. [

Another consequence of (3.15) is the following:

Lemma 3.5. Assume U : R? — R? is a local minimizer of E. Then for every positive 1; < 1, we
have

1
lim —|U,|*dx =0, (3.60)
4
R=co Ba,rR\Bi R x|
where U,, = VU - Ix_l
X
We also have
. 1 1 2
lim — W(U) - =|VU|"|dx =0, (3.61)
R—o0 2|x| 2
B,r\Bi; R

or equivalently,

dx = 0. (3.62)

. 1 1 2
hm/ —‘RW(UR)——|VUR|
R fp \p, 20| 2R

Proof. To establish the limit (3.61), we note that with the choices R; = 4R and R, = A,R, the
inequalities (3.12) and (3.13), followed by application of Proposition 3.3 imply that

[ sl -ivor
B,r\Ba; R Ix|

2
ciA
< ‘/%R_l/z / (\/W(U)— i|VU|> dx
1 B,r\Bi; R \/5
< CIZC/;OAZ R-1/2R1/20-a) — O(R‘“/Z).
v 1

Then (3.60) follows from (3.11) and (3.61), in light of Lemma 3.4. O

dx

1/2
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Allen—-Cahn solutions with triple junction structure at infinity 4189

Now for any A > 0 it follows from Lemma 3.4 that

R—o00 B;

Combining this with (3.62) yields that for any 0 < 1; < 4, one has
lim Ex(Ug, Bz, \ By, ) = 2(12 — 41)L. (3.63)

We can rephrase (3.60) in terms of the blowdowns as

.1 / 1
lim — —
Reo R B/lz \B/ll |x|

Now we will use this to argue that the limit of blowdowns is necessarily a cone:

2

VUgp- | dx=0 forany0<4a, <A, (3.64)

| x|

Theorem 3.6. Assume U : R?> — R? is a local minimizer of E. Let {R;} — oo be any sequence and

let {R;, } and a function u, € BV (By; P) be any subsequence and subsequential L' limit guaranteed

by Proposition 3.1. If we denote by T;, the phase boundary 3{u, = p;} N d{uy = p¢}, one has
Vie(x)-x =0 forevery nonzerox € ByNI;, andeveryl1 <i<?¢ <3, (3.65)

where F;} denotes the reduced boundary of T';, and v;, denotes a corresponding normal vector.

Proof. We fix any positive number § and note that for any u € (0, 1) we have

2
/ VWwuplvu, - X dx<5R/ W(UR)dx+ll/ VU - 2| dx
B)\B, |x| B, S R B)\B, x|
11 1 x |’
<6W(R)+——/ —|VUR - —| dx.
h SR Jg\p X% Ixl
u
Then sending R — oo and invoking Lemma 3.4 and (3.64) we conclude that
lim sup / VW(U|VUg - 2| dx < 8 L,
R—o0 Bl\Bu |x|
and since § was arbitrary it follows that
lim / VW(UR|VUR - = |dx = 0. (3.66)
R— Bl\B,u I.X'|

Next, we consider the function x — d (p;, Ur(x)). Suppressing subsequential notation, the fact
that Ug, = U in L' implies through definition (1.4) that

. 0 on {uy = py}

L' (By)
d(p1, Ug,) — d(p1,ug) =4d(p1,p2) on{uy = ps},
d(p1,ps) on{uy = ps}
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4190 | SANDIER and STERNBERG

and we note that since u, € BV (B;; R?) one has x ~ d(p;,uy(x)) € BV(B;). Hence, in the sense
of distributions, we have

V. d(p, URj(x)) = V., d(py, up(x)) = 2 (d(py, pe) — d(py, Pi)) Vie HlLri*fa (3.67)

1<i<t<3

where this form of the distributional gradient follows, for example, from [17], Proposition 2.8.
Then recalling (3.51), an elementary chain rule calculation shows that

x x
V.d(pr, UGN - Tl < VIWCORGO)| VU - |
and so from (3.66) we may conclude that
lim V.d(py, Up(x) - —|dx = 0. (3.68)
R—o0 B,\B |X|
1\Bu

Fix now any non-zero point x, € I';, forsome 1 <i < ¢ < 3, and fix 4 > 0 less than |x,|. Then we
take an arbitary ¢ € Cé (B,(xp)), with r chosen small enough so that B,(x,) C B; \ B,. It follows
from (3.67) and (3.68) that

/ bvie - X dmi(x) = o.
F;}nBr(XU) |x|

Since ¢ is arbitrary, we obtain the desired property (3.65). O
In light of Proposition 3.1, we know that any limit of blowdowns, u,, minimizes E subject to

its own boundary values. Now that we also know any limit of blowdowns is a cone, it follows
immediately from Theorem 5.1 that there are only three possibilities:

Proposition 3.7. Under the hypothesis and with the notations of Theorem 3.6, either
(i) wug = p; forsomei €{1,2,3}, (3.69)

or there exists a half-plane H with 0H passing through the origin such that

.. _ Di in H
(ii) ug(x) = {pg in R?\ H, (3.70)
forsomei, ¢ € {1,2,3}withi # ¢, or
(iii) u, takes the form (1.8) (3.71)

with the three sectors Sy, S,, and Sz having opening angles oy, a,, and o5 satisfying the condition

(1.9).

Remark 3.8. It was recently pointed out to us by Michael Novack that there is a different
avenue available to reach the conclusion that any subsequential limit u, of blowdowns of a local
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minimizer of E must satisfy either (3.69), (3.70), and (3.71). This alternative argument utilizes,
among other tools, a monotonicity formula for minimizing partitions adapted to this setting,
along with available regularity theory such as that described in Theorem 5.1, to show that the
only locally minimizing partitions of the plane with respect to the energy E are partitions fitting
one of these three descriptions. Then coupled with Proposition 3.1 we would reach the same con-
clusion as that of Proposition 3.7. See also [2] for a presentation of this property of minimizing
partitions.

4 | ELIMINATING THE HALF-PLANE
We will now argue that in our setting, neither (3.69) or (3.70) are possible, leaving (3.71) as the
only option, thus leading to a proof of our main result, Theorem 1.1.

We will first prove a “clearing-out” type of result, saying that sufficiently low energy in a ball
implies uniform nearness to a potential well on a smaller ball. We remark that a result of this type
for mere solutions to (2.11) is established in [11], Proposition 6.4, but since the proofis considerably

simpler in the setting of local minimizers, we present a proof in this setting below.

Proposition 4.1. For any R > 0, let z be a local minimizer of Eg satisfying a gradient bound
|Vzgr| < CiR for some Cy > 0. Then there exists a number 1) depending only on W such that if

Eg(zg,B,,) <7n onsomeball B, ,

then there exists a point p, € P and a value R > 0 such that for all x € B, /,, one has the uniform
estimate

1/4
l25(0) = pel < V3 (%) (Ex(zr.By,)

forall R > R, where b is the constant appearing in (3.27) and R = R(b, ry).

Proof. With no loss of generality, we take B, to be centered at the origin. For ease of notation, we
will write eg := Er(zg, By,), so that our hypothesis is that ez < 7 with 7 to be specified shortly.

We begin with the observation that if ¢ € R? is any point such that |q — p,| < f8 for some p, €
P, then invoking (1.4) and (3.27), we have

1

b . / )
= min t) — t)|dt < d(q, <
\/;7(0)=p5,7(1)=q o 7(®) = pelly' ()] (g, pe) <

1
Vb min / (0 = pe Iy (0] .
7(0)=pe,y(=q J

Hence,

b
\/;Iq—pelz <d(g,p) < Vblg - p,I. (4.1)

:sdny) suonipuo)) pue suua | oy 39 “[$70z/L0/S 1] uo Areiqry aurquQ Aoy ‘seueiqr] Ansioatun) euelpu £q $0zzg edd/2001°01/10p/wod Kapim Arerquaurjuoy/:sdny woiy papeojumod ‘11 “b70T ‘T1E0L60T

KopmAaeaqy

25U0DIT SUOWIIO) 2AERL) AIqEaNIddE Ay Aq PIUIDAOT AIE SIINIE VO S9SN JO SO 40] AIRAGYT SUIUQ) ASTIAL UO



4192 | SANDIER and STERNBERG

Applying the Mean Value Theorem, the assumption ez <7 on B, allows us to find a radius,
say r* € (ry/2,rp), such that

ER(ZR,BB,*) < 2eR < 277 (42)

Consequently, for any two points x;, X, € 0B, one has

d(zg(x1), zr(x2)) < \/5 VW (zg)|Vzg| ds < 2ep.

0B+

Then the fact that faB_* RW(zg)ds < 2ep implies that for R large enough there exists a point,
say xg € 0B,+, such that d(zz(xg), ps) < er for some p, € P. Consequently, it follows from the
triangle inequality that

d(zg(x), p¢) < 3eg forall x € 9B,-. (4.3)

We now impose the condition

b B?
< ~
7 < 23 (4.4)
It follows that
|zr(x) — pel < B forall x € 9B,-. (4.5)

Otherwise, for some x € dB,, we would have

. b
d(zg(x),pe) > min  d(q,p¢) > \/jﬁz,
{q: lg—pe|=p} 2

contradicting (4.3), given that ey < 7.
Having established (4.5), we now appeal to the local minimality of z; by constructing a com-
petitor, say vg, in B, that linearly interpolates on the annulus A , , 1 between zp(x) on 0B,

==

and p, on 9B, 1 via the formula

R
. X
vr(x) 1= Ag(1x|)zg <V*m> + (1 = Ar(Ix)pes (4.6)
for r* — % < x| < r*, where Ax(r) := R(r — r*) + 1. We compute that
x x X
Vur(x) = Ax(|x]|)Vzr | r*— +R—®<z <r*—>— ), 4.7
r(X) r(>IxD) R< |x|> x| R x| be 4.7)
so that
2 2
IVog(0)|” < 2|Vzg (r*|7x|> + 2R?|zg <r*%> - pe (4.8)
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Property (4.5) guarantees that this interpolation always yields values inside the ball of radius
about p, so that vy takes its values in the region where W is convex. This convexity allows us to
invoke (3.27). Then through the local minimality of zg, along with (4.2) and (4.8), we find that

1
B B) < Bu(wnB) = [ RW(o)+ s Vol dx

A

L 1
# ok
et =g

g/r*_% /aB, {RA(F)W<ZR<F*|7}CI>>+
2
%(2 Vzp <r*%> + %ﬁW(zR <r*|?x|>) } dsdr <27 <max {2,1 + %})% (4.9

Next we wish to argue that the maximum of the quantity |zz(x) — p, | over the set B,. must occur
for x € dB,. We will argue by contradiction. There are two cases to consider:

Case 1. The maximum occurs at a point x* € B, such that |zg(x*) — p,| < f. We see this
is impossible through an appeal to the maximum principle applied to the function f(x) :=
% |zr(x) — pe |2. Indeed, a simple calculation yields that

2
Af(x) = R*V,W(zg) - (zg — p¢) + [Vzgl” > 0,
in light of the strict convexity of W(q) when |q — p/| < S.
Case 2. The maximum occurs at a point x* € B, such that |zz(x*) — p| = B. Since necessarily

any local minimizer satisfies a gradient estimate |Vzy| < C;R for some constant C; > 0, it follows
that

B .
|zr(x) — pel| > 5 for all x such that |x — x*| < Ok
Thus, denoting
Cp := min W(q) > 0,
fger?: dist (@.P)>E)
we obtain
Eu(ze. B.0) / RW(zg)dx > CsR B 2 B°Cs 1
Rr(ZR, By+) 2 Zr)dx =z CgRm = R’
r i |x—x*|<m} 2CiR 4C% R

which will contradict (4.9), if in addition to (4.4), we insist that » satisfies, say

1 mB*Cq
27 max {2, 1+ E} < 5C12 . (4.10)
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4194 | SANDIER and STERNBERG

Hence, assuming 7 satisfies (4.4) and (4.10), we have argued that the maximum of |z — p/|
on B,. must occur on 0B,:, and so from (4.1) and (4.3), the conclusion of the Proposition
follows. O

An easy consequence of this result is

Proposition 4.2. Assume U : R* — R? is a local minimizer of E and {R;} — oo is such that {Ug }
converges in LllOC to uy € BV},.(R?; P). Then {URj} converges to u locally uniformly outside the
support of Vu.

Proof. Assume x, does not belong to the support of Vu,. We need to prove that Ug, converges
uniformly to u, in a neighbourhood of x,.

The limit u, is identically equal to one of the wells, say p;, in a ball B,(x,) for some r > 0. Using
Fatou’s Lemma as in the proof of Lemma 2.3 there exists a radius t € (0, r) and a subsequence still
denoted {R;} such that

Rlim ||URj = pillnes) =0, lim supERj(URj,dB[) < +o00.
j oo Rj—>00

Since URj minimizes ERj and satisfies (2.2) and (2.3) on 8B;, we can apply condition (2.7) of
Theorem 2.1 to assert that

Er,(Ug;» B,) = Ej(uo, B;) = 0 as R; — oo,

where h is the trace of uy on dB,, that is, h = p;. This allows us to apply Proposition 4.1 to conclude
that Uk, is converging uniformly to p, on B, ,. Since the subsequential limit is unique, the whole
sequence converges uniformly to p; on B, /,, proving the proposition. [l

Now we prove

Proposition 4.3. Assume U : R?> = R? is a local minimizer of E in the sense of (1.13) such that
dist(U(0), A) > 0 for A given by (2.12). For any sequence {R;} — oo, let{R}, } and u, € BV ,.(R?; P)
be any subsequence and subsequential limit of {URjk }, guaranteed to exist by Proposition 3.1. Then
u, takes the form (1.8).

Proof. We need to rule out (3.69) and (3.70).

Suppose first, by way of contradiction, that u, = p, for some ¢ € {1,2,3}. Then Proposi-
tion 4.2 implies that UR_/k (0) - U(0) = pg,contradicting dist(U(0), A) > 0. Thus, possibility (3.69)
is eliminated.

Next, we suppose by way of contradiction that URjk — Uy in LllOC for u, satisfying (3.70)
for some i,¢ € {1,2,3} with i # ¢. With no loss of generality we will take i =1, ¢ =2 and
the halfplane H to be {(x;,x,) € R? : x, < 0} so that our contradiction hypothesis takes the
form

Llloc {pl in {(xl,xz) X < O}

Ur. = .
Rj — Mo P> in{(x;,x;) 1 x; >0}

(4.11)
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This possibility is ruled if we prove Theorem 1.3, since the latter implies that U(x;, x,) =
¢12(x, + A) for some A € R and therefore U(0) € ¢;,(R), which contradicts the hypothesis that
dist(U(0), A) > 0 for A given by (2.12). O

Proof of Theorem 1.3. We assume that U is a locally minimizing entire solution and that Uk,
converges as j — +oo for some subsequence for R; — +oo to the function u, defined in (1.16). We
break the proof that U(x;, x,) = {15(x, + A) for some A € R into several steps.

1. We begin by identifying a circle on which U has “well-controlled” boundary values. To this
end, we note that the argument in the proof of Proposition 3.1 leading to (3.2) and (3.3) applies
just as well to assert the existence of two values, 1 < 4; < 4, < 2, for which these two properties
hold on both dB; and dB;,. We then let A, ;, denote the annulus B;, \ B, , and invoke the
assumption (4.11). It follows from the I'-convergence of £ R; (A2, 2,) tO ES‘(-, A, 2,) With h =
trace of uy on 0.4,, ;,, along with the minimality of Ug, in the annulus, that

Eg,(Ug;» Az, 2,) = EMug, Ay, ) = 24 — Ay)er as Rj — oo, (4.12)
Rewriting this in terms of U we have that
E(U, A/IZRj»/.thj) = 2(/12 - ﬂ.l)clzRJ’ + O(RJ) as Rj — 00, (413)

or equivalently,

1

AR
—_— E(U,dB,)dr =2 1).
Tmir /., U8B dr =20+ ott)

Thus, by the Mean Value Theorem, there must exist a sequence of radii {o;} — co with p; €
(AR}, 2;R;) such that

E(U, aBpj) = 2¢15 + o(1). (4.14)
From Proposition 4.2, we have that for any 7 > 0
max{lU(x) —pl: xe l_Spj N{(x1,x) 1 x5 = pjl'}} -0 (4.15)
and
max{lU(x) —-p] i x€e Epj N{(x1,x5) 1 x5 < —,oj‘r}} -0 asp;— co. (4.16)
2. We will next argue that the restriction of U to the circle 0B, 1s approaching two copies of the
geodesic {7, as p; — co. We denote by aB+ the right half- 01rcle of 0B, , and by 6B_ the left

half-circle. From (4.15) and (4.16) and the contmulty of the metric dlstance (p,q) — d( p,q) (ct.
(1.4)), it follows that

E(U,dBE) >v2 | VwD) aa

oB}.
Pj

ds > d(p1,p2) —0o(1) =c;; —o(l)as pj —» co (4.17)
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4196 | SANDIER and STERNBERG

and similarly,

E(U,ang) > \/5/53. \/W(U)’aa—lsj

ds > d(pl,pz) - 0(1) =C;p— 0(1) as p} — 0 (418)

Combining these last two inequalities with (4.14), we observe that, in fact, we have

E(U, aB;)) S, asp; - oo (4.19)
and

E(U, aB;j) — oy asp; - oo, (4.20)
Now, following the general scheme in [5], sect. 2.3 we fix a positive number d, less than say,

half the minimal distance between any two of the three wells, and define the energy level W,
via

WO::min{W(p): |p—pg|=d0,€=1,2,3}>0. (4.21)

It follows from (4.15) and (4.16) that there must exist a point x;.r € 0B, such that W (U(x;.r)) =
W,. Then for 6 denoting the polar angle made with the positive x;-axis, we introduce the angle

A+
6; via x;.r =p jelel . We point out that necessarily
ej+ —0as j— co, (4.22)

since W (U(p jei@)) — 0 at angles 0 bounded away from zero in light of (4.15) and (4.16).
Then we introduce an arclength coordinate s along aB;j with s = 0 corresponding to this x;
via

si1=p;(6- 9;), (4.23)

and define the continuous extension, say Uj : (=00, 0) —» R? of U along 6B+j, expressed as a
function of arclength variable (4.23), through the formula

f D1 fOI‘Sij(ﬂ.'/Z—Q;—)+1
linear forpj(ﬂ/z—e;r)<s<pj(7r/2—6;.r)+1
- i(=-+67)
Uj(s) = 5 U<pjel pj > forpj(—n'/z—e;.r)<s<pj(7r/2—6j+)
linear for pj(—n'/2—6j+)—1 <s<pj(—7r/2—6j+)
D> fors<,oj(—7r/2—6;.r)—1,

so that, in particular, we have

W (U;(0)) = W,,. (4.24)
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Now again appealing to (4.15) and (4.16), we observe that the energy over the intervals of linear
interpolation vanish in the limit; that is,

lim E(0;. o, (/2= 6] p,(x/2=6]) +11) =0,

with a similar result for the integral over the interval [p;(—7/2 — GJJF) Lpj(-m/2— 6+)
Hence, through (4.19), we see that {U j} constitutes a minimizing sequence for (1.6). Invokmg

(4.24), it is then straightforward to establish that

Uj—¢, inH (R)asj— oo, (4.25)

loc
with W({1,(0)) = W, setting the particular translate of the heteroclinic {;,. Again we refer
to [5] for details. (We recall here that we are assuming uniqueness of the three heteroclinic
connections.) We then note that using (4.20), we can apply precisely the same argument along
the left half-circle aB;j to get Hlloc—convergence to ¢, analogous to (4.25) there as well. In
particular, in analogy with (4.22) and (4.24), we note that there exists an angle made with the
negative x;-axis, which we denote by 6}.‘, that plays the same role as did 6;’; namely,

W(U(pjei(”_ef))> =W, and 6}.‘ —0asj— oo. (4.26)

Also, referring back to (4.15) and (4.16), with, say 7 = 1/2, it follows that

s 5 i0 5 Ve
‘U(p p1| — 0 for g < <6< &7 and |U(pjel ) —p2| — 0 for — £ < o< -5
(4.27)
ot e
. Letting L; denote the line passing through the two points x;.r =p jelef and xXpi=p jel(” % ),
we define the sequence V; : R — R? via
V(x) 1= ¢pp(dist (x, Lj)). (4.28)

Our goal in this step is to interpolate between U on 6Bpj and V; on 6Bpj_1 so that the energetic
cost in the annulus between these two circles is no greater than 2¢;, + o(1). Again we will focus
on the right half-annulus, with a similar calculation applying to the left half-annulus.

To this end, we first recall the exponential approach of {1, = {;,(¢) to p; for t > 1 and to
p, for t « —1, compare (3.44). Fixing any 5 > 0, it follows that we can find an interval, say
[—a,, a,], such that

E($12,[—ay, ay]) < cpa, (4.29)
and such that
|$12(6) = p1| <nfort>a,, and |{1,(t) —py| <npfort<—a,. (4.30)

Then in view of the H'-convergence of U; to ¢, for s € [—a,, a,] guaranteed by (4.25), we
can assert that for p; large enough, one also has

e = < E(U},[—ay,a,]) < cpp + 1. (4.31)
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4198 | SANDIER and STERNBERG

As consequence of (4.29) and (4.31), along with (1.6), (4.19), and (4.20), it also follows that
E(¢12.R\ [-ay. a,]) <7 (432)
and
E(U;,R\ [-a,,a,]) <. (4.33)
Of course, the analog of estimates (4.31) and (4.33) hold with the boundary values of U along
6B:§j replaced by those along 6B;j as well.

Now we define the linear interpolation in the annulus {x : p; —1 < [x| < p;}with 4;(r) :=
r—pj+1, via the formula

Zi(x) := /lj(|x|)U<pj%> + (1= 2,(IxD)V;(0). (4.34)

We will divide up the energy of Z; in the right half-annulus into two parts as follows:

1 2
// W(Zj)+—|vzj| dx =
right half —annulus 2

Pj Pj
/ / { - }dsdr+/ / { - l}dsdr
pj—1J{xedB; : dist (x,L})<ay} pj—1 J{xedB/ : dist (x,Lj)>a,}

=:T+1I. (4.35)

Regarding integral I, we note that for any r such that p; —1 <r < p; and any x € B, such
thatdist(x, L;) < a,, if we denote by s(x) the arclength along 9B, from x to B, N L;, then one
easily checks that

0 < s(x) — dist (x,L;) = O (%) (4:36)
J

Combining this with the uniform convergence of U; to ¢y, on [—a,, a, ] guaranteed by (4.25),
we obtain that

x i(C% 4o+
‘U<ij> -V <|U( pje 7T | =S| + ’Clz(s(x)) - §12(diSt(X,L'))‘ = o(1),
(4.37)
which then also implies that
Zi(x) = §12(s(x)) + o(1). (4.38)

Now

2 2
= |o; 6|

X
(o)
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and for x in the domain of integration of integral I, with an appeal to (4.36), we have

2 2 2
Vv = |61, (dist (L) = [¢1,6)] + o). (4.39)
Therefore, since

X

VZ;i(x) = Aj(lxl)VU<Pj x|

> + (1= 4;,(xD)VV;(x) + % ® <U<,Oj|i§—|> - Vj(x)>,
(4.40)
we may compute that

2

2
vz;00| < Aj(|x|)vu<pj%> + (1= 2;(1xD) VV;(x)

+C{‘U<pjli—|> —V(x) <‘VU<,OJ|;C—|> +|VVj(x)|>}
2
vu(M%)

2
+ (1= 25(1xD) |VV;)| +o(D), (4.41)
where the last inequality follows from the convexity of | - |2, along with the use of (4.36) and
(4.37), after noting that both [VU| and |VV/;| are uniformly bounded.
As a consequence of (4.38), (4.41) and another appeal to (4.25) we find that

Pj 1 2
/ / W(Z;(x)) + —)VZj(x)| dsdr <
pj—1 J{xedB/ : dist (x,Lj)<a,} 2

Pj a’) 1 N 2 2
/ 1 / W) + 5 {Aj(r)’Uj '(S)' +(1- /lj(r))|§’12(s)| } dsdr +o(1)
pj—L < —ay

2
+

U(p,ﬁ) — V(%)

< 4;(xD)

Pj a4 1 2
=[] W+ 3] dsdr o
0

j—1 4 —ay

Hence, it follows from (4.29) that
I'<cp+n, (4.42)

with a corresponding inequality holding for the energy of {Z;} over the region in the left portion
of the annulus given by

{x=(x1,x) 1 pj—1<|x| <p;, dist(x,L;) <7, x; <0}.

It remains to estimate integral II in (4.35). We will argue that this integral is o(1) by relying
on (4.32) and (4.33). We first claim that

Pj
/ / W(Z;(x))dsdr = O(n). (4.43)
pj—1 {xeaB}: dist (x,Lj)>a,7}
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4200 | SANDIER and STERNBERG

With an eye towards appealing to (3.26), we observe that necessarily for any x € 6Bpj such
that dist (x,L;) > a,, one has either |[U(x) — p;| < B or [U(x) — p,| < B. Otherwise, the ener-
getic cost incurred by transitioning along 6Bpj from |U(x) — ps| = B to U(x) ~ p, would be
0O(1), violating (4.33), a transition that must occur in light of (4.27).

Since (4.30) implies that V;(x) also takes values in a region of convexity of W for x € aBpj
such that dist (x, L;) > a,, we have that

1[uoy/:sdny woy papeojumod ‘11 470T ‘TIE0L60T

W(Z;(x)) < /lj(lxl)W<U<‘oj|i_|>) + (1-2;(IxD)W(V;(x)) forsuchanx.  (4.44)
Hence, with an appeal to (4.32) and (4.33), we obtain claim (4.43).

2
To show that integral IT in (4.35) is small, we still must estimate the integral of ’VZ‘,-‘ . Here
we note from (4.40) that
| }

2
}. (4.45)

5 2
vz)| < c{ [Aj(|x|)vu<pj|—i|> + (1—/1j(|x|))vvj(x)] + U<pj|—§|> ~Vi(x)

X
VU(W)

Integrating this expression over the set

2
+(1 —,1j(|x|)‘vvj(x)|2 +

o) v

< C{/lj(|x|)

{x = (xlrxz) . ;Oj -1< |x| <pj’ dlSt(er)> a}yxl > 0}7
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we can use (4.32) and (4.33) once again to show that the first two terms in (4.45) integrate to

().
The third term can be handled in the same manner as was done for the integral of W(Z;).

KopmAaeaqy

That is, we split the integral into the set where U (,o j % > is far from both p; and p, and where

itis close to one of these wells. We know from (4.30) that V;(x) is near p; or p, for this domain

of integration and therefore the measure of the set where U < Pj ﬁ) is far from the wells must
X

be small in order not to violate (4.33). Then, on any set where it is near to p; or p,, we have

2 2
‘U<Pj%> -Vi(x)| < 2( U(Pj|x7|> —DPr

2
and so the quantity ‘U(m%) - V%)

2
+ ‘Vj(x) - pfy ) for either ¢ =1 or 2,

is controlled by the sum of the integrals of

w (U (pjﬁ >> and W(V;(x)). Hence, by (4.32) and (4.33) it must also integrate to O(»).

Since the analysis of I leading to (4.42) holds for any 7 > 0 provided p; is sufficiently large,
as does this just completed analysis of integral II, we finally conclude that the interpolating
sequence {Z} satisfies the bound

1 2
{x: pj—1<|x|<pj, X1 >0}
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Allen—-Cahn solutions with triple junction structure at infinity | 4201

The argument leading to the same estimate for the energy of Z; taken over the set{x : p; —1 <
|x| < pj, x; <O0}isidentical, and so we arrive at the estimate

E<Zj,Bpj \Bpj_l) < 2015 + 0(1). (4.46)
4. Having interpolated between the boundary values of U on 6Bpj and those of V; on aBpj_l with
a cost bounded as in (4.46), we can now appeal to the local minimality of U to assert that

E(U,Bp)_) < 2C12 +E<Vj’BPj—1> + 0(1),

where we recall that V; is defined through (4.28). If we now consider a coordinate system
(21, 2,) with z;-axis coinciding with the line L;, z,-axis orthogonal to it, and with origin at the
midpoint of the line segment L; N By, then it follows immediately from the definition of ¢,
and (4.28) that

E(U,Bpj> <2cp, +/

1
_EHI(Ljanj—l)

SHYULjNB,, 1)
B0, R)dzy +0(1) = e 1! (L; 0 By, ) +0(1). (4.47)

Here we are using the fact that
Hl(Lj N{x: pj—1<|x|< pj}) < 2+0(1),

since we recall that the line L; meets 6Bpj at the points x}“ =p jelei+ and x}.‘ =p jel(ﬂ_ef ) with
6}.+ and 9]._ both approaching zero by (4.22) and (4.26). See Figure 5.

5. We conclude the proof of Proposition 4.3 with a lower bound for the energy of U on By, that will
contradict the upper bound (4.47), thus eliminating the possibility that (4.11) can occur. To this
end, we introduce an interpolation, say Z j,on the annulus {x:p i< |xl<pj+ 1} between the
values of U on 6Bpj and those of V; given by (4.28) on aBij. The formula for the sequence
{Z ;} is identical to that of {Z;} given in (4.34), with the exception that 1;(r) is now replaced
by 4;(r) := p; + 1 —r. Then the entire argument that led to the energy bound (4.46) applies

equally well to {Z;}, to establish that

E(Zj,Bij \Bpj) < 2¢p5 + 0(1). (4.48)

As a consequence of (4.48), if we now define the sequence {U;} on Bo 11 via

U(x) forx € B, ,
Vi =932wx) & B. . \B
jx or x € Pj+1\ 0j°

then we have the lower energy bound
E(U,Bpj> > E(Y/},Bpj+1) —2¢p, — o(1). (4.49)

Next we will compute a lower bound for the integral on the right using a coordinate system
(z1, z,) very similar to the one introduced above (4.47), where again z; is the arc length on the

:sdny) suonipuo)) pue suua | oy 39 “[$70z/L0/S 1] uo Areiqry aurquQ Aoy ‘seueiqr] Ansioatun) euelpu £q $0zzg edd/2001°01/10p/wod Kapim Arerquaurjuoy/:sdny woiy papeojumod ‘11 “b70T ‘T1E0L60T

KopmAaeaqy

ASULDI'T SUOWWO)) ANEAIY) d[qeat[dde oy £q PAUIOAOT 1B SI[IIUE () 1asN JO SN 10§ AIBIqIT duIjuQ) A[IA UO



4202 SANDIER and STERNBERG

Pj

Pind

FIGURE 5 The coordinate system based on the line L; passing through the points xj+ =p jeie7 and
X7 =p ;€779 defined in (4.22) and (4.26).

line L; but now with z; = 0, z, = 0 corresponding to the midpoint of L; N Bg,41. Forany z; € R
the set {z, | (21,2,) € B, 41} is an interval that we denote (a;(z,),b;(z))).

0 +6%
sin< S >
2

’GH + ’6}‘| — 0. It follows that By, 11 contains the set of points with coordinates (z;, z,) such
that

The line L; is at a distance §; = p; from the origin. Note that §; < p; since

_fj <z < f]’ —]’l](Zl) <z < h’j(zl)’ (450)

where
1 1\ 1/2
fj=§H1<Ljan_,-+l>=<(pj+1)2_5j )

1/2

and hj(z;) = ((o; + D* —z%) '~ = 6. (4.51)
In particular,
hi(z)) < min(|aj(zl)’,bj(zl)). (4.52)
Then we can write
oV ? £
B(vpsn)> [ |15+ , Heda, (453)

pj+1
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Allen—-Cahn solutions with triple junction structure at infinity 4203

where
I(z) = E(”j(zl, ), [aj(Z1)7 bj(Zl)])-

From the construction of U’ using Z j» we have that U'j(z1,25) = {15(2,) if (21, 2,) € aBij, that
isifz, = aj(z;) or z; = bj(z,). Thus we may extend U’j(z, -) continuously by setting U(z;,2,) =

$12(2) if 25 & (aj(z),bj(z))).
Using the minimizing property of ¢, with respect to its boundary conditions on any interval
[a, b] and its exponential decay as in (3.44), we have for any z; € (=¢;,¢) that

I(zy) = E(Uj(z1,),R) —E(U(z1,-), R\ [a;(z1), b;(z1)])
= E(Uj(z1,-),R) — E($12,R \ [a(z1), bj(21)])

> E(¢15,R) = E($12, R\ [=hj(21), hj(z)]) > ¢1p — Ce™Mi@), (4.54)

where ¢, C > 0 depend only on W'.
We integrate (4.54) over z; € (=€}, ¢ ;). In view of (4.53) we find that

2 ¢

J
+ 2C12£j - C/ e_Chj(zl) le.
-t

J

21

E(U}'!Bpj+1) 2 /

Bpj+]

It is straightforward to show, using (4.51) and the fact that §; < p; as p; — +oo, that the last
integral above is 0(1) and then, since

265 =H'(L;nBy 0 ) = 1! (L; 0B, ) +2+0(1),

we conclude that

2
v, 1
I sepH (Lj n Bpj> +2¢15 + —o(1),

BBy > |

Bp"+1

In view of (4.49) and the upper bound (4.47), we deduce that

=o(1). (4.55)

6. We may now conclude. Going back to the original coordinates (x;, x,) we have that U = U’jop;
on Bpj, where ¢; denotes the (x;, x,) = (21, z,) map. But, as j — +oo, the rotational component
of @, converges to the identity since 67 and 9]._ both tend to 0. Passing to the limit in (4.55) we
thus deduce that U(x;, x,) does not depend on x;.

Then, as a function of x, only, U is a minimizing solution on R, which converges to p; as
z, — —oo and to p, as x, — +oo. Thus there exists A € R such that U(x;, x,) = {1,(x, + A). The
proof of Theorem 1.3 is complete. O
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4204 | SANDIER and STERNBERG

5 | TWO PARTITIONING PROBLEMS: REGULARITY AND
COMPARISON

Our proof of the key estimate (3.15) in Proposition 3.3 relies upon the regularity theory for two par-
titioning problems, one fairly standard and the other perhaps not so standard. In this section we
state the regularity theory for these problems, as established in [24]. Then we state and prove a
result relating the infima of these two problems.

For the convenience of the reader, we restate these two partitioning problems here:

Problem 1. Fix a function h € BV(0B; P). For any disjoint sets S;, S, and S; of finite perimeter in
B such that |B \ US,| = 0 define

my :=inf {Ey(S},5,,S3) : USy =B, 8S¢ N8B = h™(p,) for ¢ = 1,2,3},

where E is given by

Ey(Sy,S,,83) = t;H1(8*S; N B) + t,H(3*S, N B) + t;H(3*S; N B).

Problem 2. Fix a number & > 0. Then for h and E, as above, and disjoint sets S;,S,, and S3 of
finite perimeter in B define
md = inf {Ey(S},5,,83) : |B\ US| <38, S, NdB = h~!(p,) for ¢ =1,2,3}.

Regarding Problem 1, the regularity theory of minimizing planar partitions subject to volume
constraints on each phase is developed, for instance, in [20, 22]. For our purposes, however, we
require a version valid without volume constraints but subject to a Dirichlet condition, and which
has additional properties specific to minimization within a ball. For this we quote the recent work
in [24].
Theorem 5.1 [24, Thm. 1.6]. If (S?, S, S9) be a minimizer of Problem 1, then every connected com-
ponent of 652 N 3S% N Bis a line segment terminating at an interior triple junction x € 65(1) N 653 N
359 NB, at x € 3S) N85Sy, N 3B for ¢ # m which is a point of discontinuity of h, or at a boundary
triple junction x € asg N GS(ZJ N Sg N 0B which is a point of discontinuity of h. Moreover, there exists
angles ap, € = 1, 2,3, satisfying (1.9) such that if x € B is an interior triple junction, for somer, > 0,
Sg N B, fort =1,2,3 are circular sectors determined by a,. Finally, every connected component C
of Sg is convex and meets 3B along one or more arcs of h='(py).

The last property, namely, that every connected component C of Sg is convex and meets 0B
along one or more arcs of h~!(p,) is not stated in [24], Thm. 1.6, but is immediate since any island
of phase could be filled in with a different phase, thereby lowering the total perimeter without
disrupting the boundary condition.

Regarding Problem 1, we will also need the following corollary, which follows easily from
Theorem 5.1.

Corollary 5.2. Suppose h € BV(0B; P) has k jump discontinuities for some non-negative integer
k. Then there exists an integer N (k) such that the total number of triple junctions appearing in any
minimizer of Problem I cannot exceed N (k).
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Allen—-Cahn solutions with triple junction structure at infinity 4205

FIGURE 6 Minimizers of E, subject to the same Dirichlet condition for Problem 1 (right) and Problem 2
(left).

Proof. Denote any minimizer of Problem 1 by u,. Since any connected component of {u, = p,}
must meet dB along one or more connected components of the set of boundary arcs h='(p,),
and since the number of these arcs is necessarily bounded by k, we can conclude that for ¢ = 1,2
and 3, the number of connected components of {u, = p,} cannot exceed k as well. Next we note
that in light of the convexity of every component of {u, = p,}, any triple of components, one
each from {u, = p,} for ¢ = 1, 2, 3, can only meet at a triple junction at most once. Counting up
all the possible triples, it follows that the number of triple junctions of a minimizer u, cannot
exceed k3. O

The regularity theory for Problem 2 is more subtle since minimizers will typically develop cusps
to replace the triple junctions appearing in the solution of Problem 1, a phenomenon referred to
in some literature as a “wetting” of the singularities, see for example [12]. See Figure 6. Here we
quote the following result:

Theorem 5.3 [24, Thm. 1.4]. Let (Sf, Sg,Sg) be a minimizer of Problem 2, and denote by G° :=
B\ U?zlsg. Then every connected component ofasg N 655.S N B is a line segment terminating either
on 0B at a point of discontinuity of h between p, and p; or at a point in 65? N 6S§ N 3G? N B. Refer-
ring to those points in 65? N 6an N3G N B and asg N den N 3G® N B as cusp and corner points,

respectively, there exist positive K? for¢ =1,2,3 such that

tle = tzkg = t31<§ 5.1)
and, for ¢ =1,2,3, 652 N 8G® consists of a union of circular arcs of curvature Kg, each of whose
two endpoints are either a cusp point in B or a corner point in 0B at a point of discontinuity of h.
Furthermore, at cusp points, 652 N AaG° and ann N 8G® meet 652 N 6an tangentially. Finally, any
connected component C of Sg is convex.

Since any admissible partition of B for Problem 1 is also admissible for Problem 2, it is obvious
that mg < m,. However, an inequality in the reverse direction also holds.

Theorem 5.4. For any positive integer k, let h be any function in BV (9B; P) having no more than k
discontinuities. Then forany § > 0, the infimum m, for Problem 1 and the infimum mg for Problem 2
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4206 | SANDIER and STERNBERG

are related via
mg > mo — y(k) 8"/, (5.2)
for some constant y (k).

Proof of Theorem 5.4. We will view minimization of E,, subject to the given Dirichlet condition on
0B and subject to the constraint (3.19) as a problem of coloring most of B with three colors, where
for a minimizer {S°, Sg , Sg} we rename Sf as the yellow set Y?, S§ as the red set R® and Sg as the
blue set B®. Then the region in B not covered by these sets, namely, G°, will be referred to as the
gray set. Referring back to the formulation (3.17) of the partitioning energy E,, let us now write it

as
Ey(Y°,R%,B%) = cyH'(8Y° N B) + cgH' (8R° N B) + cyH' (8B° N B), (5.3)

where we have changed notation to let cy = t; = the cost of ‘yellow boundary’,c = t, and cg = t3.

Having fixed the boundary data h € BV(3B;P), we have dY° ndB = h™'(p,), R N B =
h~(p,)and 8B° N 8B = h~'(p;), and so 3B is partitioned into a finite number circular arcs, some
yellow, some red and some blue, though we make no assumption that necessarily all three colors
are present in the boundary data. We recall that we are assuming the total number of these arcs
does not exceed k. It also follows from the Dirichlet condition that dG° meets B only at most k
isolated points, if at all.

The main step in the proof consists of arguing that one can bound the number of components
of G by a constant depending only on k. Once this is established, the bound (5.2) will follow
rather easily.

At this point, we will assume, with no loss of generality, that

¢y < minfcg, cg}. (5.4)
We now proceed with the proof in four steps.

1. We first claim that with no loss of generality we may assume every component of R® and every
component of BY% must meet B. That is, there are no islands of red or blue in the interior of
B. This follows since any such island could be changed to yellow, either resulting in a new
minimizer in the case of equality in (5.4), or else contradicting the minimality of {Y?, R%, B%}
in the case of strict inequality in (5.4). As a consequence, the number of connected components
of R® and of B® cannot exceed the number of red and blue boundary components dictated by
h. In particular, both numbers are bounded by k. For the remainder of the argument, we will
denote these components via

§ _ pd ) o) § _ po é )
R _RluRzu...uRk1 and B _BluBzu...uBk2 (5.5)

for some integers k; = k1(8) and k, = k,(5) such that k; + k, < k.

2. Next we claim that we may assume every component of G? is simply connected. This follows
since by Step 1, any non-simply connected component of G° would have one or more com-
ponents of Y° consisting of full disks lying in its interior. We observe as a consequence of
Proposition 5.3 that the outer boundary component of any component of G® consists of a union

of circular arcs of curvature Kf,, ‘Kg or ‘Kg bowing into G%, all meeting tangentially at cusp points,

:sdny) suonipuo)) pue suua | oy 39 “[$70z/L0/S 1] uo Areiqry aurquQ Aoy ‘seueiqr] Ansioatun) euelpu £q $0zzg edd/2001°01/10p/wod Kapim Arerquaurjuoy/:sdny woiy papeojumod ‘11 “b70T ‘T1E0L60T

KopmAaeaqy

25U0DIT SUOWIIO) 2AERL) AIqEaNIddE Ay Aq PIUIDAOT AIE SIINIE VO S9SN JO SO 40] AIRAGYT SUIUQ) ASTIAL UO



Allen—-Cahn solutions with triple junction structure at infinity | 4207

where we have renamed Kf as Kf,, and so forth. Then we may shift any interior yellow disk until
it touches this outer boundary component at two points without changing the total value of E,,
that is, creating a new minimizer. The only obstruction to sliding such an interior yellow disk
over to the boundary would be that it first hits another yellow disk, but clearly two yellow disks,
tangent at a point, is a non-minimizing configuration and so could not occur. In this manner,
any minimizing configuration possessing a non-simply connected component of G° could be
replaced by another minimizer having more components of G° than the original, but for which
every component of the new G is simply connected.

. Our next goal is to bound the number of components of Y° which touch G°, in the sense
that their boundaries have non-empty intersection. It suffices to bound the number of those
components which do not touch the boundary dB since there are at most k components which
touch JB.

Let then Y? be a yellow component which touches G°. As described in Theorem 5.3, the
boundary of Yg is C! and consists of circular arcs and segments separated by points which are
cusp singularities of the partition. Moreover, we may assume that there are at least two such
cusp points, for otherwise 6Y§ minus at most a point would be in a gray component and by
sliding Yg in this gray component, we would obtain a minimizing partition where Yg has at
least two cusp points on its boundary.

Let then p; and p, be cusp points on dY?, separated by a circular arcy C 6Y§ N G9 of radius
r=1/ Kf,. These points also belong to the boundaries of red or blue components drawn from
the collection (5.5); call these two components A; and A,. We claim that given components A;
and A,, each either red or blue, there can be at most two yellow components separated from
the gray area by a boundary arc y whose endpoints belong to 0 A; and 0A,, respectively.

We will argue this by first noting that the completion of any such circular arc y into a full
circle yields a circle of radiusr = 1/ Kf,. By Theorem 5.3, this circle necessarily meets both dA;
and 0 A, tangentially. We will thus rule out the possibility of there existing three or more such
arcs y by showing that there can never exist three balls of the same radius, all exterior to A; and
A,, with all three meeting both 0A; and dA, tangentially, unless all three balls have collinear
centers. This is an elementary property of convex sets, but not being aware of a reference, we
provide a proof.

We note that necessarily the center of any such ball must be equidistant from dA; and
0A,. Therefore, for each ¢t > 0, we consider the possible intersections of the curves Fi ={x:
dist(x,0A;) = t}and 1“’2 = {x : dist(x,0A,) = t}. Since A; and A, are two disjoint, convex sets
that have C! boundaries within B, it follows that for all ¢ > 0, F‘l and th are convex, closed
curves that are also C! within B, and furthermore, I', N T are disjoint for ¢ small.

Now consider the first time ¢; > 0 when F[1‘ meets I‘;. This could happen along a line seg-
ment, since we recall that neither curve is necessarily strictly convex. However, for Ftll N 1“;1 to
consist of a line segment would mean that A; and d A, must have boundary components that
are parallel line segments. In this case, of course there exists a one-parameter family of circles
with this tangency property, but necessarily, their centers all lie on the line segment F? N thl;
that is, they are collinear.

The other possibility is that at time ¢;, the intersection I‘tl1 N 1“121 consists of one point. Then
for 0 < t — t; < 1, the convexity of both curves means that the intersection will consist of two
points, which in the context of our yellow components, allows for the possibility that two curves
representing boundary components of two distinct elements of Y?, say, 6Y!‘2l N G° and aygz N

G?, both meet dA; and dA,. This could certainly happen. See Figure 7.
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4208 SANDIER and STERNBERG

FIGURE 7 A configuration with two yellow components, both having a circular boundary arc whose
endpoints meet the same pair of components from the collection in (5.5), resulting in four cusp points.

However, we claim that as ¢t increases there cannot be more than two intersections of the
two curves. We argue by contradiction and suppose that there exists a first time ¢, > t; where
I“tl2 N 1“;2 consists of three points. Two of these points represent the continuous evolution of
the original two points that emerged as ¢ passed through ¢t = ¢; but at the third point, say x €
I“tl2 N 1“122, it must be the case that I“tl2 and F;Z meet tangentially, this being the first time a third
point of intersection emerges. Denoting by L the line of tangency, it follows from convexity that
either both {x : dist(x,04,) < t,} and {x : dist(x,dA,) < t,} lie on the same side of L or they
lie on opposite sides. But if they both lie on the same side then tracing back from x a distance
t, along the common inner normal to I‘tf and Ft;, one would arrive at a point in common to
JdA; and dA,, which is impossible given that they are disjoint. If instead one supposes the two
sets lie on opposite sides of £, then that all earlier times, it must have been that Ftl N th was
empty, contradicting the fact that the two curves met at the earlier time ¢;.

Returning to the possibility of boundary components of 3A; and d A, consisting of two paral-
lel line segments, we note that any line segment on the boundary of a component corresponds
to one and only one common boundary with a component of a different color, so in this con-
text, it would correspond to only one yellow component meeting A;, A, and G°. This proves
the claim that given components A; and A,, each either red or blue, there can be at most two
yellow components separated from the gray area by a boundary arc y whose endpoints belong
to 0A; and 0 A,, respectively. This in turn proves that the number of yellow components touch-
ing G° but not touching 9B is at most twice the number of pairs of components of red or blue,
chosen from (5.5), which is bounded by 2(’; )

. Nowwe turn to the task of bounding the number of components of G¢. We will accomplish this
by bounding the total number of cusp points. Any component of G® has boundary consisting
of a union of circular arcs of curvature xf,, Kg or Kg bowing into G, all meeting tangentially at
cusp points. Each of these circular boundary arcs must be a portion of boundary drawn from

of the collection of sets

R fori € {1,2,...k}, BJforj€{l,2...kp}, or Y] for¢ €{1,2,...ks},  (56)

with ky + k, + ks < k + z(’z‘) in light of (1) and (3) above.
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Now consider any yellow/red, yellow/blue or red/blue pair taken from this collection, say
for instance Rf and Bf, and suppose 6R;S and an each have circular arcs bordering the same
component of G° such that these two arcs meet at a particular cusp point. By the convexity
of red and blue components, (3R‘1S N 6Bf must consist solely of a line segment one of whose
endpoints is this cusp point. It follows that aRiS and an can both meet the boundary of some
other gray component at most one other cusp point, namely, at a cusp point sitting at the other
endpoint of their one common boundary segment. The same argument could be made between
any pairing of a Y? with any R? or Bf, provided Y? is not a full disk. On the other hand, if Yg

is a full disk then its intersection with any Ri‘S or B° results in only one cusp point due to the
convexity of both sets involved. Estimating crudely, the total number of yellow/red, yellow/blue
or red/blue pairs drawn from the collection (5.6) is bounded by

k 2(’2‘)
(%)

2

Hence, as just argued, the total number of cusp points in a minimizing configuration
{Y?,R?, B%} cannot exceed twice this number. But since a closed curve comprised of concave
circular arcs requires at least three such arcs, it follows that any component of dG® must have
at least three cusp points. Thus we can bound the total number of gray boundary components
and hence, the total number of gray components, by

k+2(F
Ck) = %( +2 (2>). .7)

. Finally, we are ready to establish inequality (5.2). To this end, we now build out of {Y?,R%, B’} a
competitor in the problem, denoted by Problem 1 at the outset of this section, of minimizing E,
among full partitions of the disk B, subject to the Dirichlet condition h, by defining ¥° := Y° U
GS. Then {Y5, RY, B5} competes with the minimizer of this problem, denoted in the statement
of Theorem 5.4 by {S?, S%, 5%}, and so we have

1272273
Eo(Y°,R%,B%) > Eo(57, 59, 59), (5.8)
as well as
Ey(Y°,R%,B%) < Ey(Y%,R%,B%) + cy H'(3G?). (5.9)

Now in light of (5.1) and our bound on the total number of cusp points, any boundary of a

k
component of G° consists of at most 2 (k+z(z)) circular arcs of radius at most

1 1 maxi{cp,Cpf 1
max L, L\ _ maxicg,cph 1
KR Xp Cy Kf,

Consequently, bounding the length of any arc by the perimeter of the corresponding full circle,
we can assert that

H(3GP) < 27 C (k) DX k> B} (5.10)

1
c s
1% K5
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Then turning from bounding perimeter to bounding area, we note that the area enclosed by the
boundary of any gray component in this minimizing configuration is bounded from below by
the area of the smallest possible (simply connected) gray component, namely, the one formed
by just three arcs arising from the tangential contact of one yellow, one red and one blue
arc. This number could of course be computed precisely but for our purposes, it suffices to
observe through another appeal to (5.1) that it is given by « for some positive constant

()2
a = a(cg, cg), where we have expressed this minimal area in terms of Kf/ though of course, we
could have expressed it in terms of either of the other two curvatures as well. Hence, assuming

there exists at least one component of G, we have the following estimate on the curvature Kf,:
1 5
— < ’G |< 5. (5.11)
(xy)?

Combining (5.8)—(5.11), we conclude that

2mC(k)

\/E

Eo(Y®,R?,B%) > E(S],53,59) — y(k)8'/%  with y(k) := max{cg, cp}.

O
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