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Abstract
We construct an entire solution𝑈 ∶ ℝ2 → ℝ2 to the elliptic
system

Δ𝑈 = ∇𝑢𝑊(𝑈),

where 𝑊 ∶ ℝ2 → [0, ∞) is a ‘triple-well’ potential. This
solution is a local minimizer of the associated energy

∫
1

2
|∇𝑈|2 + 𝑊(𝑈) 𝑑𝑥

in the sense that 𝑈 minimizes the energy on any compact
set among competitors agreeing with 𝑈 outside that set.
Furthermore, we show that along subsequences, the ‘blow-
downs’ of𝑈 given by𝑈𝑅(𝑥) ∶= 𝑈(𝑅𝑥) approach aminimal
triple junction as 𝑅 → ∞. Previous results had assumed
various levels of symmetry for the potential and had not
established local minimality, but here we make no such
symmetry assumptions.

1 INTRODUCTION

We will construct an entire solution 𝑈 ∶ ℝ2 → ℝ2 to the system

Δ𝑈 = ∇𝑢𝑊(𝑈), (1.1)

which is minimizing on compact sets with respect to the associated energy

𝐸(𝑢) = ∫
1

2
|∇𝑢|2 + 𝑊(𝑢) 𝑑𝑥,

Comm. Pure Appl. Math. 2024;77:4163–4211. © 2024 Wiley Periodicals LLC. 4163wileyonlinelibrary.com/journal/cpa

mailto:sandier@u-pec.fr
https://wileyonlinelibrary.com/journal/cpa
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcpa.22204&domain=pdf&date_stamp=2024-05-17


4164 SANDIER and STERNBERG

where 𝑊 ∶ ℝ2 → [0, ∞) is a 𝐶2 ‘triple-well’ potential. That is, we assume that

{𝑝 ∈ ℝ2 ∶ 𝑊(𝑝) = 0} = 𝑃 ∶= {𝑝1, 𝑝2, 𝑝3},

and we assume non-degeneracy of the potential wells in the sense that

𝐷2𝑊(𝑝𝓁) ⩾ 𝑏𝐼 for𝓁 = 1, 2, 3 for some 𝑏 > 0, where 𝐼 is the 2 × 2 identity matrix. (1.2)

Additionally, we assume that for some 𝑀 > 0,

𝑝 ⋅ ∇𝑊(𝑝) ⩾ 0 for |𝑝| ⩾ 𝑀. (1.3)

As in many studies of vector Allen–Cahn, we will make extensive use of the following
degenerate Riemannian metric on ℝ2:

𝑑(𝑝, 𝑞) ∶= inf

{√
2∫

1

0

𝑊1∕2(𝛾(𝑡))||𝛾′(𝑡)|| 𝑑𝑡 ∶ 𝛾 ∈ 𝐶1([0, 1], ℝ2), 𝛾(0) = 𝑝, 𝛾(1) = 𝑞

}
, (1.4)

andwe denote by 𝑐𝑖𝑗 ∶= 𝑑(𝑝𝑖, 𝑝𝑗) for 𝑖 ≠ 𝑗. Wewill assume that the strict triangle inequality holds
between the wells 𝑝1, 𝑝2, and 𝑝3:

𝑐12 < 𝑐13 + 𝑐23, 𝑐13 < 𝑐12 + 𝑐23, and 𝑐23 < 𝑐13 + 𝑐12. (1.5)

Under these assumptions, for 1 ⩽ 𝑖 < 𝑗 ⩽ 3 there exists at least one length-minimizing geodesic
𝜁𝑖𝑗 joining 𝑝𝑖 to 𝑝𝑗 , see for example [3, 21, 29]. We will make the generic assumption that there is
a unique such geodesic for each 𝑖, 𝑗 ∈ 1, 2, 3, 𝑖 ≠ 𝑗, though perhaps this can be relaxed.
We also note that an equivalent variational description of the 𝑐𝑖𝑗 ’s is given by

𝑐𝑖𝑗 = inf

{
∫

∞

−∞

𝑊(𝑓(𝑡)) +
1

2
||𝑓′(𝑡)||2 𝑑𝑡 ∶ 𝑓 ∈ 𝐻1

𝑙𝑜𝑐
(ℝ, ℝ2), 𝑓(−∞) = 𝑝𝑖, 𝑓(∞) = 𝑝𝑗

}
. (1.6)

Under an appropriate parametrization, we then find that each 𝜁𝑖𝑗 ∶ ℝ → ℝ2 satisfies the system

𝜁′′
𝑖𝑗

(𝑡) = ∇𝑢𝑊(𝜁𝑖𝑗(𝑡)) for − ∞ < 𝑡 < ∞, 𝜁𝑖𝑗(−∞) = 𝑝𝑖, 𝜁𝑖𝑗(∞) = 𝑝𝑗. (1.7)

From the perspective of ODE’s, these geodesics 𝜁𝑖𝑗 represent heteroclinic connections between
the potential wells.
We now denote by the set of all functions 𝑢∗ ∶ ℝ2 → ℝ2 taking the form

𝑢∗(𝑥) =

⎧⎪⎨⎪⎩
𝑝1 on 𝑆1

𝑝2 on 𝑆2

𝑝3 on 𝑆3,

(1.8)

where for 𝓁 = 1, 2 and 3, 𝑆𝓁 is a single (infinite) sector emanating from the origin with the three
opening angles 𝛼𝓁 given by

sin(𝛼1)

𝑐23
=

sin(𝛼2)

𝑐13
=

sin(𝛼3)

𝑐12
. (1.9)

See Figure 1.
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Allen–Cahn solutions with triple junction structure at infinity 4165

F IGURE 1 A locally minimizing partition of ℝ2 with a triple junction.

The partition {𝑆1, 𝑆2, 𝑆3} represents a locally minimizing partition of ℝ2 with respect to the
weighted perimeter functional

{𝑆1, 𝑆2, 𝑆3} ↦
∑

1⩽𝑖<𝑗⩽3

𝑐𝑖𝑗1
(
𝜕𝑆𝑖 ∩ 𝜕𝑆𝑗

)
, (1.10)

where 1 refers to one-dimensional Hausdorff measure, and the condition (1.9) naturally arises
as a criticality condition. As we will recall in Section 2, this partitioning problem represents the
Γ-limit of a scaled version of the energy 𝐸, namely, 𝐸𝑅(𝑢, Ω), defined for any planar domain Ω,
any 𝑅 > 0 and any 𝑢 ∈ 𝐻1(Ω ℝ2), via

𝐸𝑅(𝑢, Ω) = ∫
Ω

𝑅𝑊(𝑢) +
1

2𝑅
|∇𝑢|2 𝑑𝑥. (1.11)

We will write simply 𝐸(𝑢, Ω) when referring to 𝐸1 (i.e., 𝑅 = 1).
We will establish a connection between the structure at infinity of our entire solution 𝑈 to

(1.1) and the triple junction partitions given by (1.8) by studying the asymptotic behavior of the
blowdowns of 𝑈.
Our main result is the following:

Theorem 1.1. There exists an entire solution 𝑈 ∶ ℝ2 → ℝ2 to

Δ𝑈 = ∇𝑢𝑊(𝑈) (1.12)

which is a local minimizer of energy in the sense that for every compact set 𝐾 ⊂ ℝ2 and for every
𝑣 ∈ 𝐻1

𝑙𝑜𝑐
(ℝ2; ℝ2) satisfying 𝑣 = 𝑈 on ℝ2 ⧵ 𝐾 one has

𝐸(𝑈, 𝐾) ⩽ 𝐸(𝑣, 𝐾). (1.13)

Furthermore, defining 𝑈𝑅 as the blowdown of 𝑈 via

𝑈𝑅(𝑥) ∶= 𝑈(𝑅𝑥), (1.14)
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4166 SANDIER and STERNBERG

we have that on any compact set 𝐾 ⊂ ℝ2:

dist𝐿1(𝐾;ℝ2)(𝑈𝑅,) → 0 as 𝑅 → ∞. (1.15)

That is,

lim
𝑅→∞

(
inf

𝑢∗∈ ‖𝑈𝑅 − 𝑢∗‖𝐿1(𝐾;ℝ2)

)
= 0.

Remark 1.2. We believe that a stronger conclusion holds, namely, that there exists a 𝑢∗ ∈  such
that

lim
𝑅→∞

‖𝑈𝑅 − 𝑢∗‖𝐿1(𝐾;ℝ2) = 0.

A step in the proof of the above theorem is the following result, of independent interest.

Theorem 1.3. Assume 𝑈 ∶ ℝ2 → ℝ2 is an entire solution to (1.12) which is a local minimizer of
energy such that for some sequence𝑅𝑗 → +∞, the sequence𝑈𝑅𝑗

converges locally in𝐿1 to the function

𝑢0(𝑥1, 𝑥2) =

{
𝑝𝑖 if 𝑥2 < 0.
𝑝𝑗 if 𝑥2 > 0. , (1.16)

for some pair 𝑝𝑖 ≠ 𝑝𝑗 . Then 𝑈(𝑥1, 𝑥2) = 𝜁𝑖𝑗(𝑥2 + Δ), for some Δ ∈ ℝ.

To place these results in context, we note that there is a large, and growing, collection of work
on the general topic of finding entire solutions 𝑢 ∶ ℝ𝑛 → ℝ𝑚 to the vector Allen–Cahn system
under various assumptions on the potential 𝑊 ∶ ℝ𝑚 → ℝ, on 𝑛 and on 𝑚. See, for example [1, 4,
9, 10, 13, 18]. A source for a number of these results is the book [5]. Most of these results, how-
ever, include some form of symmetry assumption on 𝑊. We also mention the recent work [11]
addressing concentration of general vector-valued critical points of Allen–Cahn in the plane.
Regarding the case under consideration here, namely, 𝑛 = 𝑚 = 2 and 𝑊 a triple well poten-

tial, an important first result on entire solutions appears in [13], where the authors assume the
potential is equivariant by the symmetry group of the equilateral triangle. The convergence to
the minimal triple junction partition (1.8)–(1.9) they achieve under these symmetry assumptions
(with necessarily each 𝛼𝓁 = 2𝜋∕3) is much stronger than (1.15). In particular, they show that

lim
𝑡→∞

𝑈

(
𝑡

𝑥|𝑥|
)

= 𝑝𝓁 for 𝑥 ∈ 𝑆𝓁 off of the three rays 𝜕𝑆𝑘 ∩ 𝜕𝑆𝓁 for 1 ⩽ 𝑘 < 𝓁 ⩽ 3.

On the other hand, since theyworkwithin the class of equivariant competitors, there is no claimof
stability with respect to general perturbations. In a more recent contribution to this problem [15],
the symmetry assumptions on 𝑊 are weakened to include only the rotation subgroup of the full
symmetry group of the equilateral triangle, thus relaxing the assumption of reflectional symmetry.
Our proof of Theorem 1.1 proceeds by first appealing to [28] to construct a sequence of 𝐿1-

local minimizers of 𝐸𝑅 on a particular non-convex bounded domain, compare Theorem 2.2. The
candidate for our entire solution arises through a blow-up of this sequence, but care is needed
here to execute the blow-up about a point where the local minimizers take a value far from the
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Allen–Cahn solutions with triple junction structure at infinity 4167

three heteroclinics. This analysis is carried out in Section 2, culminating in Proposition 2.4, where
the blow-up limit 𝑈 is shown to be an entire, locally minimizing solution to (1.1) that avoids the
three heteroclinics at the origin.
The next step involves an analysis of the blowdowns of any local minimizer 𝑈 in the sense

of (1.13). Here we invoke the machinery of Γ-convergence, including an identification of the Γ-
limit for vector Allen–Cahn subject to a Dirichlet condition carried out recently in [16]. We argue
in Proposition 3.1 that, up to passing to subsequences, these blowdowns converge to an 𝐿1-local
minimizer 𝑢0 of the Γ-limit given in (2.5), which takes the form of a partitioning problem.
The crucial estimate in our blowdownanalysis comes in the formof an asymptotic equipartition

of energy of any local minimizer, namely,

∫
𝐵𝑅

(
𝑊(𝑈) +

1

2
|∇𝑈|2 −

√
2
√

𝑊(𝑈)|∇𝑈|) 𝑑𝑥 < 𝐶2𝑅1−𝛼 for 𝑅 ≫ 1, (1.17)

where 𝐵𝑅 is the disc of radius 𝑅 centered at the origin, and 𝐶2 > 0 and 𝛼 ∈ (0, 1) are constants
independent of𝑅. This is established in Proposition 3.3. The proof utilizes the regularity theory for
the partitioning of a ball into three sets subject to a Dirichlet condition to obtain an upper bound
on the energy, as well as a comparison between the infimum of such a partitioning problem and
a related, less standard, partitioning problem described below (1.19) to obtain a matching lower
bound.We appeal to the regularity theory for both problems as recently presented in [24].We note
that in [11] there appear other results on the asymptotic behavior of the ‘discrepancy measure,’
that is, the integrand of (1.17), but these have a different nature given that they are derived only
for critical points, not local minimizers, of the energy 𝐸.
From (1.17) and a Pohozaev identity, we are able to establish the convergence of the blowdowns

to a minimal cone via Lemmas 3.4 and 3.5 and Theorem 3.6. It is then simple to conclude that
one of three limits must arise: either (i) the minimal cone isℝ2, that is, 𝑢0 = 𝑝𝓁 for some 𝑝𝓁 ∈ 𝑃,
(ii) the minimal cone is a half-space, that is, 𝑢0 = 𝑝𝑖 and 𝑝𝑗 for 𝑖 ≠ 𝑗 on either side of a line, or
(iii) the minimal cone is given by three sectors satisfying (1.9) so that 𝑢0 is given by (1.8), compare
Proposition 3.7.
Eliminating possibility (i) is easy, but eliminating (ii)–which roughly corresponds to arguing

that at infinity, the entire solution𝑈 does not look like a heteroclinic–is muchmore delicate. This
is the content of Section 4. The proof is by contradiction. We first obtain an upper bound for the
energy that corresponds to the cost of a heteroclinic. Then we obtain a contradictory lower bound
using crucially that𝑈 was constructed in such a way that𝑈(0) is far from the three heteroclinics.
In Section 5, we compare the two partitioning problems that emerge in our proof of (1.17). As

one is somewhat non-standard, we hope this section will be of independent interest. The first
problem involves the minimization of the partitioning functional

(𝑆1, 𝑆2, 𝑆3) ↦ 𝑡11(𝜕𝑆1 ∩ 𝐵) + 𝑡21(𝜕𝑆2 ∩ 𝐵) + 𝑡31(𝜕𝑆3 ∩ 𝐵), (1.18)

where 𝐵 ⊂ ℝ2 is a ball, 𝑡1, 𝑡2, and 𝑡3 are positive numbers, and the admissible competitors
(𝑆1, 𝑆2, 𝑆3) are all partitions of 𝐵 satisfying a Dirichlet condition

𝜕𝑆𝓁 ∩ 𝜕𝐵 = 𝑓−1(𝑝𝓁) for 𝓁 = 1, 2, 3 and 𝑓 ∈ 𝐵𝑉(𝜕𝐵; 𝑃). (1.19)

(In the present context of Allen–Cahn, the coefficients 𝑡𝓁 are related to the constants 𝑐𝑖𝑗 via (3.18),
making (1.18) equivalent to (1.10).) For the second problem, one fixes any number 𝛿 > 0 and then
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4168 SANDIER and STERNBERG

minimizes the same partitioning functional (1.18) among triples (𝑆1, 𝑆2, 𝑆3) of disjoint subsets of
𝐵 again subject to (1.19), but now under the more relaxed condition that |𝐵 ⧵ ∪𝓁𝑆𝓁| ⩽ 𝛿. In other
words, the competitors only need to “almost partition” the ball. In Theorem 5.4, we prove that the
infimum of the second, more relaxed problem cannot lie more than 𝑂(𝛿1∕2) below the infimum
of the first problem.
In a personal communication in October of 2023, Nick Alikakos brought to our attention that

he and Zhiyuan Geng were working on the same type of result. Their efforts eventually led to [6]
and [7]. They obtain the same conclusion as that of our Theorem 1.1, alongwith information about
the proximity of the entire solution to the three potential wells along sequences of points going to
infinity. The methods are quite different, with their result on convergence of blowdowns relying
on a characterization ofminimizing planar partitions into three sets, see Remark 3.8. As described
above, our approach involves a new result on asymptotic equipartition of energy for local
minimizers, along with the analysis of the rather novel geometry problem of “almost partitions.”

2 CONSTRUCTION OF A CANDIDATE FOR THE ENTIRE
SOLUTION

Throughout this article, we will denote by 𝐵𝑟(𝑥) the ball inℝ2 of radius 𝑟 and center 𝑥, unless the
center is the origin, in which case we will simply write 𝐵𝑟.

2.1 𝚪-convergence results

Our approach in this articlewill at times invokeΓ-convergence results relating the energy𝐸𝑅(𝑢, Ω)

from (1.11) for a bounded domain Ω ⊂ ℝ2 to the functional

𝐸0(𝑢, Ω) ∶=
∑

1⩽𝑖<𝑗⩽3

𝑐𝑖𝑗1(𝜕∗𝑆𝑖 ∩ 𝜕∗𝑆𝑗 ∩ Ω), (2.1)

where 𝑆𝑗 ∶= 𝑢−1(𝑝𝑗) for 𝑗 = 1, 2, 3, and 𝜕∗𝑆 refers to the reduced boundary of a set 𝑆 of finite
perimeter, compare [17].
Building on previous Γ-convergence results for vector Modica-Mortola in the double-well case,

for example [14, 26, 27], the Γ-convergence of {𝐸𝑅(⋅, Ω)} to 𝐸0(⋅, Ω) for bounded Ω ⊂ ℝ𝑛 in the
setting of a multi-well potential and in the topology 𝐿1(Ω; ℝ𝑛) is established in [8].
We will also require a generalization of this Γ-convergence result to the situation where a

Dirichlet condition is specified on 𝜕Ω. Modica-Mortola type results that accommodate a Dirich-
let condition appear in [25] in the scalar setting and in [23] in the context of the closely related
Landau-deGennes energy. For our setting, however, we point to the recent result in [16]. For our
purposes, it will suffice to state it for any bounded planar domain Ω with smooth boundary and
for Dirichlet data taking values in the potential wells, though it holds more generally. To this end,
let ℎ ∈ 𝐵𝑉(𝜕Ω; 𝑃) and consider any sequence {ℎ𝑅} ⊂ 𝐻1(𝜕Ω; ℝ2) such that

||𝜕𝑠ℎ
𝑅|| ⩽ 𝐶𝑅 for some 𝐶 > 0 and ℎ𝑅 → ℎ in 𝐿1(𝜕Ω; ℝ2) as 𝑅 → ∞, (2.2)

and such that

∫
𝜕Ω

𝑅𝑊(ℎ𝑅) +
1

2𝑅
||𝜕𝑠ℎ

𝑅||2 𝑑1 < 𝐶 for some constant 𝐶 independent of 𝑅. (2.3)
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Allen–Cahn solutions with triple junction structure at infinity 4169

Next define

𝐸̃𝑅(𝑢, Ω) ∶=

{
𝐸𝑅(𝑢, Ω) if 𝑢 ∈ 𝐻1(Ω; ℝ2), 𝑢 = ℎ𝑅 on 𝜕Ω,

+∞ otherwise,
(2.4)

and define

𝐸ℎ
0
(𝑢, Ω) ∶=

⎧⎪⎨⎪⎩
√

2 𝐸0(𝑢, Ω) +

3∑
𝑗=1

∫
𝑆𝑗∩𝜕Ω

𝑑
(
𝑝𝑗, ℎ(𝑥)

)
𝑑1 if 𝑢 ∈ 𝐵𝑉(Ω; 𝑃),

+∞ otherwise,

(2.5)

where 𝐸0 is defined in (2.1) and 𝑑(⋅, ⋅) is given by (1.4). Then we have

Theorem2.1 [16].Assume {ℎ𝑅} satisfies (2.2) and (2.3). Then, as𝑅 → ∞, the sequence {𝐸̃𝑅(⋅, Ω)}has
the 𝐿1 − Γ-limit 𝐸ℎ

0
(⋅, Ω). That is, for every 𝑢 ∈ 𝐿1(Ω; ℝ2) we have the following two conditions:

(i) (Lower-semi-continuity) If {𝑣𝑅} ⊂ 𝐿1(Ω; ℝ2) is any sequence converging to 𝑢 in 𝐿1 then

lim inf
𝑅→∞

𝐸̃𝑅(𝑣𝑅, Ω) ⩾ 𝐸ℎ
0
(𝑢), (2.6)

and
(ii) (Recovery sequence) There exists a sequence {𝑉𝑅} ⊂ 𝐿1(Ω; ℝ2) converging to 𝑢 in 𝐿1 such that

lim
𝑅→∞

𝐸̃𝑅(𝑉𝑅, Ω) = 𝐸ℎ
0
(𝑢). (2.7)

2.2 Construction of the entire solution via blow-up

Our candidate for an entire solution satisfying Theorem 1.1 will be constructed through a blow-up
process, starting from an 𝐿1-local minimizer of 𝐸𝑅(⋅, Ω) for a particular choice of Ω. This local
minimizer is, in turn, constructed in [28] using Γ-convergence techniques.
To place ourselves in the setting of [28], we fix any 𝑢∗ ∈  given by (1.8) and let 𝑥1, 𝑥2 and 𝑥3 be

the three points on 𝜕𝐵1 where the three phase boundaries hit the unit circle. Then let Ω ⊂ ℝ2 be
any bounded, simply connected open set containing 𝐵1 such that 𝜕Ω is smooth and 𝜕Ω ∩ 𝜕𝐵1 =

{𝑥1, 𝑥2, 𝑥3}. Finally, assume that 𝜕Ω is strictly concave at these three points. See Figure 2
Under these assumptions on Ω, the following theorem is proven in [28], utilizing the local

minimizer property associated with Γ-convergence established in [19].

Theorem 2.2. For Ω ⊂ ℝ2 as described above there exists a number 𝛿0 > 0 such that for all 𝑅

sufficiently large, there exists an 𝐿1-local minimizer 𝑢𝑅 of 𝐸𝑅(⋅, Ω) in the sense that

𝐸𝑅(𝑢𝑅, Ω) ⩽ 𝐸𝑅(𝑣, Ω) provided ‖𝑣 − 𝑢𝑅‖𝐿1(Ω) ⩽ 𝛿0. (2.8)

Furthermore,

𝑢𝑅 → 𝑢∗ in 𝐿1(Ω) (2.9)
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4170 SANDIER and STERNBERG

F IGURE 2 The 𝐿1-local minimizer 𝑢𝑅 .

and

𝐸𝑅(𝑢𝑅, Ω) → 𝐸0(𝑢∗, Ω). (2.10)

Necessarily, such a local minimizer satisfies the Euler-Lagrange equation associated with 𝐸𝑅,
namely,

1

𝑅2
Δ𝑢𝑅 = ∇𝑢𝑊(𝑢𝑅) in Ω, (2.11)

along with homogeneous Neumann boundary conditions on 𝜕Ω.

Referring back to the three geodesics 𝜁𝑖𝑗 defined below (1.5), we note that each is a simple curve
(i.e., no self-intersections) and furthermore, any two of them, after including their endpoints, only
intersect at one of their endpoints, for example, 𝜁12 and 𝜁13 only intersect at 𝑝1. This is because
any transversal crossing would necessarily create a non-𝐶1 geodesic, violating regularity theory
and any tangential intersection would violate the uniqueness of solutions to (1.7) subject to given
initial conditions. As such, if we define Λ as the union of the closure of the images of these three
geodesics, that is,

Λ ∶= 𝑃 ∪ 𝜁12(ℝ) ∪ 𝜁23(ℝ) ∪ 𝜁13(ℝ), (2.12)

then we can identify Λ as a simple, closed curve in ℝ2 passing through 𝑝1, 𝑝2, and 𝑝3 which is
smooth except at these 3 points. See Figure 3.
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Allen–Cahn solutions with triple junction structure at infinity 4171

F IGURE 3 The closed curve Λ consisting of the three heteroclinics.

An important property of the local minimizers constructed in Theorem 2.2 is the following.

Lemma 2.3. Let {𝑢𝑅} be the sequence of 𝐿1 local minimizers established in Theorem 2.2. Then there
exists a ball𝐵′ compactly contained in 𝐵1, a point 𝑝 insideΛ and a sequence of points {𝑥𝑅} ⊂ 𝐵′ such
that 𝑢𝑅(𝑥𝑅) = 𝑝. In particular, there is a value 𝑎0 > 0 such that

dist(𝑢𝑅(𝑥𝑅), Λ) > 𝑎0.

Proof. We have that ‖𝑢𝑅 − 𝑢∗‖𝐿1(𝐵1) tends to zero as 𝑅 → +∞. Hence, by Fatou’s Lemma,

0 ≥ ∫
1

0

lim inf
𝑅→+∞

‖𝑢𝑅 − 𝑢∗‖𝐿1(𝜕𝐵𝑟) 𝑑𝑟 ≥ 0. (2.13)

Similarly, for almost every 𝑟 ∈ (0, 1), it holds that

lim inf
𝑅→+∞

𝐸𝑅(𝑢𝑅, 𝜕𝐵𝑟) < +∞. (2.14)

It follows that there exists 𝑠 ∈ (1∕4, 1∕3) and 𝑡 ∈ (1∕2, 2∕3), and a subsequence still denoted {𝑢𝑅},
such that 𝑢𝑅 → 𝑢∗ in 𝐿1(𝜕), where = 𝐵𝑡 ⧵ 𝐵𝑠 and (2.14) holds for 𝑟 = 𝑠, 𝑡.
Since it also follows from standard elliptic estimates that |∇𝑢𝑅| ⩽ 𝐶𝑅, we have all the hypothe-

ses of Theorem 2.1 satisfied on Ω =  and so we can assert the existence of a recovery sequence,
say {𝑢̃𝑅}, associatedwith 𝑢∗ and the boundary values of 𝑢𝑅 on 𝜕. It then follows from the 𝐿1-local
minimality of 𝑢𝑅 (2.8) that

(𝑡 − 𝑠)(𝑐12 + 𝑐23 + 𝑐13) ≥ lim
𝑅→+∞∫

𝑡

𝑠

𝐸𝑅(𝑢̃𝑅, 𝜕𝐵𝑟) 𝑑𝑟

≥ lim
𝑅→+∞∫

𝑡

𝑠

𝐸𝑅(𝑢𝑅, 𝜕𝐵𝑟) 𝑑𝑟 ≥ (𝑡 − 𝑠)(𝑐12 + 𝑐23 + 𝑐13).
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4172 SANDIER and STERNBERG

Using (2.13) again, we deduce the existence of some 𝑟 ∈ (1∕4, 2∕3) such that 𝑢𝑅 → 𝑢∗ in 𝐿1(𝜕𝐵𝑟)

and

𝐸𝑅(𝑢𝑅, 𝜕𝐵𝑟) → 𝑐12 + 𝑐23 + 𝑐13. (2.15)

From the convergence of {𝑢𝑅} in 𝐿1(𝜕𝐵𝑟), we deduce the existence of three angles 𝜃𝑖 , 𝑖 = 1, 2, 3,
such that going to a further subsequence 𝑢𝑅(𝑟𝑒𝑖𝜃𝑖 ) converges to the well 𝑝𝑖 for each 𝑖. It then
follows from (2.15) that 𝑢𝑅 is a minimizing sequence for the one dimensional energy 𝐸𝑅 on each
of the arcs 𝐴𝑖𝑗 , where 𝐴𝑖𝑗 is the portion of 𝜕𝐵𝑟 between the angles 𝜃𝑖 and 𝜃𝑗 .
In light of our assumption of uniqueness for the three heteroclinic connections, we may assert

that for 𝑅 sufficiently large one has

𝑢𝑅(𝐴𝑖𝑗) is uniformly close to 𝜁𝑖𝑗(ℝ) for 1 ⩽ 𝑖 < 𝑗 ⩽ 3.

Consequently, the closed curve 𝑢𝑅 (𝜕𝐵𝑟) is uniformly close to the simple, closed curve Λ.
However, since Λ is a Jordan curve, it partitions ℝ2 into an inside, say 𝑈, and an outside

unbounded set. For any 𝑝 ∈ 𝑈, the index of Λ with respect to 𝑝 is equal to ±1 and the same must
be true for the curve 𝑢𝑅 (𝜕𝐵𝑟) since it is uniformly close to Λ for 𝑅 large enough. Therefore, the
latter curve cannot be homotopic to a constant in ℝ2 ⧵ {𝑝}, and so 𝑝 ∈ 𝑢𝑅 (𝐵(0, 𝑟)) for any 𝑅 large
enough. Selecting any 𝑝 ∈ 𝑈 and any 𝑥𝑅 ∈ 𝐵(0, 𝑟) such that 𝑢𝑅(𝑥𝑅) = 𝑝, the result follows. □

We now introduce our candidate for the entire solution of Theorem 1.1 by taking a limit of
blow-ups of {𝑢𝑅}.

Proposition 2.4. Let {𝑢𝑅} be the sequence of localminimizers established in Theorem2.2. LetΩ𝑅 ∶=

{𝑥 ∶
𝑥

𝑅
+ 𝑥𝑅 ∈ Ω} where {𝑥𝑅} is the sequence introduced in Lemma 2.3. Also define 𝑉𝑅(𝑥) ∶ Ω𝑅 →

ℝ2 via 𝑉𝑅(𝑥) ∶= 𝑢𝑅(
𝑥

𝑅
+ 𝑥𝑅). Then there exists a subsequence {𝑅𝑗} → ∞ and a function 𝑈 ∶ ℝ2 →

ℝ2 such that

𝑉𝑅𝑗 → 𝑈 in 𝐶2 on compact subsets of ℝ2 (2.16)

where 𝑈 solves (1.1). Furthermore, 𝑈 is a local minimizer of 𝐸 in the sense of (1.13). Finally, we have

dist(𝑈(0), Λ) > 0. (2.17)

Remark 2.5. For the remainder of the paper, when we say that a function 𝑈 is a local minimizer
of 𝐸, we will always mean in the sense of (1.13).

Proof. Assumption (1.3) implies through the maximum principle applied to |𝑢𝑅|2 that‖𝑢𝑅‖𝐿∞(Ω) ⩽ 𝑀 and so the same is true of {𝑉𝑅}. In light of (2.11) we observe that 𝑉𝑅 satisfies (1.1)
on Ω𝑅. Then standard elliptic estimates and bootstrapping leads, in particular, to uniform 𝐶2,𝛼

bounds on compact sets for {𝑉𝑅}. The conclusion (2.16) follows as does the assertion that𝑈 solves
(1.1).
To establish the localminimality of𝑈, fix any compact set𝐾 and let 𝑣 ∶ ℝ2 → ℝ2 be any smooth

function supported in 𝐾. Let 𝑣𝑅(𝑥) ∶= 𝑣 (𝑅(𝑥 − 𝑥𝑅)) so that 𝑣𝑅 is supported in 𝑥𝑅 +
1

𝑅
𝐾. Then we
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Allen–Cahn solutions with triple junction structure at infinity 4173

have

∫
𝐾

|𝑣𝑅| 𝑑𝑥 ⩽
(

max
𝐾
|𝑣|) 1

𝑅2
|𝐾| where |𝐾| = Lebesgue measure of 𝐾.

Now taking 𝑅 large enough so that (max𝐾 |𝑣|) 1

𝑅2
|𝐾| <

𝛿0

2
we can invoke (2.8) to conclude that

0 ⩽ 𝐸𝑅(𝑢𝑅 + 𝑣𝑅, Ω) − 𝐸𝑅(𝑢𝑅, Ω)

= 𝐸𝑅

(
𝑢𝑅 + 𝑣𝑅, 𝑥𝑅 +

1

𝑅
𝐾

)
− 𝐸𝑅

(
𝑢𝑅, 𝑥𝑅 +

1

𝑅
𝐾

)
=

1

𝑅

(
𝐸(𝑉𝑅 + 𝑣, 𝐾) − 𝐸(𝑉𝑅, 𝐾)

)
.

Passing to the limit 𝑅𝑗 → ∞ in the inequality 𝐸(𝑉𝑅𝑗 , 𝐾) ⩽ 𝐸(𝑉𝑅𝑗 + 𝑣, 𝐾) we obtain (1.13).
Property (2.17) follows from Lemma 2.3 in light of the uniform convergence of 𝑉𝑅𝑗 → 𝑈. □

We conclude this section with a simple but crucial estimate on 𝑈 given in the following:

Lemma 2.6. There exists a constant 𝐶1 = 𝐶1(𝑊) such that for every 𝑅 > 0 one has

𝐸(𝑈, 𝐵𝑅) ⩽ 𝐶1 𝑅. (2.18)

Proof. Wemay as well assume 𝑅 > 1. Then we appeal to the local minimality of 𝑈, namely (1.13),
with 𝑣 chosen to equal, say, 𝑝1 on 𝐵𝑅−1 and then 𝑣 smoothly interpolating between 𝑝1 and 𝑈 on
the annulus 𝐵𝑅 ⧵ 𝐵𝑅−1. Since 𝐸(𝑣, 𝐵𝑅−1) = 0 and 𝑈 and ∇𝑈 are uniformly bounded in terms of
𝑊 on the annulus, the result follows. □

3 BLOWDOWNANALYSIS

In this section, we will characterize the limits of the blowdowns of any local minimizer of 𝐸. For
this purpose we will need the following compactness result associated with local minimizers of 𝐸.

Proposition 3.1. Let 𝑈 ∶ ℝ2 → ℝ2 be a local minimizer of 𝐸. We have:

(i) Let {𝑅𝑗} → ∞ be any sequence. Then there exists a subsequence {𝑅𝑗𝑘
} and a function 𝑢0 ∈

𝐵𝑉loc

(
ℝ2; 𝑃

)
such that the blowdowns {𝑈𝑅𝑗𝑘

} of 𝑈 satisfy

𝑈𝑅𝑗𝑘
→ 𝑢0 in 𝐿1

loc
(ℝ2; ℝ2). (3.1)

(ii) After perhaps passing to a further subsequence (still denoted by {𝑅𝑗𝑘
}), one has for every 𝓁 ∈ ℤ+

there exists a radius 𝜆𝓁 ∈ [𝓁, 𝓁 + 1] such that

sup
𝑘

(
∫

𝜕𝐵𝜆𝓁

𝑅𝑗𝑘
𝑊(𝑈𝑅𝑗𝑘

) +
1

2𝑅𝑗𝑘

|||∇𝑈𝑅𝑗𝑘

|||2 𝑑1

)
⩽ 3𝐶1, (3.2)

where 𝐶1 is the constant appearing in Lemma 2.6.
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4174 SANDIER and STERNBERG

Furthermore,
𝑈𝑅𝑗𝑘

→ 𝑡𝑟𝑎𝑐𝑒 𝑜𝑓 𝑢0 in 𝐿1(𝜕𝐵𝜆𝓁
; ℝ2). (3.3)

Lastly, 𝑢0 is a local minimizer of 𝐸0(⋅, ℝ2) given in (2.1) in the sense that

𝐸0(𝑢0, 𝐾) ⩽ 𝐸0(𝑣, 𝐾) (3.4)

for every compact 𝐾 ⊂ ℝ2 and every 𝑣 ∈ 𝐵𝑉loc(ℝ
2; 𝑃) such that 𝑣 = 𝑢0 on ℝ2 ⧵ 𝐾.

Proof. Since 𝐸(𝑈, 𝐵𝜆𝑅) = 𝑅 𝐸𝑅(𝑈𝑅, 𝐵𝜆), it then follows from Lemma 2.6 that

𝐸𝑅(𝑈𝑅, 𝐵𝜆) ⩽ 𝜆𝐶1 for any 𝜆 > 0. (3.5)

Hence, the sequence {𝑈𝑅} has uniformly bounded energy on any ball 𝐵𝜆 and so the proof of (i)
follows from [8], Proposition 4.1 using a diagonalization procedure. To prove (ii), we note that
from (3.5), in particular, it follows that

∫
2

1
∫

𝜕𝐵𝜆

𝑅𝑗𝑘
𝑊(𝑈𝑅𝑗𝑘

) +
1

2𝑅𝑗𝑘

|||∇𝑈𝑅𝑗𝑘

|||2 𝑑1 𝑑𝜆 < 2𝐶1 for all 𝑘. (3.6)

Letting

𝑓𝑘(𝜆) ∶= ∫
𝜕𝐵𝜆

𝑅𝑗𝑘
𝑊(𝑈𝑅𝑗𝑘

) +
1

2𝑅𝑗𝑘

|||∇𝑈𝑅𝑗𝑘

|||2 𝑑1,

let us suppose that (3.2) is false for 𝓁 = 1. Then necessarily, for every 𝜆 ∈ [1, 2] it would hold that

lim inf
𝑘→∞

𝑓𝑘(𝜆) ⩾ 3𝐶1. (3.7)

Then, by Fatou’s Lemma,

2𝐶1 ⩾ lim inf
𝑘→∞ ∫

2

1

𝑓𝑘(𝜆) 𝑑𝜆 ⩾ ∫
2

1

lim inf
𝑘→∞

𝑓𝑘(𝜆) 𝑑𝜆 ⩾ 3𝐶1,

and a contradiction is reached. Passing to a further subsequence, the existence of a function ℎ ∈

𝐵𝑉(𝜕𝐵𝜆1
; 𝑃) such that𝑈𝑅𝑗𝑘

→ ℎ in 𝐿1(𝜕𝐵𝜆1
; ℝ2) follows from (3.2) using the same compactness

argument from [8], applied now to the energy restricted to the circle 𝜕𝐵𝜆1
with the full gradient

replaced by the tangential gradient.
To establish (3.3) and the local minimality of 𝑢0 we observe from the Γ-convergence result The-

orem 2.1 that 𝑢0 is the limit of minimizers of 𝐸̃𝑅𝑗𝑘
(⋅, 𝐵𝜆1

). Hence, 𝑢0 must necessarily minimize
𝐸ℎ

0
(⋅, 𝐵𝜆1

). Indeed, for any 𝑣 ∈ 𝐵𝑉(𝐵𝜆1
; 𝑃) one has

𝐸ℎ
0
(𝑣, 𝐵𝜆) = lim

𝑘→∞
𝐸̃𝑅𝑗𝑘

(𝑉𝑘, 𝐵𝜆1
) ⩾ lim inf

𝑘→∞
𝐸̃𝑅𝑗𝑘

(𝑈𝑅𝑗𝑘
, 𝐵𝜆1

) ⩾ 𝐸ℎ
0
(𝑢0, 𝐵𝜆1

),

where {𝑉𝑘} is the recovery sequence associated with 𝑣 guaranteed to exist by Theorem 2.1. We
note that the first inequality above follows from the local minimality of𝑈𝑅𝑗𝑘

in the sense of (1.13),
since by construction, 𝑉𝑘 = 𝑈𝑅𝑗𝑘

on 𝜕𝐵𝜆1
.
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Allen–Cahn solutions with triple junction structure at infinity 4175

It follows that in fact, 𝑢0 = ℎ on 𝜕𝐵𝜆1
, since, for example, if ℎ = 𝑝1 along some arc 𝛾 ⊂ 𝜕𝐵𝜆1

,
while the trace of 𝑢0 = 𝑝2 on 𝛾, then one could produce a lower energy competitor 𝑣 for the energy
𝐸ℎ

0
(⋅, 𝐵𝜆1

) by setting 𝑣 = 𝑝1 inside the slice of 𝐵𝜆1
bounded by 𝛾 and the secant line 𝐿 connecting

the endpoints of 𝛾. Then

𝐸ℎ
0
(𝑢0, 𝐵𝜆1

) − 𝐸ℎ
0
(𝑣, 𝐵𝜆1

) = 𝑑(𝑝1, 𝑝2)
(1(𝛾) − 1(𝐿)

)
> 0,

in light of the strict convexity of 𝐵𝜆1
, thus contradicting the minimality of 𝑢0. Necessarily then, 𝑢0

is also a minimizer of 𝐸0 among competitors agreeing with 𝑢0 on 𝜕𝐵𝜆1
.

We conclude the proof by noting that the same logic allows us to select a value 𝜆𝓁 ∈ [𝓁, 𝓁 +

1] for every 𝓁 ∈ ℤ+ and thus to conclude that 𝑢0 minimizes 𝐸0 in every ball 𝐵𝜆𝓁
among all

competitors that agree with 𝑢0 on 𝜕𝐵𝜆𝓁
. Hence, (3.4) holds. □

3.1 Pohozaev and asymptotic equipartition of energy

With an eye towards utilizing a Pohozaev identity, we next introduce the stress-energy tensor
associated with a solution 𝑈 ∶ ℝ2 → ℝ2 to (1.1):

𝑇𝑖𝑗 = 𝑈𝑥𝑖
𝑈𝑥𝑗

− 𝛿𝑖𝑗

(
1

2
|∇𝑈|2 + 𝑊(𝑈)

)
.

A standard calculation yields that𝑇 is divergence-free. From this fact we get the Pohozaev identity
on the ball 𝐵𝑅:

∫
𝐵𝑅

(
𝑥𝑖𝑇𝑖𝑗

)
𝑥𝑗

𝑑𝑥 = ∫
𝐵𝑅

𝛿𝑖𝑗𝑇𝑖𝑗 + 𝑥𝑖(𝑇𝑖𝑗)𝑥𝑗
𝑑𝑥 = ∫

𝐵𝑅

tr 𝑇 𝑑𝑥.

Applying the divergence theorem leads to

𝑅 ∫
𝜕𝐵𝑅

𝜈𝑖𝑇𝑖𝑗𝜈𝑗 𝑑1 = −2∫
𝐵𝑅

𝑊(𝑈) 𝑑𝑥,

where 𝜈 = 𝑥∕𝑅 is the outer unit normal to 𝐵𝑅. Using the definition of 𝑇 this can be written as

1

2 ∫
𝜕𝐵𝑅

1

2
|𝑈𝜈|2 −

1

2
|𝑈𝑠|2 − 𝑊(𝑈) 𝑑1 = −

1

𝑅 ∫
𝐵𝑅

𝑊(𝑈) 𝑑𝑥, (3.8)

where 𝑈𝑠 denotes the tangential derivative of 𝑈 along 𝜕𝐵𝑅. Through (3.8) we immediately obtain
the following identity.

Proposition 3.2. Any entire solution 𝑈 to (1.1) satisfies

𝑑

𝑑𝑅

(
1

𝑅 ∫
𝐵𝑅

𝑊(𝑈) 𝑑𝑥

)
=

1

2𝑅 ∫
𝜕𝐵𝑅

1

2
|𝑈𝜈|2 −

1

2
|𝑈𝑠|2 + 𝑊(𝑈) 𝑑1 (3.9)

for all 𝑅 > 0.
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4176 SANDIER and STERNBERG

Our aim is to obtain a kind of asymptotic monotonicity result. To this end, we define

𝑊̃(𝑅) ∶=
1

𝑅 ∫
𝐵𝑅

𝑊(𝑈) 𝑑𝑥. (3.10)

Then for any two values 0 < 𝑅1 < 𝑅2 we integrate (3.9) to find that

𝑊̃(𝑅2) − 𝑊̃(𝑅1) = ∫
𝑅2

𝑅1

1

2𝑟 ∫
𝜕𝐵𝑟

1

2
|𝑈𝜈|2 −

1

2
|𝑈𝑠|2 + 𝑊(𝑈) 𝑑1 𝑑𝑟

= ∫
𝐵𝑅2

⧵𝐵𝑅1

1

2|𝑥|
(

1

2
|𝑈𝜈|2 −

1

2
|𝑈𝑠|2 + 𝑊(𝑈)

)
𝑑𝑥

= ∫
𝐵𝑅2

⧵𝐵𝑅1

1

2|𝑥|
(

𝑊(𝑈) −
1

2
|∇𝑈|2 + |𝑈𝜈|2)𝑑𝑥. (3.11)

Hence,

𝑊̃(𝑅2) − 𝑊̃(𝑅1) ⩾ −∫
𝐵𝑅2

⧵𝐵𝑅1

1

2|𝑥| ||||𝑊(𝑈) −
1

2
|∇𝑈|2|||| 𝑑𝑥

⩾ −
1

2𝑅1 ∫
𝐵𝑅2

⧵𝐵𝑅1

(√
𝑊(𝑈) −

1√
2
|∇𝑈|)(√𝑊(𝑈) +

1√
2
|∇𝑈|) 𝑑𝑥

⩾ −
1

2𝑅1

⎧⎪⎨⎪⎩∫𝐵𝑅2
⧵𝐵𝑅1

(√
𝑊(𝑈) −

1√
2
|∇𝑈|)2

𝑑𝑥

⎫⎪⎬⎪⎭
1∕2⎧⎪⎨⎪⎩∫𝐵𝑅2

⧵𝐵𝑅1

(√
𝑊(𝑈) +

1√
2
|∇𝑈|)2

𝑑𝑥

⎫⎪⎬⎪⎭
1∕2

.

(3.12)

Now in light of (2.18), we have that

⎧⎪⎨⎪⎩∫𝐵𝑅2
⧵𝐵𝑅1

(√
𝑊(𝑈) +

1√
2
|∇𝑈|)2

𝑑𝑥

⎫⎪⎬⎪⎭
1∕2

⩽
√

2

{
∫

𝐵𝑅2
⧵𝐵𝑅1

(
𝑊(𝑈) +

1

2
|∇𝑈|2)𝑑𝑥

}1∕2

⩽
√

2𝐶1𝑅
1∕2

2
, (3.13)

so that (3.12) implies

𝑊̃(𝑅2) − 𝑊̃(𝑅1) ⩾ −

√
𝐶1

2

𝑅
1∕2

2

𝑅1

⎧⎪⎨⎪⎩∫𝐵𝑅2
⧵𝐵𝑅1

(√
𝑊(𝑈) −

1√
2
|∇𝑈|)2

𝑑𝑥

⎫⎪⎬⎪⎭
1∕2

. (3.14)

Inequality (3.14) shows that we can achieve an asymptotic monotonicity-type formula provided
we can establish a sufficiently sharp measure of equipartition of energy.
The key estimate we will show is:
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Allen–Cahn solutions with triple junction structure at infinity 4177

Proposition 3.3. There exist constants 𝐶2 > 0 and 𝛼 ∈ (0, 1), such that for any local minimizer 𝑈

of 𝐸 and any 𝑅 sufficiently large one has the estimate

∫
𝐵𝑅

(√
𝑊(𝑈) −

1√
2
|∇𝑈|)2

𝑑𝑥 < 𝐶2𝑅1−𝛼. (3.15)

Our proof of Proposition 3.3 will involve the construction of a recovery sequence with a quan-
titative error bound, corresponding to a minimizer of 𝐸0(⋅, 𝐵) in a ball 𝐵 subject to a general
Dirichlet condition ℎ ∈ 𝐵𝑉(𝜕𝐵; 𝑃), that is, among partitions {𝑆1, 𝑆2, 𝑆3} of 𝐵 satisfying

𝜕𝑆𝓁 ∩ 𝜕𝐵 = ℎ−1(𝑝𝓁) for 𝓁 = 1, 2, 3. (3.16)

For this upper bound construction we will require a rather complete characterization of mini-
mizers of this partitioning problem, to be found in Theorem 5.1 and Corollary 5.2. Our proof of
Proposition 3.3will also require a sharp lower bound for the energy of a related but somewhat non-
standard partitioning problem. To state it, we first observe that given a partition, say {𝑆1, 𝑆2, 𝑆3} of
a ball 𝐵, its cost as given by 𝐸0 can be equivalently expressed as

𝐸0(𝑆1, 𝑆2, 𝑆3) = 𝑡11(𝜕𝑆1 ∩ 𝐵) + 𝑡21(𝜕𝑆2 ∩ 𝐵) + 𝑡31(𝜕𝑆3 ∩ 𝐵), (3.17)

where the numbers 𝑡1, 𝑡2, and 𝑡3 are the solution to the system

𝑡1 + 𝑡2 = 𝑐12, 𝑡1 + 𝑡3 = 𝑐13, 𝑡2 + 𝑡3 = 𝑐23.

Solving, we find

𝑡1 =
1

2
(𝑐12 + 𝑐13 − 𝑐23), 𝑡2 =

1

2
(𝑐12 + 𝑐23 − 𝑐13), 𝑡3 =

1

2
(𝑐13 + 𝑐23 − 𝑐12), (3.18)

and so we note that each 𝑡𝑗 is positive in light of the assumption (1.5).
Then for any 𝛿 > 0 and any ℎ ∈ 𝐵𝑉(𝜕𝐵; 𝑃)we consider theminimization of𝐸0 as given by (3.17)

among all disjoint subsets {𝑆1, 𝑆2, 𝑆3} of 𝐵 satisfying the Dirichlet condition (3.16), along with the
constraint ||||𝐵 ⧵

(
∪3

𝓁=1
𝑆𝓁

)|||| ⩽ 𝛿. (3.19)

We will require a good bound from below for the infimum of 𝐸0 subject to (3.19) and Dirichlet
data ℎ ∈ 𝐵𝑉(𝜕𝐵; 𝑃) in terms of the infimum of 𝐸0 subject to the same Dirichlet condition but for
actual partitions of 𝐵, that is, with 𝛿 = 0 in (3.19). This is presented in Theorem 5.4.

Proof of Proposition 3.3. The proof of (3.15) will follow by first establishing an upper bound of the
form

∫
𝐵1

𝑅𝑊(𝑈𝑅) +
1

2𝑅
|∇𝑈𝑅|2 𝑑𝑥 ⩽ 𝑚𝑅 +

𝐶

𝑅𝛼
for some 𝐶 > 0 and 𝛼 ∈ (0, 1), (3.20)
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4178 SANDIER and STERNBERG

where 𝑚𝑅, defined below in (3.38), represents the minimal value of the partitioning problem 𝐸0

subject to a certain Dirichlet condition related to𝑈𝑅. Thenwewill utilize Theorem 5.4 to establish
a matching lower bound of the form

√
2∫

𝐵1

√
𝑊(𝑈𝑅)|∇𝑈𝑅| 𝑑𝑥 ⩾ 𝑚𝑅 −

𝐶′

𝑅𝛼
for some 𝐶′ > 0. (3.21)

If we rephrase the desired upper and lower bounds (3.20) and (3.21) in terms of 𝑈 instead of its
blowdowns, then the upper bound we seek takes the form

∫
𝐵𝑅

𝑊(𝑈) +
1

2
|∇𝑈|2 𝑑𝑥 ⩽ 𝑅𝑚𝑅 + 𝐶𝑅1−𝛼, (3.22)

and the lower bound we want takes the form√
2∫

𝐵𝑅

√
𝑊(𝑈)|∇𝑈| 𝑑𝑥 ⩾ 𝑅𝑚𝑅 − 𝐶′𝑅1−𝛼. (3.23)

The desired inequality (3.15) then follows by combining (3.22) and (3.23).
Upper bound construction.
Since by Proposition 2.4, 𝑈𝑅 minimizes 𝐸𝑅(⋅, 𝐵1) among competitors sharing its boundary val-

ues on 𝜕𝐵1, we can obtain the upper bound through a construction of a low-energy competitor. In
essence, this is akin to the recovery sequence construction for vector Allen–Cahn with a multi-
well potential, adapted to handle a Dirichlet condition, as in the recent work [16]. The difference
is that here this must be made quantitativewith an error that is𝑂(𝑅−𝛼). However, unlike the gen-
eral recovery sequence construction, here we only need to build it for an 𝐸0-minimizing partition
that yields the value 𝑚𝑅 in the problem (3.38) defined below.
To begin the pursuit of an upper bound, we first note that by (2.18) we have for any 𝑅 > 0:

∫
2𝑅

𝑅

𝐸(𝑈, 𝜕𝐵𝑟) 𝑑𝑟 = 𝐸(𝑈, 𝐵2𝑅 ⧵ 𝐵𝑅) ⩽ 2𝐶1𝑅.

Hence, by the Mean Value Theorem, there exists a value 𝑅′ ∈ (𝑅, 2𝑅) such that

𝐸(𝑈, 𝜕𝐵𝑅′) ⩽ 2𝐶1. (3.24)

If we can establish (3.15) for 𝑅′, then replacing 𝐶2 by 21−𝛼𝐶2, we will have established (3.15) for 𝑅

as well. Thus, with no loss of generality, we may assume that 𝑅 satisfies (3.24) as well. Phrasing
this condition in terms of the blowdowns {𝑈𝑅}, the assumed bound takes the form

𝐸𝑅(𝑈𝑅, 𝜕𝐵1) ⩽ 2𝐶1. (3.25)

The upper bound estimate (3.20) will result from the construction of a low-energy competitor for
the minimization of 𝐸𝑅(⋅, 𝐵1) that agrees with the blown down minimizer 𝑈𝑅 on 𝜕𝐵1.
From (3.25), it follows that off of a small set on 𝜕𝐵1, the function 𝑈𝑅 must stay near one of the

three wells 𝑝1, 𝑝2 or 𝑝3. We now use this fact to identify a partition of 𝜕𝐵1 into three sets.
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Allen–Cahn solutions with triple junction structure at infinity 4179

We note that in light of the non-degeneracy assumption (1.2), there exists a positive number 𝛽,
depending only on 𝑊, such that

𝑊 is strictly convex for |||𝑝 − 𝑝𝑗
||| < 𝛽, 𝑗 = 1, 2, 3. (3.26)

and furthermore,

𝑏

2
|𝑝𝓁 − 𝑞|2 ⩽ 𝑊(𝑞) ⩽ 2𝑏|𝑝𝓁 − 𝑞|2. (3.27)

Then let us define the set

𝐴𝑅 ∶=

{
𝑥 ∈ 𝜕𝐵1 ∶ 𝑑(𝑈𝑅(𝑥), 𝑃) >

𝛽

2

}
. (3.28)

This set is necessarily a union of open arcs. If such an arc 𝐼 possesses a point 𝑥 such that
𝑑(𝑈𝑅(𝑥), 𝑃) ⩾ 𝛽, then since at the endpoints of 𝐼, necessarily 𝑈𝑅 is at metric distance 𝛽

2
from

𝑃, it must be the case that 𝐸𝑅 (𝑈𝑅, 𝐼) ⩾ 𝐶, for some positive constant 𝐶 depending only on 𝑊. We
define 𝑇𝑅 to be the union of all such arcs, and so in light of (3.25), we can assert that 𝑇𝑅 consists of
a finite union of arcs whose total number is bounded by a constant depending only on 𝑊. It then
follows from ∫

𝑇𝑅
𝑅𝑊(𝑈𝑅) 𝑑1 ⩽ 2𝐶1 that

1(𝑇𝑅) ⩽ 𝐶𝑅−1. (3.29)

On 𝜕𝐵1 ⧵ 𝑇𝑅 we note that the metric distance from 𝑈𝑅 to 𝑃 is less than 𝛽.
Boundary layer construction on the annulus 𝐵1 ⧵ 𝐵1−𝜌

We begin with the construction of a boundary layer on 𝐵1 ⧵ 𝐵1−𝜌, where 𝜌 will be determined
later. However, we will insist that

𝜌 ⩾
1

𝑅
. (3.30)

The number of disjoint arcs in 𝑇𝑅 is bounded by a constant depending on𝑊 only, hence the same
is true for the complement of 𝑇𝑅. We split this complement into two sets; 𝑆𝑅 and the remainder,
the set 𝑆𝑅 being the union of arcs having length less than 𝜆, where 𝜆 ≤ 1 is another parameter to
be determined later. Let us denote the arcs in the remainder by say {𝐼𝑘} for 𝑘 = 1, 2, … , 𝑁𝑅, where
𝑁𝑅 is bounded by a constant 𝑁0 = 𝑁0(𝑊). Then each 𝐼𝑘 will be of length at least 𝜆 and can be
naturally associated with one of the wells in the sense that 𝑈𝑅 remains within a metric distance
of 𝛽 from that well throughout 𝐼𝑘. We now can expand each 𝐼𝑘 to a slightly larger arc 𝐼𝑘, absorbing
arcs of 𝑇𝑅 and of 𝑆𝑅 in the process, so as to form a partition of 𝜕𝐵1, where in light of (3.29), we
know that

1(𝜕𝐵1 ⧵ ∪𝐼𝑘) = 1(∪𝐼𝑘 ⧵ ∪𝐼𝑘) ⩽ 𝐶(𝑅−1 + 𝜆). (3.31)

We note that there is some ambiguity in terms of the assignment of an element of 𝑃 to arcs com-
prising ∪𝐼𝑘 ⧵ ∪𝐼𝑘. That is, if say 𝐼𝑘 is associated with 𝑝1 and an adjacent arc 𝐼𝑘+1 is associated
with 𝑝2, then one can either expand 𝐼𝑘 into the gap between them and assign the value 𝑝1 to the
resulting 𝐼𝑘 or expand 𝐼𝑘+1 into the gap and assign the value 𝑝2 to the resulting 𝐼𝑘+1. As well shall
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4180 SANDIER and STERNBERG

see, due to the smallness of these gaps guaranteed by (3.31), it will not matter which choice we
make here.
On 𝜕𝐵1−𝜌 we define a function 𝑉𝑅(1 − 𝜌, 𝜃) as follows. If 𝑒𝑖𝜃 ∈ 𝐼𝑘 and 𝑒𝑖𝜃 is at least a distance

1

𝑅
from the endpoints of 𝐼𝑘, we take 𝑉𝑅(1 − 𝜌, 𝜃) to be equal to whichever well is associated with

𝐼𝑘. On the rest of 𝜕𝐵1−𝜌, we define 𝑉𝑅(1 − 𝜌, 𝜃) through linear interpolation in 𝜃, so that

||||𝜕𝑉

𝜕𝜃
(1 − 𝜌, 𝜃)

|||| ⩽ 𝐶𝑅. (3.32)

Now we define 𝑉𝑅 in the annulus 1,1−𝜌 ∶= 𝐵1 ⧵ 𝐵1−𝜌 taking 𝑉𝑅(𝑟, 𝜃) to linearly interpolate
in 𝑟 between 𝑈𝑅(1, 𝜃) and 𝑉𝑅(1 − 𝜌, 𝜃) for each 𝜃. We estimate the energy in this annulus as
follows:
We begin with the cost of interpolation from 𝑈𝑅(1, 𝜃) to 𝑉𝑅(1 − 𝜌, 𝜃) for 𝑒𝑖𝜃 ∈ ∪

𝑁𝑅

𝑘=1
𝐼𝑘. In view

of (3.26) and the fact that 𝑉𝑅(1 − 𝜌, 𝜃) is a constant equal to one of the wells on each 𝐼𝑘, we can
invoke the convexity of all terms in the energy to assert that for any 𝑡 ∈ (0, 1) one has

𝑊(𝑉𝑅(1 − 𝑡𝜌, 𝜃)) ⩽ (1 − 𝑡)𝑊(𝑈𝑅(1, 𝜃)) and
||||𝜕𝑉𝑅

𝜕𝜃
(1 − 𝑡𝜌, 𝜃)

||||
2

⩽ (1 − 𝑡)
||||𝜕𝑈𝑅

𝜕𝜃
(1, 𝜃)

||||
2

. (3.33)

Estimating the radial derivative, we find

||||𝜕𝑉𝑅

𝜕𝑟
(𝑟, 𝜃)

||||
2

⩽
|𝑈𝑅(1, 𝜃) − 𝑝𝓁|2

𝜌2
⩽ 𝐶

𝑊(𝑈𝑅(1, 𝜃))

𝜌2
for some 𝓁 ∈ {1, 2, 3}, (3.34)

for any 𝑟 ∈ (1 − 𝜌, 1). Combining (3.25), (3.33), and (3.34), we integrate over that part of the
annulus1,1−𝜌 corresponding to the set of arcs ∪

𝑁𝑅

𝑘=1
𝐼𝑘, say 𝐴′

1,1−𝜌
, to obtain

𝐸𝑅

(
𝑉𝑅, 𝐴′

1,1−𝜌

)
⩽ 𝐶

(
𝜌 +

1

𝑅2𝜌

)
. (3.35)

Now we turn to an estimate of the energetic cost in that portion of the annulus, say 𝐴′′
1,1−𝜌

,
corresponding to arcs in the complement of∪𝑁𝑅

𝑘=1
𝐼𝑘. Estimating the tangential derivative in𝐴′′

1,1−𝜌
,

we find in view of (3.32) that

||||𝜕𝑉𝑅

𝜕𝜃
(𝑟, 𝜃)

||||
2

⩽ 𝐶𝑅2,

and for the normal derivative we have

||||𝜕𝑉𝑅

𝜕𝑟
(𝑟, 𝜃)

||||
2

⩽ 𝐶
1

𝜌2
.

Invoking (3.31), for the potential term we can then estimate that

∫
𝐴′′

1,1−𝜌

𝑅𝑊(𝑉𝑅) 𝑑𝑥 ⩽ 𝐶𝑅
|||𝐴′′

1,1−𝜌
||| ⩽ 𝐶𝑅𝜌

(
𝑅−1 + 𝜆

)
,
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Allen–Cahn solutions with triple junction structure at infinity 4181

and so

𝐸𝑅

(
𝑉𝑅, 𝐴′′

1,1−𝜌

)
⩽ 𝐶𝜌

(
1

𝑅
+ 𝜆

)(
𝑅 +

1

𝑅𝜌2

)
= 𝐶

(
𝜌 +

1

𝑅2𝜌
+ 𝜌𝜆𝑅 +

𝜆

𝑅𝜌

)
. (3.36)

Therefore, summing (3.35) and (3.36), we see that, since 𝜆 ≤ 1 and 𝑅 ≥ 1,

𝐸𝑅

(
𝑉𝑅,1,1−𝜌

)
⩽ 𝐶

(
𝜌 +

1

𝑅𝜌
+ 𝜌𝜆𝑅

)
. (3.37)

Construction of the competitor in 𝐵1−𝜌

Let us now define𝑉𝑅 in the ball𝐵1−𝜌. For this, wewill introduce theminimization of𝐸0 subject
to the Dirichlet condition ℎ𝑅 ∶ 𝜕𝐵1−𝜌 → 𝑃 satisfying ℎ𝑅(𝑥) = 𝑝𝓁 if 𝑥∕ |𝑥| ∈ 𝐼𝑘, where 𝐼𝑘 is the arc
associated with 𝑝𝓁 and 𝐼𝑘 is its expansion, as described above (3.31):

𝑚𝑅 ∶= inf
{

𝐸0(𝑢, 𝐵1−𝜌) ∶ 𝑢 ∈ 𝐵𝑉(𝐵1−𝜌; 𝑃), 𝑢 = ℎ𝑅 on 𝜕𝐵1−𝜌

}
. (3.38)

Let 𝑢0 denote a minimizer for (3.38). By Theorem 5.1 we know that {𝑢0 = 𝑝𝓁} is a union of no
more than 𝑁0 convex open sets, which we refer to as chambers. We emphasize that the constant
𝑁0 = 𝑁0(𝑊) is independent of 𝑅. Furthermore, each chamber is bounded by a finite number of
line segments and at least one boundary arc from the collection {𝐼𝑘}. Lastly, from Corollary 5.2,
the number of triple junctions in the configuration 𝑢0 is bounded by a constant depending only
on 𝑁0, thus again a number independent of 𝑅.
Because each chamber contains the convex hull of (1 − 𝜌)𝐼𝑘 for some 𝑘 and each 𝐼𝑘 has

arclength at least 𝜆, the thickness of each chamber is bounded below by 𝐶𝜆2, where the thickness
is defined as theminimal distance between any pair of parallel supporting planes for the chamber.
Themap𝑉𝑅 is defined in each chamber, sayΩ, as follows: Consider any segment 𝐼 of 𝜕Ω ∩ 𝐵1−𝜌

having length at least 2𝜂, where 𝜂 is to be determined later, but where we require that

𝜂 ⩾
1

𝑅
. (3.39)

We then consider a sub-segment 𝐽 ⊂ 𝐼 of length smaller by 𝜂 > 0 on each side of 𝐼 and consider
a rectangle in Ω with base 𝐽 and height ℎ > 0. It is clear that if ℎ > 0 is small enough, then these
rectangles are disjoint and included in Ω. We now quantify how large ℎ is allowed to be for this
property to still hold. We will always assume the bound

2ℎ ≤ 𝜂. (3.40)

To this aim, assume ℎ ∈ (0, 𝜂∕2] is the largest height for which it holds that the rectangles
are mutually disjoint and included in Ω. For this value of ℎ, if it is different from 𝜂∕2, either
two rectangles make contact with each other, or one rectangle makes contact with 𝜕𝐵1−𝜌. In any
case, let 𝑝 be the projection of the contact point onto 𝐽. We denote by 𝑎 and 𝑏 the endpoints
of 𝐼. Necessarily, there exists a point 𝑞 ∈ 𝜕Ω ⧵ 𝐼 such that |𝑝 − 𝑞| ⩽ 2ℎ. Moreover, choosing the
horizontal axis to be the line 𝐿 through 𝑎 and 𝑏, since the point 𝑝 is at distance at least 𝜂 from
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4182 SANDIER and STERNBERG

F IGURE 4 The configuration described above when two rectangles first touch.

both 𝑎 and 𝑏, and since 2ℎ ≤ 𝜂, we have that the first coordinate of 𝑞 is between those of 𝑎

and 𝑏.
Bringing in from infinity a line parallel to𝐿 from thehalf-plane containing 𝑞 until it first touches

Ω, we denote this first contact point by 𝑞′, and we denote by 𝑝′ the orthogonal projection of 𝑞′

onto 𝐿. Since 𝑞 ∈ 𝜕Ω, it cannot lie inside the triangle formed by 𝑎, 𝑏, and 𝑞′. This implies that
the segment [𝑝𝑞] intersects either [𝑎𝑞′] or [𝑏𝑞′]. We assume the former, which implies that 𝑞 is
further away from 𝑝 than 𝛼, the orthogonal projection of 𝑝 onto the line containing 𝑎 and 𝑞′. So
we have

|𝑝 − 𝛼| ⩽ |𝑝 − 𝑞| ⩽ 2ℎ. (3.41)

See Figure 4.
The triangles 𝑎𝛼𝑝 and 𝑎𝑞′𝑝′ are similar. Therefore

|𝑝 − 𝛼||𝑎 − 𝑝| =
||𝑝′ − 𝑞′|||𝑎 − 𝑞′| . (3.42)

Now ||𝑝′ − 𝑞′|| is at least the thickness of Ω so

||𝑝′ − 𝑞′|| ⩾ 𝐶𝜆2.

Furthermore, since 𝑎 and 𝑞′ lie in 𝐵1−𝜌 we know ||𝑎 − 𝑞′|| ⩽ 2, and since 𝑝 ∈ 𝐽, necessarily|𝑝 − 𝑎| ⩾ 𝜂. Combining (3.41), (3.42) with these inequalities, it follows that ℎ ⩾ 𝐶𝜂𝜆2. Therefore,
the rectangles will be disjoint and included in Ω as long as

ℎ < 𝐶𝜂𝜆2, (3.43)

where this 𝐶 is 1∕4 of the constant 𝐶 appearing in the previous display. The case where the
segment [𝑝𝑞] intersects [𝑏𝑞′] also leads to (3.43) in a similar manner.
Assuming (3.40), (3.43) are satisfied, consider a rectangle  belonging to a chamber where

𝑢0 = 𝑝𝑖 and sharing a boundary segment 𝐽 with a chamber where 𝑢0 = 𝑝𝑗 . Then, denoting by
𝑠 a coordinate orthogonal to 𝐽, we take 𝑉𝑅 = 𝑉𝑅(𝑠) in  given by 𝑉𝑅(𝑠) = 𝜁𝑅(𝑠) ∶= 𝜁𝑖𝑗(𝑅𝑠) for
0 ⩽ 𝑠 ⩽ ℎ∕2, where 𝜁𝑖𝑗(0) is the midpoint of the heteroclinic 𝜁𝑖𝑗 with respect to the metric 𝑑. We
take 𝜁𝑅 to linearly interpolate between 𝜁𝑖𝑗(𝑅ℎ∕2) and 𝑝𝑖 for ℎ∕2 ⩽ 𝑠 ⩽ ℎ.
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Allen–Cahn solutions with triple junction structure at infinity 4183

At this point we remark that from the assumption (1.2), it follows that each 𝜁𝑖𝑗 approaches its
end-states 𝑝𝑖 and 𝑝𝑗 at an exponential rate, that is,

|||𝜁𝑖𝑗(𝑡) − 𝑝𝑗
||| ⩽ 𝐶𝑒−𝑐(𝑏)𝑡 as 𝑡 → ∞ (3.44)

for some constant 𝑐(𝑏) > 0, with a similar estimate holding as 𝑡 → −∞. Indeed, writing (1.7) as a
first order autonomous system, say 𝑧′ = 𝐺(𝑧), where

𝑧 = (𝑧1, 𝑧2, 𝑧3, 𝑧4) =
(

𝜁
(1)
𝑖𝑗

, 𝜁
(2)
𝑖𝑗

, 𝜁
(1)
𝑖𝑗

′, 𝜁
(2)
𝑖𝑗

′
)

, 𝐺(𝑧) =
(
𝑧3, 𝑧4, 𝑊𝑧1

(𝑧1, 𝑧2), 𝑊𝑧1
(𝑧1, 𝑧2)

)
,

one checks that at any 𝑝𝓁 ∈ 𝑃, the 4 × 4 matrix 𝐷𝐺(𝑝𝓁) has eigenvalues ±
√

𝜇1, ±
√

𝜇2 where
𝜇1, 𝜇2 ⩾ 𝑏 > 0 are the eigenvalues of𝐷2𝑊(𝑝𝓁). Thus, each𝑝𝓁 represents a hyperbolic equilibrium
point from the perspective of first order ODE theory and from local stable manifold theory the
approach of 𝜁𝑖𝑗 to 𝑝𝑖 or 𝑝𝑗 as 𝑡 → ±∞ must be at an exponential rate as claimed in (3.44).
In light of (3.44), the modification can be made in such a way that

𝐸𝑅(𝑉𝑅,) ≤ 1(𝜕 ∩ 𝜕Ω)

(
1

2
𝑐𝑖𝑗 + 𝐶𝑒−𝑐(𝑏)𝑅ℎ∕2

)
. (3.45)

In addition to (3.43), we will insist on a selection of ℎ such that

𝑅ℎ ≫ 1, (3.46)

so that the exponential term in (3.45) will be negligible.
At this point, we consider an extension of 𝑉𝑅(1, 𝜃) = 𝑈𝑅(1, 𝜃) to the annulus1+𝜂,1 ∶= 𝐵1+𝜂 ⧵

𝐵1 that is constant along rays emanating from the origin. In light of (3.25), we have

𝐸𝑅(𝑉𝑅,1+𝜂,1) ≤ 𝐶𝜂. (3.47)

Having defined 𝑉𝑅 in the rectangles of each chamber, we consider the finite collection of balls of
radius 2𝜂 centered at every one of the vertices of the polygonal curves 𝜕Ω ∩ 𝐵1−𝜌 for every chamber
Ω. Any such vertex either coincides with the location of an endpoint of the arc (1 − 𝜌)𝐼𝑘 on 𝜕𝐵1−𝜌,
namely, a point of discontinuity of ℎ𝑅, or the location of an interior triple junction. Hence, the
number of vertices, say 𝑁̃𝑅, is bounded by a number 𝑁̄ that is independent of 𝑅. Referring to the
collection of these balls as {𝐵

𝑗
2𝜂

}
𝑁̃𝑅

𝑗=1
, we next define 𝑉𝑅 in the part of 𝐵1−𝜌 not belonging to any of

the rectangles  or ∪
𝑁̃𝑅

𝑗=1
𝐵

𝑗
2𝜂
by setting 𝑉𝑅(𝑥) = 𝑝𝑖 , when 𝑥 lies in a chamber associated with 𝑝𝑖 .

This is consistent with the boundary values on 𝜕𝐵1−𝜌 since by construction 𝑉𝑅(𝑥) is equal to 𝑝𝑖

if 𝑥 is on the boundary arc 𝜕𝐵1−𝜌 ∩ 𝜕Ω and at distance larger than 𝜂 from the ends of the arc, a
condition satisfied when 𝑥 is not in any 𝐵

𝑗
2𝜂
.

It remains to define 𝑉𝑅 inside the balls 𝐵
𝑗
2𝜂
. To this end, we first note that for any ball 𝐵

𝑗
2𝜂

⊂

𝐵1−𝜌, the boundary values of 𝑉𝑅 on 𝜕𝐵
𝑗
2𝜂
vary between being constant or being given by a scaled

heteroclinic, hence the tangential derivative of 𝑉𝑅 on this circle is bounded by 𝐶𝑅. For any ball
𝐵

𝑗
2𝜂
not lying entirely in 𝐵1−𝜌,𝑉𝑅 on 𝜕𝐵

𝑗
2𝜂
maybe also be given partially by the linear interpolation

construction carried out in the annulus1,1−𝜌 or, if the ball reaches1+𝜂,1, then it could partially
coincide with the extension described above (3.47). However, in light of the assumption (3.30), in
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4184 SANDIER and STERNBERG

all cases the tangential derivative of 𝑉𝑅 along 𝜕𝐵
𝑗
2𝜂
is bounded by 𝐶𝑅 for some 𝐶 independent of

𝑅.
With this estimate in hand, we proceed to fill in the definition of 𝑉𝑅 in ∪

𝑁̃𝑅

𝑗=1
𝐵

𝑗
2𝜂
sequentially as

follows. Starting with 𝐵1
2𝜂
, we take 𝑉𝑅 to linearly interpolate between 𝑉𝑅, as previously defined,

on 𝜕𝐵1
2𝜂
and say, 𝑝1 on 𝜕𝐵

𝑗
𝜂. We then take 𝑉𝑅 ≡ 𝑝1 in the ball 𝐵

𝑗
𝜂. For such an interpolation, in

light of assumption (3.39), we have

|∇𝑉𝑅| ⩽ 𝐶𝑅 in 𝐵1
2𝜂

and so 𝐸𝑅(𝑉𝑅, 𝐵1
2𝜂

) ≤ 𝐶𝑅𝜂2. (3.48)

We then proceed to define 𝑉𝑅 in 𝐵2
2𝜂

, 𝐵3
2𝜂

, … in the same manner. However, it could happen that

for some 𝑖 < 𝑗 ∈ {2, … , 𝑁𝑅} one has 𝐵
𝑗
2𝜂

∩ 𝐵𝑖
2𝜂

≠ ∅. For example, this would occur if the centers of
the two balls are vertices constituting endpoints of one side of a polygonal chamber of length less
than 4𝜂. When such an intersection occurs, we simply define 𝑉𝑅 in the intersection of these two
balls using the recipe for𝑉𝑅 in𝐵

𝑗
2𝜂
. In light of (3.48), the𝑂(𝑅) gradient bound is preserved through

this process so that the 𝑂(𝑅𝜂2) energy bound is as well. Given that 𝑁𝑅 is uniformly bounded by
𝑁̄, a constant independent of 𝑅, we can total the energy of 𝑉𝑅 inside ∪

𝑁̃𝑅

𝑗=1
𝐵

𝑗
2𝜂
to find an energetic

contribution bounded by 𝐶𝑅𝜂2.
Totaling the energetic cost of the construction
Summing the bounds (3.45) and (3.48) over rectangles and balls, we find that for any ℎ > 0

satisfying (3.43) we have

𝐸𝑅(𝑉𝑅, 𝐵1+𝜂) ≤ 𝑚𝑅

(
1 + 𝐶𝑒−𝑅ℎ∕𝐶

)
+ 𝐶𝑅𝜂2 + 𝐸𝑅(𝑉𝑅, 𝐵1+𝜂 ⧵ 𝐵1−𝜌)

≤ 𝑚𝑅 + 𝐶

(
𝑅𝜂2 + 𝑒−𝑅ℎ∕𝐶 + 𝜌 +

1

𝑅𝜌
+ 𝜌𝜆𝑅 + 𝜂

)
, (3.49)

where we have used (3.37), (3.47).
We may choose 𝜂, 𝜆, 𝜌, ℎ — for instance setting 𝜂 = 𝑅−2∕3, 𝜆 = 𝑅−1∕8, 𝜌 = 𝑅−8∕9 and ℎ =

𝐶𝑅−11∕12 — so that for 𝑅 large enough the conditions(3.30), (3.39), (3.40), (3.43), and (3.46) are
satisfied. For this choice, (3.49) implies that 𝐸𝑅(𝑉𝑅, 𝐵1+𝜂) ≤ 𝑚𝑅 + 𝐶𝑅−𝛼 with 𝛼 = 1∕8 − 1∕9.
Finally, recalling that 𝑉𝑅(1 + 𝜂, 𝜃) = 𝑈𝑅(1, 𝜃) we must scale down this construction so that it

agrees with 𝑈𝑅 on 𝜕𝐵1. Thus, with for example the choice 𝜂 = 𝑅−2∕3 as above, we replace the
sequence 𝑉𝑅 ∶ 𝐵1+𝑅−2∕3 → ℝ2 with, say, 𝑉̄𝑅 ∶ 𝐵1 → ℝ2 given by

𝑉̄𝑅(𝑟, 𝜃) ∶= 𝑉𝑅

(
(1 + 𝑅−2∕3)𝑟, 𝜃

)
.

Clearly such a scaling will only affect the energy bound by lower order terms, and since
𝐸𝑅(𝑈𝑅, 𝐵1) ⩽ 𝐸𝑅(𝑉̄𝑅, 𝐵1) we have established (3.20) for some 𝛼 ∈ (0, 1).
Matching lower bound
We turn now to the task of obtaining a matching lower bound, namely (3.21).
Much in the same spirit as was done for the upper bound proof, we will replace the boundary

values 𝑈𝑅 on 𝜕𝐵1 by much simpler boundary values through interpolation. This time, however,
rather than interpolating from the boundary values 𝑈𝑅 to the much simpler boundary values
𝑉(1 − 𝜌, 𝜃) on 𝜕𝐵1−𝜌 as we did in the argument leading up to (3.35), we now define an exten-
sion, say 𝑈̃𝑅, of 𝑈𝑅 to a larger ball 𝐵1+𝜌 such that 𝑈̃𝑅(1 + 𝜌, 𝜃) = 𝑉𝑅(1 − 𝜌, 𝜃). This amounts to
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Allen–Cahn solutions with triple junction structure at infinity 4185

reflecting across 𝜕𝐵1 the construction in the annulus 1,1−𝜌 used in the upper bound argument
to instead obtain an interpolation in the annulus1+𝜌,1 ∶= 𝐵1+𝜌 ⧵ 𝐵1.
We observe that precisely the same estimate (3.35) for the energetic cost of 𝑉𝑅 in the annulus1,1−𝜌 will nowhold in the annulus1+𝜌,1 for the extension 𝑈̃𝑅. Hence, againmaking the choices

taking 𝜌 = 𝑅−8∕9 and 𝜆 = 𝑅−1∕8 indicated below (3.49), we conclude from (3.37) that

√
2∫

𝐵1

√
𝑊(𝑈𝑅)|∇𝑈𝑅| 𝑑𝑥 =

√
2∫

𝐵1+𝜌

√
𝑊(𝑈̃𝑅)||∇𝑈̃𝑅

||𝑑𝑥 −
√

2∫1+𝜌,1

√
𝑊(𝑈̃𝑅)||∇𝑈̃𝑅

|| 𝑑𝑥

⩾
√

2∫
𝐵1+𝜌

√
𝑊(𝑈̃𝑅)||∇𝑈̃𝑅

||𝑑𝑥 − 𝐸𝑅

(
𝑈̃𝑅,1+𝜌,1

)
⩾
√

2∫
𝐵1+𝜌

√
𝑊(𝑈̃𝑅)||∇𝑈̃𝑅

||𝑑𝑥 − 𝑂(𝑅−𝛼), (3.50)

where, as we did earlier, we have set 𝛼 = 1∕8 − 1∕9.
We now define three open subsets of 𝐵1+𝜌 via

Ω𝑅
𝓁

∶=
{

𝑥 ∈ 𝐵1+𝜌 ∶ 𝑑(𝑈̃𝑅(𝑥), 𝑝𝓁) < 𝑡𝓁

}
for 𝓁 = 1, 2, and 3,

where 𝑡1, 𝑡2, and 𝑡3 are defined in (3.18). These sets are disjoint since, for instance, 𝑑(𝑝, 𝑝1) < 𝑡1

implies that

𝑑(𝑝, 𝑝2) > 𝑑(𝑝1, 𝑝2) − 𝑡1 = 𝑐12 − 𝑡1 = 𝑡2,

in light of (3.18). Thenwe invoke the property of themetric𝑑 that for any fixed ‘base point,’𝑝 ∈ ℝ2,
one has

|||∇𝑞𝑑(𝑝, 𝑞)
||| =

√
𝑊(𝑞) for all 𝑞 ∈ ℝ2, (3.51)

compare for example [26], along with the co-area formula to estimate that

√
2∫

𝐵1+𝜌

√
𝑊(𝑈̃𝑅)||∇𝑈̃𝑅

|| 𝑑𝑥 ⩾

3∑
𝓁=1

√
2∫

Ω𝑅
𝓁

√
𝑊(𝑈̃𝑅)||∇𝑈̃𝑅

|| 𝑑𝑥

=

3∑
𝓁=1

∫
Ω𝑅

𝓁

||∇𝑑(𝑈̃𝑅(𝑥), 𝑝𝓁)|| 𝑑𝑥 ⩾

3∑
𝓁=1

∫
𝑡𝓁

1

𝑅1∕2

1({𝑥 ∶ 𝑑(𝑈̃𝑅(𝑥), 𝑝𝓁) = 𝑠}) 𝑑𝑠

⩾

3∑
𝓁=1

inf
𝑠∈
[

1

𝑅1∕2
,𝑡𝓁

]1({𝑥 ∶ 𝑑(𝑈̃𝑅(𝑥), 𝑝𝓁) = 𝑠})

(
𝑡𝓁 −

1

𝑅1∕2

)

⩾

3∑
𝓁=1

𝑡𝓁1
({

𝑥 ∶ 𝑑(𝑈̃𝑅(𝑥), 𝑝𝓁) = 𝑠∗
𝓁

})
−

𝐶

𝑅1∕2
, (3.52)
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4186 SANDIER and STERNBERG

for some numbers 𝑠∗
𝓁

∈
[

1

𝑅1∕2
, 𝑡𝓁

]
for 𝓁 = 1, 2, 3 and some 𝐶 independent of 𝑅. (The lack of 𝑅

dependence for 𝐶 is clear since 𝐶 represents the minimal length of a level set {𝑑(𝑈̃𝑅(𝑥), 𝑝𝓁) = 𝑠}

among 𝑠 ∈
[

1

𝑅1∕2
, 𝑡𝓁

]
within Ω𝑅

𝓁
.)

With the goal of applying Theorem 5.4 to the triple
{

𝑥 ∶ 𝑑 (𝑈̃𝑅(𝑥), 𝑝𝓁) < 𝑠∗
𝓁

}
, 𝓁 = 1, 2, 3, we

now wish to estimate the measure of the set 𝐵1 ⧵ ∪3
𝓁=1

{
𝑥 ∶ 𝑑 (𝑈̃𝑅(𝑥), 𝑝𝓁) < 𝑠∗

𝓁

}
. Since 𝑠∗

𝓁
⩾

1

𝑅1∕2

we have that

𝐵1 ⧵
{

𝑥 ∶ 𝑑(𝑈̃𝑅(𝑥), 𝑃) < 𝑠∗
𝓁

}
⊂ 𝐵1 ⧵

{
𝑥 ∶ 𝑑(𝑈̃𝑅(𝑥), 𝑃) <

1

𝑅1∕2

}
. (3.53)

But with an appeal to the non-degeneracy assumption (1.2) we can assert that if

𝑑(𝑈̃𝑅(𝑥), 𝑝𝓁) ⩾
1

𝑅1∕2
for 𝓁 = 1, 2, and 3, then 𝑊(𝑈̃𝑅(𝑥)) ⩾

𝐶

𝑅1∕2
, (3.54)

for a constant 𝐶 depending on𝑊. Indeed, through an appeal to (3.27), the definition of the metric
𝑑 and the convexity of 𝑊 near 𝑃, we see that for 𝑈̃𝑅(𝑥) in a 𝛽-neighborhood of 𝑝𝓁 ∈ 𝑃, one has

1

𝑅1∕2
⩽ 𝑑(𝑈̃𝑅(𝑥), 𝑝𝓁) ⩽ ∫

1

0

√
𝑊((1 − 𝑡)𝑝𝓁 + 𝑡𝑈̃𝑅(𝑥))||𝑈̃𝑅(𝑥) − 𝑝𝓁

|| 𝑑𝑡

⩽ ∫
1

0

√
𝑡𝑊(𝑈̃𝑅(𝑥))||𝑈̃𝑅(𝑥) − 𝑝𝓁

||𝑑𝑡 ⩽
2

3

√
2𝑏||𝑈̃𝑅(𝑥) − 𝑝𝓁

||2.

Then another appeal to (3.27) yields (3.54).
Then from the bound (2.18), it follows that

𝐶1 ⩾ ∫
𝐵1⧵

{
𝑥∶ 𝑑(𝑈̃𝑅(𝑥),𝑃)<

1

𝑅1∕2

} 𝑅𝑊(𝑈̃𝑅(𝑥)) 𝑑𝑥 ⩾ 𝐶𝑅1∕2
|||||𝐵1 ⧵

{
𝑥 ∶ 𝑑(𝑈̃𝑅(𝑥), 𝑃) <

1

𝑅1∕2

}|||||.
Hence, in view of (3.53), we find that

||||𝐵1 ⧵
{

𝑥 ∶ 𝑑(𝑈̃𝑅(𝑥), 𝑃) < 𝑠∗
𝓁

}|||| ⩽
𝐶0

𝑅1∕2
(3.55)

for some 𝐶0 = 𝐶0(𝑊).
With estimate (3.55) in hand, we would like to now apply Theorem 5.4 to the triple{

𝑥 ∶ 𝑑 (𝑈̃𝑅(𝑥), 𝑝𝓁) < 𝑠∗
𝓁

}
, 𝓁 = 1, 2, 3with the Dirichlet condition on 𝜕𝐵1+𝜌 given by ℎ = ℎ𝑅, for

ℎ𝑅 as defined above (3.38). However, to do so, we must make minor adjustments to these three
sets near 𝜕𝐵1+𝜌. These adjustments entail adding to or subtracting from these sets small slices of
𝐵1+𝜌 bounded by arcs of 𝜕𝐵1+𝜌 and secant lines, so as to ‘fix’ their traces tomatch those dictated by
ℎ𝑅. By our construction of 𝑉(1 − 𝜌, 𝜃), hence of 𝑈̃𝑅(1 + 𝜌, 𝜃), these adjustments occur along 𝑁𝑅

arcs that are contained in the set ∪
𝑁𝑅

𝑘=1
(1 + 𝜌)𝐼𝑘 ⧵ ∪(1 + 𝜌)𝐼𝑘, where we recall that 𝑁𝑅 is bounded

by a constant depending only on 𝑊. Therefore, in view of (3.31), one can alter the three sets so
as to obtain a triple whose trace on 𝜕𝐵1+𝜌 matches ℎ𝑅 exactly, and the extra cost in perimeter
will be𝑂(𝜆) = 𝑂(𝑅−1∕8). Furthermore, the estimate (3.55) will still hold since the adjustments are
lower order.
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Allen–Cahn solutions with triple junction structure at infinity 4187

With this adjustment in hand, we now return to (3.50) and (3.52), and apply Theorem 5.4 with
𝛿 =

𝐶0

𝑅1∕2
, to obtain

√
2∫

𝐵1

√
𝑊(𝑈𝑅)|∇𝑈𝑅| 𝑑𝑥

⩾

3∑
𝓁=1

𝑡𝓁1({𝑥 ∶ 𝑑(𝑈̃𝑅(𝑥), 𝑝𝓁) = 𝑠∗
𝓁
} −

𝐶

𝑅𝛼

⩾ min
{

𝐸0(𝑢, 𝐵1+𝜌) ∶ 𝑢 = ℎ𝑅 on 𝜕𝐵1+𝜌

}
−

√
𝐶0𝛾(𝑘)

𝑅1∕4
−

𝐶

𝑅1∕2
−

𝐶

𝑅1∕8
−

𝐶

𝑅𝛼

⩾ min
{

𝐸0(𝑢, 𝐵1−𝜌) ∶ 𝑢 = ℎ𝑅 on 𝜕𝐵1+𝜌

}
−

𝐶

𝑅𝛼
= 𝑚𝑅 −

𝐶

𝑅𝛼
. (3.56)

This is the lower bound (3.21) wewere seeking, and so the proof of Proposition 3.3 is complete. □

3.2 Convergence of the blowdowns to a minimal cone

With the crucial Proposition 3.3 now in hand, we apply (3.15) to (3.14) with 𝑅1 = 𝑅 and 𝑅2 ∈

(𝑅1, 2𝑅1] to obtain

𝑊̃(𝑅2) − 𝑊̃(𝑅1) ⩾ −𝐶3𝑅
−𝛼∕2

1
(3.57)

for 𝐶3 depending only on 𝑊.
One consequence of (3.57) is:

Lemma 3.4. Assume 𝑈 ∶ ℝ2 → ℝ2 is a local minimizer of 𝐸 and define 𝑊̃𝑅 by (3.10). Then the
limit 𝐿0 ∶= lim𝑅→∞ 𝑊̃(𝑅) exists.

Proof. Using (3.57) we will first argue that for any 𝜂 > 0 there exists a value 𝑅0 > 0 such that

𝑊̃(𝑅′) − 𝑊̃(𝑅) > −𝜂 whenever 𝑅0 ⩽ 𝑅 < 𝑅′. (3.58)

To see this, let 𝑘 be the largest integer such that 2𝑘𝑅 < 𝑅′. Then we see that

𝑊̃(𝑅′) − 𝑊̃(𝑅) = 𝑊̃(𝑅′) − 𝑊̃(2𝑘𝑅) +

𝑘−1∑
𝑗=0

(
𝑊̃(2𝑗+1𝑅) − 𝑊̃(2𝑗𝑅)

)

⩾ −𝐶3

𝑘∑
𝑗=0

(2𝑗𝑅)−𝛼∕2 ⩾ −𝐶3
1

𝑅𝛼∕2

(
1

1 − 2𝛼∕2

)
.

Thus, taking 𝑅 large enough, we obtain (3.58).
Let us now suppose lim𝑅→∞ 𝑊̃(𝑅) does not exist and seek a contradiction. Since by (2.18) we

know that 0 < 𝑊̃(𝑅) ⩽ 𝐶1 for all 𝑅 > 0, this would imply that there exist sequences {𝑅𝑗} → ∞ and
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4188 SANDIER and STERNBERG

{𝑅𝑘} → ∞ such that lim𝑅𝑗→∞ 𝑊̃(𝑅𝑗) < lim𝑅𝑘→∞ 𝑊̃(𝑅𝑘); say

lim
𝑅𝑘→∞

𝑊̃(𝑅𝑘) − lim
𝑅𝑗→∞

𝑊̃(𝑅𝑗) = 𝐿 for some 𝐿 > 0. (3.59)

Hence, there exist 𝐽 and 𝐾 such that for 𝑗 > 𝐽 and 𝑘 > 𝐾 we would have

𝑊̃(𝑅𝑘) − 𝑊̃(𝑅𝑗) >
𝐿

2
.

However, by perhaps taking 𝑗 even larger we may find 𝑅𝑗 such that 𝑅𝑗 > 𝑅𝑘 and then an
application of (3.58) with 𝜂 =

𝐿

3
leads to the condition

𝑊̃(𝑅𝑗) − 𝑊̃(𝑅𝑘) ⩾ −
𝐿

3
,

and the contradiction is complete. □

Another consequence of (3.15) is the following:

Lemma 3.5. Assume 𝑈 ∶ ℝ2 → ℝ2 is a local minimizer of 𝐸. Then for every positive 𝜆1 < 𝜆2 we
have

lim
𝑅→∞∫

𝐵𝜆2𝑅⧵𝐵𝜆1𝑅

1|𝑥| |𝑈𝜈|2 𝑑𝑥 = 0, (3.60)

where 𝑈𝜈 = ∇𝑈 ⋅
𝑥|𝑥| .

We also have

lim
𝑅→∞∫

𝐵𝜆2𝑅⧵𝐵𝜆1𝑅

1

2|𝑥| ||||𝑊(𝑈) −
1

2
|∇𝑈|2||||𝑑𝑥 = 0, (3.61)

or equivalently,

lim
𝑅→∞∫

𝐵𝜆2
⧵𝐵𝜆1

1

2|𝑥| ||||𝑅𝑊(𝑈𝑅) −
1

2𝑅
|∇𝑈𝑅|2||||𝑑𝑥 = 0. (3.62)

Proof. To establish the limit (3.61), we note that with the choices 𝑅1 = 𝜆1𝑅 and 𝑅2 = 𝜆2𝑅, the
inequalities (3.12) and (3.13), followed by application of Proposition 3.3 imply that

∫
𝐵𝜆2𝑅⧵𝐵𝜆1𝑅

1

2|𝑥| ||||𝑊(𝑈) −
1

2
|∇𝑈|2|||| 𝑑𝑥

⩽

√
𝐶1𝜆2

2𝜆1
𝑅−1∕2

⎧⎪⎨⎪⎩∫𝐵𝜆2𝑅⧵𝐵𝜆1𝑅

(√
𝑊(𝑈) −

1√
2
|∇𝑈|)2

𝑑𝑥

⎫⎪⎬⎪⎭
1∕2

⩽

√
𝐶1𝐶0𝜆2

2𝜆1
𝑅−1∕2𝑅1∕2(1−𝛼) = 𝑂(𝑅−𝛼∕2).

Then (3.60) follows from (3.11) and (3.61), in light of Lemma 3.4. □
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Allen–Cahn solutions with triple junction structure at infinity 4189

Now for any 𝜆 > 0 it follows from Lemma 3.4 that

lim
𝑅→∞∫

𝐵𝜆

𝑅𝑊(𝑈𝑅) 𝑑𝑥 = 𝜆𝐿0.

Combining this with (3.62) yields that for any 0 < 𝜆1 < 𝜆2 one has

lim
𝑅→∞

𝐸𝑅

(
𝑈𝑅, 𝐵𝜆2

⧵ 𝐵𝜆1

)
= 2(𝜆2 − 𝜆1)𝐿0. (3.63)

We can rephrase (3.60) in terms of the blowdowns as

lim
𝑅→∞

1

𝑅 ∫
𝐵𝜆2

⧵𝐵𝜆1

1|𝑥| ||||∇𝑈𝑅 ⋅
𝑥|𝑥| ||||

2

𝑑𝑥 = 0 for any 0 < 𝜆1 < 𝜆2. (3.64)

Now we will use this to argue that the limit of blowdowns is necessarily a cone:

Theorem 3.6. Assume𝑈 ∶ ℝ2 → ℝ2 is a local minimizer of 𝐸. Let {𝑅𝑗} → ∞ be any sequence and
let {𝑅𝑗𝑘

} and a function 𝑢0 ∈ 𝐵𝑉(𝐵1; 𝑃) be any subsequence and subsequential 𝐿1 limit guaranteed
by Proposition 3.1. If we denote by Γ𝑖𝓁 the phase boundary 𝜕{𝑢0 = 𝑝𝑖} ∩ 𝜕{𝑢0 = 𝑝𝓁}, one has

𝜈𝑖𝓁(𝑥) ⋅ 𝑥 = 0 for every non-zero 𝑥 ∈ 𝐵1 ∩ Γ∗
𝑖𝓁
and every 1 ⩽ 𝑖 < 𝓁 ⩽ 3, (3.65)

where Γ∗
𝑖𝓁
denotes the reduced boundary of Γ𝑖𝓁 and 𝜈𝑖𝓁 denotes a corresponding normal vector.

Proof. We fix any positive number 𝛿 and note that for any 𝜇 ∈ (0, 1) we have

∫
𝐵1⧵𝐵𝜇

√
𝑊(𝑈𝑅)

||||∇𝑈𝑅 ⋅
𝑥|𝑥| |||| 𝑑𝑥 ⩽ 𝛿 𝑅 ∫

𝐵1

𝑊(𝑈𝑅) 𝑑𝑥 +
1

𝛿

1

𝑅 ∫
𝐵1⧵𝐵𝜇

||||∇𝑈𝑅 ⋅
𝑥|𝑥| ||||

2

𝑑𝑥

⩽ 𝛿𝑊̃(𝑅) +
1

𝛿

1

𝑅 ∫
𝐵1⧵𝐵𝜇

1|𝑥| ||||∇𝑈𝑅 ⋅
𝑥|𝑥| ||||

2

𝑑𝑥.

Then sending 𝑅 → ∞ and invoking Lemma 3.4 and (3.64) we conclude that

lim sup
𝑅→∞ ∫

𝐵1⧵𝐵𝜇

√
𝑊(𝑈𝑅)

||||∇𝑈𝑅 ⋅
𝑥|𝑥| ||||𝑑𝑥 ⩽ 𝛿 𝐿0,

and since 𝛿 was arbitrary it follows that

lim
𝑅→∞∫

𝐵1⧵𝐵𝜇

√
𝑊(𝑈𝑅)

||||∇𝑈𝑅 ⋅
𝑥|𝑥| |||| 𝑑𝑥 = 0. (3.66)

Next, we consider the function 𝑥 ↦ 𝑑 (𝑝1, 𝑈𝑅(𝑥)). Suppressing subsequential notation, the fact
that 𝑈𝑅𝑗

→ 𝑢0 in 𝐿1 implies through definition (1.4) that

𝑑(𝑝1, 𝑈𝑅𝑗
)

𝐿1(𝐵1)
⟶ 𝑑(𝑝1, 𝑢0) =

⎧⎪⎨⎪⎩
0 on {𝑢0 = 𝑝1}

𝑑(𝑝1, 𝑝2) on {𝑢0 = 𝑝2}

𝑑(𝑝1, 𝑝3) on {𝑢0 = 𝑝3}

,
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4190 SANDIER and STERNBERG

and we note that since 𝑢0 ∈ 𝐵𝑉(𝐵1; ℝ2) one has 𝑥 ↦ 𝑑(𝑝1, 𝑢0(𝑥)) ∈ 𝐵𝑉(𝐵1). Hence, in the sense
of distributions, we have

(3.67)

where this form of the distributional gradient follows, for example, from [17], Proposition 2.8.
Then recalling (3.51), an elementary chain rule calculation shows that

||||∇𝑥𝑑(𝑝1, 𝑈𝑅(𝑥))) ⋅
𝑥|𝑥| |||| ⩽

√
𝑊(𝑈𝑅(𝑥))

||||∇𝑈𝑅 ⋅
𝑥|𝑥| ||||,

and so from (3.66) we may conclude that

lim
𝑅→∞∫

𝐵1⧵𝐵𝜇

||||∇𝑥𝑑(𝑝1, 𝑈𝑅(𝑥))) ⋅
𝑥|𝑥| |||| 𝑑𝑥 = 0. (3.68)

Fix now any non-zero point 𝑥0 ∈ Γ∗
𝑖𝓁
for some 1 ⩽ 𝑖 < 𝓁 ⩽ 3, and fix 𝜇 > 0 less than |𝑥0|. Then we

take an arbitary 𝜙 ∈ 𝐶1
0 (𝐵𝑟(𝑥0)), with 𝑟 chosen small enough so that 𝐵𝑟(𝑥0) ⊂ 𝐵1 ⧵ 𝐵𝜇. It follows

from (3.67) and (3.68) that

∫
Γ∗

𝑖𝓁
∩𝐵𝑟(𝑥0)

𝜙 𝜈𝑖𝓁 ⋅
𝑥|𝑥| 𝑑1(𝑥) = 0.

Since 𝜙 is arbitrary, we obtain the desired property (3.65). □

In light of Proposition 3.1, we know that any limit of blowdowns, 𝑢0, minimizes 𝐸0 subject to
its own boundary values. Now that we also know any limit of blowdowns is a cone, it follows
immediately from Theorem 5.1 that there are only three possibilities:

Proposition 3.7. Under the hypothesis and with the notations of Theorem 3.6, either

(𝑖) 𝑢0 ≡ 𝑝𝑖 for some 𝑖 ∈ {1, 2, 3}, (3.69)

or there exists a half-plane 𝐻 with 𝜕𝐻 passing through the origin such that

(𝑖𝑖) 𝑢0(𝑥) =

{
𝑝𝑖 in 𝐻

𝑝𝓁 in ℝ2 ⧵ 𝐻,
(3.70)

for some 𝑖, 𝓁 ∈ {1, 2, 3} with 𝑖 ≠ 𝓁, or

(𝑖𝑖𝑖) 𝑢0 takes the form (1.8) (3.71)

with the three sectors 𝑆1, 𝑆2, and 𝑆3 having opening angles 𝛼1, 𝛼2, and 𝛼3 satisfying the condition
(1.9).

Remark 3.8. It was recently pointed out to us by Michael Novack that there is a different
avenue available to reach the conclusion that any subsequential limit 𝑢0 of blowdowns of a local
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Allen–Cahn solutions with triple junction structure at infinity 4191

minimizer of 𝐸 must satisfy either (3.69), (3.70), and (3.71). This alternative argument utilizes,
among other tools, a monotonicity formula for minimizing partitions adapted to this setting,
along with available regularity theory such as that described in Theorem 5.1, to show that the
only locally minimizing partitions of the plane with respect to the energy 𝐸0 are partitions fitting
one of these three descriptions. Then coupled with Proposition 3.1 we would reach the same con-
clusion as that of Proposition 3.7. See also [2] for a presentation of this property of minimizing
partitions.

4 ELIMINATING THE HALF-PLANE

We will now argue that in our setting, neither (3.69) or (3.70) are possible, leaving (3.71) as the
only option, thus leading to a proof of our main result, Theorem 1.1.
We will first prove a “clearing-out” type of result, saying that sufficiently low energy in a ball

implies uniform nearness to a potential well on a smaller ball. We remark that a result of this type
formere solutions to (2.11) is established in [11], Proposition 6.4, but since the proof is considerably
simpler in the setting of local minimizers, we present a proof in this setting below.

Proposition 4.1. For any 𝑅 > 0, let 𝑧𝑅 be a local minimizer of 𝐸𝑅 satisfying a gradient bound|∇𝑧𝑅| ⩽ 𝐶1𝑅 for some 𝐶1 > 0. Then there exists a number 𝜂 depending only on 𝑊 such that if

𝐸𝑅(𝑧𝑅, 𝐵𝑟0
) < 𝜂 on some ball 𝐵𝑟0

,

then there exists a point 𝑝𝓁 ∈ 𝑃 and a value 𝑅̄ > 0 such that for all 𝑥 ∈ 𝐵𝑟0∕2, one has the uniform
estimate

|𝑧𝑅(𝑥) − 𝑝𝓁| <
√

3

(
2

𝑏

)1∕4(
𝐸𝑅(𝑧𝑅, 𝐵𝑟0

)
)1∕2

for all 𝑅 ⩾ 𝑅̄, where 𝑏 is the constant appearing in (3.27) and 𝑅̄ = 𝑅̄(𝑏, 𝑟0).

Proof. With no loss of generality, we take 𝐵𝑟0
to be centered at the origin. For ease of notation, we

will write 𝑒𝑅 ∶= 𝐸𝑅(𝑧𝑅, 𝐵𝑟0
), so that our hypothesis is that 𝑒𝑅 < 𝜂 with 𝜂 to be specified shortly.

We begin with the observation that if 𝑞 ∈ ℝ2 is any point such that |𝑞 − 𝑝𝓁| ⩽ 𝛽 for some 𝑝𝓁 ∈

𝑃, then invoking (1.4) and (3.27), we have√
𝑏

2
min

𝛾(0)=𝑝𝓁,𝛾(1)=𝑞 ∫
1

0

|𝛾(𝑡) − 𝑝𝓁|||𝛾′(𝑡)|| 𝑑𝑡 ⩽ 𝑑(𝑞, 𝑝𝓁) ⩽

√
𝑏 min

𝛾(0)=𝑝𝓁,𝛾(1)=𝑞 ∫
1

0

|𝛾(𝑡) − 𝑝𝓁|||𝛾′(𝑡)||𝑑𝑡.

Hence, √
𝑏

2
|𝑞 − 𝑝𝓁|2 ⩽ 𝑑(𝑞, 𝑝𝓁) ⩽

√
𝑏|𝑞 − 𝑝𝓁|2. (4.1)
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4192 SANDIER and STERNBERG

Applying the Mean Value Theorem, the assumption 𝑒𝑅 < 𝜂 on 𝐵𝑟0
allows us to find a radius,

say 𝑟∗ ∈ (𝑟0∕2, 𝑟0), such that

𝐸𝑅(𝑧𝑅, 𝜕𝐵𝑟∗) < 2𝑒𝑅 < 2𝜂. (4.2)

Consequently, for any two points 𝑥1, 𝑥2 ∈ 𝜕𝐵𝑟∗ one has

𝑑(𝑧𝑅(𝑥1), 𝑧𝑅(𝑥2)) ⩽
√

2∫
𝜕𝐵𝑟∗

√
𝑊(𝑧𝑅)|∇𝑧𝑅| 𝑑𝑠 < 2𝑒𝑅.

Then the fact that ∫
𝜕𝐵𝑟∗

𝑅𝑊(𝑧𝑅) 𝑑𝑠 < 2𝑒𝑅 implies that for 𝑅 large enough there exists a point,
say 𝑥𝑅 ∈ 𝜕𝐵𝑟∗ , such that 𝑑(𝑧𝑅(𝑥𝑅), 𝑝𝓁) < 𝑒𝑅 for some 𝑝𝓁 ∈ 𝑃. Consequently, it follows from the
triangle inequality that

𝑑(𝑧𝑅(𝑥), 𝑝𝓁) < 3𝑒𝑅 for all 𝑥 ∈ 𝜕𝐵𝑟∗ . (4.3)

We now impose the condition

𝜂 ⩽

√
𝑏

2

𝛽2

3
. (4.4)

It follows that

|𝑧𝑅(𝑥) − 𝑝𝓁| ⩽ 𝛽 for all 𝑥 ∈ 𝜕𝐵𝑟∗ . (4.5)

Otherwise, for some 𝑥 ∈ 𝜕𝐵𝑟∗ , we would have

𝑑(𝑧𝑅(𝑥), 𝑝𝓁) ⩾ min
{𝑞∶ |𝑞−𝑝𝓁|=𝛽}

𝑑(𝑞, 𝑝𝓁) ⩾

√
𝑏

2
𝛽2,

contradicting (4.3), given that 𝑒𝑅 < 𝜂.
Having established (4.5), we now appeal to the local minimality of 𝑧𝑅 by constructing a com-

petitor, say 𝑣𝑅, in 𝐵𝑟∗ that linearly interpolates on the annulus 
𝑟∗,𝑟∗−

1

𝑅

between 𝑧𝑅(𝑥) on 𝜕𝐵𝑟∗

and 𝑝𝓁 on 𝜕𝐵
𝑟∗−

1

𝑅

via the formula

𝑣𝑅(𝑥) ∶= 𝜆𝑅(|𝑥|)𝑧𝑅

(
𝑟∗ 𝑥|𝑥|

)
+ (1 − 𝜆𝑅(|𝑥|))𝑝𝓁, (4.6)

for 𝑟∗ −
1

𝑅
⩽ |𝑥| ⩽ 𝑟∗, where 𝜆𝑅(𝑟) ∶= 𝑅(𝑟 − 𝑟∗) + 1. We compute that

∇𝑣𝑅(𝑥) = 𝜆𝑅(|𝑥|)∇𝑧𝑅

(
𝑟∗ 𝑥|𝑥|

)
+ 𝑅

𝑥|𝑥| ⊗

(
𝑧𝑅

(
𝑟∗ 𝑥|𝑥|

)
− 𝑝𝓁

)
, (4.7)

so that

|∇𝑣𝑅(𝑥)|2 ⩽ 2
|||||∇𝑧𝑅

(
𝑟∗ 𝑥|𝑥|

)|||||
2

+ 2𝑅2
|||||𝑧𝑅

(
𝑟∗ 𝑥|𝑥|

)
− 𝑝𝓁

|||||
2

. (4.8)
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Allen–Cahn solutions with triple junction structure at infinity 4193

Property (4.5) guarantees that this interpolation always yields values inside the ball of radius 𝛽

about 𝑝𝓁 so that 𝑣𝑅 takes its values in the region where 𝑊 is convex. This convexity allows us to
invoke (3.27). Then through the local minimality of 𝑧𝑅, along with (4.2) and (4.8), we find that

𝐸𝑅(𝑧𝑅, 𝐵𝑟∗) ⩽ 𝐸𝑅(𝑣𝑅, 𝐵𝑟∗) = ∫
𝑟∗,𝑟∗−

1
𝑅

𝑅𝑊(𝑣𝑅) +
1

2𝑅
|∇𝑣𝑅|2 𝑑𝑥

⩽ ∫
𝑟∗

𝑟∗−
1

𝑅

∫
𝜕𝐵𝑟

{
𝑅𝜆(𝑟)𝑊

(
𝑧𝑅

(
𝑟∗ 𝑥|𝑥|

))
+

1

2𝑅

(
2
|||||∇𝑧𝑅

(
𝑟∗ 𝑥|𝑥|

)|||||
2

+
2𝑅2

𝑏
𝑊(𝑧𝑅

(
𝑟∗ 𝑥|𝑥|

))}
𝑑𝑠 𝑑𝑟 ⩽ 2𝜂

(
max

{
2, 1 +

1

𝑏

})
1

𝑅
. (4.9)

Next we wish to argue that the maximum of the quantity |𝑧𝑅(𝑥) − 𝑝𝓁| over the set 𝐵𝑟∗ must occur
for 𝑥 ∈ 𝜕𝐵𝑟∗ . We will argue by contradiction. There are two cases to consider:

Case 1. The maximum occurs at a point 𝑥∗ ∈ 𝐵𝑟∗ such that |𝑧𝑅(𝑥∗) − 𝑝𝓁| < 𝛽. We see this
is impossible through an appeal to the maximum principle applied to the function 𝑓(𝑥) ∶=
1

2
|𝑧𝑅(𝑥) − 𝑝𝓁|2. Indeed, a simple calculation yields that

Δ𝑓(𝑥) = 𝑅2 ∇𝑢𝑊(𝑧𝑅) ⋅ (𝑧𝑅 − 𝑝𝓁) + |∇𝑧𝑅|2 > 0,

in light of the strict convexity of 𝑊(𝑞) when |𝑞 − 𝑝𝓁| ⩽ 𝛽.

Case 2. The maximum occurs at a point 𝑥∗ ∈ 𝐵𝑟∗ such that |𝑧𝑅(𝑥∗) − 𝑝𝓁| ⩾ 𝛽. Since necessarily
any local minimizer satisfies a gradient estimate |∇𝑧𝑅| ⩽ 𝐶1𝑅 for some constant 𝐶1 > 0, it follows
that

|𝑧𝑅(𝑥) − 𝑝𝓁| >
𝛽

2
for all 𝑥 such that |𝑥 − 𝑥∗| <

𝛽

2𝐶1𝑅
.

Thus, denoting

𝐶𝛽 ∶= min
{𝑞∈ℝ2∶ dist (𝑞,𝑃)⩾

𝛽

2
}

𝑊(𝑞) > 0,

we obtain

𝐸𝑅(𝑧𝑅, 𝐵𝑟∗) ⩾ ∫
{𝑥∶ |𝑥−𝑥∗|< 𝛽

2𝐶1𝑅
}

𝑅𝑊(𝑧𝑅) 𝑑𝑥 ⩾ 𝐶𝛽𝑅𝜋

(
𝛽

2𝐶1𝑅

)2

=
𝜋𝛽2𝐶𝛽

4𝐶2
1

1

𝑅
,

which will contradict (4.9), if in addition to (4.4), we insist that 𝜂 satisfies, say

2𝜂 max

{
2, 1 +

1

𝑏

}
⩽

𝜋𝛽2𝐶𝛽

5𝐶2
1

. (4.10)
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4194 SANDIER and STERNBERG

Hence, assuming 𝜂 satisfies (4.4) and (4.10), we have argued that the maximum of |𝑧𝑅 − 𝑝𝓁|
on 𝐵𝑟∗ must occur on 𝜕𝐵𝑟∗ , and so from (4.1) and (4.3), the conclusion of the Proposition
follows. □

An easy consequence of this result is

Proposition 4.2. Assume𝑈 ∶ ℝ2 → ℝ2 is a local minimizer of 𝐸 and {𝑅𝑗} → ∞ is such that {𝑈𝑅𝑗
}

converges in 𝐿1
loc

to 𝑢0 ∈ 𝐵𝑉loc(ℝ
2; 𝑃). Then {𝑈𝑅𝑗

} converges to 𝑢0 locally uniformly outside the
support of ∇𝑢0.

Proof. Assume 𝑥0 does not belong to the support of ∇𝑢0. We need to prove that 𝑈𝑅𝑗
converges

uniformly to 𝑢0 in a neighbourhood of 𝑥0.
The limit 𝑢0 is identically equal to one of the wells, say 𝑝1, in a ball 𝐵𝑟(𝑥0) for some 𝑟 > 0. Using

Fatou’s Lemma as in the proof of Lemma 2.3 there exists a radius 𝑡 ∈ (0, 𝑟) and a subsequence still
denoted {𝑅𝑗} such that

lim
𝑅𝑗→∞

‖𝑈𝑅𝑗
− 𝑝1‖𝐿1(𝜕𝐵𝑡) = 0, lim sup

𝑅𝑗→∞
𝐸𝑅𝑗

(𝑈𝑅𝑗
, 𝜕𝐵𝑡) < +∞.

Since 𝑈𝑅𝑗
minimizes 𝐸𝑅𝑗

and satisfies (2.2) and (2.3) on 𝜕𝐵𝑡, we can apply condition (2.7) of
Theorem 2.1 to assert that

𝐸𝑅𝑗
(𝑈𝑅𝑗

, 𝐵𝑡) → 𝐸ℎ
0
(𝑢0, 𝐵𝑡) = 0 as 𝑅𝑗 → ∞,

where ℎ is the trace of 𝑢0 on 𝜕𝐵𝑡, that is, ℎ = 𝑝1. This allows us to apply Proposition 4.1 to conclude
that𝑈𝑅𝑗

is converging uniformly to 𝑝1 on 𝐵𝑡∕2. Since the subsequential limit is unique, the whole
sequence converges uniformly to 𝑝1 on 𝐵𝑡∕2, proving the proposition. □

Now we prove

Proposition 4.3. Assume 𝑈 ∶ ℝ2 → ℝ2 is a local minimizer of 𝐸 in the sense of (1.13) such that
dist(𝑈(0), Λ) > 0 for Λ given by (2.12). For any sequence {𝑅𝑗} → ∞, let {𝑅𝑗𝑘

} and 𝑢0 ∈ 𝐵𝑉loc(ℝ
2; 𝑃)

be any subsequence and subsequential limit of {𝑈𝑅𝑗𝑘
}, guaranteed to exist by Proposition 3.1. Then

𝑢0 takes the form (1.8).

Proof. We need to rule out (3.69) and (3.70).
Suppose first, by way of contradiction, that 𝑢0 ≡ 𝑝𝓁 for some 𝓁 ∈ {1, 2, 3}. Then Proposi-

tion 4.2 implies that𝑈𝑅𝑗𝑘
(0) → 𝑈(0) = 𝑝𝓁, contradictingdist(𝑈(0), Λ) > 0. Thus, possibility (3.69)

is eliminated.
Next, we suppose by way of contradiction that 𝑈𝑅𝑗𝑘

→ 𝑢0 in 𝐿1
loc

for 𝑢0 satisfying (3.70)
for some 𝑖, 𝓁 ∈ {1, 2, 3} with 𝑖 ≠ 𝓁. With no loss of generality we will take 𝑖 = 1, 𝓁 = 2 and
the halfplane 𝐻 to be {(𝑥1, 𝑥2) ∈ ℝ2 ∶ 𝑥2 < 0} so that our contradiction hypothesis takes the
form

𝑈𝑅𝑗𝑘

𝐿1
loc

⟶ 𝑢0 =

{
𝑝1 in {(𝑥1, 𝑥2) ∶ 𝑥2 < 0}

𝑝2 in {(𝑥1, 𝑥2) ∶ 𝑥2 > 0}.
(4.11)
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Allen–Cahn solutions with triple junction structure at infinity 4195

This possibility is ruled if we prove Theorem 1.3, since the latter implies that 𝑈(𝑥1, 𝑥2) =

𝜁12(𝑥2 + Δ) for some Δ ∈ ℝ and therefore 𝑈(0) ∈ 𝜁12(ℝ), which contradicts the hypothesis that
dist(𝑈(0), Λ) > 0 for Λ given by (2.12). □

Proof of Theorem 1.3. We assume that 𝑈 is a locally minimizing entire solution and that 𝑈𝑅𝑗

converges as 𝑗 → +∞ for some subsequence for 𝑅𝑗 → +∞ to the function 𝑢0 defined in (1.16). We
break the proof that 𝑈(𝑥1, 𝑥2) = 𝜁12(𝑥2 + Δ) for some Δ ∈ ℝ into several steps.

1. We begin by identifying a circle on which 𝑈 has “well-controlled” boundary values. To this
end, we note that the argument in the proof of Proposition 3.1 leading to (3.2) and (3.3) applies
just aswell to assert the existence of two values, 1 ⩽ 𝜆1 < 𝜆2 ⩽ 2, forwhich these two properties
hold on both 𝜕𝐵𝜆1

and 𝜕𝐵𝜆2
. We then let 𝜆2,𝜆1

denote the annulus 𝐵𝜆2
⧵ 𝐵𝜆1

, and invoke the
assumption (4.11). It follows from the Γ-convergence of 𝐸̃𝑅𝑗

(⋅,𝜆2,𝜆1
) to 𝐸ℎ

0
(⋅,𝜆2,𝜆1

) with ℎ =

trace of 𝑢0 on 𝜕𝜆2,𝜆1
, along with the minimality of 𝑈𝑅𝑗

in the annulus, that

𝐸𝑅𝑗
(𝑈𝑅𝑗

,𝜆2,𝜆1
) → 𝐸ℎ(𝑢0,𝜆2,𝜆1

) = 2(𝜆2 − 𝜆1)𝑐12 as 𝑅𝑗 → ∞. (4.12)

Rewriting this in terms of 𝑈 we have that

𝐸(𝑈,𝜆2𝑅𝑗,𝜆1𝑅𝑗
) = 2(𝜆2 − 𝜆1)𝑐12𝑅𝑗 + 𝑜(𝑅𝑗) as 𝑅𝑗 → ∞, (4.13)

or equivalently,

1

(𝜆2 − 𝜆1)𝑅𝑗 ∫
𝜆2𝑅𝑗

𝜆1𝑅𝑗

𝐸(𝑈, 𝜕𝐵𝑟) 𝑑𝑟 = 2𝑐12 + 𝑜(1).

Thus, by the Mean Value Theorem, there must exist a sequence of radii {𝜌𝑗} → ∞ with 𝜌𝑗 ∈

(𝜆1𝑅𝑗, 𝜆2𝑅𝑗) such that

𝐸
(

𝑈, 𝜕𝐵𝜌𝑗

)
= 2𝑐12 + 𝑜(1). (4.14)

From Proposition 4.2, we have that for any 𝜏 > 0

max
{|𝑈(𝑥) − 𝑝1| ∶ 𝑥 ∈ 𝐵𝜌𝑗

∩ {(𝑥1, 𝑥2) ∶ 𝑥2 ⩾ 𝜌𝑗𝜏}
}

→ 0 (4.15)

and

max
{|𝑈(𝑥) − 𝑝2| ∶ 𝑥 ∈ 𝐵𝜌𝑗

∩ {(𝑥1, 𝑥2) ∶ 𝑥2 ⩽ −𝜌𝑗𝜏}
}

→ 0 as 𝜌𝑗 → ∞. (4.16)

2. We will next argue that the restriction of 𝑈 to the circle 𝜕𝐵𝜌𝑗
is approaching two copies of the

geodesic 𝜁12 as 𝜌𝑗 → ∞. We denote by 𝜕𝐵+
𝜌𝑗
the right half-circle of 𝜕𝐵𝜌𝑗

, and by 𝜕𝐵−
𝜌𝑗
the left

half-circle. From (4.15) and (4.16) and the continuity of themetric distance (𝑝, 𝑞) ↦ 𝑑(𝑝, 𝑞) (cf.
(1.4)), it follows that

𝐸
(

𝑈, 𝜕𝐵+
𝜌𝑗

)
⩾
√

2∫
𝜕𝐵+

𝜌𝑗

√
𝑊(𝑈)

||||𝜕𝑈

𝜕𝑠

|||| 𝑑𝑠 ⩾ 𝑑(𝑝1, 𝑝2) − 𝑜(1) = 𝑐12 − 𝑜(1) as 𝜌𝑗 → ∞ (4.17)
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4196 SANDIER and STERNBERG

and similarly,

𝐸
(

𝑈, 𝜕𝐵−
𝜌𝑗

)
⩾
√

2∫
𝜕𝐵−

𝜌𝑗

√
𝑊(𝑈)

||||𝜕𝑈

𝜕𝑠

|||| 𝑑𝑠 ⩾ 𝑑(𝑝1, 𝑝2) − 𝑜(1) = 𝑐12 − 𝑜(1) as 𝜌𝑗 → ∞ (4.18)

Combining these last two inequalities with (4.14), we observe that, in fact, we have

𝐸
(

𝑈, 𝜕𝐵+
𝜌𝑗

)
→ 𝑐12, as 𝜌𝑗 → ∞ (4.19)

and

𝐸
(

𝑈, 𝜕𝐵−
𝜌𝑗

)
→ 𝑐12 as 𝜌𝑗 → ∞. (4.20)

Now, following the general scheme in [5], sect. 2.3 we fix a positive number 𝑑0 less than say,
half the minimal distance between any two of the three wells, and define the energy level 𝑊0

via

𝑊0 ∶= min

{
𝑊(𝑝) ∶ |𝑝 − 𝑝𝓁| = 𝑑0, 𝓁 = 1, 2, 3

}
> 0. (4.21)

It follows from (4.15) and (4.16) that theremust exist a point 𝑥+
𝑗

∈ 𝜕𝐵𝜌𝑗
such that𝑊

(
𝑈(𝑥+

𝑗
)
)

=

𝑊0. Then for 𝜃 denoting the polar anglemade with the positive 𝑥1-axis, we introduce the angle
𝜃+

𝑗
via 𝑥+

𝑗
= 𝜌𝑗𝑒

𝑖𝜃+
𝑗 . We point out that necessarily

𝜃+
𝑗

→ 0 as 𝑗 → ∞, (4.22)

since 𝑊
(
𝑈(𝜌𝑗𝑒𝑖𝜃)

)
→ 0 at angles 𝜃 bounded away from zero in light of (4.15) and (4.16).

Then we introduce an arclength coordinate 𝑠 along 𝜕𝐵+
𝜌𝑗
with 𝑠 = 0 corresponding to this 𝑥𝑗

via

𝑠 ∶= 𝜌𝑗(𝜃 − 𝜃+
𝑗

), (4.23)

and define the continuous extension, say 𝑈̃𝑗 ∶ (−∞, ∞) → ℝ2 of 𝑈 along 𝜕𝐵+
𝜌𝑗
, expressed as a

function of arclength variable (4.23), through the formula

𝑈̃𝑗(𝑠) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑝1 for 𝑠 ⩾ 𝜌𝑗(𝜋∕2 − 𝜃+
𝑗

) + 1

linear for 𝜌𝑗(𝜋∕2 − 𝜃+
𝑗

) < 𝑠 < 𝜌𝑗(𝜋∕2 − 𝜃+
𝑗

) + 1

𝑈

(
𝜌𝑗𝑒

𝑖(
𝑠

𝜌𝑗
+𝜃+

𝑗
)
)

for 𝜌𝑗(−𝜋∕2 − 𝜃+
𝑗

) ⩽ 𝑠 ⩽ 𝜌𝑗(𝜋∕2 − 𝜃+
𝑗

)

linear for 𝜌𝑗(−𝜋∕2 − 𝜃+
𝑗

) − 1 < 𝑠 < 𝜌𝑗(−𝜋∕2 − 𝜃+
𝑗

)

𝑝2 for 𝑠 ⩽ 𝜌𝑗(−𝜋∕2 − 𝜃+
𝑗

) − 1,

so that, in particular, we have

𝑊
(
𝑈̃𝑗(0)

)
= 𝑊0. (4.24)
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Allen–Cahn solutions with triple junction structure at infinity 4197

Now again appealing to (4.15) and (4.16), we observe that the energy over the intervals of linear
interpolation vanish in the limit; that is,

lim
𝑗→∞

𝐸
(

𝑈̃𝑗, [𝜌𝑗(𝜋∕2 − 𝜃+
𝑗

), 𝜌𝑗(𝜋∕2 − 𝜃+
𝑗

) + 1]
)

= 0,

with a similar result for the integral over the interval [𝜌𝑗(−𝜋∕2 − 𝜃+
𝑗

) − 1, 𝜌𝑗(−𝜋∕2 − 𝜃+
𝑗

)].
Hence, through (4.19), we see that

{
𝑈̃𝑗

}
constitutes a minimizing sequence for (1.6). Invoking

(4.24), it is then straightforward to establish that

𝑈̃𝑗 → 𝜁12 in 𝐻1
loc

(ℝ) as 𝑗 → ∞, (4.25)

with 𝑊(𝜁12(0)) = 𝑊0 setting the particular translate of the heteroclinic 𝜁12. Again we refer
to [5] for details. (We recall here that we are assuming uniqueness of the three heteroclinic
connections.) We then note that using (4.20), we can apply precisely the same argument along
the left half-circle 𝜕𝐵−

𝜌𝑗
to get 𝐻1

loc
-convergence to 𝜁12 analogous to (4.25) there as well. In

particular, in analogy with (4.22) and (4.24), we note that there exists an angle made with the
negative 𝑥1-axis, which we denote by 𝜃−

𝑗
, that plays the same role as did 𝜃+

𝑗
; namely,

𝑊
(

𝑈
(

𝜌𝑗𝑒
𝑖(𝜋−𝜃−

𝑗
)
))

= 𝑊0 and 𝜃−
𝑗

→ 0 as 𝑗 → ∞. (4.26)

Also, referring back to (4.15) and (4.16), with, say 𝜏 = 1∕2, it follows that

|||𝑈(𝜌𝑗𝑒𝑖𝜃
)

− 𝑝1
||| → 0 for 𝜋

6
⩽ 𝜃 ⩽

5

6
𝜋 and |||𝑈(𝜌𝑗𝑒𝑖𝜃

)
− 𝑝2

||| → 0 for −
5

6
𝜋 ⩽ 𝜃 ⩽ −

𝜋

6
.

(4.27)
3. Letting 𝐿𝑗 denote the line passing through the two points 𝑥+

𝑗
= 𝜌𝑗𝑒

𝑖𝜃+
𝑗 and 𝑥−

𝑗
∶= 𝜌𝑗𝑒

𝑖(𝜋−𝜃−
𝑗

),
we define the sequence 𝑉𝑗 ∶ ℝ2 → ℝ2 via

𝑉𝑗(𝑥) ∶= 𝜁12

(
dist (𝑥, 𝐿𝑗)

)
. (4.28)

Our goal in this step is to interpolate between𝑈 on 𝜕𝐵𝜌𝑗
and𝑉𝑗 on 𝜕𝐵𝜌𝑗−1 so that the energetic

cost in the annulus between these two circles is no greater than 2𝑐12 + 𝑜(1). Againwewill focus
on the right half-annulus, with a similar calculation applying to the left half-annulus.
To this end, we first recall the exponential approach of 𝜁12 = 𝜁12(𝑡) to 𝑝1 for 𝑡 ≫ 1 and to

𝑝2 for 𝑡 ≪ −1, compare (3.44). Fixing any 𝜂 > 0, it follows that we can find an interval, say
[−𝑎𝜂, 𝑎𝜂], such that

𝐸
(
𝜁12, [−𝑎𝜂, 𝑎𝜂]

)
⩽ 𝑐12, (4.29)

and such that

||𝜁12(𝑡) − 𝑝1
|| < 𝜂 for 𝑡 > 𝑎𝜂, and ||𝜁12(𝑡) − 𝑝2

|| < 𝜂 for 𝑡 < −𝑎𝜂. (4.30)

Then in view of the 𝐻1-convergence of 𝑈̃𝑗 to 𝜁12 for 𝑠 ∈ [−𝑎𝜂, 𝑎𝜂] guaranteed by (4.25), we
can assert that for 𝜌𝑗 large enough, one also has

𝑐12 − 𝜂 ⩽ 𝐸
(
𝑈̃𝑗, [−𝑎𝜂, 𝑎𝜂]

)
⩽ 𝑐12 + 𝜂. (4.31)
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4198 SANDIER and STERNBERG

As consequence of (4.29) and (4.31), along with (1.6), (4.19), and (4.20), it also follows that

𝐸
(
𝜁12, ℝ ⧵ [−𝑎𝜂, 𝑎𝜂]

)
⩽ 𝜂 (4.32)

and

𝐸
(
𝑈̃𝑗, ℝ ⧵ [−𝑎𝜂, 𝑎𝜂]

)
⩽ 𝜂. (4.33)

Of course, the analog of estimates (4.31) and (4.33) hold with the boundary values of 𝑈 along
𝜕𝐵+

𝜌𝑗
replaced by those along 𝜕𝐵−

𝜌𝑗
as well.

Nowwe define the linear interpolation in the annulus {𝑥 ∶ 𝜌𝑗 − 1 ⩽ |𝑥| ⩽ 𝜌𝑗}with 𝜆𝑗(𝑟) ∶=

𝑟 − 𝜌𝑗 + 1, via the formula

𝑍𝑗(𝑥) ∶= 𝜆𝑗(|𝑥|)𝑈(𝜌𝑗
𝑥|𝑥|
)

+
(
1 − 𝜆𝑗(|𝑥|))𝑉𝑗(𝑥). (4.34)

We will divide up the energy of 𝑍𝑗 in the right half-annulus into two parts as follows:

∫ ∫
right half−annulus

𝑊(𝑍𝑗) +
1

2
|||∇𝑍𝑗

|||2 𝑑𝑥 =

∫
𝜌𝑗

𝜌𝑗−1
∫{𝑥∈𝜕𝐵+

𝑟 ∶ dist (𝑥,𝐿𝑗)<𝑎𝜂}
{ ⋅ } 𝑑𝑠 𝑑𝑟 + ∫

𝜌𝑗

𝜌𝑗−1
∫{𝑥∈𝜕𝐵+

𝑟 ∶ dist (𝑥,𝐿𝑗)⩾𝑎𝜂}
{ ⋅ } 𝑑𝑠 𝑑𝑟

=∶ 𝐼 + 𝐼𝐼. (4.35)

Regarding integral 𝐼, we note that for any 𝑟 such that 𝜌𝑗 − 1 < 𝑟 < 𝜌𝑗 and any 𝑥 ∈ 𝜕𝐵𝑟 such
that dist (𝑥, 𝐿𝑗) < 𝑎𝜂, if we denote by 𝑠(𝑥) the arclength along 𝜕𝐵𝑟 from 𝑥 to 𝜕𝐵𝑟 ∩ 𝐿𝑗 , then one
easily checks that

0 ⩽ 𝑠(𝑥) − dist (𝑥, 𝐿𝑗) = 𝑂

(
1

𝜌𝑗

)
. (4.36)

Combining this with the uniform convergence of 𝑈̃𝑗 to 𝜁12 on [−𝑎𝜂, 𝑎𝜂] guaranteed by (4.25),
we obtain that

|||||𝑈
(

𝜌𝑗
𝑥|𝑥|
)

− 𝑉𝑗(𝑥)
||||| ⩽

||||||𝑈
(

𝜌𝑗𝑒
𝑖(

𝑠(𝑥)

𝜌𝑗
+𝜃+

𝑗
)
)

− 𝜁12(𝑠(𝑥))

|||||| +
|||𝜁12(𝑠(𝑥)) − 𝜁12

(
dist (𝑥, 𝐿𝑗)

)||| = 𝑜(1),

(4.37)
which then also implies that

𝑍𝑗(𝑥) = 𝜁12(𝑠(𝑥)) + 𝑜(1). (4.38)

Now

|||||∇𝑈

(
𝜌𝑗

𝑥|𝑥|
)|||||

2

=
|||𝑈̃𝑗

′(𝑠(𝑥))
|||2,
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Allen–Cahn solutions with triple junction structure at infinity 4199

and for 𝑥 in the domain of integration of integral 𝐼, with an appeal to (4.36), we have

|||∇𝑉𝑗(𝑥)
|||2 =

|||𝜁′
12

(
dist (𝑥, 𝐿𝑗)

)|||2 =
|||𝜁′

12
(𝑠)
|||2 + 𝑜(1). (4.39)

Therefore, since

∇𝑍𝑗(𝑥) = 𝜆𝑗(|𝑥|)∇𝑈

(
𝜌𝑗

𝑥|𝑥|
)

+
(
1 − 𝜆𝑗(|𝑥|))∇𝑉𝑗(𝑥) +

𝑥|𝑥| ⊗

(
𝑈

(
𝜌𝑗

𝑥|𝑥|
)

− 𝑉𝑗(𝑥)

)
,

(4.40)
we may compute that

|||∇𝑍𝑗(𝑥)
|||2 ⩽

|||||𝜆𝑗(|𝑥|)∇𝑈

(
𝜌𝑗

𝑥|𝑥|
)

+
(
1 − 𝜆𝑗(|𝑥|))∇𝑉𝑗(𝑥)

|||||
2

+𝐶

{|||||𝑈
(

𝜌𝑗
𝑥|𝑥|
)

− 𝑉𝑗(𝑥)
|||||
2

+
|||||𝑈
(

𝜌𝑗
𝑥|𝑥|
)

− 𝑉𝑗(𝑥)
|||||
(|||||∇𝑈

(
𝜌𝑗

𝑥|𝑥|
)||||| +

|||∇𝑉𝑗(𝑥)
|||
)}

⩽ 𝜆𝑗(|𝑥|)|||||∇𝑈

(
𝜌𝑗

𝑥|𝑥|
)|||||

2

+
(
1 − 𝜆𝑗(|𝑥|))|||∇𝑉𝑗(𝑥)

|||2 + 𝑜(1), (4.41)

where the last inequality follows from the convexity of | ⋅ |2, along with the use of (4.36) and
(4.37), after noting that both |∇𝑈| and |||∇𝑉𝑗

||| are uniformly bounded.
As a consequence of (4.38), (4.41) and another appeal to (4.25) we find that

∫
𝜌𝑗

𝜌𝑗−1
∫{𝑥∈𝜕𝐵+

𝑟 ∶ dist (𝑥,𝐿𝑗)<𝑎𝜂}
𝑊(𝑍𝑗(𝑥)) +

1

2
|||∇𝑍𝑗(𝑥)

|||2 𝑑𝑠 𝑑𝑟 ⩽

∫
𝜌𝑗

𝜌𝑗−1
∫

𝑎𝜂

−𝑎𝜂

𝑊(𝜁12(𝑠)) +
1

2

{
𝜆𝑗(𝑟)

|||𝑈̃𝑗
′(𝑠)
|||2 +

(
1 − 𝜆𝑗(𝑟)

)|||𝜁′
12

(𝑠)
|||2
}

𝑑𝑠 𝑑𝑟 + 𝑜(1)

= ∫
𝜌𝑗

𝜌𝑗−1
∫

𝑎𝜂

−𝑎𝜂

𝑊(𝜁12(𝑠)) +
1

2
|||𝜁′

12
(𝑠)
|||2 𝑑𝑠 𝑑𝑟 + 𝑜(1).

Hence, it follows from (4.29) that

𝐼 ⩽ 𝑐12 + 𝜂, (4.42)

with a corresponding inequality holding for the energy of {𝑍𝑗} over the region in the left portion
of the annulus given by{

𝑥 = (𝑥1, 𝑥2) ∶ 𝜌𝑗 − 1 < |𝑥| < 𝜌𝑗, dist (𝑥, 𝐿𝑗) < 𝜂, 𝑥1 < 0
}

.

It remains to estimate integral 𝐼𝐼 in (4.35). We will argue that this integral is 𝑜(1) by relying
on (4.32) and (4.33). We first claim that

∫
𝜌𝑗

𝜌𝑗−1
∫{𝑥∈𝜕𝐵+

𝑟 ∶ dist (𝑥,𝐿𝑗)⩾𝑎𝜂}
𝑊(𝑍𝑗(𝑥))𝑑𝑠 𝑑𝑟 = 𝑂(𝜂). (4.43)
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4200 SANDIER and STERNBERG

With an eye towards appealing to (3.26), we observe that necessarily for any 𝑥 ∈ 𝜕𝐵𝜌𝑗
such

that dist (𝑥, 𝐿𝑗) ⩾ 𝑎𝜂, one has either |𝑈(𝑥) − 𝑝1| < 𝛽 or |𝑈(𝑥) − 𝑝2| < 𝛽. Otherwise, the ener-
getic cost incurred by transitioning along 𝜕𝐵𝜌𝑗

from |𝑈(𝑥) − 𝑝𝓁| = 𝛽 to 𝑈(𝑥) ≈ 𝑝𝓁 would be
𝑂(1), violating (4.33), a transition that must occur in light of (4.27).
Since (4.30) implies that 𝑉𝑗(𝑥) also takes values in a region of convexity of 𝑊 for 𝑥 ∈ 𝜕𝐵𝜌𝑗

such that dist (𝑥, 𝐿𝑗) ⩾ 𝑎𝜂, we have that

𝑊(𝑍𝑗(𝑥)) ⩽ 𝜆𝑗(|𝑥|)𝑊(
𝑈

(
𝜌𝑗

𝑥|𝑥|
))

+
(
1 − 𝜆𝑗(|𝑥|))𝑊(𝑉𝑗(𝑥)) for such an 𝑥. (4.44)

Hence, with an appeal to (4.32) and (4.33), we obtain claim (4.43).

To show that integral 𝐼𝐼 in (4.35) is small, we still must estimate the integral of |||∇𝑍𝑗
|||2. Here

we note from (4.40) that

|||∇𝑍𝑗
|||2 ⩽ 𝐶

{[
𝜆𝑗(|𝑥|)∇𝑈

(
𝜌𝑗

𝑥|𝑥|
)

+
(
1 − 𝜆𝑗(|𝑥|))∇𝑉𝑗(𝑥)

]2

+
|||||𝑈
(

𝜌𝑗
𝑥|𝑥|
)

− 𝑉𝑗(𝑥)
|||||
2}

⩽ 𝐶

{
𝜆𝑗(|𝑥|)|||||∇𝑈

(
𝜌𝑗

𝑥|𝑥|
)|||||

2

+
(
1 − 𝜆𝑗(|𝑥|)|||∇𝑉𝑗(𝑥)

|||2 +
|||||𝑈
(

𝜌𝑗
𝑥|𝑥|
)

− 𝑉𝑗(𝑥)
|||||
2}

. (4.45)

Integrating this expression over the set

{𝑥 = (𝑥1, 𝑥2) ∶ 𝜌𝑗 − 1 < |𝑥| < 𝜌𝑗, dist (𝑥, 𝐿𝑗) ⩾ 𝑎𝜂, 𝑥1 > 0},

we can use (4.32) and (4.33) once again to show that the first two terms in (4.45) integrate to
𝑂(𝜂).
The third term can be handled in the same manner as was done for the integral of 𝑊(𝑍𝑗).

That is, we split the integral into the set where𝑈
(

𝜌𝑗
𝑥|𝑥|
)
is far from both 𝑝1 and 𝑝2 and where

it is close to one of these wells. We know from (4.30) that𝑉𝑗(𝑥) is near 𝑝1 or 𝑝2 for this domain
of integration and therefore the measure of the set where 𝑈

(
𝜌𝑗

𝑥|𝑥|
)
is far from the wells must

be small in order not to violate (4.33). Then, on any set where it is near to 𝑝1 or 𝑝2, we have

|||||𝑈
(

𝜌𝑗
𝑥|𝑥|
)

− 𝑉𝑗(𝑥)
|||||
2

⩽ 2

(|||||𝑈
(

𝜌𝑗
𝑥|𝑥|
)

− 𝑝𝓁

|||||
2

+
|||𝑉𝑗(𝑥) − 𝑝𝓁

|||2
)

for either 𝓁 = 1 or 2,

and so the quantity
||||𝑈 (

𝜌𝑗
𝑥|𝑥|
)

− 𝑉𝑗(𝑥)
||||
2

is controlled by the sum of the integrals of

𝑊
(

𝑈
(

𝜌𝑗
𝑥|𝑥|
))

and 𝑊(𝑉𝑗(𝑥)). Hence, by (4.32) and (4.33) it must also integrate to 𝑂(𝜂).
Since the analysis of 𝐼 leading to (4.42) holds for any 𝜂 > 0 provided 𝜌𝑗 is sufficiently large,

as does this just completed analysis of integral 𝐼𝐼, we finally conclude that the interpolating
sequence {𝑍𝑗} satisfies the bound

∫
{𝑥∶ 𝜌𝑗−1<|𝑥|<𝜌𝑗, 𝑥1>0}

𝑊(𝑍𝑗) +
1

2
|||∇𝑍𝑗

|||2 𝑑𝑥 ⩽ 𝑐12 + 𝑜(1).
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Allen–Cahn solutions with triple junction structure at infinity 4201

The argument leading to the same estimate for the energy of𝑍𝑗 taken over the set {𝑥 ∶ 𝜌𝑗 − 1 <|𝑥| < 𝜌𝑗, 𝑥1 < 0} is identical, and so we arrive at the estimate

𝐸
(

𝑍𝑗, 𝐵𝜌𝑗
⧵ 𝐵𝜌𝑗−1

)
⩽ 2𝑐12 + 𝑜(1). (4.46)

4. Having interpolated between the boundary values of𝑈 on 𝜕𝐵𝜌𝑗
and those of𝑉𝑗 on 𝜕𝐵𝜌𝑗−1 with

a cost bounded as in (4.46), we can now appeal to the local minimality of 𝑈 to assert that

𝐸
(

𝑈, 𝐵𝜌𝑗

)
⩽ 2𝑐12 + 𝐸

(
𝑉𝑗, 𝐵𝜌𝑗−1

)
+ 𝑜(1),

where we recall that 𝑉𝑗 is defined through (4.28). If we now consider a coordinate system
(𝑧1, 𝑧2) with 𝑧1-axis coinciding with the line 𝐿𝑗 , 𝑧2-axis orthogonal to it, and with origin at the
midpoint of the line segment 𝐿𝑗 ∩ 𝐵𝜌𝑗

, then it follows immediately from the definition of 𝜁12

and (4.28) that

𝐸
(

𝑈, 𝐵𝜌𝑗

)
⩽ 2𝑐12 + ∫

1

2
1(𝐿𝑗∩𝐵𝜌𝑗−1)

−
1

2
1(𝐿𝑗∩𝐵𝜌𝑗−1)

𝐸(𝜁12, ℝ) 𝑑𝑧1 + 𝑜(1) = 𝑐12 1
(

𝐿𝑗 ∩ 𝐵𝜌𝑗

)
+ 𝑜(1). (4.47)

Here we are using the fact that

1
(
𝐿𝑗 ∩ {𝑥 ∶ 𝜌𝑗 − 1 < |𝑥| < 𝜌𝑗}

)
⩽ 2 + 𝑜(1),

since we recall that the line 𝐿𝑗 meets 𝜕𝐵𝜌𝑗
at the points 𝑥+

𝐽 = 𝜌𝑗𝑒
𝑖𝜃+

𝑗 and 𝑥−
𝑗

= 𝜌𝑗𝑒
𝑖(𝜋−𝜃−

𝑗
) with

𝜃+
𝑗
and 𝜃−

𝑗
both approaching zero by (4.22) and (4.26). See Figure 5.

5. We conclude the proof of Proposition 4.3with a lower bound for the energy of𝑈 on𝐵𝜌𝑗
thatwill

contradict the upper bound (4.47), thus eliminating the possibility that (4.11) can occur. To this
end, we introduce an interpolation, say 𝑍̃𝑗 , on the annulus {𝑥 ∶ 𝜌𝑗 ⩽ |𝑥| ⩽ 𝜌𝑗 + 1} between the
values of 𝑈 on 𝜕𝐵𝜌𝑗

and those of 𝑉𝑗 given by (4.28) on 𝜕𝐵𝜌𝑗+1. The formula for the sequence
{𝑍̃𝑗} is identical to that of {𝑍𝑗} given in (4.34), with the exception that 𝜆𝑗(𝑟) is now replaced
by 𝜆̃𝑗(𝑟) ∶= 𝜌𝑗 + 1 − 𝑟. Then the entire argument that led to the energy bound (4.46) applies
equally well to {𝑍̃𝑗}, to establish that

𝐸
(

𝑍̃𝑗, 𝐵𝜌𝑗+1 ⧵ 𝐵𝜌𝑗

)
⩽ 2𝑐12 + 𝑜(1). (4.48)

As a consequence of (4.48), if we now define the sequence {𝑗} on 𝐵𝜌𝑗+1 via

𝑗(𝑥) ∶=

{
𝑈(𝑥) for 𝑥 ∈ 𝐵𝜌𝑗

,

𝑍̃𝑗(𝑥) for 𝑥 ∈ 𝐵𝜌𝑗+1 ⧵ 𝐵𝜌𝑗
,

then we have the lower energy bound

𝐸
(

𝑈, 𝐵𝜌𝑗

)
⩾ 𝐸

(𝑗, 𝐵𝜌𝑗+1

)
− 2𝑐12 − 𝑜(1). (4.49)

Next we will compute a lower bound for the integral on the right using a coordinate system
(𝑧1, 𝑧2) very similar to the one introduced above (4.47), where again 𝑧1 is the arc length on the
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4202 SANDIER and STERNBERG

F IGURE 5 The coordinate system based on the line 𝐿𝑗 passing through the points 𝑥+
𝑗

= 𝜌𝑗𝑒
𝑖𝜃+

𝑗 and
𝑥−

𝑗
= 𝜌𝑗𝑒

𝑖(𝜋−𝜃−
𝑗

) defined in (4.22) and (4.26).

line 𝐿𝑗 but now with 𝑧1 = 0, 𝑧2 = 0 corresponding to the midpoint of 𝐿𝑗 ∩ 𝐵𝜌𝑗+1. For any 𝑧1 ∈ ℝ

the set {𝑧2 ∣ (𝑧1, 𝑧2) ∈ 𝐵𝜌𝑗+1} is an interval that we denote
(
𝑎𝑗(𝑧1), 𝑏𝑗(𝑧1)

)
.

The line 𝐿𝑗 is at a distance 𝛿𝑗 = 𝜌𝑗

|||||sin
(

𝜃−
𝑗

+𝜃+
𝑗

2

)||||| from the origin. Note that 𝛿𝑗 ≪ 𝜌𝑗 since|||𝜃+
𝑗
||| +

|||𝜃−
𝑗
||| → 0. It follows that 𝐵𝜌𝑗+1 contains the set of points with coordinates (𝑧1, 𝑧2) such

that

−𝓁𝑗 < 𝑧1 < 𝓁𝑗, −ℎ𝑗(𝑧1) < 𝑧2 < ℎ𝑗(𝑧1), (4.50)

where

𝓁𝑗 =
1

2
1
(

𝐿𝑗 ∩ 𝐵𝜌𝑗+1

)
=
(

(𝜌𝑗 + 1)2 − 𝛿𝑗
2
)1∕2

and ℎ𝑗(𝑧1) =
(
(𝜌𝑗 + 1)2 − 𝑧1

2
)1∕2

− 𝛿𝑗. (4.51)

In particular,

ℎ𝑗(𝑧1) ≤ min
(|||𝑎𝑗(𝑧1)

|||, 𝑏𝑗(𝑧1)
)

. (4.52)

Then we can write

𝐸
(𝑗, 𝐵𝜌𝑗+1

)
⩾ ∫

𝐵𝜌𝑗+1

|||||𝜕𝑗

𝜕𝑧

|||||
2

+ ∫
𝓁𝑗

−𝓁𝑗

𝐼(𝑧1) 𝑑𝑧1, (4.53)
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Allen–Cahn solutions with triple junction structure at infinity 4203

where

𝐼(𝑧1) = 𝐸
(𝑗(𝑧1, ⋅), [𝑎𝑗(𝑧1), 𝑏𝑗(𝑧1)]

)
.

From the construction of𝑗 using 𝑍𝑗 , we have that𝑗(𝑧1, 𝑧2) = 𝜁12(𝑧2) if (𝑧1, 𝑧2) ∈ 𝜕𝐵𝜌𝑗+1, that
is if 𝑧2 = 𝑎𝑗(𝑧1) or 𝑧2 = 𝑏𝑗(𝑧1). Thus wemay extend𝑗(𝑧1, ⋅) continuously by setting𝑗(𝑧1, 𝑧2) =

𝜁12(𝑧2) if 𝑧2 ∉
(
𝑎𝑗(𝑧1), 𝑏𝑗(𝑧1)

)
.

Using the minimizing property of 𝜁12 with respect to its boundary conditions on any interval
[𝑎, 𝑏] and its exponential decay as in (3.44), we have for any 𝑧1 ∈ (−𝓁𝑗, 𝓁𝑗) that

𝐼(𝑧1) = 𝐸
(𝑗(𝑧1, ⋅), ℝ

)
− 𝐸

(𝑗(𝑧1, ⋅), ℝ ⧵ [𝑎𝑗(𝑧1), 𝑏𝑗(𝑧1)]
)

= 𝐸
(𝑗(𝑧1, ⋅), ℝ

)
− 𝐸

(
𝜁12, ℝ ⧵ [𝑎𝑗(𝑧1), 𝑏𝑗(𝑧1)]

)
≥ 𝐸(𝜁12, ℝ) − 𝐸

(
𝜁12, ℝ ⧵ [−ℎ𝑗(𝑧1), ℎ𝑗(𝑧1)]

) ≥ 𝑐12 − 𝐶𝑒−𝑐ℎ𝑗(𝑧1), (4.54)

where 𝑐, 𝐶 > 0 depend only on 𝑊.
We integrate (4.54) over 𝑧1 ∈ (−𝓁𝑗, 𝓁𝑗). In view of (4.53) we find that

𝐸(𝑗, 𝐵𝜌𝑗+1) ≥ ∫
𝐵𝜌𝑗+1

|||||𝜕𝑗

𝜕𝑧1

|||||
2

+ 2𝑐12𝓁𝑗 − 𝐶 ∫
𝓁𝑗

−𝓁𝑗

𝑒−𝑐ℎ𝑗(𝑧1) 𝑑𝑧1.

It is straightforward to show, using (4.51) and the fact that 𝛿𝑗 ≪ 𝜌𝑗 as 𝜌𝑗 → +∞, that the last
integral above is 𝑜(1) and then, since

2𝓁𝑗 = 1
(

𝐿𝑗 ∩ 𝐵𝜌𝑗+1

)
= 1

(
𝐿𝑗 ∩ 𝐵𝜌𝑗

)
+ 2 + 𝑜(1),

we conclude that

𝐸(𝑗, 𝐵𝜌𝑗+1) ≥ ∫
𝐵𝜌𝑗+1

|||||𝜕𝑗

𝜕𝑧1

|||||
2

+ 𝑐12 1
(

𝐿𝑗 ∩ 𝐵𝜌𝑗

)
+ 2𝑐12 + −𝑜(1),

In view of (4.49) and the upper bound (4.47), we deduce that

∫
𝐵𝜌𝑗+1

|||||𝜕𝑗

𝜕𝑧1

|||||
2

= 𝑜(1). (4.55)

6. Wemay now conclude. Going back to the original coordinates (𝑥1, 𝑥2)we have that𝑈 = 𝑗◦𝜑𝑗

on 𝐵𝜌𝑗
, where 𝜑𝑗 denotes the (𝑥1, 𝑥2) → (𝑧1, 𝑧2) map. But, as 𝑗 → +∞, the rotational component

of 𝜑𝑗 converges to the identity since 𝜃+
𝑗
and 𝜃−

𝑗
both tend to 0. Passing to the limit in (4.55) we

thus deduce that 𝑈(𝑥1, 𝑥2) does not depend on 𝑥1.
Then, as a function of 𝑥2 only, 𝑈 is a minimizing solution on ℝ, which converges to 𝑝1 as

𝑧2 → −∞ and to 𝑝2 as 𝑥2 → +∞. Thus there exists Δ ∈ ℝ such that𝑈(𝑥1, 𝑥2) = 𝜁12(𝑥2 + Δ). The
proof of Theorem 1.3 is complete. □

 10970312, 2024, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22204 by Indiana U

niversity Libraries, W
iley O

nline Library on [15/07/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



4204 SANDIER and STERNBERG

5 TWO PARTITIONING PROBLEMS: REGULARITY AND
COMPARISON

Our proof of the key estimate (3.15) in Proposition 3.3 relies upon the regularity theory for two par-
titioning problems, one fairly standard and the other perhaps not so standard. In this section we
state the regularity theory for these problems, as established in [24]. Then we state and prove a
result relating the infima of these two problems.
For the convenience of the reader, we restate these two partitioning problems here:

Problem 1. Fix a function ℎ ∈ 𝐵𝑉(𝜕𝐵; 𝑃). For any disjoint sets 𝑆1, 𝑆2 and 𝑆3 of finite perimeter in
𝐵 such that |𝐵 ⧵ ∪𝑆𝓁| = 0 define

𝑚0 ∶= inf
{

𝐸0(𝑆1, 𝑆2, 𝑆3) ∶ ∪𝑆𝓁 = 𝐵, 𝜕𝑆𝓁 ∩ 𝜕𝐵 = ℎ−1(𝑝𝓁) for 𝓁 = 1, 2, 3
}

,

where 𝐸0 is given by

𝐸0(𝑆1, 𝑆2, 𝑆3) = 𝑡11(𝜕∗𝑆1 ∩ 𝐵) + 𝑡21(𝜕∗𝑆2 ∩ 𝐵) + 𝑡31(𝜕∗𝑆3 ∩ 𝐵).

Problem 2. Fix a number 𝛿 > 0. Then for ℎ and 𝐸0 as above, and disjoint sets 𝑆1, 𝑆2, and 𝑆3 of
finite perimeter in 𝐵 define

𝑚𝛿
0

∶= inf
{

𝐸0(𝑆1, 𝑆2, 𝑆3) ∶ |𝐵 ⧵ ∪𝑆𝓁| ⩽ 𝛿, 𝜕𝑆𝓁 ∩ 𝜕𝐵 = ℎ−1(𝑝𝓁) for 𝓁 = 1, 2, 3
}

.

Regarding Problem 1, the regularity theory of minimizing planar partitions subject to volume
constraints on each phase is developed, for instance, in [20, 22]. For our purposes, however, we
require a version valid without volume constraints but subject to a Dirichlet condition, and which
has additional properties specific to minimization within a ball. For this we quote the recent work
in [24].

Theorem 5.1 [24, Thm. 1.6]. If (𝑆0
1
, 𝑆0

2
, 𝑆0

3
) be a minimizer of Problem 1, then every connected com-

ponent of 𝜕𝑆0
𝓁

∩ 𝜕𝑆0
𝑚 ∩ 𝐵 is a line segment terminating at an interior triple junction 𝑥 ∈ 𝜕𝑆0

1
∩ 𝜕𝑆0

2
∩

𝜕𝑆0
3

∩ 𝐵, at 𝑥 ∈ 𝜕𝑆0
𝓁

∩ 𝜕𝑆0
𝑚 ∩ 𝜕𝐵 for 𝓁 ≠ 𝑚 which is a point of discontinuity of ℎ, or at a boundary

triple junction 𝑥 ∈ 𝜕𝑆0
1

∩ 𝜕𝑆0
2

∩ 𝑆0
3

∩ 𝜕𝐵 which is a point of discontinuity of ℎ. Moreover, there exists
angles 𝛼𝓁, 𝓁 = 1, 2, 3, satisfying (1.9) such that if 𝑥 ∈ 𝐵 is an interior triple junction, for some 𝑟𝑥 > 0,
𝑆0

𝓁
∩ 𝐵𝑟𝑥

for 𝓁 = 1, 2, 3 are circular sectors determined by 𝛼𝓁. Finally, every connected component 𝐶

of 𝑆0
𝓁
is convex and meets 𝜕𝐵 along one or more arcs of ℎ−1(𝑝𝓁).

The last property, namely, that every connected component 𝐶 of 𝑆0
𝓁
is convex and meets 𝜕𝐵

along one or more arcs of ℎ−1(𝑝𝓁) is not stated in [24], Thm. 1.6, but is immediate since any island
of phase could be filled in with a different phase, thereby lowering the total perimeter without
disrupting the boundary condition.
Regarding Problem 1, we will also need the following corollary, which follows easily from

Theorem 5.1.

Corollary 5.2. Suppose ℎ ∈ 𝐵𝑉(𝜕𝐵; 𝑃) has 𝑘 jump discontinuities for some non-negative integer
𝑘. Then there exists an integer 𝑁(𝑘) such that the total number of triple junctions appearing in any
minimizer of Problem 1 cannot exceed 𝑁(𝑘).

 10970312, 2024, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22204 by Indiana U

niversity Libraries, W
iley O

nline Library on [15/07/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Allen–Cahn solutions with triple junction structure at infinity 4205

F IGURE 6 Minimizers of 𝐸0 subject to the same Dirichlet condition for Problem 1 (right) and Problem 2
(left).

Proof. Denote any minimizer of Problem 1 by 𝑢0. Since any connected component of {𝑢0 = 𝑝𝓁}

must meet 𝜕𝐵 along one or more connected components of the set of boundary arcs ℎ−1(𝑝𝓁),
and since the number of these arcs is necessarily bounded by 𝑘, we can conclude that for 𝓁 = 1, 2

and 3, the number of connected components of {𝑢0 = 𝑝𝓁} cannot exceed 𝑘 as well. Next we note
that in light of the convexity of every component of {𝑢0 = 𝑝𝓁}, any triple of components, one
each from {𝑢0 = 𝑝𝓁} for 𝓁 = 1, 2, 3, can only meet at a triple junction at most once. Counting up
all the possible triples, it follows that the number of triple junctions of a minimizer 𝑢0 cannot
exceed 𝑘3. □

The regularity theory for Problem 2 ismore subtle sinceminimizers will typically develop cusps
to replace the triple junctions appearing in the solution of Problem 1, a phenomenon referred to
in some literature as a “wetting” of the singularities, see for example [12]. See Figure 6. Here we
quote the following result:

Theorem 5.3 [24, Thm. 1.4]. Let (𝑆𝛿
1
, 𝑆𝛿

2
, 𝑆𝛿

3
) be a minimizer of Problem 2, and denote by 𝐺𝛿 ∶=

𝐵 ⧵ ∪3
𝓁=1

𝑆𝛿
𝓁
. Then every connected component of 𝜕𝑆𝛿

𝓁
∩ 𝜕𝑆𝛿

𝑗
∩ 𝐵 is a line segment terminating either

on 𝜕𝐵 at a point of discontinuity of ℎ between 𝑝𝓁 and 𝑝𝑗 or at a point in 𝜕𝑆𝛿
𝓁

∩ 𝜕𝑆𝛿
𝑗

∩ 𝜕𝐺𝛿 ∩ 𝐵. Refer-
ring to those points in 𝜕𝑆𝛿

𝓁
∩ 𝜕𝑆𝛿

𝑚 ∩ 𝜕𝐺𝛿 ∩ 𝐵 and 𝜕𝑆𝛿
𝓁

∩ 𝜕𝑆𝛿
𝑚 ∩ 𝜕𝐺𝛿 ∩ 𝜕𝐵 as cusp and corner points,

respectively, there exist positive 𝜅𝛿
𝓁
for 𝓁 = 1, 2, 3 such that

𝑡1𝜅𝛿
1

= 𝑡2𝜅𝛿
2

= 𝑡3𝜅𝛿
3

(5.1)

and, for 𝓁 = 1, 2, 3, 𝜕𝑆𝛿
𝓁

∩ 𝜕𝐺𝛿 consists of a union of circular arcs of curvature 𝜅𝛿
𝓁
, each of whose

two endpoints are either a cusp point in 𝐵 or a corner point in 𝜕𝐵 at a point of discontinuity of ℎ.
Furthermore, at cusp points, 𝜕𝑆𝛿

𝓁
∩ 𝜕𝐺𝛿 and 𝜕𝑆𝛿

𝑚 ∩ 𝜕𝐺𝛿 meet 𝜕𝑆𝛿
𝓁

∩ 𝜕𝑆𝛿
𝑚 tangentially. Finally, any

connected component 𝐶 of 𝑆𝛿
𝓁
is convex.

Since any admissible partition of 𝐵 for Problem 1 is also admissible for Problem 2, it is obvious
that 𝑚𝛿

0
⩽ 𝑚0. However, an inequality in the reverse direction also holds.

Theorem 5.4. For any positive integer 𝑘, let ℎ be any function in 𝐵𝑉(𝜕𝐵; 𝑃) having no more than 𝑘

discontinuities. Then for any 𝛿 > 0, the infimum𝑚0 for Problem 1 and the infimum𝑚𝛿
0
for Problem 2
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4206 SANDIER and STERNBERG

are related via

𝑚𝛿
0

⩾ 𝑚0 − 𝛾(𝑘) 𝛿1∕2, (5.2)

for some constant 𝛾(𝑘).

Proof of Theorem 5.4. We will viewminimization of 𝐸0 subject to the given Dirichlet condition on
𝜕𝐵 and subject to the constraint (3.19) as a problem of coloring most of 𝐵 with three colors, where
for a minimizer {𝑆𝛿

1
, 𝑆𝛿

2
, 𝑆𝛿

3
} we rename 𝑆𝛿

1
as the yellow set 𝑌𝛿, 𝑆𝛿

2
as the red set 𝑅𝛿 and 𝑆𝛿

3
as the

blue set 𝐵𝛿. Then the region in 𝐵 not covered by these sets, namely, 𝐺𝛿, will be referred to as the
gray set. Referring back to the formulation (3.17) of the partitioning energy 𝐸0, let us now write it
as

𝐸0

(
𝑌𝛿, 𝑅𝛿, 𝐵𝛿

)
= 𝑐𝑌1

(
𝜕𝑌𝛿 ∩ 𝐵

)
+ 𝑐𝑅1

(
𝜕𝑅𝛿 ∩ 𝐵

)
+ 𝑐𝐵1

(
𝜕𝐵𝛿 ∩ 𝐵

)
, (5.3)

wherewe have changed notation to let 𝑐𝑌 = 𝑡1 = the cost of ‘yellow boundary’, 𝑐𝑅 = 𝑡2 and 𝑐𝐵 = 𝑡3.
Having fixed the boundary data ℎ ∈ 𝐵𝑉(𝜕𝐵; 𝑃), we have 𝜕𝑌𝛿 ∩ 𝜕𝐵 = ℎ−1(𝑝1), 𝜕𝑅𝛿 ∩ 𝜕𝐵 =

ℎ−1(𝑝2) and 𝜕𝐵𝛿 ∩ 𝜕𝐵 = ℎ−1(𝑝3), and so 𝜕𝐵 is partitioned into a finite number circular arcs, some
yellow, some red and some blue, though we make no assumption that necessarily all three colors
are present in the boundary data. We recall that we are assuming the total number of these arcs
does not exceed 𝑘. It also follows from the Dirichlet condition that 𝜕𝐺𝛿 meets 𝜕𝐵 only at most 𝑘

isolated points, if at all.
The main step in the proof consists of arguing that one can bound the number of components

of 𝐺𝛿 by a constant depending only on 𝑘. Once this is established, the bound (5.2) will follow
rather easily.
At this point, we will assume, with no loss of generality, that

𝑐𝑌 ⩽ min{𝑐𝑅, 𝑐𝐵}. (5.4)

We now proceed with the proof in four steps.

1. We first claim that with no loss of generality we may assume every component of 𝑅𝛿 and every
component of 𝐵𝛿 must meet 𝜕𝐵. That is, there are no islands of red or blue in the interior of
𝐵. This follows since any such island could be changed to yellow, either resulting in a new
minimizer in the case of equality in (5.4), or else contradicting the minimality of {𝑌𝛿, 𝑅𝛿, 𝐵𝛿}

in the case of strict inequality in (5.4). As a consequence, the number of connected components
of 𝑅𝛿 and of 𝐵𝛿 cannot exceed the number of red and blue boundary components dictated by
ℎ. In particular, both numbers are bounded by 𝑘. For the remainder of the argument, we will
denote these components via

𝑅𝛿 = 𝑅𝛿
1

∪ 𝑅𝛿
2

∪ … ∪ 𝑅𝛿
𝑘1

and 𝐵𝛿 = 𝐵𝛿
1

∪ 𝐵𝛿
2

∪ … ∪ 𝐵𝛿
𝑘2

(5.5)

for some integers 𝑘1 = 𝑘1(𝛿) and 𝑘2 = 𝑘2(𝛿) such that 𝑘1 + 𝑘2 ⩽ 𝑘.
2. Next we claim that we may assume every component of 𝐺𝛿 is simply connected. This follows

since by Step 1, any non-simply connected component of 𝐺𝛿 would have one or more com-
ponents of 𝑌𝛿 consisting of full disks lying in its interior. We observe as a consequence of
Proposition 5.3 that the outer boundary component of any component of𝐺𝛿 consists of a union
of circular arcs of curvature 𝜅𝛿

𝑌, 𝜅𝛿
𝑅 or 𝜅𝛿

𝐵 bowing into𝐺𝛿, allmeeting tangentially at cusp points,
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Allen–Cahn solutions with triple junction structure at infinity 4207

wherewe have renamed 𝜅𝛿
1
as 𝜅𝛿

𝑌 , and so forth. Thenwemay shift any interior yellow disk until
it touches this outer boundary component at two points without changing the total value of𝐸0,
that is, creating a new minimizer. The only obstruction to sliding such an interior yellow disk
over to the boundarywould be that it first hits another yellow disk, but clearly two yellow disks,
tangent at a point, is a non-minimizing configuration and so could not occur. In this manner,
any minimizing configuration possessing a non-simply connected component of 𝐺𝛿 could be
replaced by anotherminimizer havingmore components of𝐺𝛿 than the original, but for which
every component of the new 𝐺𝛿 is simply connected.

3. Our next goal is to bound the number of components of 𝑌𝛿 which touch 𝐺𝛿, in the sense
that their boundaries have non-empty intersection. It suffices to bound the number of those
components which do not touch the boundary 𝜕𝐵 since there are at most 𝑘 components which
touch 𝜕𝐵.
Let then 𝑌𝛿

𝓁
be a yellow component which touches 𝐺𝛿. As described in Theorem 5.3, the

boundary of 𝑌𝛿
𝓁
is 𝐶1 and consists of circular arcs and segments separated by points which are

cusp singularities of the partition. Moreover, we may assume that there are at least two such
cusp points, for otherwise 𝜕𝑌𝛿

𝓁
minus at most a point would be in a gray component and by

sliding 𝑌𝛿
𝓁
in this gray component, we would obtain a minimizing partition where 𝑌𝛿

𝓁
has at

least two cusp points on its boundary.
Let then 𝑝1 and 𝑝2 be cusp points on 𝜕𝑌𝛿

𝓁
, separated by a circular arc 𝛾 ⊂ 𝜕𝑌𝛿

𝓁
∩ 𝐺𝛿 of radius

𝑟 = 1∕𝜅𝛿
𝑌 . These points also belong to the boundaries of red or blue components drawn from

the collection (5.5); call these two components𝐴1 and𝐴2. We claim that given components𝐴1

and 𝐴2, each either red or blue, there can be at most two yellow components separated from
the gray area by a boundary arc 𝛾 whose endpoints belong to 𝜕𝐴1 and 𝜕𝐴2, respectively.
We will argue this by first noting that the completion of any such circular arc 𝛾 into a full

circle yields a circle of radius 𝑟 = 1∕𝜅𝛿
𝑌 . By Theorem 5.3, this circle necessarily meets both 𝜕𝐴1

and 𝜕𝐴2 tangentially. We will thus rule out the possibility of there existing three or more such
arcs 𝛾 by showing that there can never exist three balls of the same radius, all exterior to𝐴1 and
𝐴2, with all three meeting both 𝜕𝐴1 and 𝜕𝐴2 tangentially, unless all three balls have collinear
centers. This is an elementary property of convex sets, but not being aware of a reference, we
provide a proof.
We note that necessarily the center of any such ball must be equidistant from 𝜕𝐴1 and

𝜕𝐴2. Therefore, for each 𝑡 > 0, we consider the possible intersections of the curves Γ𝑡
1

∶= {𝑥 ∶

dist(𝑥, 𝜕𝐴1) = 𝑡} and Γ𝑡
2

= {𝑥 ∶ dist(𝑥, 𝜕𝐴2) = 𝑡}. Since𝐴1 and𝐴2 are two disjoint, convex sets
that have 𝐶1 boundaries within 𝐵, it follows that for all 𝑡 > 0, Γ𝑡

1
and Γ𝑡

2
are convex, closed

curves that are also 𝐶1 within 𝐵, and furthermore, Γ𝑡
1

∩ Γ𝑡
2
are disjoint for 𝑡 small.

Now consider the first time 𝑡1 > 0 when Γ
𝑡1
1
meets Γ

𝑡1
2
. This could happen along a line seg-

ment, since we recall that neither curve is necessarily strictly convex. However, for Γ
𝑡1
1

∩ Γ
𝑡1
2
to

consist of a line segment would mean that 𝜕𝐴1 and 𝜕𝐴2 must have boundary components that
are parallel line segments. In this case, of course there exists a one-parameter family of circles
with this tangency property, but necessarily, their centers all lie on the line segment Γ

𝑡1
1

∩ Γ
𝑡1
2
;

that is, they are collinear.
The other possibility is that at time 𝑡1, the intersection Γ

𝑡1
1

∩ Γ
𝑡1
2
consists of one point. Then

for 0 < 𝑡 − 𝑡1 ≪ 1, the convexity of both curves means that the intersection will consist of two
points,which in the context of our yellow components, allows for the possibility that two curves
representing boundary components of two distinct elements of 𝑌𝛿, say, 𝜕𝑌𝛿

𝓁1
∩ 𝐺𝛿 and 𝜕𝑌𝛿

𝓁2
∩

𝐺𝛿, both meet 𝜕𝐴1 and 𝜕𝐴2. This could certainly happen. See Figure 7.
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4208 SANDIER and STERNBERG

F IGURE 7 A configuration with two yellow components, both having a circular boundary arc whose
endpoints meet the same pair of components from the collection in (5.5), resulting in four cusp points.

However, we claim that as 𝑡 increases there cannot be more than two intersections of the
two curves. We argue by contradiction and suppose that there exists a first time 𝑡2 > 𝑡1 where
Γ

𝑡2
1

∩ Γ
𝑡2
2
consists of three points. Two of these points represent the continuous evolution of

the original two points that emerged as 𝑡 passed through 𝑡 = 𝑡1 but at the third point, say 𝑥 ∈

Γ
𝑡2
1

∩ Γ
𝑡2
2
, it must be the case that Γ

𝑡2
1
and Γ

𝑡2
2
meet tangentially, this being the first time a third

point of intersection emerges. Denoting by the line of tangency, it follows from convexity that
either both {𝑥 ∶ dist(𝑥, 𝜕𝐴1) < 𝑡2} and {𝑥 ∶ dist(𝑥, 𝜕𝐴2) < 𝑡2} lie on the same side of  or they
lie on opposite sides. But if they both lie on the same side then tracing back from 𝑥 a distance
𝑡2 along the common inner normal to Γ

𝑡2
1
and Γ

𝑡2
2
, one would arrive at a point in common to

𝜕𝐴1 and 𝜕𝐴2, which is impossible given that they are disjoint. If instead one supposes the two
sets lie on opposite sides of , then that all earlier times, it must have been that Γ𝑡

1
∩ Γ𝑡

2
was

empty, contradicting the fact that the two curves met at the earlier time 𝑡1.
Returning to the possibility of boundary components of 𝜕𝐴1 and 𝜕𝐴2 consisting of two paral-

lel line segments, we note that any line segment on the boundary of a component corresponds
to one and only one common boundary with a component of a different color, so in this con-
text, it would correspond to only one yellow component meeting 𝐴1, 𝐴2 and 𝐺𝛿. This proves
the claim that given components 𝐴1 and 𝐴2, each either red or blue, there can be at most two
yellow components separated from the gray area by a boundary arc 𝛾 whose endpoints belong
to 𝜕𝐴1 and 𝜕𝐴2, respectively. This in turn proves that the number of yellow components touch-
ing 𝐺𝛿 but not touching 𝜕𝐵 is at most twice the number of pairs of components of red or blue,
chosen from (5.5), which is bounded by 2

(𝑘

2

)
.

4. Nowwe turn to the task of bounding the number of components of𝐺𝛿. Wewill accomplish this
by bounding the total number of cusp points. Any component of 𝐺𝛿 has boundary consisting
of a union of circular arcs of curvature 𝜅𝛿

𝑌, 𝜅𝛿
𝑅 or 𝜅𝛿

𝐵 bowing into 𝐺𝛿, all meeting tangentially at
cusp points. Each of these circular boundary arcs must be a portion of boundary drawn from
of the collection of sets

𝑅𝛿
𝑖
for 𝑖 ∈ {1, 2, … , 𝑘1}, 𝐵𝛿

𝑗
for 𝑗 ∈ {1, 2, … , 𝑘2}, or 𝑌𝛿

𝓁
for 𝓁 ∈ {1, 2, … , 𝑘3}, (5.6)

with 𝑘1 + 𝑘2 + 𝑘3 ⩽ 𝑘 + 2
(𝑘

2

)
in light of (1) and (3) above.
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Allen–Cahn solutions with triple junction structure at infinity 4209

Now consider any yellow/red, yellow/blue or red/blue pair taken from this collection, say
for instance 𝑅𝛿

1
and 𝐵𝛿

1
, and suppose 𝜕𝑅𝛿

1
and 𝜕𝐵𝛿

1
each have circular arcs bordering the same

component of 𝐺𝛿 such that these two arcs meet at a particular cusp point. By the convexity
of red and blue components, 𝜕𝑅𝛿

1
∩ 𝜕𝐵𝛿

1
must consist solely of a line segment one of whose

endpoints is this cusp point. It follows that 𝜕𝑅𝛿
1
and 𝜕𝐵𝛿

1
can both meet the boundary of some

other gray component at most one other cusp point, namely, at a cusp point sitting at the other
endpoint of their one common boundary segment. The same argument could bemade between
any pairing of a 𝑌𝛿

𝓁
with any 𝑅𝛿

𝑖
or 𝐵𝛿

𝑗
, provided 𝑌𝛿

𝓁
is not a full disk. On the other hand, if 𝑌𝛿

𝓁

is a full disk then its intersection with any 𝑅𝛿
𝑖
or 𝐵𝛿

𝑗
results in only one cusp point due to the

convexity of both sets involved. Estimating crudely, the total number of yellow/red, yellow/blue
or red/blue pairs drawn from the collection (5.6) is bounded by

(𝑘 + 2
(𝑘

2

)
2

)
.

Hence, as just argued, the total number of cusp points in a minimizing configuration
{𝑌𝛿, 𝑅𝛿, 𝐵𝛿} cannot exceed twice this number. But since a closed curve comprised of concave
circular arcs requires at least three such arcs, it follows that any component of 𝜕𝐺𝛿 must have
at least three cusp points. Thus we can bound the total number of gray boundary components
and hence, the total number of gray components, by

𝐶(𝑘) ∶=
2

3

(𝑘 + 2
(𝑘

2

)
2

)
. (5.7)

5. Finally, we are ready to establish inequality (5.2). To this end, we now build out of {𝑌𝛿, 𝑅𝛿, 𝐵𝛿} a
competitor in the problem, denoted by Problem 1 at the outset of this section, of minimizing 𝐸0

among full partitions of the disk𝐵, subject to theDirichlet condition ℎ, by defining 𝑌̃𝛿 ∶= 𝑌𝛿 ∪

𝐺𝛿. Then {𝑌̃𝛿, 𝑅𝛿, 𝐵𝛿} competes with the minimizer of this problem, denoted in the statement
of Theorem 5.4 by {𝑆0

1
, 𝑆0

2
, 𝑆0

3
}, and so we have

𝐸0(𝑌̃𝛿, 𝑅𝛿, 𝐵𝛿) ⩾ 𝐸0(𝑆0
1
, 𝑆0

2
, 𝑆0

3
), (5.8)

as well as

𝐸0

(
𝑌̃𝛿, 𝑅𝛿, 𝐵𝛿

)
⩽ 𝐸0

(
𝑌𝛿, 𝑅𝛿, 𝐵𝛿

)
+ 𝑐𝑌1

(
𝜕𝐺𝛿

)
. (5.9)

Now in light of (5.1) and our bound on the total number of cusp points, any boundary of a
component of 𝐺𝛿 consists of at most 2

(𝑘+2(𝑘

2
)

2

)
circular arcs of radius at most

max

{
1

𝜅𝑅
,

1

𝜅𝐵

}
=

max {𝑐𝑅, 𝑐𝐵}

𝑐𝑌

1

𝜅𝛿
𝑌

.

Consequently, bounding the length of any arc by the perimeter of the corresponding full circle,
we can assert that

1(𝜕𝐺𝛿) ⩽ 2𝜋𝐶(𝑘)
max {𝑐𝑅, 𝑐𝐵}

𝑐𝑌

1

𝜅𝛿
𝑌

. (5.10)
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4210 SANDIER and STERNBERG

Then turning from bounding perimeter to bounding area, we note that the area enclosed by the
boundary of any gray component in this minimizing configuration is bounded from below by
the area of the smallest possible (simply connected) gray component, namely, the one formed
by just three arcs arising from the tangential contact of one yellow, one red and one blue
arc. This number could of course be computed precisely but for our purposes, it suffices to
observe through another appeal to (5.1) that it is given by 𝛼

1

(𝜅𝛿
𝑌

)2
for some positive constant

𝛼 = 𝛼(𝑐𝑅, 𝑐𝐵), where we have expressed this minimal area in terms of 𝜅𝛿
𝑌 though of course, we

could have expressed it in terms of either of the other two curvatures as well. Hence, assuming
there exists at least one component of 𝐺𝛿, we have the following estimate on the curvature 𝜅𝛿

𝑌 :

𝛼
1

(𝜅𝛿
𝑌)2

⩽
|||𝐺𝛿||| ⩽ 𝛿. (5.11)

Combining (5.8)–(5.11), we conclude that

𝐸0(𝑌𝛿, 𝑅𝛿, 𝐵𝛿) ⩾ 𝐸0(𝑆0
1
, 𝑆0

2
, 𝑆0

3
) − 𝛾(𝑘) 𝛿1∕2 with 𝛾(𝑘) ∶=

2𝜋𝐶(𝑘)√
𝛼

max{𝑐𝑅, 𝑐𝐵}.

□
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