
4222 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 5, OCTOBER 2024

Linear Bandits With Side Observations on Networks
Avik Kar , Member, IEEE, Rahul Singh , Member, IEEE, Fang Liu,

Xin Liu , Fellow, IEEE, and Ness B. Shroff , Fellow, IEEE

Abstract— We investigate linear bandits in a network setting
in the presence of side-observations across nodes in order to
design recommendation algorithms for users connected via social
networks. Users in social networks respond to their friends’
activity and, hence, provide information about each other’s pref-
erences. In our model, when a learning algorithm recommends
an article to a user, not only does it observe her response
(e.g., an ad click) but also the side-observations, i.e., the response
of her neighbors if they were presented with the same article.
We model these observation dependencies by a graph G in which
nodes correspond to users and edges to social links. We derive
a problem/instance-dependent lower-bound on the regret of any
consistent algorithm. We propose an optimization-based data-
driven learning algorithm that utilizes the structure of G in
order to make recommendations to users and show that it is
asymptotically optimal, in the sense that its regret matches the
lower-bound as the number of rounds T → ∞. We show
that this asymptotically optimal regret is upper-bounded as
O (|χ(G)| log T), where |χ(G)| is the domination number of G.
In contrast, a naive application of the existing learning algorithms
results in O (N log T) regret, where N is the number of users.

Index Terms— Multi-armed bandits, contextual bandits,
networks.

I. INTRODUCTION

THE linear multi-armed bandit model is popularly used
in order to place ads and make personalized recommen-

dations of news articles to users of web services [1], [2],
[3]. In this model, both users and contents are represented
by sets of features. For example, user features are obtained
on the basis of their historical behavior and demographic
information; while content feature depends upon its category
and descriptive information. A learning algorithm sequentially
recommends articles to users based on the information about
the articles and preferences of users, while continually adapt-
ing its strategy to present articles on the basis of feedback,

Manuscript received 21 February 2023; revised 27 September 2023 and
15 February 2024; accepted 5 June 2024; approved by IEEE/ACM TRANS-
ACTIONS ON NETWORKING Editor C. Joe-Wong. Date of publication 8 July
2024; date of current version 17 October 2024. The work of Avik Kar and
Rahul Singh was supported in part by the Science and Engineering Research
Board under Grant SRG/2021/00230. The work of Xin Liu was supported in
part by Grant USDA-020-67021-32855 and Grant NSF OIA-2134901. The
work of Fang Liu and Ness B. Shroff was supported in part by NSF under
Grant CNS-2312836, Grant CNS-2223452, Grant CNS-2225561, Grant CNS-
2112471, and Grant CNS-2106933. (Corresponding author: Rahul Singh.)

Avik Kar and Rahul Singh are with the Department of ECE, Indian
Institute of Science Bengaluru, Bengaluru, Karnataka 560012, India (e-mail:
avikkar@iisc.ac.in; rahulsingh0188@gmail.com; rahulsingh@iisc.ac.in).

Fang Liu is with Facebook, San Francisco, CA 94025 USA (e-mail:
fangliu0302@gmail.com).

Xin Liu is with the Department of Computer Science, University of
California at Davis, Davis, CA 95616 USA (e-mail: xinliu@ucdavis.edu).

Ness B. Shroff is with the Department of ECE, The Ohio State University,
Columbus, OH 43210 USA (e-mail: shroff@ece.osu.edu).

Digital Object Identifier 10.1109/TNET.2024.3422323

e.g., ad clicks, downloads, etc., received from users. Its goal
is to maximize the cumulative reward, which is equal to the
total number of user clicks in the long run.

We consider the problem of making recommendations to
users of a social network such as Facebook, Goodreads,
LinkedIn. If users’ preferences were known, we could employ
an optimal stationary strategy that maps the feature of each
user to its optimal action, i.e., present her with an article that
has the highest click-probability. Since users’ preferences are
typically unknown, one could employ an efficient linear-bandit
learning algorithm as in [2], [3], and [4] on each user sepa-
rately. This strategy achieves a regret of O (N log T), where
N is the number of users. However, since the number of users
can be very large (e.g., Facebook has 2.5 billion users [5]),
this strategy is impractical.

Consider a social network modeled by an undirected
graph G in which the nodes correspond to users, and undi-
rected edges correspond to “social links,” i.e., two users are
connected by an edge if they are “friends.” Since individual
users are connected to a subset of the remaining users, each
time the algorithm makes a recommendation to a user, it also
obtains side observations, i.e., feedback from her “neighbors”
regarding their potential interest in a similar offer. Side obser-
vations could be generated in several ways, we discuss two
possibilities: (i) When a content is promoted to a user i,
she may share it with her friend. Alternatively, this user may
post her feedback about this content on her network so that
her friends also get to share their feedback on it. These
responses of user i’s friends then constitute side observa-
tions [6], [7]. (ii) When user i is presented with a promotion x,
her neighbors could be explicitly queried as follows: “Would
you be interested in promotion x that was offered to your
friend i?” [8], [9].

We design learning algorithms that incorporate these
side-observations into the decision-making process for making
recommendations. We show that the regret of the proposed
algorithms scales at most as O (|χ(G)| log T), where |χ(G)| is
the domination number (see Definition 4) of graph G. Since
|χ(G)| ≪ N for graphs describing social networks,1 our
algorithms drastically reduce the dependence of the regret on
the number of users.

In our setup, choosing an action in the multi-armed bandit
problem corresponds to making a recommendation to a single
user in network. We work with linear bandit models, i.e., the

1[10], [11] show that for social networks, χ(G) can be bounded by a
sublinear function of the number of nodes; thus χ(G) ≪ |V| when the number
of nodes is large.

1558-2566 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The Ohio State University. Downloaded on July 15,2025 at 16:55:08 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6532-9208
https://orcid.org/0000-0003-0363-3666
https://orcid.org/0000-0002-5379-8269
https://orcid.org/0000-0002-4606-6879

KAR et al.: LINEAR BANDITS WITH SIDE OBSERVATIONS ON NETWORKS 4223

one-step expected reward (e.g., user’s ad-click probability) of
an arm is a linear function of the arm. This (unknown) linear
function depends upon the user on which this arm is played.
For this bandit model with side observations, we derive a lower
bound on the regret of any consistent algorithm and show that
our algorithms are asymptotically (as T → ∞) optimal since
their asymptotic regret matches this lower bound.

Note that we assume that side observations are obtained
from each neighbor. An alternative model would be to suggest
an item to a neighbor only if it is liked by a user, i.e., to ask
questions of the form “Would you be interested in a promotion
that was liked by your friend” instead of our setup in which
the query is “Would you be interested in a promotion that
was offered to your friend.” This model could be studied in a
future work.

A. Related Work

We begin by describing existing works on linear bandits
and then discuss works that derive learning algorithms for
graphical bandits and cooperative bandits.

1) Bandits with Linear Pay-off Functions: Bandits with
linear pay-off functions have been extensively studied. The
efficiency of a learning algorithm is measured by its
regret [12], [13], which is the expected value of the difference
between the cumulative reward collected by an algorithm that
knows the true parameters of the problem instance and hence
makes the optimal choice in each round, and the reward
collected by the learning algorithm. Upper Confidence Bound
(UCB) [14], [15] based algorithms that use optimism in the
face of uncertainty have been developed in works such as [1],
[2], and [16]. Reference [16] analyzes LinUCB and shows
that its minimax/worst-case regret scales as Õ(

√
dT), where

d is the dimension of the feature space.2 References [17]
and [18] utilize Thompson sampling [19], [20] and prove
that its regret scales as Õ

(
d2

ϵ

√
T 1+ϵ

)
, where 0 < ϵ < 1.

Reference [21] studies Reward Biased Maximum Likelihood
Estimation (RBMLE) algorithm [22], [23], [24] for linear
stochastic bandits, and shows that it enjoys a Õ(d

√
T)

regret. However, we focus on developing algorithms that have
provably optimal problem-dependent regret guarantees [12],
[13]. Problem-dependent regret guarantees quantify the learn-
ing regret of an algorithm in terms of certain quantities
of the problem instance; in contrast, problem-independent
guarantees involve a worst-case (minmax) analysis and yield
a bound that holds for a class of problem instances. Regret
guarantee in Theorem 2 depends upon ∆max,i (4), which is
the difference between rewards of the best arm and worst arm
at node i, while that in Theorem 3 depends upon the value
of optimization problem (8)-(10) that involves parameters of
the underlying bandit problem. Both these quantities depend
upon some properties of the problem instance. As has been
shown in [4], the performance of learning algorithms based
on UCB, or Thompson sampling can be arbitrarily far from
optimal in this setting. For contextual MAB with similarity
information other than linearity, see [25] and [26]. Finite-
time problem-dependent guarantees for linear bandits have

2Õ(·) hides factors that are logarithmic in number of rounds T .

been derived in [27] and [28], however, these are far from
optimal. Reference [4] studies problem-dependent regret in the
asymptotic regime (when T →∞), and derives an algorithm
that is asymptotically optimal. We focus exclusively on the
problem-dependent setting and build upon the techniques
of [4].

2) Graphical Bandits: A related setup is the graphical
bandits model introduced in [29] and [30]. Reference [29],
[30] considered the presence of side-observations in the adver-
sarial multi-armed bandit setting [31], i.e., when the decision
maker plays an arm, not only does it receive reward from
the arm that was played, but it also gets to observe the
rewards of “neighboring” arms of the arm that was played.
The observation dependencies are encoded as an undirected
graph G in which two nodes i, j are connected by an edge
only if pulling an arm also reveals reward of the other arm.
References [29] and [30] derive algorithms and analyze their
learning regret under varied assumptions on the model. More
specifically, [29], [30] study both the “uninformed setting”
(where the feedback graph is not visible to the algorithm) as
well as the “informed setting” and allow the feedback graph
to be both directed (so that the feedbacks are unidirectional)
as well as symmetric. They also allow the graph to be time-
varying. The regret bounds specialized to the case of fixed,
symmetric graph are O(

√
α(G)T), where α(G) denotes the

independence number of the graph G, in all of these cases.
The works [8], [9], and [32] consider a setup similar to

the graphical bandits problem of [29] and [30], but instead of
assuming that the rewards are generated by an adversary, these
works assume that the rewards are stochastic, i.e., the rewards
from an arm are i.i.d. across time, and its distribution depends
upon the arm. Reference [8] derives algorithms whose regret
scales as O(|γ(G)| log T), where |γ(G)| is the clique cover
number of the graph3 that describes observation dependencies.
Reference [9] improves the regret to O(|χ(G)| log T), where
|χ(G)| is domination number of G. The key insight gained
from [8] and [9] is that in the presence of side-observations,
not only does an efficient algorithm need to take into account
the history of rewards obtained from an arm but also the
location of the arm in the graph G. Thus, for example, it might
even be optimal to pull an arm with a low estimate of mean
reward, because it is connected to relatively unexplored arms,
and the “exploration gains” resulting from side-observations
outweigh the (relatively larger) instantaneous regret of this
arm. Reference [33] analyzes the feedback graph model in
a setting in which the graph may vary from round to round,
and is never revealed to the learner. Reference [8] develops
UCB-based algorithms, while [9] additionally develops ϵt

greedy-based policies in which the number of exploration steps
that are to be spent on each arm is obtained by solving a
linear program. Reference [7] considers a “networked bandit”
setup in which dependencies amongst arms are described via a
graph, and pulling an arm yields rewards of neighboring arms
also in addition to the reward of the pulled arm. It proposes a

3A clique cover of a given undirected graph is a partition of the vertices
of the graph into cliques, i.e., subsets of vertices within which every two
vertices are adjacent. Clique cover number is the smallest number of cliques
using which nodes of G can be covered.

Authorized licensed use limited to: The Ohio State University. Downloaded on July 15,2025 at 16:55:08 UTC from IEEE Xplore. Restrictions apply.

4224 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 5, OCTOBER 2024

UCB-based algorithm and shows that its regret is bounded as
O(
√

T), where the prefactor is linear in the number of arms.
Our setup considers |V| parallel multi-armed bandit problems,
one at each node of the graph. Reference [7] considers a single
multi-armed bandit problem in which the total number of arms
is |V|, and upon pulling an arm, one gets to view the rewards
of other neighboring arms. Moreover, our proposed algorithm
incorporates side-observations while pulling arms so that the
regret scales linearly with the domination number of the graph,
rather than the number of nodes. Another difference with [7]
is that we analyze instance-dependent regret, and show that
this is O(log T), while the focus in [7] is on minmax regret,
which scales as O(

√
T).

In departure from these works, our work considers a net-
work setup in which side-observations occur across nodes and
not arms, and moreover, the payoffs received are unknown lin-
ear functions of the arm. Note that in order to study this setup,
we cannot use the approach/tools proposed [8] or [9]. This
requires us to develop several novel tools and techniques.
In effect, the resulting algorithms are vastly different from [8]
and [9]. The resulting prefactor, interestingly, turns out to be
the domination number of the connectivity graph. Our analysis
builds upon the tools from [4]. For bandits with feedback
graphs, [34] analyzes how the structure of the feedback graph
affects the difficulty of the learning problem, while [30] studies
online prediction problems in partial information regimes that
interpolate between the classical bandit and expert settings
and derives lower bounds for the multi-armed bandits with
feedback graph model.

3) Cooperative Bandits: In this setup, multiple agents that
can communicate via a network collectively solve a single
instance of K-armed bandit problem. Reference [35] considers
the case of a fixed network and runs consensus algorithm for
generating each agent’s estimate of mean rewards from its own
rewards and the estimated rewards of its neighbors. It shows
that the agents asymptotically recover the performance of a
centralized agent. Reference [36] proposes an extension of the
UCB1 algorithm [15] and analyzes its regret. Reference [37]
develops an algorithm based on partitions of the communica-
tion graph, while [38] uses an accelerated consensus procedure
to compute estimates of the average of rewards obtained by
all the agents for each arm, and then uses an upper confidence
bound algorithm that accounts for the delay and error of
the estimates. References [39] and [40] consider a variation
of this setup in which the agents have limited access to a
local subset of arms. Reference [41] considers a variation
in which some of the agents are malicious and can disrupt
learning. Reference [42] shows that even a limited amount
(O(log T)) of communication about the identities of the arms
played by the agents helps to “speed up” the learning process
so that the prefactor in the per-agent regret scales down by
the number of agents. Reference [43] extends this to the
case when an agent is allowed to communicate with only
a randomly chosen agent. In contrast with these works on
collaborative bandits, in our case each node of the network
has a different instance of a linear bandit problem. Hence,
side-observation, in our case, corresponds to the reward gen-
erated when the same arm is played on a neighboring node’s

bandit problem instance (and not the common bandit problem
instance).

4) Learning in Social Networks: Reference [44] derives
algorithms that learn the state of the social network. Refer-
ence [45] considers the problem of choosing which articles
should be published on a social network account so that the
number of forwards is maximized. Reference [46] considers
the case when there are multiple agents that operate in a decen-
tralized way, each selling a different set of items to incoming
customers. The agents recommend items to customers, obtain
a reward even if they are able to sell the item of another
agent. This work uses the contextual bandit framework to
study how to maximize the cumulative profit of these agents.
Reference [47] proposes targeted crawling algorithms using
the theory of multi-armed bandits in order to find a profile
matching some criteria in a social network.

B. Our Contributions

Our main contributions are as follows:
1) We consider linear multi-armed bandits in a network

setting in which each node (user) of the network
corresponds to a separate instance of linear bandit.
Upon playing an arm on a node, in addition to col-
lecting reward, one also receives “side-observations”
from neighboring nodes. These side-observations are the
rewards that would have been received from neighboring
nodes if the same arm was played on them. We derive
an instance dependent lower-bound on the regret of any
consistent policy.4 This bound is the optimal value of an
optimization problem that is parametrized by the graph
that describes the side-observations dependencies and
the (unknown) sub-optimality gaps of arms.

2) We propose a UCB-type learning algorithm that explores
the values of unknown coefficients of users using a
barycentric spanner of the set of arms for each user in the
network. It maintains confidence balls for the rewards of
arms and uses a stopping rule in order to decide when
to stop the exploration phase. At the end of exploration
phase, it plays those arms that are optimal given the
current estimates of coefficients. We analyze its finite-
time regret, and show that it can be upper-bounded as
O(|V| log T), where |V| is the number of users, with a
prefactor that depends upon the sub-optimality gaps of
rewards of arms. This is a simple algorithm with a good
regret bound, but does not match the lower bound.

3) To close the gap mentioned in 2) above, we develop
a learning algorithm that is composed of three phases.
During the warm-up phase, it samples each user’s
coefficient vectors for fixed O(log1/2 T) number of
rounds. Thereafter, in the success phase it uses these
samples to estimate the unknown sub-optimality gaps of
arms, and inputs these estimates into the optimization
problem (31)-(33). The solution of this problem then
yields the number of times each arm is to be played.
The algorithm uses a detector in order to constantly track

4A policy whose regret is smaller than o(T p), ∀p > 0 and all possible
instances of problem.

Authorized licensed use limited to: The Ohio State University. Downloaded on July 15,2025 at 16:55:08 UTC from IEEE Xplore. Restrictions apply.

KAR et al.: LINEAR BANDITS WITH SIDE OBSERVATIONS ON NETWORKS 4225

the quality of estimates obtained at the end of warm-up
phase. In the event it detects that these estimates are
“bad,” it enters into the recovery phase and switches to
the UCB-type algorithm described in 2) above. We show
that this “data-dependent” algorithm’s regret asymptoti-
cally matches the lower-bound.

II. PROBLEM SETTING

The social network of interest is modeled by a graph G =
(V , E), in which the nodes V represent users, while undirected
edges E represent social connections. We let N := |V| denote
the number of users. Associated with each node i ∈ V is a
“coefficient vector” θ⋆

i ∈ Rd. In each round t = 1, 2, . . . , T ,
the decision maker recommends articles to each i ∈ V . Let
Ui(t) ∈ U ⊂ Rd denote the arm played on node i, i.e., feature
of the article presented to user i at round t. The decision
maker has to choose Ui(t) for each user i ∈ V at times
t = 1, 2, . . . , T . Presenting article to a user i also reveals “side-
observations” on its neighboring nodes Ni := {j : (i, j) ∈ E}.
These are rewards that would have been obtained if the same
article was presented to users in the set Ni. We let ri(t)
denote the reward received from recommendation to user i
during round t. Also, let y(i,j)(t) denote the side-observation
obtained from user j as a result of recomendation to i
during round t. We let Ft be the sigma-algebra generated by{
{ri(s)}i∈V , {y(i,j)(s) : j ∈ Ni}i∈V , {Ui(s)}i∈V

}t

s=1
. Thus,

it is the sigma-algebra generated by the operational history
until round t. The reward earned from i is given by

ri(t) = U⊺
i (t) θ⋆

i + ηi(t), i ∈ V , (1)

where ηi(t) ∼ N (0, 1) is Gaussian and independent of Ft.
Side-observations are given by,

y(i,j)(t) = U⊺
i (t) θ⋆

j + η(i,j)(t), ∀(i, j) ∈ E , (2)

where η(i,j)(t) ∼ N (0, 1) are independent of Ft, and indepen-
dent across social links. We assume that ri(t) ∈ [0, 1], ∀i ∈ V
and y(i,j)(t) ∈ [0, 1], ∀(i, j) ∈ E . Note that we assume
that the decision-maker knows G. However, this is not a very
restrictive assumption since the owner of social network, for
example Facebook, has access to this information. It may
be possible to remove this assumption by learning G in an
“online fashion.” Reference [33] takes this approach in the
setup of online learning problems with feedback graphs. Note
that we use undirected edges instead of directed edges in
order to represent social connections, the reason is that in the
context of social networks, friendship is a symmetric relation.
Thus, if i is a friend of j, then j is also a friend of i.
We would like to remark that our results and proofs can be
appropriately modified even if we use a directed graph to
model the network. We assume that the neighboring nodes
always provide feedback. An alternative is to assume that only
a subset of the neighbors share their preferences, possibly with
additional costs. Another possibility is to allow the algorithm
to recommend limited items to only a subset of the users and
not to all the users, as is the case currently. These could be
analyzed in future works.

A. Notation

Denote θ⋆ := (θ⋆
1 , θ⋆

2 , . . . , θ⋆
N) ∈ Rd×N the vector consist-

ing of unknown coefficients of N users. An “action” a that
corresponds to playing arm u ∈ U on node (user) i is denoted
by the tuple a = (i, u). For an action a, we let ua denote its
arm and ia its node. We let Ai := {(i, u) : u ∈ U} denote
the set of actions that correspond to presenting an article to
user i, and let A := ∪i∈VAi denote the set of all actions.
We assume that U , and hence Ai are finite. An optimal action b
for node i satisfies b ∈ arg maxa∈Ai

{u⊺
aθ⋆

i }. We denote the
mean reward of action a by µa, i.e., µa := u⊺

aθ⋆
ia

. We assume
that each node i ∈ V has exactly one optimal arm, which is
denoted by u⋆

i . A(s)
i := Ai \ (i, u⋆

i) denotes the set of actions
corresponding to presenting a sub-optimal article on node i,
and A(s) := ∪i∈VA(s)

i denotes the set of all sub-optimal
actions. We also say that two actions a1 = (i1, u1), a2 =
(i2, u2) are neighboring actions if (i1, i2) ∈ E . By notational
abuse, we let Na denote the set of neighboring actions of
action a. Define

∆a := max
u∈U

u⊺θ⋆
ia
− u⊺

aθ⋆
ia

,

to be the difference (gap) between the mean reward of action
a and the optimal action for node ia. Let ∆min,i (∆max,i) be
the difference between the mean reward of the best arm and
second-best arm (worst arm) at node i, i.e.,

∆min,i : = min
a∈A(s)

i

(u⋆
i)

⊺
θ⋆

i − u⊺
aθ⋆

i , (3)

∆max,i : = max
a∈A(s)

i

(u⋆
i)

⊺
θ⋆

i − u⊺
aθ⋆

i . (4)

Define

∆min := min
a∈A(s)

∆a, ∆max := max
a∈A

∆a

to be the minimum value of the gap over all suboptimal actions
and the maximum gap over all actions, respectively. Since we
observe the reward of an action that is played, we say that
a node is a neighbor of itself, i.e., i ∈ Ni, or equivalently
(i, i) ∈ E , ∀i ∈ V . Thus, we let y(i,i)(s) = ri(s). This
notation drastically simplifies the exposition. This property is
called “strong observability” in the literature [34]. We note that
the preferences of user i are reflected in his/her coefficient
vector θ⋆

i . In case the underlying graph is such that the
preference of a neighbor j is similar to that of i, then the
quantity ∥θ⋆

i −θ⋆
j ∥ would be small for such neighboring nodes.

We allow the preferences of neighbors to be different, i.e.,
∥θ⋆

i − θ⋆
j ∥ can be large for neighboring nodes i and j.

All vectors are assumed to be column vectors. 0m×n denotes
an m×n matrix comprised of only zeros. For a matrix M , M⊺

denotes its transpose, while trace(M) denotes its trace, and
colk(M) denotes its k-th column. For two vectors x, y ∈ Rd,
x⊺y denotes the dot product between x and y. We let Na(t)
denote the number of times action a has been played until
round t. For a vector x ∈ Rd we let ∥x∥ denote its Euclidean
norm, and for a positive-definite matrix H , we let ∥x∥2H :=
x⊺Hx. We use [1, T] to denote the set {1, 2, . . . , T}.

Authorized licensed use limited to: The Ohio State University. Downloaded on July 15,2025 at 16:55:08 UTC from IEEE Xplore. Restrictions apply.

4226 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 5, OCTOBER 2024

B. Learning Algorithm and Regret

A learning algorithm π : Ft 7→ ⊗i∈VAi, t = 1, 2, . . . , T
maps the observational history until each round t, to a set of
|V| actions, one for each node, where each action corresponds
to playing an arm for a node. The performance of π is
measured by its regret Rπ

(θ⋆,G,A)(T),

Rπ
(θ⋆,G,A)(T) := E

T∑
t=1

(∑
i∈V

(u⋆
i)

⊺θ⋆
i − Ui(t)⊺θ⋆

i

)
, (5)

where the expectation above is taken with respect to the prob-
ability measure induced by the algorithm π, and randomness
of rewards. We will occasionally omit the dependence of
regret upon (θ⋆,G,A). Our objective is to design a learning
algorithm that has a low regret. Hence, we will restrict
ourselves to the following class of consistent algorithms.

Definition 1 (Consistent Algorithm): A learning algorithm
π is called consistent if for all θ⋆,A,G and p ∈ (0, 1),
it satisfies Rπ

(θ⋆,G,A)(T) = o (T p).

C. Barycentric Spanner

Now, we introduce the concept of a barycentric spanner and
generalize it to the network setting, which will be crucial in
our algorithm design. The following can be found in [48].

Definition 2 (Barycentric Spanner of a subset S of Rd):
A set of vectors S̃ ⊆ S is called barycentric spanner of S if
each u ∈ S can be written as follows,

u =
∑
w∈S̃

αw w, where αw ∈ [−1, 1].

The following result is Proposition 2.2 and Proposition 2.4
of [48].

Lemma 1: Let S ⊂ Rd. There exists a barycentric spanner
of S that has cardinality less than or equal to d.

It is an open question whether or not a barycentric spanner
can be computed efficiently [48]. However, an approximation
to barycentric spanner can be computed efficiently. A set is
called a C-approximate barycentric spanner of S if every
u ∈ S can be expressed as a linear combination of elements
of this set using coefficients in [−C, C]. The following result
is essentially Proposition 2.4 of [48]. It shows that if the set
S satisfies certain properties, then it is possible to efficiently
compute an approximate barycentric spanner for it with an
arbitrary level of desired accuracy.

Proposition 1: Suppose S is not contained in any proper
linear subspace. Given an oracle for optimizing linear
functions over S , for any C > 1, we can compute a
C-approximate barycentric spanner for S in polynomial time,
using O

(
d2 logC d

)
calls to the optimization oracle.

Definition 3 (Barycentric Spanner of (A,G)): Consider
the set U of arms, and let Ũ be its barycentric spanner. Then,
the set of actions BS ,

BS :=
{

(i, u) : i ∈ V , u ∈ Ũ
}

,

is a barycentric spanner of (A,G). In what follows, we let BS
be such a barycentric spanner of cardinality Nd.

Definition 4: (Dominating set of a graph) A dominating
set V ′ of graph G = (V , E) is a set of nodes such that each

node i ∈ V either (i) belongs to this set, i.e. i ∈ V ′ or (ii) is
a neighbor of some node belonging to V ′, i.e. there exists
i′ ∈ V ′ such that (i, i′) ∈ E . Let χ(G) be a dominating set with
minimum cardinality. |χ(G)| is called the domination number
of G.

III. LOWER BOUNDS ON REGRET

Define

Gi(t) : =
t∑

s=1

∑
j∈Ni

Uj(s)Uj(s)⊺, (6)

Ḡi(t) : = E (Gi(t)) , ∀i ∈ V . (7)

We have the following lower bound on the regret of any
consistent learning algorithm. Auxiliary results required while
proving it are deferred to the Appendix.

Theorem 1: Consider the following optimization problem,

OPT : min
{ζ(a):a∈A(s)}

∑
a∈A(s)

ζ(a)∆a (8)

s.t. ∥ua∥2H−1
ia

(ζ)
≤ ∆2

a

2
, ∀a ∈ A(s), (9)

where Hi(ζ) :=
∑
j∈Ni

∑
{a:ia=j}

ζ(a)uau⊺
a, (10)

where ζ(a) ∈ [0,∞), ∀a, and we let ζ = {ζ(a) : a ∈ A}. Let
c(θ⋆,G,A) denote its optimal value. The regret Rπ(T) of any
consistent learning algorithm π satisfies

lim sup
T→∞

Rπ(T)
log T

≥ c(θ⋆,G,A). (11)

Note that solving OPT requires us to know the values ∆a.
Proof: We begin by showing that under any consistent

learning algorithm, we have

lim sup
T→∞

log(T)∥ua∥2Ḡ−1
ia

(T)
≤ ∆2

a

2
, ∀a ∈ A(s). (12)

Consider a sub-optimal action a ∈ A(s)
i . Recall that u⋆

i is the
optimal arm at node i. We also let a⋆

i := (i, u⋆
i). We have,

∥ua∥Ḡ−1
i (T) ≤ ∥ua−u⋆

i ∥Ḡi(T)−1 + ∥u⋆
i ∥Ḡi(T)−1

≤ ∥ua−u⋆
i ∥Ḡi(T)−1 +

∥u⋆
i ∥√

Na⋆
i
(T)

, (13)

where the first inequality follows from the triangle inequal-
ity, while the second follows since from (6) we have that
Gi(T) ≥ Na⋆

i
(T) u⋆

i (u⋆
i)

⊺, which yields Ḡi(T)−1 ≤(
Na⋆

i
(T)
)−1 [u⋆

i (u⋆
i)

⊺]†, where for a matrix A, we let A†

denote its pseudoinverse. After multiplying both sides of (13)
by log1/2 T , we obtain

lim sup
T→∞

log1/2 T∥ua∥Ḡi(T)−1

≤ lim sup
T→∞

log1/2 T∥ua−u⋆
i ∥Ḡi(T)−1

+ lim sup
T→∞

log1/2 T√
Na⋆

i
(T)
∥u⋆

i ∥.

Authorized licensed use limited to: The Ohio State University. Downloaded on July 15,2025 at 16:55:08 UTC from IEEE Xplore. Restrictions apply.

KAR et al.: LINEAR BANDITS WITH SIDE OBSERVATIONS ON NETWORKS 4227

Under a consistent policy, we have limT→∞ Na⋆
i
(T)/T = 1,

so that the second term on the r.h.s. vanishes. It follows from
Lemma 9 that the first term on the r.h.s. is upper-bounded by
∆a/
√

2. Substituting these into the above inequality yields the
proof of (12).

We now show (11). Let π be a consistent policy, and let
Na(T) denote the number of times it takes action a until
round T . Define ζ(T)(a) := ENa(T)

log T , and denote ζ(T) :={
ζ(T)(a) : a ∈ A

}
. Its regret Rπ(T) satisfies,

Rπ(T)
log T

=
∑

a∈A(s)

ζ(T)(a) ∆a. (14)

Note that Ḡi(T) = (log T)Hi(ζ(T)) or Ḡi(T)−1 =
(log T)−1H−1

i (ζ(T)), where the function Hi(·) is as defined
in (10). Since π is consistent, it then follows from (12) that
∀a ∈ A(s) we have,

lim sup
T→∞

∥ua∥2H−1
ia

(ζ(T))
= lim sup

T→∞
log T∥ua∥2Ḡia (T)−1

≤ ∆2
a

2
. (15)

Let ζ(∞) =
{
ζ(∞)(a) : a ∈ A

}
be a limit point of ζ(T). It fol-

lows from (15) that the vector ζ(∞) is feasible for (8)-(10), and
hence we have that

∑
a∈A(s) ζ(∞)(a) ∆a ≥ c(θ⋆,G,A). The

proof is then completed by observing that from (14), the regret
Rπ(T) satisfies lim supT→∞

Rπ(T)
log T ≥

∑
a∈A(s) ζ(∞)(a) ∆a.

Remark: Note that the optimization problem (8)-(10) is
convex, and hence can be solved efficiently. To see this,
we note that the objective function is linear in the decision
variables {ζ(a)}. The functions ∥ua∥2H−1

ia
(α)

associated with
the constraints (9) are also convex, as is shown in Appendix G
of [4]. The number of decision variables is equal to the total
number of actions, and hence is equal to the product of the
number of arms |U|, and the number of nodes |V|. Since
the number of decision variables increases linearly with the
number of users |V|, the proposed approach is scalable and
can be used for graphs of “large” size.

IV. STOPPING TIME BASED ALGORITHM

We now propose an algorithm for linear bandits with side-
observations. This algorithm is composed of two phases:
(i) exploratory phase, followed by (ii) exploitation phase. The
exploratory phase lasts until a stopping criterion is met. More
details are as follows.

Exploratory Phase:

Only the actions in the barycentric spanner BS are
played. Since BS is composed of d arms at each node i,
we decompose this phase into “episodes” of duration
d steps each, where the k-th episode consists of steps
{kd + 1, kd + 2, . . . , (k + 1)d} , k = 0, 1, Each action
from BS is played exactly once during each episode. The
algorithm maintains the empirical estimates {θ̂i(t) : i ∈ V} of

the unknown coefficients θ⋆
i , which are obtained as follows,

θ̂i(t) := Gi(t)−1

 t∑
s=1

∑
j∈Ni

y(j,i)(s)Uj(s)

 , i ∈ V , (16)

where Gi(t) is as in (6). Additionally, it also maintains
confidence ball Ba(t) around the estimate of mean reward of
each action a as follows,

Ba(t) :=
{

µ ∈ R : |µ− u⊺
aθ̂ia(t)| ≤ α(t)

}
, a ∈ A, (17)

where

α(t) :=

√
2 log

(
T
∑

i∈V |Ai|/δ
)

t
d. (18)

It orders the balls {Ba(t)}a∈Ai
at each node i in decreasing

order of the corresponding values of the estimates of the mean
rewards

{
u⊺

aθ̂i(t) : a ∈ Ai

}
. Let B(o)

i,m(t) be the m-th such
ball5 at node i during round t. Define τi to be the following
stopping time,

τi := inf
{

t : t = kd where k ∈ N,

B(o)
i,1 (t) ∩ B(o)

i,m(t) = ∅, ∀m = 2, 3, . . . , |Ai|
}

, (19)

and,

τ := max
i∈V

τi. (20)

Exploratory phase ends at round τ .

Exploitation Phase:

Let û⋆
i (t) be the estimate of the optimal arm for node

i ∈ V when the coefficient of i is equal to θ̂i(t),
i.e., û⋆

i (t) ∈ arg maxu∈U

{
u⊺θ̂i(t)

}
. Also let â⋆

i (t) :=
(i, û⋆

i (t)). During rounds t > τ , algorithm plays only the
actions {â⋆

i (τ), i ∈ V} at their corresponding nodes. Thus, it
uses

{
θ̂i(τ) : i ∈ V

}
as a proxy for θ⋆, and plays the resulting

greedy decisions. Algorithm 1 summarizes this.
We will now derive an upper-bound on its regret. We begin

by deriving bounds on the error associated with the estimates
θ̂i(t). Upon substituting the expressions for rewards ri(s) and
side-observations y(j,i)(s) from (1) and (2), we obtain the
following,

ei(t) : = θ̂i(t)− θ⋆
i

= Gi(t)−1
t∑

s=1

∑
j∈Ni

η(j,i)(s)Uj(s). (21)

For x ∈ Rd, consider:

x⊺ei(t) =
t∑

s=1

∑
j∈Ni

η(j,i)(s)x⊺Gi(t)−1Uj(s). (22)

Define the following “error event,”

Ei(x, α, t) : = {ω : |x⊺ei(t)| > α} ,

where α > 0, i ∈ V , t ∈ [1, T]. (23)

5Superscript denotes ordered balls.

Authorized licensed use limited to: The Ohio State University. Downloaded on July 15,2025 at 16:55:08 UTC from IEEE Xplore. Restrictions apply.

4228 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 5, OCTOBER 2024

Algorithm 1 Stopping Time Based Algorithm
Input: Arms A, Graph G, Confidence parameter δ, Time
horizon T
Initialize: Set t := 1, and estimates θ̂(t) = (1, 1, . . . , 1) for
all i ∈ V
// Exploratory Phase
while ∃i ∈ V such that B(o)

i,1 (t) ∩ B(o)
i,m(t) ̸= ∅ for some m

do
Play each arm a ∈ BS once
Update the estimates θ̂i(t) using (16)
Update the confidence balls Ba(t) using (17)

end while
Exploration phase ends at τ
Obtain estimates θ̂i(τ) of the coefficients, and the optimal

arms â⋆
i (τ), i ∈ V

// Exploitation Phase
for t = τ + 1, τ + 2, . . . , T do

Play {â⋆
i (τ)}i∈V on corresponding nodes

end for

Define

E := ∪k∈⌊1,T/d⌋,i∈V,ai∈Ai
Ei(ai, α(kd), kd), (24)

where α(t) is as in (18). The following result derives an upper
bound on the regret of Algorithm 1. Auxiliary results, used
while proving it, are deferred to the Appendix.

Theorem 2: The regret R(T) of Algorithm 1 is upper-
bounded as

R(T) ≤

(∑
i∈V

∆max,i

)
2 log

(
T
∑

i∈V |Ai|/δ
)
d

(∆min/2)2

+ δT

(∑
i∈V

∆max,i

)
.

With δ = 1/T , we obtain the following upper-bound on regret,

R(T) ≤

(∑
i∈V

∆max,i

)
2 log

(
T 2
∑

i∈V |Ai|
)
d

(∆min/2)2

+

(∑
i∈V

∆max,i

)
.

Proof: We begin by showing that on Ec, the regret of
Algorithm 1 is 0 during rounds t greater than time τ . Note
that â⋆

i (τi) is the action that corresponds to B(o)
i,1 (τi). On Ec,

we have µa⋆
i
∈ Ba⋆

i
(τi), and also µa ∈ Ba(τi) for any sub-

optimal a ∈ A(s)
i . This means that the ball B(o)

i,1 (τi) is equal to
the ball Ba⋆

i
(τi), since if this was not the case, then we would

have a contradiction that µa > µa⋆
i

for some sub-optimal a.
Hence we conclude that â⋆

i (τi) = a⋆
i on Ec. Thus, we have,

1 (Ec)
T∑

t=1

∑
i∈V

∆(i,Ui(t)) ≤ τ

(∑
i∈V

∆max,i

)
. (25)

We now derive an upper-bound on τ . To do so, we will
bound τi. Note that on Ec, the mean rewards of actions lie
within their corresponding confidence balls. Hence in order for
the ball Ba⋆

i
and the ball Ba, that corresponds to a sub-optimal

a ∈ A(s)
i , to intersect during round t, we must necessarily have

the following,

µa⋆
i
− α(t) ≤ µa + α(t), a ∈ A(s)

i ,

which gives α(t) ≥ ∆a

2 , a ∈ A(s)
i . Upon substituting for α(t)

from (61) into the above inequality, we obtain,√
2 log

(
T
∑

i∈V |Ai|/δ
)

t
d ≥ ∆a

2
, a ∈ A(s)

i ,

or

t ≤
2 log

(
T
∑

i∈V |Ai|/δ
)
d

(∆a/2)2
, a ∈ A(s)

i .

This shows that on Ec, Ba⋆
i
(t) cannot intersect with Ba, a ∈

A(s)
i during rounds t >

2 log(T
∑

i∈V |Ai|/δ)d

(∆min,i/2)2
, a ∈ A(s)

i , and

hence τi ≤
2 log(T

∑
i∈V |Ai|/δ)d

(∆min,i/2)2
. Since τ = maxi τi, we get

τ ≤ 2 log(T
∑

i∈V |Ai|/δ)d

(∆min/2)2
. Upon substituting the upper-bound

on τ into (25), we obtain the following,

E

(
1 (Ec)

T∑
t=1

∑
i∈V

∆(i,Ui(t))

)

≤
2 log

(
T
∑

i∈V |Ai|/δ
)
d

(∆min/2)2

(∑
i∈V

∆max,i

)
. (26)

Moreover, since the cumulative regret on any sample path is
trivially upper-bounded by T

(∑
i∈V ∆max,i

)
, we have that,

E

(
1 (E)

T∑
t=1

∑
i∈V

∆(i,Ui(t))

)
≤ T

(∑
i∈V

∆max,i

)
P(E)

≤ δT

(∑
i∈V

∆max,i

)
, (27)

where, the last inequality follows from Lemma 12. The proof
then follows by combining the inequalities (26) and (27).

Algorithm 1 takes an “explore-then-commit approach” [13]
using a naive exploration algorithm, and consequently it seems
suboptimal. However, in the next section, we design a more
sophisticated algorithm, in which Algorithm 1 is used as a
“fallback algorithm” in the “bad event” when the estimates
of sub-optimality gaps that have been obtained at the end of
the “warm-up phase” turn out to be bad. Unless an algorithm
such as Algorithm 1 is deployed in this bad event, the expected
regret would be quite large since the regret on this bad event
could be as large as the time horizon T . Note that the regret
upper-bound in Theorem 1 scales linearly with the dimension
d of the feature space, while the problem-dependent regret
bound of other existing algorithms, such as that in [49] scales
as d2, d3. However, the bound of [49] does not depend upon
the number of arms, while our bound has a logarithmic growth
with the number of arms.

Authorized licensed use limited to: The Ohio State University. Downloaded on July 15,2025 at 16:55:08 UTC from IEEE Xplore. Restrictions apply.

KAR et al.: LINEAR BANDITS WITH SIDE OBSERVATIONS ON NETWORKS 4229

V. ASYMPTOTICALLY OPTIMAL ALGORITHM

The regret of Algorithm 1 scales as O(log T); if the
parameters ∆max, ∆min and the dimension d are kept constant,
then the regret scales linearly with the number of nodes N .
We now propose an algorithm that uses solution of optimiza-
tion problem (8)-(10) in order to make decisions. We show
that its regret matches the lower bound of Section III, and
the prefactor can be upper-bounded by domination number
|χ(G)| of the graph G. Thus, for graphs G that satisfy
|χ(G)| ≪ |V|, this algorithm can be much more efficient
than Algorithm 1.

Algorithm 2 Asymptotically Optimal Algorithm
Input: Arms A, Graph G, Confidence parameter δ, Time
horizon T
// Warm-up Phase
Play each arm in spanning set S for log1/2 T times

// Success Phase
ϵT (t)← maxa∈A ∥a∥G−1

ia
(d log1/2 T) g1/2(T)

∆̂← ∆̂(d log1/2 T), µ̂← µ̂(d log1/2 T)
Solve OPT (∆̂) (31)-(33) to obtain β⋆(∆̂)

while t ≤ T and |µ̂a − µ̂a(t− 1)| ≤ 2ϵT for all a ∈ A do
For each i ∈ V play actions in a round robin fashion

with Na(t) ≤ β⋆
a(∆̂)

end while
// Recovery Phase
Discard all data and play Algorithm 1 until t = T

We begin by introducing a few notations. Define,

f(t) : = 2 log(t) + cd log (d log t) + 2, (28)

g(t) : = 2 log (log t) + 2
log (log t)

log t
+ cd log(d log t), (29)

where c > 0 is a constant. Let

∆̂a(t) := max
u∈U

(u− ua)⊺
θ̂ia(t), (30)

denote estimate of sub-optimality gap of action a dur-
ing round t, and ∆̂(t) :=

{
∆̂a(t) : a ∈ A

}
. The pro-

posed algorithm is composed of the following three
phases.

Warm-up Phase:

Algorithm plays actions in the barycentric spanner BS for
d log1/2 T rounds.

Success Phase:

Denote by ∆̂ = {∆̂a : a ∈ A}, µ̂ = {µ̂a : a ∈ A} the
estimates of sub-optimality gaps and mean values of rewards
that are obtained by using the information gained during the
warm-up phase. Consider the following optimization problem
obtained from OPT (8)-(10) by replacing the gaps ∆a by
their estimates ∆̂ =

{
∆̂a : a ∈ A

}
:

OPT (∆̂) : min
{βa}a∈A

∑
a∈A

βa∆̂a (31)

s.t. f(T)∥ua∥2H−1
ia

(β)
≤ ∆̂2

a

2
, ∀a ∈ A, (32)

where Hi(β) :=
∑
j∈Ni

∑
{a:ia=j}

βa ua u⊺
a, i ∈ V . (33)

Let β⋆(∆̂) =
{

β⋆
a(∆̂) : a ∈ A

}
be a solution of

OPT (∆̂). The algorithm uses estimates ∆̂ to solve (31)-(33),
and obtains β⋆(∆̂). It then plays each action a in a round-robin
fashion until it has been played for β⋆

a(∆̂) rounds. Meanwhile,
it also continually keeps track of the quality of estimates µ̂a

of rewards obtained at the end of warm-up phase as follows.
Define

ϵT (t) := max
a∈A
∥a∥G−1

ia
(t)

√
g(T), (34)

where g(·) is as in (29). If during any round t, it observes
that |µ̂a(t) − µ̂a| > 2ϵT (d log1/2 T) for some action a ∈ A,
then it declares that the estimates µ̂ are bad, and in this event
algorithm enters recovery phase.

Recovery Phase:

Algorithm discards all operational history and collected data,
and starts playing Algorithm 1.

Algorithm 2 summarizes this. We next show that it is
asymptotically optimal, i.e., as T →∞, its regret matches the
lower bound derived in Theorem 1. Auxiliary results, required
while proving it, are deferred to the Appendix. Define the
following two events,

F : =
⋃

a∈A,t∈[1,T]

{
ω : |µa − µ̂a(t)| ≥ ∥ua∥G−1

ia
(t)g

1/2(T)
}

,

F ′ : =
⋃

a∈A,t∈[1,T]

{
ω : |µa − µ̂a(t)| ≥ ∥ua∥G−1

ia
(t)f

1/2(T)
}

,

where, the functions f(·) and g(·) are as in (28), (29). The
following result is used while proving Theorem 3.

Lemma 2: Algorithm 2 never enters recovery phase on F c.
Proof: On F c we have the following,

|µa − µ̂a(t)| ≤ ∥ua∥G−1
ia

(t)g
1/2(T) ≤ ϵT (t), ∀a ∈ A.

Thus, for times s, t ≥ d log1/2 T , we have

|µ̂a(s)− µ̂a(t)| ≤ 2ϵT (min{s, t}) ≤ 2ϵT (d log1/2 T).

Since recovery phase occurs only when |µ̂a(t) − µ̂a| >
2ϵT (d log1/2 T), where µ̂a is the estimate of µa at time
d log1/2 T , this shows that the algorithm does not enter the
recovery phase on F c.

Theorem 3: The regret R(T) of Algorithm 2 satisfies

lim sup
T→∞

R(T)
log T

≤ c(A, θ⋆,G),

where c(A, θ⋆,G) is the optimal value of optimization prob-
lem (8)-(10). It then follows from lower bound derived in
Theorem 1 that Algorithm 2 is asymptotically optimal as
T →∞.

Proof: Throughout this proof, we denote the regret
of Algorithm 2 by R(T). Let Twarm, Tsucc, Trec denote the
rounds spent in the warm-up, success, and recovery phases,

Authorized licensed use limited to: The Ohio State University. Downloaded on July 15,2025 at 16:55:08 UTC from IEEE Xplore. Restrictions apply.

4230 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 5, OCTOBER 2024

respectively. The normalized cumulative regret R(T)/ log T
can be decomposed as follows,

R(T)
log T

=
1

log T
E

(∑
t∈Twarm

∑
i∈V

∆(i,Ui(t))

)

+
1

log T
E

(∑
t∈Trec

∑
i∈V

∆(i,Ui(t))

+
∑

t∈Tsucc

∑
i∈V

∆(i,Ui(t))

)
. (35)

Since the warm-up phase lasts for O(log1/2 T) rounds, contri-
bution of the first term is asymptotically 0 as T →∞. Hence,
we focus on regret in the success and recovery phases.

Next, we analyze the regret during Trec. Using techniques
similar to the proof of Theorem 8 of [4], we can show the
following,

P(F) ≤ 1
log (T)

, P(F ′) ≤ 1
T

. (36)

Upon combining this with Lemma 2, we conclude that
P (Trec ̸= ∅) ≤ 1/ log T . From Theorem 2 we have that if
the algorithm does enter the recovery phase, then its regret
is upper-bounded as O(log T). Upon combining these two
bounds, we have that the expected value of the second term
in the summation in (35) is upper-bounded by a constant
that does not depend upon T . Thus, the contribution of this
summation term, when divided by log T , is asymptotically 0.

The discussion so far shows that the first two summation
terms in the r.h.s. of (35) asymptotically vanish. We finally
analyze the regret in the success phase. We analyze this
regret separately on the following sets: (i) F ′, (ii) F ∩ (F ′)c,
(iii) F c. Since from (36) we have that P(F ′) ≤ 1/T , and
moreover the regret on any sample-path can be trivially
upper-bounded as O(T), we conclude that the regret on
F ′ is upper-bounded by a constant that does not depend
upon T . This term, when divided by log T , asymptotically
vanishes. Using techniques similar to the proof of Lemma 13
of [4], it follows that this regret on the set F ∩ (F ′)c

asymptotically vanishes. Thus, it only remains to analyze the
regret during the success phase on the set F c, which we
now show is asymptotically upper-bounded by c(θ⋆,G,A).
In what follows, we use ∆̂ and ϵT in lieu of ∆̂(d log1/2 T)
and ϵT (d log1/2(T)) respectively. Recall that β⋆(∆) is the
number of plays calculated by solving the optimization
problem (31)-(33). β⋆(∆) satisfies the following,

lim sup
T→∞

∑
a∈A(s) β⋆

a(∆)∆a

log T
= c(θ⋆,G,A). (37)

The regret that occurred during the success phase satisfies,

1 (F c)
∑

t∈Tsucc

∑
i∈V

∆(i,Ui(t)) ≤
∑

a∈A(s)

β⋆
a(∆̂)∆a

=
∑

a∈A(s)

β⋆
a(∆̂)∆̂a +

∑
a∈A(s)

β⋆
a(∆̂)

[
∆a − ∆̂a

]
≤ (1 + δT)

∑
a∈A(s)

β⋆
a(∆)∆̂a + 2ϵT

∑
a∈A(s)

β⋆
a(∆̂)

≤ (1 + δT)
∑

a∈A(s)

β⋆
a(∆)∆a + 2ϵT (d log1/2(T))

×

(1 + δT)
∑

a∈A(s)

β⋆
a(∆) +

∑
a∈A(s)

β⋆
a(∆̂)

 , (38)

where the first inequality follows since under Algorithm 2,
the number of plays of an arm a is atmost equal to β⋆

a(∆̂),
the second inequality follows from (62) and the fact that on
F c we have |µa − µ̂a(t)| ≤ ϵT . We now use the results of
Lemma 13 and Lemma 15 in the inequality (38), and also
choose the operating horizon T to be sufficiently large so as
to satisfy 2ϵT ≤ ∆min/2, and obtain the following,

1 (F c)
∑

t∈Tsucc

∑
i∈V

∆(i,Ui(t)) ≤
(

1 +
16ϵT

∆min

) ∑
a∈A(s)

β⋆
a(∆)∆a

+ 2ϵT

[
2 + 2d3f(T)

∆max

∆3
min

]
. (39)

We have

ϵT = O

(
log1/2 (log T)

log1/4 T

)
. (40)

We now divide both sides of (39) by log T , and substitute (40)
in (39) in order to obtain the following,

lim sup
T→∞

1
log T

1 (F c)
∑

t∈Tsucc

∑
i∈V

∆(i,Ui(t))

≤ lim sup
T→∞

1
log T

∑
a∈A(s)

β⋆
a(∆)∆a ≤ c(θ⋆,G,A), (41)

where the last inequality follows from (37). It thus follows
from Fatou’s lemma [50] that the regret during the success
phase on F c is upper-bounded by c(θ⋆,G,A). The proof is
then completed by substituting the bounds on different terms
into the relation (35).

Corollary 1: Optimal value of problem (8)-(10),
c(A, θ⋆,G), is less than or equal to ∆max

∆min
|χ(G)|. Thus,

the regret R(T) of Algorithm 2 satisfies

lim sup
T→∞

R(T)
log T

≤ ∆max

∆min
|χ(G)|.

Proof: Consider the following optimization problem

OPT1 : min
{wa}a∈A

∆max

∑
a∈A

wa (42)

s.t. ni(w) ≥
√

2
∆min

, ∀i ∈ V , (43)

where ni(w) :=
∑
j∈Ni

∑
{a:ia=j}

wa, i ∈ V ., (44)

wa = 0 if a /∈ BS, and wa = wb, ∀a, b ∈ BS ∩ Aia
. (45)

It is easily verified that any vector feasible for OPT1 is also
feasible for OPT . Moreover, its objective function is also
greater than the objective of OPT . Thus, its optimal value,
denoted c(A, θ⋆,G)1 is greater than c(A, θ⋆,G). Consider now
a scaled version of OPT1,

OPT1,s : min
{wa}a∈A

∑
a∈A

wa (46)

Authorized licensed use limited to: The Ohio State University. Downloaded on July 15,2025 at 16:55:08 UTC from IEEE Xplore. Restrictions apply.

KAR et al.: LINEAR BANDITS WITH SIDE OBSERVATIONS ON NETWORKS 4231

s.t. ni(w) ≥ 1, ∀i ∈ V , (47)

where ni(w) :=
∑
j∈Ni

∑
{a:ia=j}

wa, i ∈ V , (48)

wa = 0 if a /∈ S, and wa = wb, ∀a, b ∈ S ∩ Aia
. (49)

It is evident that if x is feasible for OPT1, then x∆min/√
2 is feasible for OPT1,s, and if y is feasible for OPT1,s,

then y
√

2/∆min is feasible for OPT1. Thus, if c(A, θ⋆,G)1,s

denotes optimal value of OPT1,s, then we have c(A, θ⋆,G)1 =
c(A, θ⋆,G)1,s

(√
2/∆min

)
∆max. The proof is completed by

noting that the optimal value of OPT1,s is a lower bound
on |χ(G)|.

Remark: We note that the preferences of user i are reflected
in his/her coefficient vector θ⋆

i , while the side observations
revealed from recommendations depend upon the graph G.
Since the proposed algorithm uses a solution of (31)-(33)
in order to make decisions, it takes into account both these
quantities while making recommendations. This means that
even if the coefficient vectors θ⋆

i and θ⋆
j of neighbors i, j are

close, the recommendations made to i and j could be different
if their sets of neighbors are different. Also, note that in our
model, the preferences of neighbors are allowed to be different,
i.e., ∥θ⋆

i − θ⋆
j ∥ can be large for neighboring nodes i and j.

VI. EXPERIMENTS

A. Synthetic Data Experiment

The vector θ⋆ = (θ⋆
1 , θ⋆

2 , . . . , θ⋆
N) that contains the coef-

ficients of the users, and the arms constituting the set U , are
generated randomly. More specifically, {θ⋆

i }Ni=1 and the arms
are drawn from a uniform distribution with support in the
set [0, 1]d. In order to generate the graph G, the edges con-
necting the nodes are drawn randomly before the experiment
begins; thus, any two nodes i, j ∈ V are connected with a
probability p. Note that the graph G is kept fixed throughout
the experiment. The noise ηi(t), η(i,j)(t) associated with the
rewards and the side-observations (1), (2) are assumed to
be Gaussian with standard deviation σ. We compare the
performance of Algorithm 2 with the algorithm of [4], which
is denoted LS,6 In order to make decisions regarding which
actions should be played, LS algorithm solves N optimization
problems, one for each node. The optimization problem for
node i is similar to (31)-(33), but involves only those actions
which correspond to playing an arm on node i. Similarly,
the estimates θ̂i(t) are also calculated without taking the side
observations into account. We also consider a naive adaptation
of LS to the graphical setting and denote it by LS-N. LS-N
differs from LS in that it uses side observations to enhance
the estimation after warm-up phase, but in the success phase,
it does not utilize the structure of G in order to cleverly choose
the number of times that an arm should be played. Instead of
solving (31)-(33), it solves a separate optimization problem
for each i ∈ V ; see [4] for more details. The computational
complexity of all the three algorithms is similar since they
involve solving an optimization problem in which number
of decision variables is equal to the number of actions. Our

6Abbreviation for Lattimore, Szepesvári.

Fig. 1. Comparison of regret of Algorithm 1, denoted Stopping-algo, and
Algorithm 2, denoted Optimal-LP, with the algorithms LS and LS-N of [4],
on two randomly generated bandit instances. The plots are obtained after
averaging the results of 20 runs. N and K denote the number of nodes and
set of arms at each node, respectively.

experimental results show the potential gains from using the
side observations alone. However, by leveraging the graph
structure, our optimal algorithm shows significant regret reduc-
tion and verifies our theoretical claims. We summarize the
results of this evaluation in Fig. 1, where we plot the regret
of the algorithms as a function of rounds. Algorithm 1
and Algorithm 2 are denoted Stopping-algo and Optimal-
LP, respectively, in all the plots. In Fig. 1, Algorithm 2 is
seen to outperform other algorithms. Next, in order to study
the dependence of regret on the link-probability, in Fig. 2,
we compare the cumulative regrets of different algorithms as
this probability is varied.

Since a higher value of link generation probability leads to
more connections in the graph, and on average, this would
mean that the graph would have a lower domination number,
we expect the cumulative regret of the optimal algorithm to
decrease with p. Note that the plots in Fig. 2 are obtained after
averaging over 40 randomly generated graphs. Fig. 2 shows
that the terminal cumulative regret of the optimal algorithm
reduces as the link generation probability increases, this is in
coherence with the |χ(G)|-dependence of regret upper-bound
that was derived in Corollary 1. Algorithm 2 is seen to
consistently outperform others.

B. MovieLens Data Experiment

The MovieLens 20M dataset consists of reviews on more
than 100, 000 movies by more than 10, 000 users. Each movie

Authorized licensed use limited to: The Ohio State University. Downloaded on July 15,2025 at 16:55:08 UTC from IEEE Xplore. Restrictions apply.

4232 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 5, OCTOBER 2024

Fig. 2. Plot of cumulative regret at T = 4000 as p is varied. {θ⋆
i }N

i=1
and the arms are drawn from a uniform distribution with support in the set
[0, 1]d. We use d = 4, N = 10, K = 8, σ = 1.5. At each value of p, the
terminal regret for 40 different graphs are averaged.

Fig. 3. Comparison of regret of Algorithm 1 and Algorithm 2 with LS and
LS-N [4] on two bandit instances generated using the MovieLens dataset. The
plots are obtained after averaging the results of 20 runs. N and K denote the
number of nodes (users) and set of arms (movies) at each node, respectively.
A link between every pair of users is generated independently at random with
probability p.

belongs to one or more genres and has user-given tags, which
can be thought of as features. In order to reduce the dimen-
sion of the feature space, we performed principle component
analysis [51] upon the feature matrix of the movies and chose
the first 10 dominant eigenvectors. Thereafter, we obtained
the coefficient vector θ⋆

i for each user i by performing a least
squares fit. Fig. 3 compares the performance of algorithms for
two problem instants, and Algorithm 2 is seen to yield the
best performance.

Next, we empirically verify that the regret of Algorithm 2
scales as the domination number of the graph and not as the

Fig. 4. Three graphs having different numbers of nodes but the same
domination number of 5.

Fig. 5. Plot of regret for Algorithm 2 and LS-N for the three graphs G-1, G-2
and G-3 depicted in Fig. 4. All of them have the same domination number.
Unbroken lines and dashed lines indicate Optimal-LP and LS-N, respectively.

number of users. For this, consider the three graphs shown
in Fig. 4 that have different numbers of users but the same
domination number of 5. Fig. 5 shows the regret as a function
of time when different algorithms are applied to these three
graphs. Number of articles is kept fixed at 20, and the standard
deviation of noise is 1.5. These plots suggest that the regret
of Algorithm 2 does not scale with the number of users, since
the domination number of the graphs is fixed.

Next, we compare the performance of algorithms on random
graphs of size 200, 400, and 800 nodes. We reduce the
dimension of the feature space to 4 and set the number of
articles equal to 10. The standard deviation of the noise is set
equal to 1. Figure 6 plots the regret for various algorithms.

Remark: The following heuristic could be used in order to
reduce computation time when running the algorithm on large
graphs. Partition the graph G into M smaller sub-graphs and
solve the resulting M subproblems separately using different
processors. This procedure yields a linear speedup so that the
computation time reduces by a factor of M . The optimization
problem for a subgraph is obtained by restricting the nodes
and edges in problem (31)-(33) to only those belonging
to this sub-graph. For each node i, choose its actions by
using the solution of the optimization problem corresponding
to its subgraph. Since this approach essentially ignores the
possibility of obtaining any side-information using those edges
that connect different subgraphs, it is expected that it does not
affect the regret much when the number of such edges is small
as compared with the total number of edges.

VII. DISCUSSION

In this paper, we introduce a framework to make optimal
decisions for linear bandits in a network setting by incorporat-

Authorized licensed use limited to: The Ohio State University. Downloaded on July 15,2025 at 16:55:08 UTC from IEEE Xplore. Restrictions apply.

KAR et al.: LINEAR BANDITS WITH SIDE OBSERVATIONS ON NETWORKS 4233

Fig. 6. Plot comparing the regret of Algorithm 1 and Algorithm 2 with
LS and LS-N [4] on two problem instances generated using the MovieLens
dataset. N and K denote the number of nodes (users) and set of arms (movies)
at each node, respectively. In each graph, on average each user is connected
with 3 other users.

ing side-observations. We derive an instance-dependent lower
bound on the regret of any learning algorithm and also an
optimal algorithm whose regret matches these lower bounds
asymptotically as T → ∞. This work can be extended in
several interesting directions. We plan to extend the results
to the case when the set of arms to choose from is non-
stationary. The current model assumes the neighboring nodes
would always provide feedback for “free.” In real-world appli-
cations, it is more reasonable to consider a subset of the
neighbors that would share their preferences, probably with

certain additional costs. Another interesting extension is to
allow the algorithm to recommend limited items to only a
subset of the users and not choose arms for all the users,
as is the case currently. Note that currently, we assume that
users provide feedback irrespective of whether they like the
recommendation or not. Yet another possibility is to collect
feedback from a neighbor only when the user reacts positively
to the item presented to him/her.

APPENDIX

A. Auxiliary Results Used in Proof of Theorem 1

The following result is Lemma 5 of [4].
Lemma 3: Let P and P′ be measures on the same measur-

able space (Ω,F). Then, for any event A ∈ F , we have,

P(A) + P′(Ac) ≥ 1
2

exp(−KL(P, P′)),

where KL(P, P′) denotes the relative entropy between P and
P′, which is defined as +∞ if P is not absolutely continu-
ous with respect to P′, and is equal to

∫
Ω

dP(ω) log dP
dP′ (ω)

otherwise.
The following result shows that the relative entropy between

the probability measures induced by a learning algorithm on
sequences of outcomes for two different multi-armed bandit
problem instances can be decomposed in terms of the expected
number of times each arm is chosen and the relative entropies
of the distributions of the arms. We omit its proof since it is
a minor modification of the proof of Lemma 6 of [4].

Lemma 4: (Information Processing Lemma) Consider a
learning algorithm π applied to two different problem
instances, in which the users’ coefficients are equal to
{θ⋆

i }i∈V , and {θ′i}i∈V , while the graph and the set of arms
are the same in both the instances and given by G and A.
Let P, P′ denote the probability measures induced by π on the
sequence of rewards {ri(s) : i ∈ V}ts=1, side-observations
{y(i,j)(s) : (i, j) ∈ E}ts=1 and arms {Ui(s) : i ∈ V}ts=1.
Furthermore, assume that θ⋆ and θ′ differ only on the value
at a single node i, i.e., θ⋆

j = θ′j , ∀j ̸= i, and θ⋆
i ̸= θ′i. Then

we have the following,

KL(P, P′) =
1
2
(θ⋆

i − θ′i)
⊺Ḡi(T) (θ⋆

i − θ′i),

where Ḡi(T) is as in (6), and the expectation is taken when
θ⋆ is the true parameter.

Constructing Modified Coefficient Vector θ′

Recall that when the coefficient vector is equal to θ⋆, a⋆
i is

the unique optimal action for node i. We will now construct
a coefficient vector θ′ so that the resulting optimal action for
node i will be b⋆, where b⋆ ̸= a⋆

i . Since we do not modify the
coefficients at other nodes, the optimal arms for other nodes
v ∈ V\{i} remain unchanged. Let H > 0 be a positive-definite
matrix that will be specified soon. We let

θ′v =

 θ⋆
v , if v ∈ V \ {i},

θ⋆
i +

1
∥ub⋆ − u⋆

i ∥2H
H(ub⋆ − u⋆

i)(∆b⋆ + ϵ) if v = i,

(50)

Authorized licensed use limited to: The Ohio State University. Downloaded on July 15,2025 at 16:55:08 UTC from IEEE Xplore. Restrictions apply.

4234 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 5, OCTOBER 2024

where u⋆
i is the optimal arm for node i under θ⋆. Note that

under θ′i, the mean reward of b⋆ is more than that of a⋆
i since,

(θ′i)
⊺ (ub⋆ − u⋆

i) =(
θ⋆

i +
1

∥ub⋆ − u⋆
i ∥2H

H(ub⋆ − u⋆
i)(∆b⋆ + ϵ)

)⊺

(ub⋆ − u⋆
i)

= −∆b⋆ + ∆b⋆ + ϵ

= ϵ. (51)

Let Rπ
(θ⋆,G,A)(T), Rπ

(θ′,G,A)(T) denote the regret incurred by
the learning algorithm π, when the coefficients are equal to
θ⋆ and θ′ respectively. We have the following lower-bound on
Rπ

(θ⋆,G,A)(T)+Rπ
(θ′,G,A)(T). Recall that Na(T) is the number

of plays of action a until round T .
Lemma 5: Let θ′ be the coefficient vector constructed as

in (50), and P, P′ denote the probability measures induced
by a learning algorithm π on the sequence of rewards, side-
observations and actions when users’ coefficients in are equal
to {θ⋆

i }i∈V , and {θ′i}i∈V respectively. Furthermore, let ϵ <
∆min,i, where ∆min,i is as in (3). We then have that,

Rπ
(θ⋆,G,A)(T) + Rπ

(θ′,G,A)(T) ≥
ϵT

2
[
P
(
Na⋆

i
(T) ≤ T/2

)
+ P′ (Na⋆

i
(T) > T/2

)]
.

Proof: Clearly, Rπ
(θ⋆,G,A)(T) ≥

T
2 ∆min,iP

(
Na⋆

i
(T) ≤ T/2

)
. Similarly, it follows from (51)

that Rπ
(θ′,G,A)(T) ≥ T

2 ϵ P′ (Na⋆
i
(T) ≥ T/2

)
. The proof then

follows by adding the above two inequalities and utilizing
ϵ < ∆min,i.

Lemma 6: Let θ′ be the coefficient vector constructed as
in (50), and b⋆ be the optimal action for node i under θ′.
Define

δa⋆ := ub⋆ − u⋆
i , (52)

where u⋆
i is the optimal arm for node i when its coefficient is

equal to θ⋆
i . For H > 0 define

ρi(T ; H) : = ∥δa⋆∥2H⊺Ḡi(T)H×

∥δa⋆∥2
Ḡ−1

i (T)

(
∥δa⋆∥4H

)−1
. (53)

We then have that,

(∆b⋆ + ϵ)2

2
ρi(T ; H)

log T ∥δa⋆∥2
Ḡ−1

i (T)

≥ 1 +
log ϵ− log 2

log T

−
log
(
Rπ

(θ⋆,G,A)(T) + Rπ
(θ′,G,A)(T)

)
log T

. (54)

Proof: It follows from Lemma 3 and Lemma 5 that

Rπ
(θ⋆,G,A)(T) + Rπ

(θ′,G,A)(T) ≥ ϵT

2
exp(−KL(P, P′)). (55)

Substituting the expression for KL(P, P′) from Lemma 4 into
the above inequality, and taking logarithms, we obtain the
following,

1
2
(θ⋆

i − θ′i)
⊺Ḡi(T) (θ⋆

i − θ′i) ≥

log
(

ϵT

2

)
− log

(
Rπ

(θ⋆,G,A)(T) + Rπ
(θ′,G,A)(T)

)
.

We then substitute the value of θ′i from (50) in the above
inequality and perform some algebraic manipulations in order
to obtain (54).

Lemma 7: Let δa⋆ be as in (52), and π be a consistent
learning algorithm. We then have that,

lim inf
T→∞

ρi(T ; H)
log T ∥δa⋆∥2

Ḡ−1
i (T)

≥ 2
∆2

b

,

where ρi(T ; H) is as defined in (53).
Proof: Since π is a consistent learning algorithm,

we have

lim sup
T→∞

log
(
Rπ

(θ⋆,G,A)(T) + Rπ
(θ′,G,A)(T)

)
log T

≤ 0.

Substituting this into the inequality (54) yields

(∆b⋆ + ϵ)2

2
lim inf
T→∞

ρi(T ; H)
log T ∥δa⋆∥2

Ḡ−1
i (T)

≥ 1.

The result then follows since the bound holds true for an
arbitrary choice of b⋆, and for all ϵ > 0.

Next, define c := lim supT→∞ log T ∥δa⋆∥2
Ḡ−1

i (T)
, and

let d ∈ R be such that d ≤ lim infT→∞
ρi(T ;H)

log T ∥δa⋆∥2
Ḡ

−1
i

(T)

.

We then have that

c ≤ lim infT→∞ ρi(T ; H)
d

, (56)

where H > 0. It follows from Lemma 7 that d can be
taken to be 2/∆2

b⋆ . We now obtain an upper-bound on
lim infT→∞ ρi(T ; H) which will give us an upper-bound on c.

Lemma 8: Define, H̃i(T) := Ḡ−1
i (T)

∥Ḡ−1
i (T)∥ , and let H̃i(∞) be

a limit point of H̃i(T). We then have that

lim inf
T→∞

ρi(T ; H̃i(∞)) ≤ 1. (57)
Proof: We have

ρi(T ; H) =
∥δa⋆∥2

H⊺Ḡi(T)H
∥δa⋆∥2

Ḡ−1
i (T)

∥δa⋆∥4H
= ∥δa⋆∥2

H̃i(T)
∥δa⋆∥2

HH̃i(T)H
∥δa⋆∥−4

H .

The last expression computes to 1 with H set equal to H̃i(T).
It then follows that lim infT→∞ ρi(T ; H̃i(∞)) ≤ 1.

Lemma 9: Under any consistent learning algorithm π,
we have that

lim sup
T→∞

log T ∥ub−u⋆
i ∥2Ḡ−1

i (T)
≤ ∆2

b

2
, ∀b ∈ A(s)

i .

Proof: Follows by substituting (57) into the inequal-
ity (56), and choosing d to be equal to 2/∆2

b .

B. Auxiliary Results Used in Proof of Theorem 2

We will derive an upper-bound on the probability of the
event E .

Lemma 10: Let the decisions {Ui(t) : i ∈ V}t∈[1,T] be
deterministic. We then have that,

P (Ei(x, α, t)) ≤ 2 exp

(
− α2

2∥x∥2
G−1

i (t)

)
. (58)

Authorized licensed use limited to: The Ohio State University. Downloaded on July 15,2025 at 16:55:08 UTC from IEEE Xplore. Restrictions apply.

KAR et al.: LINEAR BANDITS WITH SIDE OBSERVATIONS ON NETWORKS 4235

Proof: For λ > 0, it follows from Chebyshev’s inequality
that,

P (x⊺ei(t) > α) ≤ exp(−λα)E exp(λx⊺ei(t)). (59)

Substituting the expression for x⊺ei(t) from (22), we obtain,
E exp(λx⊺ei(t)) = exp

(
λ2

2 ∥x∥
2
G−1

i (t)

)
. Substituting the

above into the inequality (59), we obtain P (x⊺ei(t) > α) ≤
exp(−λα) exp

(
λ2

2 ∥x∥
2
G−1

i (t)

)
. For λ = α/∥x∥2

G−1
i (t)

, this

bound reduces to P (x⊺ei(t) > α) ≤ exp

(
− α2

2∥x∥2
G

−1
i

(t)

)
.

A similar bound can be derived for the probability of the
event {x⊺ei(t) < −α}. Combining these bounds completes
the proof.

Note that the exploration phase is composed of
“episodes,” such that each action in the barycentric spanner
BS is played exactly once during an episode. Thus,
an episode lasts for d rounds. After t episodes,
the matrices Gi(td) are given as follows, Gi(td) =
t
(∑

j∈Ni

∑
a∈BS∩Aj

uau⊺
a

)
= t|Ni|

(∑
u∈Ũ u u⊺

)
, so that

G−1
i (td) = 1

t|Ni|
(∑

u∈Ũ u u⊺
)−1

.

Lemma 11: If the decisions {Ui(t) : i ∈ V}t∈[1,T] are such
that only the actions in BS are played in a round-robin
manner, then,

∥ua∥2G−1
ia

(kd)
≤ d

k|Ni|
, ∀a ∈ A, k = 1, 2, . . . , ⌊T/d⌋, (60)

where for x ∈ R, ⌊x⌋ denotes the greatest integer less than
or equal to x.

Proof: Within this proof, we let i denote the node ia at
which action a is played. Since Ũ is a barycentric spanner
for U , we have ua =

∑
u∈Ũ αuu, where αu ∈ [−1, 1],

∀u ∈ Ũ . Thus,

∥ua∥2G−1
i (kd)

=
∑
u∈Ũ

α2
u u⊺G−1

i (kd) u

≤ 1
k|Ni|

∑
u∈Ũ

α2
u u⊺ (u u⊺)† u

≤ 1
k|Ni|

∑
u∈Ũ

u⊺ (u u⊺)† u

≤ d

k|Ni|
,

where for a matrix A, we let A† denote its pseu-
doinverse, the first inequality follows since G−1

i (td) =
1

t|Ni|
(∑

u∈Ũ u u⊺
)−1

, and the second inequality follows since
|αu| ≤ 1.

Recall that the size of confidence intervals, α(t), is as
follows,

α(t) =

√
2 log

(
T
∑

i∈V |Ai|/δ
)

t
d. (61)

Lemma 12: We have the following upper-bound on the
probability of event E while playing the arms in the set BS in
a round-robin manner, P (E) ≤ δ.

Proof: Substituting the bound (60) for ∥ua∥2G−1
ia

(td)
into

the inequality (58), we obtain,

P (Ei(ai, α(kd), kd)) ≤ exp
(
−α2(kd)|Ni|kd

2d

)
≤ δ

T
∑

i∈V |Ai|
.

The proof then follows by using the union bound, i.e., P(E) ≤∑
k,i

∑
a∈Ai

P (Ei(ua, α(kd), kd)).

C. Auxiliary Results Used in Proof of Theorem 3

Recall that ∆̂ =
{

∆̂a : a ∈ A
}

denotes the estimates (30)
of sub-optimality gaps of arms, obtained at the end of the
warm-up phase.

Lemma 13: Consider the optimization problem
OPT(∆̂) (31)-(33), solving which requires the estimates
∆̂ as an input. We then have that,∑

a∈A(s)

β⋆
a(∆̂) ≤ 2d3f(T)

∆̂max

∆̂3
min

,

where β⋆(∆̂) =
{

β⋆
a(∆̂)

}
a∈A

is a solution of (31)-(33).
Proof: We omit the proof since it closely follows the

proof of Lemma 12 of [4].
Lemma 14: Define δT := maxa∈A:∆̂a>0

∆2
a

∆̂2
a

− 1. We then
have that,∑

a∈A
β⋆

a(∆̂)∆̂a ≤ (1 + δT)
∑
a∈A

β⋆
a(∆)∆̂a. (62)

Proof: For an action a, we have ∥ua∥2H−1
ia

((1+δT)β⋆(∆))
=

∥ua∥2H−1
ia

(β⋆(∆))
/(1 + δT) ≤ ∆2

a/(1 + δT)f(T) ≤ ∆̂2
a/

f(T), where Hi(·) is as defined in (33), the first inequality
follows since β⋆(∆) is feasible for OPT (∆), and the last
inequality follows from the definition of δT . It follows from
the above inequality that the vector {(1 + δT)β⋆

a(∆) : a ∈ A}
is feasible for OPT (∆̂). Hence, the optimal value of OPT (∆̂)
is upper-bounded by (1+δT)

∑
a∈A β⋆

a(∆)∆̂a. This completes
the proof.

Lemma 15: If 2ϵT (d log1/2 T) ≤ ∆min/2, then we have the
following upper-bound on the quantity δT that was defined in
Lemma 14, δT ≤ 16ϵT (d log1/2 T)

∆min
.

Proof: Within this proof we use ϵT to denote
ϵT (d log1/2 T). We have

1 + δT = max
a∈A:∆̂a>0

∆2
a

∆̂2
a

≤ max
a∈A:∆̂a>0

∆2
a

(∆a − 2ϵT)2

≤ max
a∈A:∆̂a>0

(
1 +

4 (∆a − ϵT) ϵT

(∆a − 2ϵT)2

)
≤ 1 +

16ϵT

∆min
.

Authorized licensed use limited to: The Ohio State University. Downloaded on July 15,2025 at 16:55:08 UTC from IEEE Xplore. Restrictions apply.

4236 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 5, OCTOBER 2024

REFERENCES

[1] P. Auer, “Using confidence bounds for exploitation-exploration trade-
offs,” J. Mach. Learn. Res., vol. 3, pp. 397–422, Nov. 2002.

[2] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit
approach to personalized news article recommendation,” in Proc. 19th
Int. Conf. World Wide Web, 2010, pp. 661–670.

[3] J. Langford and T. Zhang, “The epoch-greedy algorithm for multi-armed
bandits with side information,” in Proc. Adv. Neural Inf. Process. Syst.,
2008, pp. 817–824.

[4] T. Lattimore and C. Szepesvári, “The end of optimism? An asymptotic
analysis of finite-armed linear bandits,” in Proc. Artif. Intell. Statist.,
2017, pp. 728–737.

[5] Wikipedia. (2020). Facebook. [Online]. Available: http://en.wiki
pedia.org/w/index.php?title=Facebook&oldid=957360060

[6] S. A. Myers, C. Zhu, and J. Leskovec, “Information diffusion and
external influence in networks,” in Proc. 18th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, Aug. 2012, pp. 33–41.

[7] M. Fang and D. Tao, “Networked bandits with disjoint linear payoffs,”
in Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2014, pp. 1106–1115.

[8] S. Caron, B. Kveton, M. Lelarge, and S. Bhagat, “Leveraging side
observations in stochastic bandits,” in Proc. 28th Conf. Uncertainty
Artif. Intell., N. de Freitas and K. P. Murphy, Eds., Catalina Island,
CA, USA: AUAI Press, Aug. 2012, pp. 142–151. [Online]. Available:
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&
article_id=2277&proceeding_id=28

[9] S. Buccapatnam, A. Eryilmaz, and N. B. Shroff, “Stochastic bandits
with side observations on networks,” SIGMETRICS Perform. Eval. Rev.,
vol. 42, no. 1, pp. 289–300, Jun. 2014, doi: 10.1145/2637364.2591989.

[10] F. Molnár, N. Derzsy, É. Czabarka, L. Székely, B. K. Szyman-
ski, and G. Korniss, “Dominating scale-free networks using gen-
eralized probabilistic methods,” Sci. Rep., vol. 4, no. 1, pp. 1–9,
Sep. 2014.

[11] A. Bonato, M. Lozier, D. Mitsche, X. Pérez-Giménez, and P. Prałat,
“The domination number of on-line social networks and random geo-
metric graphs,” in Theory and Applications of Models of Computation:
12th Annual Conference, TAMC 2015, Singapore, May 18–20, 2015,
Proceedings 12. Singapore: Springer, 2015, pp. 150–163.

[12] S. Bubeck and N. Cesa-Bianchi, “Regret analysis of stochastic and non-
stochastic multi-armed bandit problems,” Found. Trends Mach. Learn.,
vol. 5, no. 1, pp. 1–122, 2012.

[13] T. Lattimore and C. Szepesvári, Bandit Algorithms. Cambridge, U.K.:
Cambridge Univ. Press, 2020.

[14] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Adv. Appl. Math., vol. 6, no. 1, pp. 4–22, 1985.

[15] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of
the multiarmed bandit problem,” Mach. Learn., vol. 47, nos. 2–3,
pp. 235–256, May 2002.

[16] W. Chu, L. Li, L. Reyzin, and R. Schapire, “Contextual bandits with
linear payoff functions,” in Proc. 14th Int. Conf. Artif. Intell. Statist.,
2011, pp. 208–214.

[17] O. Chapelle and L. Li, “An empirical evaluation of Thompson sampling,”
in Proc. Adv. Neural Inf. Process. Syst., 2011, pp. 2249–2257.

[18] S. Agrawal and N. Goyal, “Thompson sampling for contextual ban-
dits with linear payoffs,” in Proc. Int. Conf. Mach. Learn., 2013,
pp. 127–135.

[19] S. Agrawal and N. Goyal, “Analysis of Thompson sampling for the
multi-armed bandit problem,” in Proc. 25th Conf. Learn. Theory, 2012,
pp. 1–39.

[20] D. J. Russo, B. V. Roy, A. Kazerouni, I. Osband, and Z. Wen, “A tutorial
on Thompson sampling,” Found. Trends Mach. Learn., vol. 11, no. 1,
pp. 1–96, 2018.

[21] Y.-H. Hung, P.-C. Hsieh, X. Liu, and P. R. Kumar, “Reward-biased
maximum likelihood estimation for linear stochastic bandits,” in Proc.
AAAI Conf. Artif. Intell., 2021, vol. 35, no. 9, pp. 7874–7882.

[22] P. Kumar and A. Becker, “A new family of optimal adaptive controllers
for Markov chains,” IEEE Trans. Autom. Control, vol. AC-27, no. 1,
pp. 137–146, Feb. 1982.

[23] X. Liu, P.-C. Hsieh, Y. H. Hung, A. Bhattacharya, and P. R. Kumar,
“Exploration through reward biasing: Reward-biased maximum likeli-
hood estimation for stochastic multi-armed bandits,” in Proc. Int. Conf.
Mach. Learn., 2020, pp. 6248–6258.

[24] A. Mete, R. Singh, X. Liu, and P. R. Kumar, “Reward biased maximum
likelihood estimation for reinforcement learning,” in Proc. Learn. Dyn.
Control, 2021, pp. 815–827.

[25] A. Slivkins, “Contextual bandits with similarity information,” in Proc.
24th Annu. Conf. Learn. Theory, 2011, pp. 679–702.

[26] A. Krishnamurthy, Z. S. Wu, and V. Syrgkanis, “Semiparametric con-
textual bandits,” in Proc. Int. Conf. Mach. Learn., 2018, pp. 2776–2785.

[27] P. Rusmevichientong and J. N. Tsitsiklis, “Linearly parameterized ban-
dits,” Math. Oper. Res., vol. 35, no. 2, pp. 395–411, May 2010.

[28] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári, “Improved algorithms
for linear stochastic bandits,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 24, 2011, pp. 2312–2320.

[29] S. Mannor and O. Shamir, “From bandits to experts: On the value of
side-observations,” in Proc. NIPS, 2011, pp. 684–692.

[30] N. Alon, N. Cesa-Bianchi, C. Gentile, S. Mannor, Y. Mansour, and
O. Shamir, “Nonstochastic multi-armed bandits with graph-structured
feedback,” SIAM J. Comput., vol. 46, no. 6, pp. 1785–1826, Jan. 2017.

[31] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The non-
stochastic multiarmed bandit problem,” SIAM J. Comput., vol. 32, no. 1,
pp. 48–77, 2002.

[32] S. Buccapatnam, F. Liu, A. Eryilmaz, and N. B. Shroff, “Reward
maximization under uncertainty: Leveraging side-observations on net-
works,” J. Mach. Learn. Res., vol. 18, pp. 216:1–216:34, 2017. [Online].
Available: http://jmlr.org/papers/v18/16-340.html

[33] A. Cohen, T. Hazan, and T. Koren, “Online learning with feedback
graphs without the graphs,” in Proc. Int. Conf. Mach. Learn., 2016,
pp. 811–819.

[34] N. Alon, N. Cesa-Bianchi, O. Dekel, and T. Koren, “Online learning
with feedback graphs: Beyond bandits,” in Proc. Conf. Learn. Theory,
2015, pp. 23–35.

[35] P. Landgren, V. Srivastava, and N. E. Leonard, “Distributed cooperative
decision-making in multiarmed bandits: Frequentist and Bayesian algo-
rithms,” in Proc. IEEE 55th Conf. Decis. Control (CDC), Dec. 2016,
pp. 167–172.

[36] R. K. Kolla, K. Jagannathan, and A. Gopalan, “Collaborative learning
of stochastic bandits over a social network,” IEEE/ACM Trans. Netw.,
vol. 26, no. 4, pp. 1782–1795, Aug. 2018.

[37] P. Landgren, V. Srivastava, and N. E. Leonard, “Social imitation in coop-
erative multiarmed bandits: Partition-based algorithms with strictly local
information,” in Proc. IEEE Conf. Decis. Control (CDC), Dec. 2018,
pp. 5239–5244.

[38] D. Martínez-Rubio, V. Kanade, and P. Rebeschini, “Decentralized coop-
erative stochastic bandits,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 32, 2019, pp. 4529–4540.

[39] L. Yang, Y.-Z. J. Chen, S. Pasteris, M. Hajiesmaili, J. Lui, and
D. Towsley, “Cooperative stochastic bandits with asynchronous agents
and constrained feedback,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 34, 2021, pp. 8885–8897.

[40] L. Yang, Y. J. Chen, M. H. Hajiemaili, J. C. S. Lui, and D. Towsley,
“Distributed bandits with heterogeneous agents,” in Proc. IEEE Conf.
Comput. Commun., May 2022, pp. 200–209.

[41] D. Vial, S. Shakkottai, and R. Srikant, “Robust multi-agent bandits
over undirected graphs,” ACM Meas. Anal. Comput. Syst., vol. 6, no. 3,
pp. 1–57, 2022.

[42] A. Sankararaman, A. Ganesh, and S. Shakkottai, “Social learning in
multi agent multi armed bandits,” Proc. ACM Meas. Anal. Comput. Syst.,
vol. 3, no. 3, pp. 1–35, 2019.

[43] R. Chawla, A. Sankararaman, A. Ganesh, and S. Shakkottai, “The
gossiping insert-eliminate algorithm for multi-agent bandits,” in Proc.
Int. Conf. Artif. Intell. Statist., 2020, pp. 3471–3481.

[44] O. T. Odeyomi, “Learning the truth in social networks using multi-armed
bandit,” IEEE Access, vol. 8, pp. 137692–137701, 2020.

[45] R. Lage, L. Denoyer, P. Gallinari, and P. Dolog, “Choosing which
message to publish on social networks: A contextual bandit approach,” in
Proc. IEEE/ACM Int. Conf. Adv. Social Netw. Anal. Mining (ASONAM),
Aug. 2013, pp. 620–627.

[46] C. Tekin, S. Zhang, and M. van der Schaar, “Distributed online learning
in social recommender systems,” IEEE J. Sel. Topics Signal Process.,
vol. 8, no. 4, pp. 638–652, Aug. 2014.

[47] Z. Bnaya, R. Puzis, R. Stern, and A. Felner, “Bandit algorithms for
social network queries,” in Proc. Int. Conf. Social Comput., Sep. 2013,
pp. 148–153.

[48] B. Awerbuch and R. D. Kleinberg, “Adaptive routing with end-to-end
feedback: Distributed learning and geometric approaches,” in Proc. 36th
Annu. ACM Symp. Theory Computing, Chicago, IL, USA, Jun. 2004,
pp. 45–53, doi: 10.1145/1007352.1007367.

Authorized licensed use limited to: The Ohio State University. Downloaded on July 15,2025 at 16:55:08 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/2637364.2591989
http://dx.doi.org/10.1145/1007352.1007367

KAR et al.: LINEAR BANDITS WITH SIDE OBSERVATIONS ON NETWORKS 4237

[49] V. Dani, T. P. Hayes, and S. M. Kakade, “Stochastic linear optimization
under bandit feedback,” in Proc. 21st Annu. Conf. Learn. Theory,
Helsinki, Finland, 2008, pp. 355–366.

[50] G. B. Folland, Real Analysis: Modern Techniques and Their Applica-
tions. Hoboken, NJ, USA: Wiley, 2013.

[51] I. T. Jolliffe and J. Cadima, “Principal component analysis: A review
and recent developments,” Phil. Trans. Roy. Soc. A: Math., Phys. Eng.
Sci., vol. 374, no. 2065, Apr. 2016, Art. no. 20150202.

Avik Kar (Member, IEEE) received the M.Tech.
degree from Indian Institute of Technology Kharag-
pur, India, in 2021. He is currently pursuing
the Ph.D. degree with Indian Institute of Science
Bengaluru, India. His research interests include
reinforcement learning and online machine learn-
ing. He was a recipient of the Keshab Kanti
Parhi Endowment Award for his M.Tech. Thesis
and a recipient of the Prime Minister’s Research
Fellowship.

Rahul Singh (Member, IEEE) received the B.Tech.
degree in electrical engineering from Indian Institute
of Technology Kanpur, India, in 2009, the M.S.
degree in electrical engineering from the University
of Notre Dame, South Bend, USA, in 2011, and the
Ph.D. degree from Texas A & M University, Col-
lege Station, in 2015. Currently, he is an Assistant
Professor with the Department of Electrical Com-
munication Engineering, Indian Institute of Science
Bengaluru, India. He was a Post-Doctoral Scholar
with the Laboratory for Information and Decision

Systems (LIDS), Massachusetts Institute of Technology, and The Ohio
State University. His research interests include machine learning, networks,
and stochastic control. His article was runner-up for the Best Paper Award of
ACM MobiHoc 2020.

Fang Liu received the B.S. degree in information
engineering from the School of Electronic Infor-
mation and Electrical Engineering, Shanghai Jiao
Tong University, in 2014, and the Ph.D. degree in
electrical and computer engineering from The Ohio
State University in 2019. He was a Student Intern
with the AT&T Laboratories Research in Summer
2018 and was a Software Engineer Intern with
Facebook NYC in Summer 2019. Currently, he is
a Research Scientist with Facebook. His research
interests are statistics and machine learning. He was

a recipient of the Litton Fellowship, UAI-18 Scholarship, and AAAI-18
Scholarship during the Ph.D. degree.

Xin Liu (Fellow, IEEE) received the Ph.D. degree
in electrical engineering from Purdue University in
2002. She is currently a Professor with the Depart-
ment of Computer Science, University of California
at Davis. Her current research interests fall in the
general areas of machine learning algorithm devel-
opment and machine learning applications in human
and animal healthcare, food systems, and com-
munication networks. Her research on networking
includes cellular networks, cognitive radio networks,
wireless sensor networks, network information
theory, network security, and the IoT systems.

Ness B. Shroff (Fellow, IEEE) received the
Ph.D. degree from Columbia University, NY, USA,
in 1994. He joined Purdue university immediately
thereafter as an Assistant Professor. At Purdue,
he became a Professor with the School of Electri-
cal and Computer Engineering and the Director of
CWSA in 2004, a university-wide center on wireless
systems and applications. In July 2007, he joined
the ECE Department and the CSE Department, The
Ohio State University, where he holds Ohio Eminent
Scholar Chaired Professorship of Networking and

Communications. He was a Guest Chaired Professor in wireless commu-
nications with Tsinghua University and an Honorary Guest Professor with
Shanghai Jiaotong University, China. He currently holds a visiting professor
position with Indian Institute of Technology Bombay.

His research interests span the areas of communication, networking, comput-
ing, storage, cloud, recommender, social, cyber-physical systems, fundamental
problems in machine learning, design, control, performance, pricing, and
security of these complex systems. He is a National Science Foundation
CAREER Awardee. His papers have received numerous awards at various
top-tier venues. He is on the list of highly cited researchers from Thomson
Reuters ISI in 2014 and 2015 and in the Thomson Reuters Book on The
World’s Most Influential Scientific Minds in 2014. He received the IEEE
INFOCOM Achievement Award for seminal contributions to scheduling and
resource allocation in wireless networks in 2014. He is currently leading an
NSF AI Institute for Future Edge Networks and Distributed Intelligence.

Authorized licensed use limited to: The Ohio State University. Downloaded on July 15,2025 at 16:55:08 UTC from IEEE Xplore. Restrictions apply.

