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The metastasis of solid tumors hinges on cancer cells navigating through complex three-dimensional tissue
environments, characterized by mechanical heterogeneity and biological diversity. This process is closely linked
to the dynamic migration behavior exhibited by cancer cells, which dictates the invasiveness of tumors. In our
study, we investigate tumor spheroids composed of breast cancer cells embedded in three-dimensional (3D)
collagen matrices. Through a combination of quantitative experiments, artificial-intelligence-driven image pro-
cessing, and mathematical modeling, we uncover rapid transitions in cell phenotypes and phenotype-dependent
motility among disseminating cells originating from tumor spheroids. Persistent invasion leads to continuous
remodeling of the extracellular matrix surrounding the spheroids, altering the landscape of migration pheno-
types. Consequently, filopodial cells emerge as the predominant phenotype across diverse extracellular matrix
conditions. Our findings unveil the complex mesoscale dynamics of invading tumor spheroids, shedding light on
the complex interplay between migration phenotype plasticity, microenvironment remodeling, and cell motility

within 3D extracellular matrices.

DOI: 10.1103/PRXLife.2.043022

I. INTRODUCTION

Three-dimensional (3D) migration of breast cancer cells
in tissue scaffolds is far more complicated than the canon-
ical model of cell migration on flat (2D) surfaces has
suggested [1-3]. A major complexity is the existence of
multiple migration programs that can be activated both
internally, through cell mechanotransduction [4,5], and ex-
ternally, through physical cues from the extracellular matrix
(ECM) [6,7]. This leads to the concept of migration phenotype
plasticity in cancer cells which was brought to light in a re-
markable lesson two decades ago, when clinical trials of drugs
that inhibited matrix metalloproteinases (MMPs) failed. At
the time, it was commonly believed that MMPs were required
for mesenchymal cell migration [8]. However, despite the use
of small molecule MMP inhibitors, cancer cells continued to
migrate [9,10], as they switched to MMP-independent migra-
tion phenotypes [11-13].

We now understand that cancer cells display various
migration phenotypes [1,14], such as filopodial (FP) and
lamellipodial (LP), which are commonly associated with mes-
enchymal migration; or actin-enriched pseudopodial (AE)
and blebbing (BB) cells, which execute amoeboidal migra-
tion programs. All of the four phenotypes have characteristic
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morphologies, morphodynamics, and mechanical interactions
with the ECM [7,15]. In previous studies, we observed that
individual breast cancer cells exhibited the ability to transi-
tion between various migration phenotypes as they navigated
through the three-dimensional ECM [16,17]. However, a fun-
damental question still remains unanswered: How do these
transitions in migration phenotype contribute to the invasive
behavior of solid tumors, which comprise hundreds to thou-
sands of cells?

In this study, we examine tumor spheroids formed
by MDA-MB-231 breast cancer cells which invade into
surrounding ECM consisting of type-I collagen. We use
deep-learning algorithms to automatically segment all the
disseminated cells from confocal imaging stacks [18,19],
and we apply previously trained machine-learning models to
classify the cell migration phenotypes based on their morphol-
ogy [17]. Combining quantitative experiments and theoretical
modeling, we demonstrate that the closely coupled phenotype
dynamics and migration characteristics of invading cancer
cells play key roles in determining the invasive potential. By
systematically varying the mechanical properties of the ECM,
we show consistent features in mesoscale dynamics under
broad conditions. Our results highlight the plasticity of cancer
cell migration programs and underscore the effect of ECM
remodeling in reciprocally regulating cancer invasion.

II. RESULTS

A. Experimental characterization of mesoscale dynamics
of invading cancer cells

In order to characterize the invasion dynamics of can-
cer cells, we embed spheroids formed by MDA-MB-231
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https://orcid.org/0000-0003-2638-6653
https://orcid.org/0009-0001-5959-3918
https://orcid.org/0000-0003-3833-7197
https://orcid.org/0000-0001-7001-8781
https://ror.org/00ysfqy60
https://ror.org/00ysfqy60
https://ror.org/0168r3w48
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXLife.2.043022&domain=pdf&date_stamp=2024-12-24
https://doi.org/10.1103/PRXLife.2.043022
https://creativecommons.org/licenses/by/4.0/

NAYLOR, LIBMANN, RAAB, RAPPEL, AND SUN

PRX LIFE 2, 043022 (2024)

classification

FIG. 1. Artificial-intelligence-assisted segmentation and classification of breast cancer cells disseminating from a tumor spheroid. (a) Snap-
shots of a tumor spheroid consisting of GFP-labeled MDA-MB-231 cells invading a 3D extracellular matrix (ECM). Images are 2D projections
of 3D confocal stacks. The spheroid is embedded in type-I collagen ECM with a concentration of 1.5 mg/ml. (b) Employing the Projection
Enhancement Network (PEN [19]) paired with the CellPose algorithm [18], cells are automatically segmented to obtain cell masks. Based on
the masks, cells are classified into four migration phenotypes using a previously reported machine-learning model [17]. (c) Disseminated breast
cancer cells from the spheroid in panel (a) are automatically segmented and classified. Note that we focus on cells that have already separated
from the tumor spheroids. Here we render the image in panel (a) with cell masks whose color represents one of four migration phenotypes.
BB, blebbing; AE, actin-enriched pseudopodial; LA, lamellipodial; and FP, filopodial. Scale bar: 200 um. (d) Zoom-in views show typical cell
morphology and actin cytoskeleton structure corresponding to each migration phenotype. Scale bars: 20 um.

breast cancer cells in 3D ECM consisting of type-I collagen
(see Supplemental Material (SM) [20], which includes
Refs. [21-24], for additional information about the exper-
imental methods and analysis). MDA-MB-231 is a triple-
negative line of invasive breast cancer cell widely used in can-
cer research. Each spheroid is continuously imaged for 24 h at
a frame rate of 15 min using a laser scanning confocal micro-
scope (Leica SPE). In a typical experiment, several hundreds
of cells separate from the spheroid and invade the collagen
matrix within 24 h, while the spheroid expands less than 10%
of its initial radius of approximately 200 um [Fig. 1(a)].

In order to minimize the photon damage, confocal slices
are set to be 10 um apart, ten times the resolution in the x-y
plane. Recently we have developed PEN (Projection Enhance-
ment Network), a deep-learning algorithm that segments cells
from 3D image stacks with low axial resolution to create ac-
curate 2D projections of cells [19] (see also SM [20], Sec. S2).
After obtaining the cell mask, we then use our previously
reported machine-learning model to classify a cell into one
of four migration phenotypes [17]: BB, blebbing; AE, actin-
enriched pseudopodial; LA, lamellipodial; and FP, filopodial
[Figs. 1(b) and 1(c); see also SM, [20] Sec. S2]. Due to high
cell density within the spheroid, cells cannot be reliably seg-
mented until they have disassociated from the spheroid body.
Therefore, in this study we focus on the cells that have already
separated from tumor spheroids. Figure 1(c) shows a snapshot
where the disseminating cells are color-coded outside of a
tumor spheroid represented in gray scale.

These migration phenotypes have distinct morphological
characteristics. For instance, the cortical pressure of a BB
cell continuously drives the formation of rounded blebs at
the cell membrane [25-27]. AE cells, on the other hand,
demonstrate elevated actin polymerization that drives sharp
protrusions [1,13]. The FP cells consist of distinguishable F-
actin bundles extending across the polarized cell body [28,29],
while the LA cells feature fan-shaped leading edges of migra-
tion [30,31].

These morphological features allow us to classify a cell
based on the geometry of its 2D projection at close to 90%
accuracy [17]. Indeed, we find the different phenotypes also
show characteristic actin cytoskeleton structures that corre-
spond to distinct migration programs of cancer cells in 3D
ECM [7,15].

We find cells disseminating into the surrounding ECM
demonstrate both intercellular heterogeneity and single-cell
plasticity in migration phenotypes. Figure 2(a) shows the
temporal projection of cells from a tumor spheroid invad-
ing the ECM consisting of 1.5 mg/ml type-I collagen. We
highlight two typical cells which made phenotype transitions
as they continuously disseminated. Note that the transi-
tions are not limited within the amoeboid (between blebbing
and actin-enriched pseudopodial) or mesenchymal (between
lamellipodial and filopodial) modes. The frequent switching
between amoeboid and mesenchymal models highlights the
dynamic nature of breast cancer cells’ migration phenotype
plasticity.

To quantify the migration phenotype plasticity, we com-
pute the transition matrix by sampling the mesoscale dy-
namics exhibited by all cells after they have disseminated
from the spheroid. Figure 2(c) shows the transition rates as
well as the fraction of each phenotype obtained by sampling
all events during 24 h of invasion. In all our repeated tests
(see SM [20], Sec. S3, for additional experimental results), we
find that BB cells appear most frequently (accounting for 1/3
of the population), while actin-enriched pseudopodial (AE)
is the least common (accounting for 1/6 of the population).
Cells rapidly switch between all migration phenotypes, with
a characteristic rate of one transition every 2 h. We note that
the rate imbalance between BB and other phenotypes favors
the accumulation of blebbing cells, which explains its highest
fraction in the population.

We find that the motility of cancer cells depends on the
migration phenotype. To illustrate this, we manually track
cells that exhibit high invasiveness whose trajectory can be
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FIG. 2. Breast cancer cells disseminating from a spheroid in 3D collagen ECM exhibit migration phenotype transitions. (a) A temporal
projection showing the invasion paths of MDA-MB-231 cells from a tumor spheroid where two representative cells are highlighted.
(b) Snapshots showing two cells [highlighted in panel (a)] make phenotype transitions during invasion. Scale bars: 20 um. (c) The transition
matrix quantifies the phenotype dynamics of disseminating MDA-MB-231 cells from a tumor spheroid embedded in type-I collagen ECM
with a concentration of 1.5 mg/ml. Percentage next to the nodes indicate the fraction of each phenotype. Cells in the intermediate state,
which consists about 6% of the population, are not shown. Numbers along the line-arrows show transition rates—probability of making a
particular transition per unit time in units of h=!. Colors of the lines are linearly mapped to the transition rates. Colors of the nodes represent
the corresponding phenotype, and the sizes of the nodes are proportional to the phenotype fraction. More than 7000 events (including dwell
events) over 24 h of invasion are sampled in computing the transition rates as well as phenotype fractions. See SM, Sec. S3 [20], for additional
examples of transition matrices from repeated experiments. (d) To accurately follow cells for a longer period of time (at least 10 h), 23
cells are manually tracked and their trajectories are color-coded by instantaneous phenotype. (e) Histograms showing the radial step size
distributions associated with each phenotype using the trajectories obtained in panel (d). The steps are displacements in the radial direction
over frame intervals of 15 min. Phenotype abbreviations and representing colors in panels (b)—(e): BB, blebbing (green); AE, actin-enriched
pseudopodial (yellow); LA, lamellipodial (blue); and FP, filopodial (magenta). The mean =+ standard deviation of the step sizes are as follows:

BB, (1.7 £ 4.2) um; AE, (2.8 £ 3.5) um; LA, (1.8 £5.2) um; and FP, (4.5 £ 5.9) um.

followed for at least 12 h [Fig. 2(d)]. Autocorrelation analysis
shows the cell motility has no long-term memory (see SM,
Sec. S3 [20]) and, therefore, can be considered as a random
walk given our temporal resolution. We calculate the cell’s
radial step size Ar, which is the displacement in the radial
direction over 15-min intervals, and then we compare the
distributions of these step sizes based on the cells’ initial
phenotypes. As shown in Fig. 2(e), it is evident that filopodial
cells make the largest outward steps (Ar > 0), which drive the
overall invasion. On the other hand blebbing cells make nearly
equal outward and inward moves and, therefore, contributing
little to the metastatic dissemination of the tumor spheroid.
Together, the results suggest that filopodial cells may actively
lead the invasion process.

In order to further establish the filopodial cells as the lead-
ing phenotype during tumor spheroid invasion, we calculate
the average instantaneous radial position of each phenotype.
As the example shown in Fig. 3(a), filopodial cells consis-
tently have the largest radial position while lamellipodial cells
lag behind. After 24 h, the average radial position of filopodial
cells have moved 120 um from the tumor boundary, which is
twice the amount for the advancement of lamellipodial cells.

Not only do the filopodial cells exhibit a larger radial dis-
placement, they also show a spatial distribution pattern with
strong enrichment at the invasion front. Figure 3(b) shows the

instantaneous local fraction of filopodial cells P(r t) in com-
parison with their global proportion P, where 22 M

Here P(r, t) is obtained by counting the fraction of ﬁ10p0d1a1
cells within the spatial annulus with an inner radius of r and
an outer radius of » 4+ 50 wm, and at time 7. P is obtained
by counting all disseminated cells over the entire 24 h of
recording. It is clear that filopodial cells are particularly more
frequent near the invasion front. The result shows a stark
increase of the filopodial cell fraction by as much as 300%
at the invasion front compared with the bulk average.

To gain further insight into the spatial-temporal distribution
of cell migration phenotypes during 3D invasion, we com-
pute the cell density within the annuli surrounding the tumor
spheroid. For convenience, we define the invasion depth d as
shown in Fig. 3(c) to be the distance to the tumor boundary.
We find that cells in the BB, AE, and LA phenotypes are
accumulating near the tumor boundary, with proportions close
to their bulk average. However, filopodial cells first accu-
mulate and then disperse to lower densities near the tumor
boundary [Fig. 3(d)]. These observations suggest that filopo-
dial cells may exhibit spatial-temporally evolving transition
dynamics deviating from their bulk averaged rates. Specifi-
cally, enrichment at the invasion front and depletion near the
tumor boundary have increased the average radial position of
filopodial cells as shown in Fig. 3(a).
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FIG. 3. Spatial-temporal phenotype dynamics of breast cancer
cells disseminating from a spheroid in 3D collagen ECM. (a) The
average radial position of cells associated with each phenotype over
24 h of invasion from a spheroid consists of MDA-MB-231 cells.
The spheroid radius is approximately 200 um and is embedded in
type-I collagen ECM of concentration 1.5 mg/ml. Time zero is em-
pirically determined when cells have dissociated from the spheroid.
(b) Relative difference (AP) between the instantaneous local filopo-
dial (FP) fraction P(r,t) and the mean filopodial (FP) fraction P
(over recorded time and field of view). Here we take advantage
of the rotational symmetry and compute % by only considering
radial positions. (c), (d) Phenotype composition evolves as a spheroid
invades the 3D ECM. (c) Snapshots after 7 = 10 h and 7 =20 h
of invasion. Color of the cells represents the migration phenotype
classified via the machine-learning model. (d) Heat maps show the
density p of cells of each phenotype at varying invasion depth at 7 =
10 h and T = 20 h. Here the invasion depth d = r — r is defined as
the distance to the spheroid boundary and r; is the spheroid radius
[see schematics in panel (c)]. For spatially resolved cell density, we

N(r<r<r; . R .
calculate p; = w where r; are bound radial position bins
i+

of width 50 ym and N(r; < r < riyp) is the number of cells whose
2D projection falls within the ith radial position bin. Phenotype
abbreviations in panels (a)—(e): BB, blebbing; AE, actin-enriched
pseudopodial; LAm lamellipodial; FP, filopodial.

B. Mesoscale dynamics of tumor spheroid invasion
under varying ECM conditions

It is known that the mechanics and structure of ECM play
important roles in modulating 3D cancer invasion. Therefore,
we have also examined MDA-MB-231 tumor spheroid inva-
sion in ECM with varying physical properties. To this end,

we embed the spheroids in matrices made of regular, as well
as methacrylated, type-I collagen. The latter can be photo-
crosslinked via a low dose of UV light [32] (see SM [20],
Sec. S4, for more details).

We vary the collagen concentration from 1.5 to 6 mg/ml
and find that higher concentration generally increases the
stiffness and viscosity of the ECM. Figure 4 shows that
photo-crosslinked (abbreviated as crslnk.) matrices have sig-
nificantly larger storage and loss moduli when the collagen
concentration is greater than 3 mg/ml. It is also noted that
the stiffness does not increase by crosslinking at the lowest
concentration of 1.5 mg/ml.

The ECM microstructure, such as the pore size, mod-
ulates cancer cell migration by controlling the physical
barriers. Combining confocal reflection imaging and auto-
mated image processing, we find the pore size of the ECM
decreases as collagen concentration increases [Fig. 4(b)],
which is consistent with previous reports [33]. On the other
hand, for the same collagen concentration, we find photo-
crosslinked ECM generally have larger pore sizes [Fig. 4(b)],
although at larger collagen concentrations ([col] > 4 mg/ml),
the pore size cannot be reliably determined from optical
images.

We have examined the spheroids disseminating at varying
ECM conditions. In particular, we image the samples after
24 h and 48 h of invasion and apply our artificial intelli-
gence models to quantify the migration phenotypes of all
cells outside of the spheroids. Figure 4(c) shows the aver-
age invasion depths of each phenotype. Similar to the result
shown in Fig. 3(a), filopodial cells are consistently the lead-
ing phenotype in all cases, except at the highest collagen
concentration ([col] = 6 mg/ml), where MDA-MB-231 are
strongly confined by the ECM and barely separate from the
spheroids. It is interesting to note that the invasion depth is
curtailed by higher concentration of regular collagen, but not
for photo-crosslinked collagen in the ECM. We suspect there
is a critical pore size, D, below which the invasion is strongly
suppressed. Conversely, when the ECM pore size is greater
than D,, invasion is mainly controlled by ECM stiffness,
which facilitates cell motility by promoting adhesion and trac-
tion force generation [34]. Since photo-crosslinked ECM has
larger pore size as well as rheological moduli, the combined
effect would provide a putative explanation of the observed
correlation between invasiveness, collagen concentration, and
crosslinking.

C. Modeling the mesoscale dynamics of cancer invasion

In order to better understand the role of mesoscale dy-
namics in cancer invasion, we have constructed a simple
computational model inspired by the experiments. We are
particularly interested in explaining the larger average inva-
sion depth of the FP cells compared to the other phenotypes.
For simplicity, our model considers the cell density pro-
files along a line starting from the spheroid and extending
away from it, as schematically shown in Fig. 5. For each
phenotype, the following equations model the transition be-
tween the different phenotypes as well as the migration
away from the spheroid. For phenotype AE, the equation
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FIG. 4. Filopodial cells (FP) lead the invasion of tumor spheroid under various ECM mechanical conditions. (a) The storage and loss
moduli of regular collagen ECM and photo-crosslinked (abbreviated as crslnk.) collagen ECM at varying concentrations [col]. (b) Sample
confocal reflection images of regular and photo-crosslinked collagen ECM at concentrations of 1.5 mg/ml (top) and 3.0 mg/ml (bottom).
The pore sizes D are computed from the diameters of max-fitting disks after binarizing the images. See SM [20], Sec. S4, for more details.
(c) Average invasion depths of each phenotype disseminated from MDA-MB-231 tumor spheroids into ECM of varying conditions. Top:
Invasion depth after 2 days. Bottom: Invasion depth after 1 day. Abbreviations in panels (a)—(c): crslnk., photo-crosslinked; BB, blebbing;
AE, actin-enriched pseudopodial; LA, lamellipodial; and FP, filopodial. The error bars are means and standard deviations from four to five

spheroids for each ECM condition.

reads

d[AE]
dt

= rge—AE[BB] + rep— AE[FP] + ria—ag[LA]

— (rAE—BB + TAE—FP + raE—LA)[AE]
— H(—V[AEDvaeV[AE]. (D

Here, the first three terms describe the transitions between
other phenotypes to AE and the fourth term encodes the
transition from AE to all other phenotypes. The last term
encapsulates the movement of the cells belonging to this phe-
notype and is multiplied with the Heaviside function so that,
consistent with experiments, cells always move away from the
organoid. Similar equations can be written down for the other
phenotypes, resulting in four coupled equations.

At the edge of the organoid, we assume a constant flux F
of cells into the space, taken to be equal for all phenotypes:
DV[X] = F, where X stands for BB, AE, LA, or FP. The rates
appearing in the equations are given by the experimental data
[Fig. 2(c)], while the speed of the cells [vag in Eq. (1), similar
for other phenotypes] is taken to be the average as determined
in Fig. 2(e). The tabulated simulation parameters are included
in the SM, Sec. S5 [20].

We first examine whether the larger steps of FP cells com-
pared to the other phenotypes could explain the observed
invasion depth of FP cells. For this, we solve the equa-
tions with constant rates and determine the mean invasion
depth as a function of time. Since the system equilibrates
rapidly, however, the difference in speed does not result in a
marked difference in average invasion depth. This is shown as

an inset in Fig. 5, where the four phenotypes have the same
invasion depth as a function of time.

Inspired by the experimental results, which demonstrate
that the number of FP cells close to the spheroid drops signifi-
cantly after approximately 6 h, we next adjust the transition
rates of all phenotypes to FP. Specifically, we assume that
for cells within 50 um of the tumor, these rates are linearly
decreasing, starting at + = 8 h and reaching 0 att = 24 h.
Thus, the new transition rate of the X phenotype to FP, 7x_ gp,
obeys:

Fx_sFp = I'x—FpP, t < 8h, 2)
5 24 —t
Fx—Fp = g )x-re t > 8&h, 3)

where X stands for AE, BB, and LA. In other words, we
assume that as cells continuously invade the ECM, the tran-
sition rates to the FP phenotype approach zero near the tumor
boundary. The invasion profile of this simulation is presented
in Fig. 5(b), which indeed shows filopodial cells leading the
invasion compared with other phenotypes. The simulation
confirms that complete mesoscale dynamics, which accounts
for the cell migration phenotype transitions, is necessary to
understand the spatial-temporal profiles of disseminating tu-
mor cells. We should note that adding a diffusion term to
the equations, with a diffusion constant determined from the
radial step size distributions in Fig. 2(e), does not change our
qualitative results (see SM [20], Fig. S14).

To further validate the assumption of adjusted transition
rates near the tumor spheroids, we use simulations to compute
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FIG. 5. Computational modeling of the cancer invasion

mesoscale dynamics (a) Schematic illustration of the computational
model. Density of the four phenotypes are solved along a line
extending from the spheroid. Each phenotype is introduced into the
computational domain through a flux at the boundary of the spheroid
and migrates in the positive r with fixed speed. The transitions
between phenotypes are computed using the rates given in Fig. 2(c).
(b) Invasion profiles of each phenotype from the computational
model. The inset shows the average invasion depth as a function of
time for constant transition rates. The main panel shows the same
quantity but for the case that the transition rates from phenotype FP
close to the spheroid are linearly decreased over time [see Eq. (3)].

the time-resolved enrichment factors associated with each
phenotype within 50 um of the tumor boundary. The enrich-
ment factor is the ratio of transition rates into versus out of a
phenotype, which decreases over time for filopodial cells. The
simulation results are supported by experimental measure-
ments, for spheroids in both regular and photo-crosslinked
ECM (see SM [20], Sec. S4).

D. Mesoscale dynamics of invading tumor spheroids
may be modulated by ECM remodeling

Through a combination of experimental and mathematical
analysis, we demonstrate that 3D tumor invasion operates as
a layered stochastic process characterized by phenotype dy-
namics that evolve over time and by phenotype-dependent cell
motility. The results suggest that filopodial cells are favored
at the invasion front to penetrate intact ECM, and they are

increasingly inhibited near the tumor boundary as the invasion
persists. A plausible explanation for the phenomena is the
ECM remodeling by invading cells [Fig. 6(a)].

At the invasion front, filopodial cells extend long, fin-
gerlike protrusions. Compared with characteristic protrusions
of other phenotypes, filopodia encounter the least resistance
against the physical constraints of the 3D extracellular ma-
trix [35]. Intact ECM fibers may also support cell adhesion
that promotes cell polarization and actin polymerization into
mature F-actin bundles [36,37]. On the other hand, the ECM
may be weakened by invading cells, as confirmed by our direct
measurement of ECM storage modulus over invasion process
(see SM [20], Sec. S4). Previously we employed holographic
optical tweezers to show that metastatic breast cancer cells
disseminated from breast tumors softened the ECM along
their invasion paths by secreting matrix metalloproteinases
(MMPs) and mechanical forces [38]. Due to the plasticity of
the ECM [39,40], the effect of ECM remodeling by hundreds
of cells may accumulate over time, creating an evolving me-
chanical microenvironment surrounding the tumor spheroids.
Such alterations lead to more porous and compliant ECM,
which could transform the landscape of migration phenotypes.
In particular, the remodeled ECM will reduce the likelihood of
transitions towards the filopodial state far behind the invasion
front.

The association of ECM remodeling with altered migra-
tion phenotype dynamics suggests that, further behind the
invasion front, filopodial cell type is suppressed. Specifi-
cally the local fraction of FP cells near the tumor boundary
Prp near Will deviate from the bulk fraction of FP cells Pgp 1.
Pep a1 — Prp near 1 €xpected to be positively correlated with
the invasion depth, which is a proxy of distance between the
invasion front and the tumor boundary. This is indeed the
case as shown in Fig. 6(b). Except for the highest collagen
concentration (6 mg/ml) where cells barely disseminate from
the tumor spheroids, Pgp ful — Prp.near grows with invasion
depth for both regular and photo-crosslinked collagen ECM.

III. DISCUSSION AND CONCLUSION

Migration phenotype plasticity is of fundamental impor-
tance in the metastasis of solid tumors. While traditionally
thought to be a rather static status of cancer cells, we now
know that cells make rapid, spontaneous transitions between
different migration phenotypes. Switching of phenotype and
cell motility concurrently happen at the same time scale,
leading to the mesoscale dynamics that controls the invasion
process. In this study, we examine the mesoscale dynamics
exhibited by breast cancer cells disseminating from tumor
spheroids into surrounding 3D collagen matrices. Leveraging
image analysis by artificial intelligence, we segment, classify,
and track MDA-MB-231 cancer cells from confocal image
stacks [Figs. 1(a)-1(c)]. Despite the large number of cells dis-
seminating from each spheroid, the accuracy of cell detection
and classification is comparable with our previous work where
cancer cells were sparsely seeded in the ECM [17]. Indeed,
the machine-determined cell state agrees well with the char-
acteristic actin cytoskeleton organization of the corresponding
migration phenotype [Fig. 1(d)].

043022-6



COUPLED DYNAMICS IN PHENOTYPE AND TISSUE ...

PRX LIFE 2, 043022 (2024)

invasion
remodeled ECM

N

intact ECM ’0 o’ OQ

4 \“
’ “‘
. 74
time

invasion starts =————— metastasis

(a)

-—

distance to tumor

~

24 hours invasion depth (um) _

20 . . .
¢ @ regular
- . & crosslinked|
¢ $ /
I o0 e ]
* / e
L ° s @] 4
/ e
Q7 o
- / -
) o ° ¢
O<70/‘ e o
i _ 3.0mg/ml
207 4° [0l = 4 omg/mi
-005 O 0.1 0.2 0.25

PFP,full - PFP,near

FIG. 6. ECM remodeling by disseminated cancer cells may regulate the migration phenotype transitions and thereby the metastatic
potential of breast tumors. (a) Schematics of the putative mechanism where the tumor invasion front separates remodeled ECM and intact
ECM. The level of ECM remodeling is stronger near the tumor boundary. Filopodial (FP) enrichment factor is negatively correlated with the
level of ECM remodeling, thus enriching the FP phenotype near the invasion front and depleting the FP phenotype near the tumor boundary.
(b) Difference between the FP fraction of the full field of view (Pgp sun) and the FP fraction within 50 um of the spheroid boundary (Pep near)
positively correlate with the invasion depth. Here each data point represents one MDA-MB-231 spheroid in 3D collagen ECM. Colors represent
ECM collagen concentration. Dots symbols: Regular collagen ECM. Diamond symbols: Photo-crosslinked collagen ECM. Dashed lines:

Linear fit of all data points as a guide to the eye.

By following the mesoscale dynamics of hundreds of cells
simultaneously, we collect large datasets to quantify the phe-
notype dynamics as transition matrices, and we quantify cell
motility by their step size distributions (Fig. 2). Similar to
the case of isolated MDA-MB-231 cells, the actin-enriched
pseudopodial (AE) state serves as a hub state mediating mes-
enchymal to amoeboid transitions, thanks to the large AE to
BB transition rate. Quantitatively the transition matrices differ
for cells uniformly dispersed in ECM and cells disseminating
from spheroids. Indeed, the invasion process is accompanied
with dramatic ECM remodeling [38], leading to a nonsta-
tionary, and spatially heterogeneous, microenvironment that
impacts the phenotype dynamics.

We notice that each phenotype is associated with distinct
motility characteristics. In particular, filopodial (FP) cells
have a larger step size moving away from the spheroid and
therefore drive the dissemination the most. FP cells are also
enriched at the invasion front and depleted near the spheroid
boundary (Fig. 3). These observations strongly suggest that
FP cells are leaders in the invasion process. Interestingly,
recent studies show that the blebbing state boosts the survival
of cancer cells [41]. Therefore, tumors may take advantage
of the mesoscale dynamics to enhance the overall metastatic
potential.

We systematically varied the ECM physical property and
found that filopodial cells are consistently the leading pheno-
type (Fig. 4). Increasing collagen concentration stiffens the

ECM and reduces ECM pore size, which strongly suppresses
spheroid invasion. Conversely, crosslinking the collagen fibers
also stiffens the ECM but enlarges the ECM pore size, there-
fore restoring the invasiveness of tumor spheroids. Except for
spheroids in the highest collagen concentration (6 mg/ml),
where cells barely disseminate, filopodial cells have the
largest average invasion depth compared with other pheno-
types, underscoring their role as the leader cells during 3D
tumor invasion.

The experimental results show that 3D cancer invasion
is a layered stochastic process where phenotype switching
is coupled with phenotype-dependent motility. Importantly,
using mathematical models we show that the phenotype-
dependent step sizes alone are not sufficient to explain the
leader behavior of filopodial cells, precisely because of the
rapid phenotype transitions [Fig. 5(b), inset]. Instead, as mo-
tivated by the experimental observations, it is necessary to
drop the assumption of equilibrium phenotype dynamics.
Our mathematical model shows that making transitions to-
ward the FP state gradually smaller near the tumor boundary
can establish filopodial as the leading phenotype [Fig. 5(b)].
This assumption is consistent with experimental observations
(see SM [20], Sec. S4).

Our findings reveal remarkable time-evolving mesoscale
dynamics when cancer cells disseminate from a solid tumor.
At the invasion front, the physical barrier and confinement
imposed by the intact extracellular matrix (ECM) influence
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the transition of cell phenotypes, favoring the enrichment of
filopodial phenotype. As the invasion front progresses out-
ward from the tumor, it leaves behind an ECM that is subject
to ongoing remodeling by disseminating cells. The ECM
remodeling accumulates due to its plasticity, resulting in a me-
chanically weakened matrix that is less supportive for filopo-
dial cells. Consequently, phenotype dynamics does not reach
equilibrium. Instead, filopodial cells are enriched at the inva-
sion front and increasingly depleted near the tumor boundary
[Fig. 6(a)]. Experiments with a wide range of ECM conditions
support the prediction, such that the level of nonequilibrium
phenotype dynamics, manifested as a reduction of filopodial
cells near the tumor boundary, is an accurate predictor of
invasion depth [Fig. 6(b)]. We note that plastic remodeling
of ECM is implied in a wide range of cancer types [42]. It is
therefore imperative for future research to examine the inter-
play between ECM remodeling and mesoscale cell dynamics
as a potential oncogenic factor in other solid tumors.

In this study we use spheroid invasion as an in vitro
model that recapitulates many key physiological factors of
metastatic breast cancer. It will be interesting to examine if
primary tumors demonstrate similar mesoscale dynamics. It
is also very worthwhile for future study to investigate the
molecular mechanism that mediates the change in migration
phenotype dynamics by ECM remodeling. The results may
provide valuable therapeutic insights into breast carcinoma
and other metastatic solid tumors.

IV. METHODS

Additional details of experimental setup, data analysis, and
computational modeling can be found in the Supplemental
Material, Secs. S1-S5 [20].

Raw data can be found at Figshare [43,44]. The soft-
ware for cell segmentation and classification can be found at
GitHub [45,46].
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