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ABSTRACT: Holographic tensor networks model AdS/CFT, but so far they have been
limited by involving only systems that are very different from gravity. Unfortunately, we
cannot straightforwardly discretize gravity to incorporate it, because that would break
diffeomorphism invariance. In this note, we explore a resolution. In low dimensions
gravity can be written as a topological gauge theory, which can be discretized without
breaking gauge-invariance. However, new problems arise. Foremost, we now need a
qualitatively new kind of “area operator,” which has no relation to the number of links
along the cut and is instead topological. Secondly, the inclusion of matter becomes
trickier. We successfully construct a tensor network both including matter and with
this new type of area. Notably, while this area is still related to the entanglement
in “edge mode” degrees of freedom, the edge modes are no longer bipartite entangled
pairs. Instead they are highly multipartite. Along the way, we calculate the entropy
of novel subalgebras in a particular topological gauge theory. We also show that the
multipartite nature of the edge modes gives rise to non-commuting area operators, a
property that other tensor networks do not exhibit.
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1 Introduction

Holographic tensor networks [1-8] are toy models of the holographic map from anti-de
Sitter space (AdS) to the dual conformal field theory (CFT). See Figure 1. While
imperfect models in many ways, their simplicity and concreteness have already allowed
us to make rigorous statements about the emergence of spacetime [2, 9], the quantum
extremal surface prescription [1, 3, 10, 11], reconstruction complexity [12], and the
black hole information paradox [11].

In this note we propose a way to improve these models so that they might continue
to offer insight. So far, perhaps tensor networks’ biggest limitation has been their lack
of time evolution. Straightforward attempts to add interesting local time evolution
in the “bulk” fails to match any local time evolution of the dual “boundary” theory.!
Long term, we would like to fix this shortcoming, adding time evolution and obtaining
a completely explicit instance of holography.

In pursuit of that goal, we can ask: why have tensor networks failed to include
time evolution, when the AdS/CFT duality succeeds? One glaring difference is that in
gravity the diffeomorphism constraints make the physical Hamiltonian a local integral
along the boundary. This leads to an easy match to a local Hamiltonian in the dual
theory. Therefore, a sensible first step towards adding time evolution is to construct
tensor networks that have this feature of gravity, with strong enough constraints that
something similar happens, allowing us to reduce the Hamiltonian to a boundary term.

At first, however, this appears intractable. Tensor networks involve a discretization
of spacetime, which inherently breaks this very diffeomorphism-invariance that we’d like
to have. Nevertheless, in low enough dimensions there is a trick available to us. We
can change variables and describe gravity as a certain kind of topological quantum field
theory (TQFT) [17-19]. The idea is to define a gauge field as a particular combination
of the vielbein and spin connection, transforming the Einstein-Hilbert action into that
of an SL(2,R) x SL(2,R) Chern-Simons theory.?

The advantage is that discretizing the TQFT no longer means breaking diffeomorphism-
invariance. This is because the metric is not a property of the “base space” the TQFT
lives on, and instead is encoded in the dynamical fields. The diffeomorphisms become

1See [13, 14] for discussions of the difficulties in adding interesting time evolution. See [15, 16] for
one approach to a solution that does not seem to utilize gravity-like physics in the bulk.

2While these theories match at the level of the action, there are important known differences at the
level of the path integral. For example, the natural gauge theory path integral would integrate over
configurations corresponding to non-invertible metrics, which are not included in the gravitational
path integral. These subtleties will not concern us, because it seems they can be addressed by using
an appropriately modified TQFT [19] called the Virasoro TQFT, and our main discussion will not
rely on details of any particular TQFT.
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Figure 1. An example tensor network. On the left is a graph representing the “bulk” Hilbert
space Hpulk, analogous to a discretized version of AdS. The links represent the geometry. On
the right is the “boundary” Hilbert space Hpqry analogous to the CFT. The holographic
tensor network is a linear map V' : Hypuk — Hpary, analogous to the holographic map.

“internal” gauge transformations on these fields rather than transformations of the base
space itself. Hence we can try to discretize this TQFT and include it as part of the
tensor network’s bulk Hilbert space.?

We immediately run into a problem. The holographic entropy formula is different in
the TQFT description, in a way that is not obviously compatible with tensor networks.
Recall in AdS/CFT (in time-reversal-symmetric situations), the von Neumann entropy
of a CFT subregion B can be computed by [24-26]

S(B) = mbin ( (Am) + S’(b)> : (1.1)
where the minimization is over AdS regions b whose boundary db is homologous to B,
and flab measures the area of db. Traditional tensor networks satisfy a similar formula
[3], where <A5b> grows with the number of links cut by db. Of course, when we describe
the AdS with the TQFT, the same formula (1.1) holds. However, in this description
the area operator Ay, should be understood differently! The relevant metric is now

3Putting Chern-Simons theories on the lattice is a hard problem in general. However, pure gravity
is parity-invariant. Parity-invariant Chern-Simons theories based on compact groups can be latticized
as string-net models [20], which include the quantum double models we will study below. String-net
models are the Hamiltonian description of Turaev-Viro models [21]. Gravity is not based on a compact
group and so doesn’t fall into this category; some progress for this case has been made in [22, 23].



a function of the gauge fields; Ag, is a certain Wilson line [27-31]. When there’s no
matter, the theory is topological and this Wilson line gives the same answer evaluated
along any path:

(1.2)

Another way to say this is that the TQFT lives on a spacetime with a metric that is
irrelevant. The operator flab is the area of a surface evaluated in the AdS metric, which
is like the target space of the TQFT. This offers a challenge for tensor networks. We
would not obtain an entropy formula with a property like (1.2) if we followed perhaps
the most straightforward method to incorporate the discretized TQFT into existing
tensor networks, from [4-8]. Those tensor networks lead to an entropy formula with
(A) scaling extensively with the number of links along 0b.*

The point of this note is to solve this problem with the area operator. In Section 3
we construct a tensor network with a holographic entropy formula like (1.1), but with
an area operator that is a gauge-invariant function of the fields that encode the metric,
analogous to the one in the TQFT description.

To study this problem, we will not need the full sophistication of SL(2,R) x
SL(2,R) Chern-Simons theory. Instead we will work with a toy model with the same
subtlety, a much simpler topological theory that we describe in Section 2, which we call
the “doubly gauged (DG) model.”® We then define a linear map from this DG model
with matter to a “boundary” Hilbert space, in Section 3. This bulk-to-boundary map
(or “holographic map”) is a new kind of tensor network. We explain the motivation
behind the construction in Section 4.

We start with a setup as in Figure 1, like all holographic tensor network models.
There are two tweaks. First, the bulk Hilbert space now includes a topological lattice
gauge theory on the links. Second, the holographic map (the tensor network) is defined

4This sort of extensive contribution is related to the one that appears in the conventional calcu-
lations of entanglement in TQFTs [32-34], in which entropy is calculated by introducing a lattice
regulator, leading to a subregion entropy with a term proportional to the area of the boundary of the
subregion. We do not want to compute entropies this way, because the gravitational entropy should
be independent of the way we choose to regulate the auxiliary space the TQFT lives on [27-31].

5Our doubly gauged models are Kitaev’s quantum double models [35], but with projection onto
the ground space enforced as a constraint.



in a different, more topological way. The boundary Hilbert space is essentially the same
as before. The result is that now boundary entropies satisfy (1.1) but with a different,
topological A. The minimization is over where to put the cut 0b relative to the matter.

This new area operator leads to two striking properties of this model, which we
now describe. The first striking property of our model is that its area operators do not
commute, which is a desirable match to gravity [36]. In previous tensor networks, given
two overlapping boundary subregions B and C, one could generally find a bulk state
such that the area operators associated to both B and C' had arbitrarily small fluctu-
ations. This is impossible in real AdS/CFT, because of the gravitational constraints.
It is also impossible in our tensor networks, also because of the constraints.

The second, related property is that this area term is the entanglement of naturally
multipartite-entangled edge modes. As in all tensor networks, the “area” term in the
holographic entropy formula quantifies the amount of entanglement in the “edge modes”
across the cut. Historically, the edge modes in tensor networks have been local and
bipartite: each link is a projected entangled pair. The area term simply counted the
number of bipartite entangled pairs that were separated by the cut (this is why the area
grew extensively with the number of cut links). See Figure 2a. In our new model, this
part of the story is completely different. The degrees of freedom entangled across a cut
are not in spatially localized, bipartite entangled pairs, but are in multiparty-entangled
states. See Figure 2b.

These multipartite edge modes arise from a choice of factorization. Given a lattice
gauge theory and a cut defining a subregion, there are many prescriptions for embed-
ding the Hilbert space into one that factorizes across that cut, see e.g. [37-40]. The
conventional choice, introduced in [41, 42], leads to the insertion of a number of de-
grees of freedom scaling extensively with the area of the cut. However, there is one
prescription that works differently, discovered by Delcamp, Dittrich, and Riello (DDR)
in [43], see also [44, 45]. We utilize this prescription, along the way generalizing it to
new contexts.

This note is organized as follows. In Section 2 we introduce the topological gauge
theory. In Section 3 we turn to tensor networks, explaining our new construction. We
also explain the “commuting areas problem” and how this new construction avoids
it. In Section 4 we discuss factorization of gauge theories and argue that the choices
made in the construction of the tensor network are fairly rigid. In Section 5 we explain
the gravitational description of our networks (which is somewhat obscure in the gauge
theory description), and connect it to other work such as [46]. In Section 6 we conclude
and discuss future directions.

While this manuscript was in preparation, the work [23] appeared. They also
discuss the topological description of gravity in the context of a tensor network, and
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Figure 2. A difference in the entanglement structure of “edge modes” in traditional tensor
networks (Figure 2a) and the tensor networks from this paper (Figure 2b). We consider
two overlapping boundary regions, a blue one and a green one, and we have drawn their
homologous bulk minimal surfaces as dashed lines in their respective color. In 2a, there are
pairs of red dots, each pair associated to a link and representing bipartite entangled degrees
of freedom. The entanglement entropy across each dashed line grows extensively with the
number of links cut. Moreover, the “area operators” associated to each dotted line generally
commute, because they are associated to the entanglement between different pairs of red dots.
In 2b, the entanglement is no longer bipartite. Instead, the red dots are in one multipartite
entangled state, and the entanglement entropy does not grow extensively across the dashed
lines. Furthermore, the two area operators do not generally commute, because the allowed

four party entangled states with fixed spectrum across the blue cut will not also have fixed
spectrum across the green cut.

find a similar non-extensive area operator. Our works agree qualitatively but explore
different aspects. In particular, in this paper we have a bulk Hilbert space with matter
and consider the physics of overlapping area operators. In [23], while they do not

include matter, they use a more realistic TQFT. It would be interesting future work to
combine these constructions.

Notation and conventions

A lattice A = {V, L, P} is a set of a collection of vertices V', a collection of links L,
and a collection of plaquettes. A subregion b = {V}, Ly, Py} is a set such that V;, C V|

Ly C L, and P, C P. We will use 0b to denote the set of links connecting a vertex in b
to a vertex in the complement of b.



2 Doubly gauged lattice models

The goal of this note involves incorporating a topological gauge theory into a tensor
network. This section introduces the topological lattice model we will use, and then
discusses important properties, including its algebra of operators and insensitivity to
the lattice.

2.1 Hilbert space

First we consider the case without matter. The model is essentially Kitaev’'s quantum
double model [35] restricted to the ground space. Let G be a finite group, ¥ an oriented
2D surface (possibly with boundary), and A = (V, L, P) be an arbitrary oriented lattice
on X, where V) L, and P are the sets of vertices, oriented links, and plaquettes of the
lattice respectively. We restrict to ¥ = D? for this work, though we expect it to
straightforwardly generalize to the cylinder ¥ = S! x I as well. For every £ € L, let
H, = He = L*(G) be a Hilbert space associated to that edge, spanned by the basis
{lg) : ¢ € G}, which we call the group basis.® Note that there is another basis for
‘H, that will be convenient later, called the “representation basis”: By the Peter-Weyl
theorem (see e.g. Appendix A of [47] for an introduction), the Hilbert space decomposes
as

He=EPH.@Hy (2.1)

ped

where G is the set of irreducible representations (irreps) of G. The representation
basis is spanned by orthonormal states |, ij) where i,j index the states in H,, H,~
respectively. The Hilbert space associated to the collection of all the links is

Hpre = ®H€ ) (22)

which we call the “pre-gauged” Hilbert space. This H, has a natural basis of states
of the form

915 9181) (233)

which we will use often.

6Tt will sometimes be convenient to allow ourselves to reverse the orientation of a link while leaving
the physics unchanged. In general we will refer to the reverse of the link ¢ as £, and use the isomorphism
between H; and H, given by |g); = ‘g_1>£. Note that a given set L is only allowed to contain one of
¢ and /.



We define the following operators. The shift operators Ly(h) (respectively R,(h))
act on H, by left (right) multiplying by i (A7), i.e.

Ly(h) ‘gl, ey G, ...,g|L|> = |gl, oy hge, ...,gw> ,

2.4
Rﬂ(h) ‘glv"')gfu“'7g|L|> - |gl7"'7g€h_17"'ag|[/\> . ( )

These are sometimes also called the ‘electric’ operators.” The ‘magnetic’ operators are
defined as follows. Let p be a path through A, i.e. an ordered collection of vertices
{v1,v2, ..., vy}, each vertex connected by a link to the one before and after. Let ¢; be
the link connecting v; and v;11. Let W,(f) be defined to compute the product of the
group elements of the edges connecting the vertices in p and then apply the function
f : G — C to the product. The prescription for computing the product is to start at
the first vertex and then move along the edge connecting it to the next vertex, right
multiplying by the associated group element, and inverting that group element if that
edge is oriented opposite relative to the direction of travel. If we call this product
g, € G, then we can write

W, (f) ‘91, gy = f(g,) |91, L) - (2.5)

One useful function f is the Kronecker delta d0,(g) which equals 1 if ¢ = h and 0
otherwise.

We use these to define the operators that appear in the gauge constraints as follows.
Define A,(g) to act on edges that touch v € V' by L,(g) (or Ry(g)) if the link is oriented
away (towards) v. Let (v,p) denote the counterclockwise path around plaquette p
starting at vertex v. Define B, p)(h) = W(,,)(0s) to annihilate a state where the group
element around (v, p) is not h, and to be 1 on states where it is. For example,

+94h_1
hglﬁ R
I+ hgs
hga

hg h3

h4 hg > = 5}7,(]7,1]7,2}1,51]14) h4 h2 >
T Th

(2.6)

B(v,p)(h)

"Note that these two shift operators are related by reversing the orientation of the link, i.e. Ly(h) =

Rz(h).



These operators can easily be shown to satisfy the algebra (known as the quantum
double algebra),

Ay(g7h) = Au(g)!
Ay(9)Au(h) = Ay(gh) 27
B(o,p)(9)Bw,p)(h) = 64,1 Bop)(h)
Au(yg >B(Up)(h) B(v,p)(ghgil)Av(Q) .

To define the physical Hilbert space, we will need the projectors

A= g L A0

geCG (28)
Bp = B(wp)(e) y

where v is any vertex adjacent to p and e € G is the identity group element. (Note
that when h = e, B, ,)(h) depends only on p and not on the choice of v.) These satisfy

Av(g)Av - Av

(2.9)
B(v,p)(h)Bp =0d(h,e)B, .

(2.8) are both projectors by the following argument. By the above equation, A,A, =
A,, and by the invariance of deG under ¢ — g~! we have A, = Al. Likewise,
B, B, = B, and manifestly B, = Bf. Using (2.7), one can check that for all v € V and
pe P, [A, B)=0.

We now will use these to build projectors onto the “gauge-invariant subspace.”
First, for generality let there be a subset V4, C V of vertices and P4,y C P of
plaquettes that we will not impose constraints on. These include plaquettes and vertices
at the boundary of ¥ and also any plaquettes that encircle non-trivial cycles of X. Let
the complements of these sets be Viux and P,u. Define the projectors onto the gauge-
invariant subspace

A= ® A,

VE Vhulk

B= (X B,.

PEPoulk

(2.10)

A projects onto the subspace satisfying Gauss’s law at each (non-boundary) vertex, and
B projects onto the subspace with a trivial holonomy — i.e. flat connection — around
each (non-boundary) plaquette. Define the physical, “gauged,” Hilbert space

Hpre

Gauss x Flatness

Hphys ==

BH e . (2.11)



This equation reflects a very important difference in our perspective compared to
much previous work. In the lattice gauge theory literature, only the A-type, Gauss’s
law, constraints are imposed in the definition of the physical Hilbert space. Similarly,
in the literature on topological phases, it is common to identify our Hpye and Hpnys as
the physical and ground state spaces respectively. That is natural from a condensed
matter perspective, since there are no materials whose fundamental theory is topolog-
ical. However, in the comparison to (the gauge theory description of) 2 + 1d general
relativity, both the Gauss’s law and flatness constraints are toy models for the diffeo-
morphism constraints, and so it is important for us that they are both used to define
the physical Hilbert space.®

Including matter changes things as follows. Let ‘site’ denote a pair (v,p) of a
vertex and a plaquette, such that the vertex is on the bottom-left of the plaquette
(this is a convention). Denote by S the collection of sites. To each site we associate
a Hilbert space H(,p), carrying a representation of the quantum double algebra (2.7).
The pre-gauged Hilbert space is now

Hore = R He Q) Hev)- (2.12)

Lel (v,p)es

The constraints are modified to

Au(g )—>A (9) Amat, (v ,p>(9)

B(u,p) ZB 0 (901 Bsat () (h), (2.13)
|G| heG

where the operators Ayag, Bmat act on H, ) and satisfy the algebra (2.7). The con-
straints are (2.8), with these new operators on the right hand side. We allow A,,.¢, Buat
to be the identity operators at some sites, in which case the constraints at those sites
are not modified; for simplicity we also assume that at these sites the matter Hilbert
space is trivial, H, ) = C.

8Readers familiar with the Chern-Simons description of 3d gravity might find this comment a
little confusing, since in that case the diffeomorphism constraints map to flatness constraints on the
gauge field. Flatness constraints in continuum Gy X G_x Chern-Simons theory become both types of
constraints in the lattice model [20].

— 10 —



Lattices that we will consider look for example like

o o o
o o
o o (2.14)
o o

IS

Here, black circles denote bulk vertices and white circles denote boundary vertices.
Diagonal lines connected to gray circles denote which bulk sites come with matter
degrees of freedom [43, 48] — the associated vertex is the one connected to the gray
circle by a line, and the associated plaquette is the one that contains the gray circle.
We can think of these gray circles as being where the matter lives — any site without
one has no matter degree of freedom.

It will be important to note how Gauss’s law manifests in the representation basis.
Say we have n links connected to a vertex, all oriented outwards for simplicity. Let
there be matter as well. Recall that each link is spanned by a basis of the form |u, ij),
as in (2.1), and the matter has some Hilbert space also in general decomposing as a
direct sum over Hilbert spaces associated to irreps, which we might write as spanned
by |u, i, ¢) where i is a representation index (like the i, j for links) and ¢ is a multiplicity
index allowed for generality. The subspace invariant under the action of A is the one for
which all the i indices “fuse together” such that the joint representation is the trivial
irrep. There are only particular combinations of the p that can fuse appropriately, and
the entanglement in the i indices is greatly constrained. For example, if n = 3 and
there’s no matter, a general state takes the form

Z Rjﬂ;jimciﬁilzﬁm |1, i11) |2, i2j2) [Ms, isjs) (2.15)
H1p2 M3

itiziz

J1J2])3

where I} }}2" are free parameters, but Cfix*"* are the Clebsch-Gordan coefficients, and
are completely fixed, depending only on the group GG. The fusion of more than three
legs also has qualitatively similar restrictions, except there tend to be more than one

way to fuse the i indices given the set of u indices.

- 11 -



2.2 Physical operators

Given Hpnys, what do the physical operators look like? The operators (2.4) are not
gauge-invariant when acting on bulk links. If 1)) € Hpnys, Le(h) 1) violates Gauss’s
law at a vertex adjacent to ¢, since [L,(h), A,] # 0. We can construct the gauge-
invariant operators as follows.

First note that a slight generalization of Ly(h) will violate Gauss’s law at a different
vertex instead. Given a link ¢ and a path p = {v,,...,v1} with ¢ oriented away from
vy, let Ty ,(h) shift the element assigned to link ¢ by h conjugated by the product of
group elements along p, for example for p = {vs,v4,v;} and ¢ the link between v; and

V2,
hs hs

ll)4 ---------------- U3 U4 ---------------- v3

L ip L ip L
: 2 = : J

Ty ph) | ™1 ha i 2 . (2.16)

v v

U1 Vo U1 Vo

hi (h,3_1h4)_1h(h,3_1h4)h1

We call these transported shift operators. Morally, we are picking an element h € G
in the frame of v3 and then transporting it along p to v;. Then at v; we left multiply
the element on /. We can confirm that 7}, fails to commute with A, only for the v
at the start of p. Transported versions of the Ry(h) can also be constructed. Note the
usefulness of these transported shifts: we can define a shift operator on an arbitrary
edge ¢ that commutes with A by starting p at a vertex in Vyqr,. However, while
boundary anchored transported shifts commute with A, it is straightforward to show
they do not commute with B as long as ¢ borders some p € Py.

We will now define operators that commute with both, called ribbon operators
(35, 49]. A ribbon is a set of two paths, one through the graph (the “spine”), the other
an adjacent path through the dual graph (the links intersected by this dual graph path
are called the “spokes”). We draw ribbons with an oriented dashed line along the dual
graph path, and shade the space between the two paths, as below. Given a ribbon =,
we define a ribbon operator as follows. Let g, h € G. The ribbon operator F,(h, g) acts

- 12 —



as

hl hg
___________________________________________________________________________________ T
F’Y(ha g)
g1 g2 g3
(2.17)
g1 hgihi ha(g192) 'h ™ g199
.................................................................................. AN
:59 (919293)
g1 g2 gs

One can confirm this commutes with both A, B except possibly at the end points of ~.
Therefore this operator is gauge invariant if its endpoints are at the boundary.

In the presence of matter degrees of freedom, a ribbon can also end on a site with
matter. Any charged matter has to be dressed with the appropriate ribbon operator,
either to another charge or to the boundary.

An important property of ribbon operators is that they are topological. If two
ribbons 7,7’ share the same end-points and 7 can be continuously deformed to ~/
without crossing any matter excitations, then

Fy(h,g) = Fy(h,g). (2.18)

See [19] for a detailed proof.

2.3 Lattice independence

We now describe a powerful idea that we will use heavily: lattice independence. Above,
we started from a lattice A which defined a H,e and then by extension a Hpnys. But
ultimately, we only care about Hpuys — the lattice and its associated pre-gauged Hilbert
space are just tools helping us visualize the physical Hilbert space. This is a handy
realization because many lattices lead to the same H,nys! Given a physical Hilbert
space, we might as well use whichever lattice makes it easiest to answer the question
at hand.

We will think about lattice independence as follows. Say we start with a lattice Ay,
defining ’Hl()lrl, projectors A) and BY | and physical Hilbert space Hppys = AV B (1)7-[1(,2.

— 13 —



There are two “elementary moves” that change the lattice but leave the physical Hilbert

space unchanged, see e.g. [50, 51]. That is, applying one of these elementary moves

would give us a Ay, such that Ay defines Hgi and projectors A® and B® with
A@ B@2@) _ 40 gy

pre pre *

(2.19)

We describe the moves visually here. See Appendix A for a mathematical description.

Move 1: Add (or remove) a vertex An example of this move is

g2 g2
g3 g3
g
g 90 91 (2.20)
94 9ga
gs
gs

Note that we can move in either direction.

This isomorphism between physical Hilbert spaces can be understood as follows.
Consider a state where all five links on the left lattice are carrying fixed irreps p; 5.
Gauss’ law requires that the five irreps on the five links fuse to the identity irrep,
B ® - ® us — 1. The key fact is that fusion of irreps is associative. If py 34 fuse to
Ho and py 5 to py, then Gauss’ law requires that p, py also fuse to the identity. This is
only possible if they are conjugate irreps, exactly like the two ends of a link, py = pg.
The new link then carries the irrep .

In general, the state might be in a superposition of many py (or even many copies
of the same irrep), but this map extends linearly. The new link carries the total electric
flux propagating out of /53 4, which can be stated mathematically as

sz(h)ng(h)R&(h)Lfo(h) =1, (2'21)
phys
which is exactly the Gauss’s law constraint on the right lattice. Similarly with the other
end of the new link. To go the other way, we just run the above argument backwards:
since fusion is associative, we don’t need to separately fuse pg 34 and p 5.
An illustrative special case of this move is to split one link into two:

— 14 —



In the irrep basis the map takes the form

d
N 1 : .
Viertex [W31]); = \/d—Z\u;Ik>o\u; ki), - (2.23)

Hok=1

The flux emanating out of £; (or, more properly, /1) is , and that is what the new link
carries.

Move 2: Add (or remove a plaquette) The move is simply

g3 92 g3 92

(2.24)
<
94 o 94 o

gs gs

If there is a matter degree of freedom in the original plaquette, then we need to make
the decision of which of the two new plaquettes it lives in.

Importantly, it does not matter that we added a link inside of a plaquette that
already existed. We can take an unclosed set of links — which do not form a plaquette
and therefore do not satisfy any flatness constraint — and close them by adding a
new link. The new plaquette satisfies the flatness constraint regardless. The reverse
operation is also important: we can take a plaquette on the edge of a lattice, then
remove the outermost link, removing exactly one plaquette.

Ribbon operator transformation

A ribbon operator F' acts on Hpnys and therefore must be represented on any associated
lattice. We can ask: given F,(h, g) acting on ’Hl()lr)e, what is the associated operator on
HI()QTL? The answer is that it is also a ribbon operator, now including the new link if a
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plaquette was added along its path. For example:

g3 g3

‘/plaq

92 ; —L22y Gg(91) et REQ =91 ' 9203

g1 9

l Fy(h,g) l Fy(h,g) (2.25)

g3 93

~ ‘/plaq /
—

hga 4 dg(g1) hg2 ! 90 = (91 'hg1)g1 9295

9 9

In general, the rule is as follows. The ribbon v is completely specified by its
topological properties, i.e. its end-points, orientation, and position relative to matter
degrees of freedom. The equivalent ribbon on the new lattice is simply the one that
has the same properties.

2.4 Subalgebras and their centers

Now that we have understood the properties of the global system, we turn to subregions
and subalgebras. Given a lattice A, a subregion b = {V}, L;, P,} is a subset of vertices,
links, and plaquettes, with V, C V, L, C L,BP, C P.° We wish to associate to b an
algebra of physical operators 4,. The feature of the subalgebra that will interest us
most is the center Z, C Ay, since that is the part associated to the area operator [10].
(The center is the subalgebra of A4, that commutes with all of A4,.)

It turns out there are multiple types of subalgebras we will be interested in. In this
section we will explain the simplest, most natural kind of subalgebra. In Section 2.7
and Appendix C we will explain the other types, and why we consider them. Physically,
all of these subalgebras have in common that their center includes the operator that
measures the net electric flux out of b. This is important, and means we can always
find in the center an area operator with this same physical interpretation.

Given a region b, perhaps the most natural subalgebra to associate to it is all
operators on H, that commute with A and B and act trivially on the complementary

9Note that we can also define a region by drawing a dual path. Just use this definition after adding
new vertices wherever the dual path intersects the lattice.
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set of links (H;) and matter (). This is the type of algebra we consider in this
subsection.

We furthermore impose the following restrictions on b for simplicity, in this sub-
section. We will specialize to lattices A associated to 2D surfaces > with the topology
of a disk, D?. These are analogous to Cauchy slices of global AdS3.'° As mentioned in
the introduction, 0b is the set of links connecting Vj, to V '\ V;. The set db forms a dual
path in the lattice, which intersects some plaquettes Py,. We impose the restriction
that db is topologically an interval, dividing the D? into two pieces. We also require
that no plaquette in Py, contain a matter degree of freedom. It is possible to make
this the case using elementary lattice moves, so there is no loss of generality, and the
subsequent discussion will be simplified with this requirement.

Let v be a ribbon whose spokes are 0b and whose spine is the path connecting the
vertices in V, adjacent to links in 0b. The center is generated by the following operators
that live on this ribbon:

Fy([h]) = Z > Fi(w,g) (2.26)

welh] geG

where [h] .= {w € G : g € G s.t. g-'wg = h} is the conjugacy class of h. A different
basis will be convenient:

Fa(u ZXu )Es([h]) . (2.27)
hEG

Here p labels irreducible representations (irreps) of G, and x,(h) is the character of
irrep w and element h. A simple calculation shows that these are a set of orthogonal
projectors,

Foo () Fop () = Sy Fon (). (2.28)

We prove these are central in Appendix B, along with other properties, with a
straightforward argument: we write down all operators in A, and then check which
commute. Physically, these operators measure the total electric flux out of a region.
u with larger dimensions corresponds to more net flux. Intuitively, these are central
because no gauge-invariant operator confined to a region can change the net flux.

Let’s convince ourselves that these operators measure the net electric flux using the
lattice independence tools from Section 2.3. Consider as indicated here a subregion b

10Tt would be straightforward to generalize our discussion to the case where X is a cylinder, analogous
to the two-sided black hole. In this setting we can consider subregions bounded by cuts 0b that are
topologically S, and the center for such subregions was written down in [43]. Much like F, (i) projects
onto a sector of fixed electric flux, the central ribbon operators in this case project onto fixed irrep of
the quantum double D(G).
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and the ribbon acting on db (note b includes all vertices and links that are even partially
inside the circled region),

(2.29)

Note that we did not draw the ribbon extending all the way to the boundary vertex.
The rules for these central ribbon operators are that they can end on spokes; the part
outside the spokes is irrelevant because it is summed over. See Proposition B.4.

As explained in Section 2.3, we change nothing by removing plaquettes along the
divide (in the right way). After two applications of (2.24), we obtain a lattice with just
one link along the path of this ribbon,

T 7 1 T 1 1
o o = o ‘ o (230)

Now we see: the central ribbon operator on the original lattice acts an electric oper-
ator (2.4) on the single link at the edge of the subregion on the new lattice. Again,
nothing physical changed under each lattice manipulation. All that changed was how
we represented the physical Hilbert space. Therefore the physical interpretation of
these central ribbon operators is always the total electric flux, independent of which
(equivalent) lattice we use.

We have explained the central operators of the simplest kind of subalgebra we might
associate to a region b. As mentioned, we will also consider other types of subalgebras
to assign to regions. These we discuss in Section 2.7 (and in more detail in Appendix
C). The basic reason is that we want to associate to all b an algebra in which the
center includes operators measuring the total electric flux out of b, but not operators
measuring the fluz out of individual parts. This can make the subalgebra complicated.
For example, say we are given a b with two connected parts b; and by, but with b,
and by far away from each other. Say we associate to b; and by the natural algebra
described above, and furthermore say we associate to b the algebraic union of these
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two subalgebras, A, = A, V Ap,. This is not what we want. In the center of A, are
operators measuring the net flux out of b; and b, individually. We will instead consider
A, with even more operators, some of which will fail to commute with the individual
centers of b; and by. The only electric flux measurement in the center will be the net
flux out of all of b.

2.5 Overlapping central ribbons don’t commute

One important fact about the central ribbon operators is that they generally fail to
commute with the central ribbon operators of other, overlapping regions. This is im-
portant for the following reason. In future sections, the entropy we will assign to (some)

b will have the form'!

SOy = (WIAb|e) + S(balg)y ,  Ap=  log(dy) Fin(w). (2.31)

The first term is the expectation value of a state-independent operator, and we will refer
to it as the area operator, and the second term is the “algebraic von Neumann entropy”
which we will define later. Two crossing area operators generally fail to commute, which
we will interpret as analogous to the “non-commuting areas” property [36] in gravity.
In Section 3.3 we explain this aspect of our tensor network.

We prove that suitably overlapping area operators fail to commute in Appendix B.
Here we show an example. Consider this a and b:

(2.32)

Say we fix the net flux out of the a region. What happens to the net flux out of b? Can
we simultaneously fix it? For a non-abelian G, the answer is no. Fixing the flux out of
a means projecting onto a state of definite u for the a region, where u is the label for
the joint representation of all links in Oa. In general we cannot simultaneously fix the
joint representation of all links in both da and 0b if a and b are distinct but overlap.

' More generally, the entropy will still take this form but with an operator A, of a slightly different
form. Physically, this A, still measures the net electric flux out of b.
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For example, consider a simple lattice with four links connected at one vertex, with
regions a and b each two of the links (remember, they include the entire link if it is
even partially circled):

(2.33)

Say G = SU(2). Gauge-invariance tells us that all four links must fuse to the trivial
irrep, but there are multiple ways to do this. Consider the case that all four links are in
the spin 1/2 representation. This is the familiar setting of four spin 1/2 particles that
together are in a singlet state. To fuse to the spin 0 representation, the two links in a
could fuse to u, = 0 or u, = 1, and in either case the two complementary links have
to do the same. But fixing p, either way gives a singlet state with W, very not fixed.
There’s no total spin 0 state with both p, and p; fixed. The operators that measure
them fail to commute.

2.6 Reduced lattices

We can use the lattice deformations described in Section 2.3 to make a ‘minimal’ lattice,
which we call the reduced lattice. We describe the reduced lattice for the disk D?, then
argue that any lattice (embedded in D?) can be deformed to it, and finally describe
what the ribbon operators (and fused ribbon operators) in £(Hpnys) look like in this
reduced lattice.

01

Figure 3. Reduced lattice for D?. There are n boundary points denoted by white circles,
and m lollipops. Each lollipop consists of two links connected at a vertex, with some matter
living at that vertex.
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The reduced lattice for D? is as follows.'? Tt consists of

1. A central vertex that all boundary points are connected to by links.

2. A “lollipop” for every matter degree of freedom, also connected to the central
vertex.

See Figure 3.

We change the original lattice to the reduced lattice by using the elementary moves.
In particular, for any plaquette we contract all but one of the links so that the plaquette
consists of one link starting and ending on the same vertex, see Figure 4. If the
holonomy around the plaquette is flat, then the flatness constraint implies that the
state on this link is |e). Gauss’s law at this vertex leaves this link invariant, since
e — heh™! = e. Thus, this link is a one-dimensional tensor factor and we can drop it.
We do this for all contractible plaquettes, resulting in a new lattice where all plaquettes
are inequivalent.'® In the case when the plaquette contains a matter degree of freedom,
we add a link to separate out a lollipop.'* This gives us the reduced lattice described
in Figure 3 for D?.

Let us see an explicit example. Begin with

o o o
o o
0 o (2.34)
o 0

I

As before, black circles denote bulk vertices, white circles denote boundary vertices,
and diagonal lines connected to gray circles denote which bulk sites come with matter

12The reduced lattice for the cylinder is similar, with one extra ingredient. There are two more
links, starting as well as ending on the central vertex; all lollipops are between these two links. These
two links are both representatives of the non-contractible loop of the cylinder, one for each boundary
of the cylinder.

13 Another way to arrive at the reduced lattice is via the fusion basis lattice of [43, 48]. For D?,
they find a tree lattice with one node for every boundary vertex and one lollipop for every plaquette
with a matter degree of freedom. They show that the different assignments of irreps for links on the
lattice specifies a complete basis for the physical Hilbert space. Our reduced lattice can be obtained
from this tree by removing all but one bulk vertices on the ‘trunk.’

4When constructing the reduced lattice for a more general manifold, some plaquettes may be non-
contractible because it surrounds a hole in the manifold. In that case, do not remove it.
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A

Figure 4. We contract all but one link of any plaquette, so that the plaquette consists of
one link. If there is no matter inside, we can get rid of the link. If there isn’t, we split it off

into a ‘lollipop.’

degrees of freedom. First,

T 7

o o

o

7 7 T

(2.35)

Here we have used the move (2.24) to remove one link from each of the plaquettes

without matter. Next,

1]

- 922 —

O

(2.36)



We have used (2.20) to remove two vertices, consolidating the graph. Next,

[ ]

o O
Here we have removed four more vertices with (2.20), two from each remaining plaque-
tte. Next,

— (2.38)

We again used (2.20) to remove two vertices, one from each plaquette. To reduce clutter
we have suppressed 10 of the 12 boundary vertices and each of their links, indicated by
“..7 Finally,

> (2.39)

We added in two vertices using (2.20). This graph is now in the form (3.4).

2.7 Subalgebras revisited

We are now in a position to discuss the general kinds of subalgebras we might assign to
a subregion b. For better or for worse, our tensor network construction will not allow
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us to consider only subalgebras of the simple kind from Section 2.4. Indeed, the tensor
network will satisfy a holographic entropy formula like

S(B) = min ( (| Ap|y)) + S(b; alg)) , (2.40)

where the minimization is over a set of bulk subregions b, each candidate b including a
different set of matter legs. What’s important is that given each b, there is an associated
subalgebra (determined by the details of the tensor network). The particular subalgebra
is important, and for example affects the precise value of the algebraic entropy S(b; alg).

The general subalgebras we’ll consider are defined as follows. Say we are given a
reduced lattice as in Figure 3. We pick some subset of “boundary links” (connected
to white circles) and lollipops to be a subregion b. To this b, assign the natural kind
of algebra from Section 2.4, which we’ll call A;. Now, convert the reduced lattice to a
more regular “full” lattice. The algebra 4; becomes an isomorphic algebra we’ll call
A, acting on this full lattice. A, can be associated to a subregion, which we can call b —
indeed it still involves operators acting on a particular set of matter legs, for example.
However, it is not generally just the set of physical operators acting trivially outside
b. We explore these algebras in more detail in Appendix C. What is important is this:
the center consists of operators measuring the net electric flux out of b, and does not
include operators measuring the electric flux out of subregions of b.

3 The tensor network

We are now prepared to present our main result: a tensor network with a novel, topolog-
ical kind of area operator in its holographic entropy formula. This is desirable because
it permits the interpretation that the lattice of the tensor network is analogous to the
discretized geometry on which the TQFT description of gravity lives (which should be
irrelevant to physical quantities, like the CFT entropy). One concrete advantage of this
area operator is that it does not suffer from the “commuting areas problem” of other
tensor networks, as we’ll explain. A related noteworthy feature is that — because it
is topological — this area operator’s expectation value need not grow with the number
of cut links, indicative of the fact that the entanglement accounted for by this area
operator is not that of bipartite pairs associated to each link, a point we will discuss in
detail in Section 4.

3.1 The model

The setup is as follows. Say we are given a system as in Section 2, with some Hppys
defined on some lattice. We regard this as the bulk Hilbert space. We define the
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boundary Hilbert space as the set of links with one end in Viq,y, and let the tensor
product of these links be the boundary Hilbert space. In other words, letting (zy)
denote the link connecting vertices z and v,

Houk 1= thys )
. 1
Hpdry = ® Hzy) - (3.1)
YE€Vhbdry

Our goal is to define a map V' : Hypux —+ Hpary. For example,

s 7T

% O o—r— ——0

%
o— © > o (32)
O O o—r— —>—0

1

The V we define has three steps, which we’ll list and then explain:
1. Tt fully reduces the lattice as in Section 2.6.

2. It (isometrically) embeds Hpnys into the pre-gauged Hilbert space associated to
this reduced lattice.

3. It acts random tensors (7’| on each lollipop factor.

We can draw this sequence of steps as

P R

— — o O — — — (33)
SN~ T

Note these steps are schematic — for example, the true reduced lattice of the starting

lattice would only have two lollipops in the next stage. We now explain the steps in
detail.

First, without loss of generality we can imagine Hys described by a fully reduced
lattice, as explained in Section 2.6. This requires no physical operation on Hppys; it
simply requires using a particular Hy.e. There are in general multiple ways to reduce
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the lattice which do not correspond to the same H,... However, any choice will work,
and there is a finite amount of data involved in specifying which reduced lattice we wish
to use and which steps we take to obtain it from the original lattice, and so we will
proceed as though some choice has been made, and we have a lattice of the following
form:

(3.4)

m

4

O
Second, we embed this lattice into the pregauged Hilbert space,

NP

— > o—«—— ’—'—’O (3.5)

SN g

(Strictly speaking, M. also lifts the Gauss constraint within each lollipop, so we
should really not draw them still connected at their black circles. However, it will not

make a difference in the later steps, and so we will continue to draw them as though
they satisfy Gauss’ law at their respective vertices.) Let us give a simple example to
illustrate what this means. Say there is no matter, m = 0. In this case, that means
a map Hg"/Gauss — HE". Embedding into the pre-gauged Hilbert space now simply
means that we lift the Gauss constraint — and now the Hilbert space factorizes. For
example, if n = 2 the bulk Hilbert space would be spanned by states |, ij), and the
embedding into the pre-gauged Hilbert space would mean the map

iy s S k) k) / (3.6)

Now let’s reintroduce matter to the bulk Hilbert space. Then H,,e is not the same
as Hpdry, because it also includes the lollipop factors. We need to get rid of them, and
we would like to do so in a way that is conducive to obtaining a holographic entropy
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formula (for example, we do not want to simply destroy the information contained in
those factors). We accomplish this by acting random tensors on the extra factors. This
is the third and final step of the map.'®

We define the random tensors and their action as follows. After the embedding
into Hpre, we have n + m factors: the n “boundary” links which form a set we’ll call
fo and the m lollipops which form a set we’ll call f,). Call the set of all such factors
f = fo U fi. To act with random tensors means to act with the operator ®; (T;| for
i € fio indexing the lollipops. This eliminates the lollipop factors. These (T;| are each
“gaussian random tensors” that we define as follows, following [52]:'¢ given some fixed
basis, every entry of the dual vector (T;| is an independent complex Gaussian random
variable, i.e. can be written as (z+iy)/v/2 where x and y are independent real Gaussian
random variables of mean 0 and variance 1.17

3.2 Holographic entropy formula

Having defined our tensor network, we now argue it has a holographic entropy formula

S(B)viyy = min ( (@I Au]6) + S(bralg)y ) (3.8)

where the second term is the algebraic von Neumann entropy defined below. This is
similar to traditional random tensor networks [3], but novel in three ways.

The first novelty is that the minimization over bulk regions b is slightly different.
We do not consider all possible cuts through the lattice homologous to B. Instead,
each candidate b is a different collection of matter legs. The minimization is really over

15 As we will mention when deriving the holographic entropy formula, this only preserves the infor-
mation if the original state was sufficiently nice. In particular, it needs to have a large amount of
electric flux (relative to the amount of bulk entropy) from each lollipop to the boundary legs. This
is like the usual random tensor network requirement that the bond dimension of in-plane legs be
sufficiently large relative to the amount of bulk entropy.

16T his is different from [3], which did not use Gaussian random tensors but instead chose tensors at
random from the Haar measure. These are the same distribution up to a normalization. The Gaussian
random vectors (7;| have norm ||(T;||| that is independent of the normalized vector (T;| /|[{(T;]||, and
these normalized vectors are distributed uniformly. Hence the models agree up to normalization.

1"Explicitly, each lollipop Hilbert space is a sum over irreps R of the quantum double fio1 ; = ©rHR ;-
Denoting a basis as | R, I'), we are taking (T;| R, I') to be a Gaussian random variable. We can decompose
(T;] into an irrep probability and a tensor in each irrep as

(T;] = Z VPR (trl, (tr,il € Hp,- (3.7)
R

The prescription outlined above is equivalent to averaging over both pgr as well as (tg ;| with a corre-
lated weight.
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which matter legs are included. This roughly translates to a minimization over bulk
regions.

The second novelty is that given a subregion b, the subalgebra A, we associate to
it is not always the natural one described in Section 2.4. This is for reasons discussed
in Sections 2.4 and 2.7 and Appendix C.

The third novelty is that the area operator Ay is quite different than in traditional
tensor networks. It is no longer sensitive to the geometry of the lattice. It is now a
certain physical operator in the DG model of Section 2, in the center of the algebra
Ayp. In particular, it is the operator that measures the net electric flux flowing out of b.
Therefore it is topological, only caring about its placement relative to matter degrees of
freedom. Let us be more specific. When A, happens to be of the simple kind described
in Section 2.4, A, is the ribbon operator

Ay =3 log(dy) Fa(n) . (3.9)

where Fg, (1) is the projector onto the fixed p state defined in (2.27). More generally,
Ay is a different kind of operator that we call a “fused ribbon operator”,

Ay =) log(dy) Fap™ () | (3.10)
i

where Ffsed(11) is defined in Appendix C.

Let us now derive the holographic entropy formula (3.8). As a warmup, consider
the lattice (3.4) with n = 2;m = 0. That is, two links attached at a vertex. Recall
that we obtain the boundary Hilbert space simply by isometrically embedding this into
the pre-gauged Hilbert space, He — Hg ® He. Simple as it is, this embedding of
Honys — Hpre already exhibits a holographic entropy formula.’® Say we have a state
1) € Hphys ® Hg for this two link Hilbert space and an arbitrary reference system R.
We have a corresponding state |1Z> € Hpe ® Hp. Say we select one of the H factors
in Hyre and call it B, and we wish to compute the entropy of B in the state y@ As
we know, Hpnys does not factorize, instead taking the form Hg ® He/Gauss, which we
can decompose as

Honys = ED (H,,H ® H%) : (3.11)
m
where p labels eigenvalues of the “electric” operators. Hence a general state in the bulk

Hilbert space takes the form

) =D VPultw) (3.12)

18This is not surprising in light of [10]. This bulk to boundary map is an isometry with complemen-
tary recovery.
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where >, p, =1 and
dy

) = > e i)y 5, (3.13)

ij=1
with > 7;[ci| = 1. The state in the (factorizing) boundary Hilbert space He ® H takes
the form

Ty = ZwZ Iu,lk3|u,kj> (3.14)

i,j,k=1

By direct computation we see that the entropy of B equals

B)gjy) = Zpulogd Zpulogpﬁzm i) (3.15)

We combine these last two terms into the “algebraic von Neumann entropy” S(b; alg)|y),
for algebra A, = @, (ﬁ(?—[bu) ® ]15»). Then we see this takes the form

S(B)ygy = (W[A]) + S(b;alg)y, (3.16)

where

Z log(d,,) Fap(1) - (3.17)

Here Fy(p) is the central ribbon pI‘OJGCtOI‘ (2.27) in this case acting only on the one
link intersected by 0b, which is the only link in Hyp.

The case with n > 2 links is completely analogous. The only difference is that the
blocks in the decomposition (3.11) are now related to eigenvalues of the central ribbon
operator (2.27). It is the total electric flux out of B that matters in both cases — in the
two link case that just happens to be measured by a single link operator. Therefore,
for a connected region B like the three links indicated here:

(3.18)

the formula becomes (3.16) with area operator (3.9), and the path db labelled as ~ in
(3.18). If B is disconnected, the formula is still (3.16) but the area operator is (3.10).
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The difference arises from the topology: when B is disconnected there isn’t one normal
ribbon operator that acts on the links in B but not its complement. Nonetheless, it is
still physical to ask what is the net electric flux out of B, and that is what the fused
ribbon operator (3.10) does.

Now we consider the case with matter. It will be convenient to write explicitly the
division of the map V' into multiple parts, say V = T'J. The implicit first step is to map
the given lattice into the reduced lattice — this does not require an explicit operator in
V' because both lattices represent the same Hy. The second step is to act J, which
embeds Hpnys — Hpre- The final step is 7', which acts the random tensors.

Say we are given a state |¢) € Hpux. Letting (T| = ®ep,, (T3], we can write
T =1p® (T|. The factor 1, indicates that T" acts trivially on fs. The state on Hpayry is

Vi) = Lo @ (T)(J|¥)) = (Lo @ (1) [J2) - (3.19)
and we can write

V) (V= (Lo @ (T]) [J9) (J9| (1o @ |T))
= tr[(Lo @ [T) (T1) [J¥) (JoI] -
Now given a boundary subregion B C fy let’s compute the kth Renyi entropy

Sk(B)vy). This is defined as follows: given a state |¢) € Hp®Hyg, with p == trg |¢) (9|
the density matrix of B, we have

(3.20)

Sk(B)ig) = (3.21)

L=k "

for k € (0,1) U (1,00). We care about this because there is a way to compute it in
random tensor networks using standard techniques [3, 52|, and the limit k& — 1 is the
von Neumann entropy.

Let Sk be the symmetric group on k elements, and let R(7) denote the representa-
tion of 7 € S, on H®*¥ which acts by permuting the kets according to 7. We will write
R;(m) for i € § when it acts on (k copies of) factor ¢, and also Rg(m) when it acts on
(k copies of) B (similarly for B). Let 7 denote the cyclic k-cycle

= (12..k) . (3.22)

Now, notice
trplpt] = tr|(Rn(7) @ Ry())|6) (6] | (3.23)

Furthermore, note an important property of Gaussian random tensors:

[yT T|®k] 3" Ri(m) (3.24)

TESK
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Here I denotes the expectation value over the ensemble of tensors. Now let |¢) = V' |¢))
and compute

Btr[p"] = Btr|(Rs(r) @ Rg(e))|6) (6]
= Btr|(Ry(r) @ Rp(€)) (1o & [T) (T |79) (Ju| ™| (3.25)
— tr|(Ru(7) ® Rp())E [(1y @ |T) (T)**] [7) (Jul ] .
To simplify further, we introduce the set
Spo = {{mi}ticr : m; € S, where m; =c fori € Band m =e fori € B} , (3.26)

for any 0 € S;. An element of Sp, is an assignment of m; to each ¢ € f, subject to
the constraint that all i € f» are fixed: i € B have m; = o and i € B have 7; = e, the
identity element. Using (3.24), we have

Etr[,ok]: Z tr

{ﬂi}ESB,T

& Ri(mi) [T¢) <J¢|®’“] : (3.27)

1ef

Now we will make an assumption to simplify the calculation:'® replica symmetry. Under
the assumption of replica symmetry, every i € f is assigned either the element 7 or e.
Let us denote by A the set assigned 7 (which always includes B), and A the set assigned
e (which always includes B). Let C(B) denote the set of all assignments A. Then we
can further simplify

B[] = tr[(RA(T) ) 1Y) J¢]®k] $ RS (3.08)

A€C(B) A€C(B)

We can plug this into (3.21) to obtain the average Renyi entropy. A typical selection
of tensors (T'| will lead to an answer very close to this average [3], and so we have
effectively computed the Renyi entropy for a given draw of (7'| with high probability.
This is as much as we need to say about computing the Renyi entropy.

Now we turn to computing the von Neumann entropy S = limy_,; Sx. We simplify
again by making a second assumption: the validity of the saddle point approximation,

E tr[p"] = (RSB (3.29)

9This assumption will be valid for some states |1)) but not all, see e.g. [53]. In our model, nice
states include those with large amounts of electric flux relative to matter entropy, and fairly simple
flux patterns. We choose to make this assumption because it neglects subtleties that are not special
to this model, and it allows us to more concisely demonstrate what’s special about this model.
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where A, C § is some fixed set of factors, and the symbol ~ denotes the assumption.
Specifically, we assume that (3.28) is well-enough approximated by a single A (which
we call A,,) for all k£ such that we get approximately the right von Neumann entropy
by neglecting all of the others:

S(B)vigy = S(A) 11y = }J_)IT{ Sk(A) 1y - (3.30)

This assumption is valid for many states and choices of B, as in traditional random
tensor networks [3], and in this note we will not attempt a full discussion of when
it is valid. From now on we will drop the ! above the =, leaving the saddle point
approximation implicit.

To finish computing S(B)y/y), we must evaluate S(A), 4y for a given configuration
A. This A has two parts: the degrees of freedom that are also in Hyy which we’ll call
b1, and the part that’s introduced by the embedding into the pre-gauged Hilbert space,
which we'll call by. Exactly as in (3.11), the bulk Hilbert space decomposes into blocks,
once again with p the eigenvalue of the ribbon operator acting on 0b, associated to the
total electric flux between b and its complement. So, we can again write

O) =2 V[, 5 - (3.31)

In the embedding into the pre-gauged Hilbert space, we tack on a factor that we’ll
write as |x.) € Hp,, ® Hy, |, giving a state

1S9) =D VP oy 1 X005 (3.32)
9

Computing S(A)y) hence gives
Dy = D_puS(bay)y, + Zpu (b1 Zpu log py - (3.33)
n

Recalling that try, , [xu) (xu| = 1/d,, and that under the saddle point approximation
S(B)viy) = S(A)sy for the A minimizing the right hand side, we finally arrive at

S(B)vigy = (WIA[Y) + S(balg)y, (3.34)

where A = @Oy log(dy) 1y, ,, and S(b;alg)yy) = >, PuS(b1u)y, — D2, Pulog py. This com-
pletes the argument that our tensor network satisfies the holographic entropy formula
(3.8), if we start from the reduced lattice, i.e. neglecting the first step of (3.3).

We now argue that the holographic entropy formula continues to hold if we start
from a general lattice. The first step of (3.3), changing to the reduced lattice, does not
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change anything physical about Hpyx or the fact that the minimization in (3.8) is over
which matter legs get included in the region b. All that changes is what the physical
operators look like on the lattice. When b is a single connected region in the reduced
lattice, its algebra A, is straightforward, and maps to the natural subalgebra of a single
connected region in the full lattice. However, in the more general case that b in the
reduced lattice is disconnected, the algebra A, is different. We explain the details in
Appendix C. Intuitively, we have defined the algebra to include the net electric flux
out of the region b but not out of its sub-parts.

3.3 Non-commuting area operators

As pointed out in [36], traditional tensor networks fail to match the “non-commuting
area operators” property of AdS/CFT. Say in AdS/CFT we consider two boundary
regions A and B that overlap, and a state [¢) of the AdS bulk. We can consider the
holographic entropy formula for each:

S(A) = (Y| Aul) + S(a)y) ,
S(B) = (¥ A1) + S(b)yy

where a and b are bulk regions that minimize the respective right hand sides. It turns

(3.35)

out that one can in general find a bulk state |¢) such that A, has very small fluctuations
[54, 55] (or in which Ay has very small fluctuations). Specifically, given some £ > 0 we
can in general find a state such that (| A2[¢)) —| (1| Aa|th)|? < .20 This was a fortunate
discovery for traditional tensor networks, because their area operators have very small
fluctuations (in fact zero, for most tensor networks). One can imagine these “fixed-
area” states of gravity are in this limited sense the correct AdS analog of traditional
tensor networks.

However, it was pointed out in [36] that this tensor network / fixed-area state
analogy only goes so far. In gravity, one can argue (using the gravitational constraint
equations) that there does not exist a state |1)) with very small fluctuations for the area
operator of every boundary region simultaneously. In particular, the area operators of
overlapping regions cannot both have small fluctuations. We can’t find states with
arbitrarily small fluctuations in both A, and A,. This is different from traditional
tensor networks, which can have small fluctuations across all cuts simultaneously.

Our tensor network improves this situation. In it, it is not possible to find a
non-trivial bulk state that is an eigenstate of overlapping boundary subregions. This
is because the area operators of overlapping boundary regions are overlapping ribbon
operators (or fused ribbon operators) and will not commute, as explained in Section 2.

20T be safe, one should really keep ¢ sufficiently large relative to exp(—O(1/G)), to stay within the
regime of semiclassical gravity.
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4 Multipartite edge modes

In this section, we attempt to clarify the choices made in the construction of the tensor
network in Section 3. One might wonder, for example, why we chose (unconventionally)
to construct the tensor network based on the reduced lattice rather than the original
extended lattice. Or where is the beloved relation between geometric area and the
length of the cut?

Here, we motivate our choices by studying entanglement in the DG model. As in
all gauge theories, there are multiple prescriptions for defining the entanglement of a
subregion. Of all these prescriptions, we are specifically interested in those that involve
a factorization map, i.e. embedding the gauge theory into a larger, factorizable Hilbert
space. This is because that’s what tensor networks do! The boundary Hilbert space in
Section 3 was the product of factors, H&". The holographic entropy formula computes
the entropy of these factors. Therefore it is by definition computing the entropy using
a factorization map — the entropy of a subregion in a factorizable Hilbert space that
the DG model has been embedded into.

Edge modes are what we call the new degrees of freedom present in the factorized
Hilbert space but not the original gauge theory Hilbert space. There are multiple
known ways to define such factorization maps, each of which can be said to introduce
different kinds of edge modes. However, as we’ll argue, most factorization maps will
fail to match certain properties we need in the holographic entropy formula. Their edge
modes will have the wrong entanglement structure. In fact, we can essentially narrow
down which factorizations of the DG model could give certain desired properties, down
to the particular factorization map we employ in Section 3. This argument is the point
of this section — with the goal of motivating the perhaps surprising choices we made in
Section 3.

Let us summarize our reasons for two of the choices we made in Section 3:

1. Usually, entanglement in quantum double models is defined by a local factoriza-
tion map on the original lattice. We do not do this.

The reasons are twofold. Using this local factorization map, the von Neumann
entropy of a region b contains the two terms (|db| — 1) log |G|. The first term is a
problem because — as we argued in Section 1 — the size of the cut in the original
lattice does not have a relevant gravitational interpretation. The second term is
also a problem because it makes the entanglement growth sub-extensive in a way
that poorly matches AdS/CFT. We explain this in Section 4.1.

2. We define the holographic map by first deforming the original lattice to the re-
duced one.
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We motivate this in Section 4.2 with a tension between the non-local bipartite
factorization and crossing cuts.

These do not appear as distinct steps in our construction, as the first choice is im-
plemented by the second, but we motivate them separately. There is also a third,
conventional, choice, which is that we factorized the bulk by embedding Hpys into the
Hpre of the reduced lattice. This is a particular choice of edge modes on the reduced
lattice. Surprisingly, it turns out that this is forced upon us by the above two choices,
as we outline in Section 4.3 and prove in Appendix E.

Let us begin by giving some more careful definitions. Suppose we have many
subalgebras Ay _,, € L(Hpnys) with some network of inclusion relations (which could
be fairly complicated). In general, many of these subalgebras may have non-trivial
centers.

To calculate the entropy of an algebra with center, say A;, we first calculate a
reduced density matrix by embedding Hnys — Hi1 ® Hy/, using a factorization map Jy
[56, 57]. The entanglement entropy takes the form [10, 38].%!

S(H1) ey = (WA W) + S(As; alg)y, (4.1)

for some operator A(.J;) in the center A; N Aj.

A multipartite factorization map J is an embedding of Hpnys “— Hiacr such that all
the algebras JA; ,J! act on tensor factors of the Hilbert space Hact. As we will see
below, there can be multipartite factorization maps that are not built out of products
of bipartite factorizations. When this is the case, we say that the map introduced
‘multipartite edge modes.” One point of this section is to argue that if we want to
incorporate a DG model into a tensor network as a toy model for gravity, then the edge
modes we introduce should be multipartite.

4.1 Bipartite factorization
Issue with local factorization

Previous work on entanglement in gauge theories has introduced a factorization map
[32, 33, 37-39, 41, 42], which consists of (3.6) for every link in db. Let us call this the
local factorization map. We now explain why this map has undesirable properties for
building toy models of gravity, expanding on the discussion in [43].

21 Alternatively, we can work abstractly in the language of generalized traces [58]. All of the lit-
erature on bipartite entanglement with centers [10, 37-39, 41, 42, 48] can be translated into this
language. We have not attempted to translate the multipartite story below into this language; it is
not straightforward.
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Let b be a subregion of D?, and let there be no bulk charges. The von Neumann
entropy with the local factorization map is [32-34, 59|

Sioc(b) = |0b|log |G| — log |G| + Shontoc(b), (4.2)

where Spontoc(b) is going to be the entropy in our factorization defined momentarily.??

Both of the first two terms are problematic for appearing in a holographic entropy
formula. The extensive first term in (4.2) depends on the number of links in the lattice.
This is the length of b in the discrete metric we have introduced to regulate the
topological field theory. However, the area of the extremal surface is just a specific
Wilson line in the Chern-Simons formulation [28, 29].* The central ribbon measuring
the amount of electric flux flowing out of b is such an operator, and its contributions
to the entropy show up only in S;oniec-

Suppose you are not convinced by this argument, taking the perspective that the
whole reason tensor networks have been useful is the area law entanglement. But
then you run into a second problem, which is the second term in (4.2). If we want to
interpret the first term as A/4G y, the second term is an entirely unwelcome —1/4G y.
Furthermore, this negative term is the famous topological entanglement entropy [32, 33],
and its value is a state-independent constant that depends only on the anyon fusion
algebra, so we cannot even get rid of it. There is no analog of this violation of extensivity
in the HRT formula.

This leads to unwelcome behaviour not just in the von Neumann entropy, but
also in other entropic quantities, as pointed out for example in [46]. Consider three

22In the absence of matter, Syonloe can be thought of as the entropy of boundary degrees of freedom
[34], since the central ribbon operator at 9b can be deformed to hug the boundary ob.

23For completeness, let us briefly describe the Wilson line introduced in these works. Denote by
OB = 90b = H9b the corners of b. OB consists of two points on the boundary, and the Wilson line
stretches between them. Then, the Wilson line is the Euclidean quantum mechanical path integral of
a particle on SL(2,R) x SL(2,R), propagating along db. The irrep of the Wilson line is encoded in
the mass and spin of the particle, and the initial and final states of the particle at the two points on
OB are defined by Ishibashi states within the highest-weight irrep the particle lives in. This particle
localizes to a saddle-point in the large mass limit, and the saddle-point corresponds to a bulk geodesic;
the on-shell action is proportional to the length of the geodesic.

Our central ribbons are a little different from the Wilson lines, in that they project onto certain
values of the irrep flowing through 0b. Furthermore, our central ribbons should be valued not in
highest-weight irreps but in principal series irreps [27, 30, 31]. However, both our central ribbon
and their Wilson line measure the same quantity; in the presence of matter, the HRT formula with
both constructions become quantum minimal surface formulas as in Section 3. So, the construction
of [28, 29] is enough to show that area is an operator in the algebra of the topological field theory,
though the precise operator might be harder to pin down at the full quantum level.
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contiguous boundary intervals Bj o3 in a 2d CFT. The tripartite information is
I3(1:2:3) =81 + Sy + S3 — S1a — S23 — Si3 + Shas, (4.3)

where S; = S(B;) etc. The classic calculation of this quantity in AdS/CFT [60] shows
that**
Sy K 5173 — I3 x So (4.4)

Bi By By By By Bj

by b3 \ b1o i bgg/

Figure 5. The different bulk regions that appear for the calculation of the tripartite infor-

mation. Positive contributions on the left and negative ones on the right. The entanglement
wedge and its boundaries are colour-coded. While the boundary 0% is drawn as a line for
simplicity of notation, in the actual calculation, we take it to be S'.

Now assume that we have a tensor network with a holographic entropy formula
where we minimize (4.2) over bulk regions of the correct homology class, using for
example the construction of [7]. Assume that the entanglement wedges of the various
regions are topologically the same as you would find in AdS/CFT, see Figure 5. Then,
the tripartite information is

I3 = —log |G| + I35 + I3 nonloc, (4.5)

where I35 is the contribution of the extensive term (which behaves similarly to the area
term in gravity) and the last term is the same combination of Syonec. Both of these
last two terms satisfy (4.4).>° However, the first term does not, so (4.5) overall fails to
satisfy (4.4).

To prove (4.5), we can use (4.2) for the regions By 2 3, B1a, Bas, Bias, since all of their
entanglement wedges have the same topology. While the formula was not originally
proven for the topology of b3, which is a strip connecting B; to Bs, it remains true

24]f the three regions have lengths [1,lo, [3, the tripartite information in the vacuum is

C lllglg(ll Jrlg +13) 1,—0 C 1 1
I3 = lg.

,1 + —
3 8l + ) (2 + 3)la(ly + o + I3) 3

I

25The second satisfies (4.4) for the same reason as the holographic entropy. For the third term, note
that as we shrink By the volume of by, and therefore its maximum entropy shrinks also.
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by the following argument, following [33, 38]. Let us recall the derivation of the form
(4.2), say for by. We deform the lattice as in the left of Figure 6, so that there is
one plaquette in the bulk; the controlled unitaries from Appendix A that implement
this deformation act only within b,. The Hilbert space is labelled in terms of the
group element around the half-loops, labelled as grey arrows. Each half-loop at 0bs
is completely unconstrained in the density matrix, except that the product of all of
them is e, by flatness of the plaquette. Going to a sector of fixed holonomies at 9%,

dba|—1 1. .
2I~1_dimensional subspace,

the reduced density matrix is maximally mixed over a |G ||
labelled by half-loop configurations satisfying the single constraint. The last term in
(4.2) is the entropy of these boundary holonomies. This argument only relies on the

bulk region having topology D?, so it goes over to the strip of by3.

HER

:

Figure 6. A lattice that makes the calculation of entanglement of the region bounded by the
thick green bars and the boundary easy. We have used lattice deformations to make the bulk
of the region a single plaquette. The flatness constraint is imposed for this plaquette, since it
is in the bulk. We decompose the state in terms of the ‘half-loop’ holonomies, shown as grey
arrows. Left: the subregion intersects the physical boundary once. Right: it intersects the
physical boundary twice, but that doesn’t change the argument.

A non-local factorization map

We define a new factorization map, following [43], that is non-local on 0b. Let us
describe it in some detail for a connected subregion b on D?. Use the elementary
lattice moves in Section 2.3 to make 0b cut a single link as in Figure 7. In that case,
the central ribbon F'(u) is just a projector onto that link being in the irrep p. And
then the factorization map is simply

1
Vi,

on this link. This is the usual (local) factorization map of lattice gauge theory [41, 42]
for the single link; but the lattice moves we did first make it a different way to factorize

J |, ij) =

> ik) [y, ki) (4.6)

the original lattice.
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Figure 7. We deform a lattice so that 0b is a single link.

Another way to think about this is in terms of the original lattice. In that case,
the edge modes we introduce are collective modes that live on the entire cut rather
than local degrees of freedom at different points on the cut, in sharp contrast to the
local factorization map. The lattice deformation is helpful because it allows us to give
a local description of this non-local edge mode.

We show in Appendix D that this factorization map, unlike the local one, has the
property (4.4) (assuming that the tripartite information is negative).

4.2 Bipartite factorizations can fail to commute

Another issue with bipartite factorization maps is that they generally don’t combine
uniquely into a multipartite factorization map.

Let A be an algebra acting on a finite dimensional Hilbert space H. Assume A has
a non-trivial center, i.e. AN A’ contains more than multiples of the identity operator
on H. Any operator in this center can be written as a linear combination of a set of
commuting projectors Py (see e.g. [10]). They must commute, since the center is a
commutative algebra.

Let J : H — Hp ® Hp be a factorization map with respect to A, i.e. an isometry
such that A acts on Hp and its commutant A’ acts on Hz.?° Such a factorization map
can be written in the following way. For |¢) € H,

J ) = Z Py |¢>Bg§;‘ ® |Xoc>BJ‘}‘§;‘ ) (4.7)

where we have used a decomposition Hp = @, (H By @H B?) @ Hp,, and similarly for
Hp. The central projectors Py act on Hp, ® Hp,. What’s important here is that the
central projectors P, enter crucially into the definition of the factorization map J.

26Tn the language of [10], J defines an operator-algebra quantum erasure code with complementary
recovery, with respect to A.
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Now say we have two algebras A; and A, both acting on H, with central projectors
P,, and P,, respectively. Let

JltH—>HB®H§

(4.8)
Jy: H—>He® 'Hé

be factorization maps, with respect to A; and Aj respectively. We are interested in
acting both factorizations on H. This can work as follows. Say we first act J;. How does
Jy act on Hp@H7? Because J; was an isometry, we can consider the operator J; pulled
through J;. More explicitly, the action of J, on J;H is defined using the projectors
J1 Py, JlT . This allows us to define JyJiH, which embeds H into a Hilbert space with
more than two factors. However, because [Py,, Py,| # 0, in general JoJiH # JiJoH!
We cannot in general construct a unique multipartite factorization map by the product
of all bipartite factorizations. Factorizing in a different order leads to a different final
Hilbert space.

Let us see this concretely in the DG model. Split the disk into four regions b;_ 4 as
in Figure 8. We are interested in the subregions b;by and bybs. The non-commutativity
of the bipartite factorization maps for these two subregions can be seen in the fact
that the elementary lattice moves required to achieve each bipartite factorization are
different. For example, if we change to a lattice with only one link along d(b1bs), then
we have two semicircles that separately need to factorize to split by from b; and by from
bs, which would create two total links along 0(bybs). We cannot draw a lattice where
both d(b1b2) and 9(b2bs) consist of only one link.

Though it might seem cartoonish, this problem is the central one. To make it more
precise, take a state where there are fixed irreps .4, 2 flowing out of by 4, b1bs.
Furthermore, take each of by,...bs to consist of a single link, so we have four links
total. We can decompose this state into a superposition of states with fixed irrep pos
flowing out of bebs using the F-matrices [20]

M4 M3 IU/4 NJ3
I >=ZF < > (19)

t f2 v 11 2

For the quantum double model, the F-matrix is the 6j-symbol of GG; more generally, it
is part of the definition of the tensor category that defines the topological phase [61].
For a non-Abelian theory, the right hand side generically has many non-zero terms.
Thus, we cannot simultaneously fix the irreps flowing out of bb; and bybs. This is a

2TQur convention for the F-matrices do not exactly match those in [20]. This will not affect any of
the following discussion. The only important thing is that (4.9) is a unitary change of basis.
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Figure 8. The lattice deformations that we need to factorize intersecting regions are incom-
patible.

manifestation of the fact that the corresponding central ribbons don’t commute, as we
argued in Section 2.4.

We might try to deal with this by introducing one set of edge modes for every
segment 0b; U 0b;, 1 of the subregion boundaries. For example, in Figure 9, we could
factorize all the links crossing the blue lines. But, as detailed in [44], factorizing more
than one link cutting 0b;, even if it is just two links, gives rise to the negative contri-
bution in (4.2). The entropy will again run afoul of (4.4).

bg b2

by
by

Figure 9. In local factorization maps, we can introduce edge modes for every segment of the
boundary of a region.
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This is an important obstacle to constructing a tensor network with non-commuting
area operators. A tensor network acts on a bulk Hilbert space that does not factorize,
and maps it to a boundary Hilbert space which is simultaneously factorized across all
partitions. It is implementing some multipartite factorization map — but which one?
As we have argued, it cannot be some product of bipartite factorizations. It must be
something more sophisticated and inherently multipartite, introducing “multipartite
edge modes.”?®

We accomplish this in the tensor network of Section 3 by embedding Hpys into the
Hpre of the reduced lattice. This different kind of factorization is the main idea in this
work that allowed us to define tensor networks with the desired properties.

On the reduced lattice, (4.9) is modified in a simple way. Instead of being a relation
between different lattices, it is now a relationship between different bases for Hpnys. The
relation remains true in H,., because the physical state is given by the fusion of the
four irreps via Clebsch-Gordan coefficients. Taking the inner product of (4.9) with
(W1,11,J1; - - - M4, 14, J4| J makes it a relation between Clebsch-Gordan coefficients and
67-symbols of the group that is known to be true.

4.3 Bootstrapping the multipartite edge modes

The above discussion explains why our TN is constructed using the reduced lattice.
Now we ask: can we further justify the factorization map we use on the reduced lattice?
This is not possible for bipartite edge modes, as noted in [40]. It turns out that in the
multipartite case the factorization map is much more constrained. In Appendix E, we
prove that the factorization map is unique given certain assumptions. The assumptions
are that the edge modes introduced by the factorization map depend only on the total
irrep flowing out of the region, and that the edge mode state for the identity irrep is
factorized. Let us give an overview of the logic here.

The basic idea is that we can take all possible equations of the form (4.9) for an
arbitrary number of boundary vertices and apply the factorization map. Each of these
equations becomes an equation for the matrix elements of the factorization map J, and
the only solutions to this whole set of equations is the CG coefficients. This is related to
what is known as Tannaka-Krein duality, which says that a group can be reconstructed
from the fusion rules and F-matrices of its irreps. A helpful review is [65].

We prove a weaker statement than either of the above, but it does say that the
required edge modes are (up to local unitaries) those we use in our factorization map.
We take reduced lattices with 2n boundary links, all in the irrep w, such that they fuse

28The connection between non-commuting modular Hamiltonians and multipartite entanglement
was also explored in [62-64].
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to the identity in pairs. This state can be written in two ways

P — ()] gl u
M ee—— 1 :Z il Z H v, a e (4.10)
5 dn z 3 ' ’
TR
I _n_ " v a=1 M / M

Then, calculating the entropy in two ways, we find consistency only when the edge
modes are maximally mixed with rank d,,.

This concludes our motivation for our tensor network construction. We had to
transform to the reduced lattice because otherwise we would either run afoul of holo-
graphic tripartite information or not know how to uniquely factorize overlapping re-
gions. The factorization map on the reduced lattice had to be the one we used because
the multipartite edge modes in the DG model are highly constrained.

5 Gravity interpretation

Unlike traditional tensor networks, our tensor networks need not be a tiling of hyper-
bolic space. Instead, the connectivity in our tensor networks is analogous to the geome-
try on which a TQFT lives; that is, it’s not fundamentally important. An advantage is
what we've argued in this paper: edge modes with more gravity-like properties, leading
for example to non-commuting area operators. The disadvantage is that the physi-
cal, gravitational interpretation of the state is less clear. In this (largely qualitative)
section, we aim to clarify this interpretation.

We use the fact that 3d general relativity is genuinely a topological theory, albeit
one that is not included in the set of DG models. However, we expect that qualitative
aspects of our results do generalize (with appropriate refinements). The difficulties with
overlapping bipartite factorization that we encountered in Section 4.2 are a consequence
of non-trivial F-matrices, which exist also in other topological theories and also GR
(22, 23]. There is an interesting similarity between the algebraic structure of our tensor
network and that introduced in [46], as we will argue below. Finally, we view the
uniqueness of edge modes formalized in theorem E.2, which holds for a large class of
topological phases (though not GR), as a toy model for the reason that low-energy
gravity ‘knows’ about the UV entropy but not its microstates. Thus, while the rest of
this section has not yet been made precise, we expect that it is possible to do so.

Comparison with Conventional RTNs

The first major difference between our tensor networks and traditional ones is that in
the traditional ones each link is a fixed segment of a fixed curve, and its bond dimension
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is interpreted as the area of the segment. Even when the area is a non-trivial operator it
is a sum of areas of segments with fluctuating bond dimension. In our tensor networks,
however, the area of the entire quantum minimal surface is the expectation value of a
single, non-local, topological operator. As justification for this claim, we point to the
works [23, 27-31], which showed that the topological Wilson lines and irrep data are
related (in the semi-classical limit) to the area of quantum extremal surfaces and not to
arbitrary surfaces.?” There is nothing that corresponds to the area of a fixed segment
of a QES, or the area of a non-extremal surface.

The area being a topological operator means that it takes the same value on any
two topologically equivalent cuts. This can seem confusing, however, since multiple
topologically equivalent cuts on the same lattice then correspond to the same geodesic
in the bulk. The apparent puzzle can be resolved by remembering that the gauge field
in the CS description is the metric, meaning that the group element on a link (which
has non-zero fluctuations) is related to a length.?® Secondly, any physical state has
non-zero fluctuations of the group element, due to Gauss’s law. Thus, a state in the
topological theory on the lattice describes a superposition of embeddings of the lattice
into the spacetime.

An important caveat with this last statement, and also the rest of this section,
is that we do not have a precise gravitational interpretation of the fully quantum
topological theory. So, all of these statements are true only in the semi-classical limit
of the TQFT, where the coupling constant goes to zero and we restrict attention to
coherent states.

This superposition presumably includes all ways of embedding the lattice into a
Wheeler-deWitt patch. The reason to believe this is that the gauge constraints of
the Chern-Simons action are (on-shell) equivalent to the Hamiltonian and momentum
constraints of gravity, and both of these generate translations of points on a Cauchy
slice; momentum constraints generate diffeomorphisms of the Cauchy slice, and the
Hamiltonian constraint generates translations of the Cauchy slice within the WdW

29128, 29] showed that their Wilson lines localised to geodesics, but their Wilson lines are different
from our area operator, see footnote 23. [23, 27, 30, 31] showed that factorizing across cuts of specific
topological classes (roughly the same as those we have considered) gave entropy equal to the area of
the QES in the same topological class. There is less work in the presence of matter; in two dimensions,
[66] established the relationship between the irrep flowing across the cut and the area of the QES of
the same topological class. We will also discuss an important subtlety in this statement due to matter
around Figure 12.

30Tt’s not quite a length, since the gauge field also has the spin connection in it. It exactly becomes
a length for a geodesic; more generally, it is the length of a topologically equivalent geodesic. The
connection between length of a geodesic and a mixture of length and spin connection (related to
extrinsic curvature) of a different curve is the subject of [67].
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patch. See Figure 10. Since we work with gauge-invariant states, they must be dual to
superpositions over all embeddings of the lattice in the WdW patch. This also explains
why two different ribbons on different sets of links can correspond to the same geodesic.
The expectation value of our area operator on a certain cut agrees with the expectation
value of a geodesic, but that does not mean that the links that the operator is supported
on are dual to the geodesic.

Figure 10. If we imagine the lattice as being embedded in AdS, then the diffeomorphism
constraints (left) and Hamiltonian constraints (right) move the lattice around. Since the
constraints in the TQFT are semi-classically these two types of constraints, we argue that
our TN is a toy model for a superposition of embeddings of the lattice.

Let us see how this works for the simplest case, the reduced lattice for D? without
matter. The central ribbon on one link b;, and that on two links b;by, measure the
areas of two spacelike-separated surfaces, as shown in Figure 11. Mathematically, this
is because the irreps W, Ho on two boundary links might be entangled to produce only
a subset of W ® s, so that (An) < (1211) + (1212> So the links by, by should neither be
interpreted as the surface X; U X, nor as the surface Xi,. But different operators on
these two links reproduce properties of either of these surfaces.®!

Another potentially confusing point is that there are generically more topological
classes of central ribbons than QESs, as shown in Figure 12. For example, if there are

31The most ‘classical’ lattice is the fusion basis lattice of [43, 48]; in that case, each link can be
assigned a particular QES. For example, in Figure 11, b; and by would fuse to a third link, let’s call
it byo, such that the irrep flowing out of b1bs is the irrep on bi2. Thus, a fusion basis lattice can be
said to be lattice-dual to a non-intersecting network of geodesics, as pointed out also in [23]; by, b, b12
would correspond to X, Xo, X15 respectively. However, the central ribbon operator on b1 equally
can be represented on by U bs, and so there’s still an element of convention to the identification.
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Figure 11. Central operators on individual links b1, bs measure the area of different HRT
surfaces, but the central operator on b; U bo measures the area of a completely different
extremal surface that is spacelike-separated from both of them. Thus the two links should
not be associated to individual extremal surfaces, even in the classical limit.

two matter excitations very close together but very far away from any QES, there is a
ribbon that separates these two excitations but no QES between them. In that case,
the area operator is not measuring the area of a QES in the geometry, but seems to be
related to the outer entropy [68-70] or the holographic covariant entropy bound [67]. It
is the area of a QES that would exist in a different geometry where one of the matter
excitations has been taken away.*?

new purification

of by

Figure 12. We can calculate the “area” of any cut, but that might not correspond to the
length of any geodesic that exists in the spacetime. However there could be a purification
of the bulk region where the geodesic exists. On the left, the green central ribbon is the
minimal one, whose value should be related to the length of a geodesic. The blue ribbon is
topologically inequivalent, and there may not be a geodesic with the right end-points in that
topological class. However, there is a different purification of the region b; between the blue
ribbon and the boundary, where there should be a geodesic of the same topological class.

32This is true when there is a normal surface between the two excitations; trapped surfaces are more
confusing, and would likely require more explicit computations.
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A Gauge Theory of Intertwiners

On a related note, there are fascinating connections between our construction and the
algebraic story of [16, 71]. They conceptualize the quantum error-correcting structure
of AdS/CFT as an approximate version of Doplicher-Haag-Roberts theory, which is
the algebraic approach to gapped theories with superselection sectors. The restric-
tion of CF'T operators to code subspace operators is implemented by a ‘conditional
expectation,” which in the DHR case is a restriction to operators that don’t change the
superselection sector.

Consider first the case without matter. There are two algebras acting on the links,
L(Hpary) and L(Hpnys); consider the latter as the vacuum superselection sector of the
former. The conditional expectation from L£(Hpary) to L(Hpnys) is implemented by
Gauss’s law at the central vertex.>®> For two boundary regions B, B,, the physical
algebra Ao € L(Hpnys) of the two regions is bigger than the algebra union A; V
Ay € L(Hpnys) of the two subregion algebras separately. The difference is made up
of operators that create a charge in B; and an anti-charge in Bs, called intertwiners
in the DHR theory. For By, By adjacent, these intertwiners are made up of all ribbon
operators that begin in By and end in Bs. In the general case, it is the subset shown
in Figure 16.%*

Note that DHR theory deals with the boundary theory, but we are giving bulk
descriptions of the objects involved: the TQFT is a bulk gauge theory of boundary
intertwiners. This is perhaps not a surprise, since there is a reconstruction theorem
relating DHR models in 1 + 1 dimensions and tensor categories [72].

What is perhaps more novel is this. Since error-correction in AdS/CFT is approx-
imate [73, 74], we have to back away from this limit of an exact bulk gauge theory
of intertwiners, while keeping the bulk structure. This is hard, because bulk matter
makes the theory non-topological and therefore harder to make holographic; adding
the random tensors seems to be a way to mitigate this problem and allows us to back
away from the topological limit while keeping holography. It would be interesting to
understand these connections in detail.

6 Discussion

We have constructed a map
Hue = Hbdry (6.1)

33For general lattices, this is a closed ribbon around the boundary.
34They also define a dual set of ‘twists.” In the DG model, these are also ribbon operators.
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with the following properties: First, the bulk Hilbert space Hyui consists of a topologi-
cal theory coupled to matter. Second, boundary entropies satisfy a holographic entropy
formula

S(B)vigy = (WIAD)[) + S(b;alg)y, (6.2)

in which the minimization is over different sets of matter legs, and the area operator A
is a (topological) operator measuring the net electric flux out of BUb. This is desirable
if we would like a tensor network that represents a discretization of the topological
quantum field theory (TQFT) description of 2+ 1d gravity, because in that description
the area of the Ryu-Takayanagi (or quantum extremal) surface will correspond to some
topological operator in the TQFT. As a byproduct, in this model the area operators of
overlapping boundary regions fail to commute, as in gravity but not traditional tensor
networks [36].

One could worry: isn’t changing the area operator ruining the usefulness of tensor
networks? Wasn’t their whole point that boundary entropies were related to the cut
through the graph that intersected the fewest links — resembling the Ryu-Takayanagi
formula? A map with a topological area operator goes against that, so what is its
point? The point is that the area operator in this model is still in line with the Ryu-
Takayanagi formula. We still interpret A as measuring the geometric area, and we still
are using random tensor networks to construct a map with an entropy formula mini-
mizing (6.2). The only difference is that the TQFT description obscures the geometry
of the gravitational description — so it is no surprise that what is geometric area in the
gravitational description can be a topological operator in the TQFT description.

The reason the geometric description is obscured is twofold. First, our tensor
networks do not introduce bulk-local degrees of freedom where there should be none.
The matter-free theory is topological, so there is no need to add local tensors in this
case. Secondly, our tensor networks are toy models for states invariant under the
Hamiltonian constraint of gravity, and should be compared not with Cauchy slices but
Wheeler-deWitt patches.

One oddity of our tensor networks is the particular subalgebras it minimizes over
in the holographic entropy formula. While our tensor network has many desirable
properties, these subalgebras seem fairly strange, as we discuss in Section 2.7 and
Appendix C. It would be nice to better understand the gravitational analog of these
subalgebras, or how to construct a tensor network that minimizes over more natural
subalgebras.

The broader question of interest is constructing a tensor network with matching
local dynamics on both sides of the map, akin to AdS/CFT. We believe the model in
this paper will help with this, because it includes constraints that are more gravity-like.
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Perhaps one way to proceed will be to combine with this model the insights of [15, 16].

Having explained our main result and the broader question, let us summarize some
important physics we learned along the way. The first lesson is that there is a qualita-
tive difference between bipartite and multipartite edge modes. Abstractly, this arises
from tensions between additivity and duality in local algebras in the code subspace
[46]. The second, and most important, lesson is this: to model holography, we might
need multipartite edge modes. The fact that the centers of overlapping regions fail to
commute poses a challenge for purely bipartite edge modes.

These lessons lead to a number of structural questions. Remember, historically,
that the bipartite edge modes were originally studied in gauge theories [37-39, 41, 42,
75], but then were shown to be a general feature of error-correcting codes with bipartite
code spaces [10] and holography [76]. Perhaps we should regard this work as the first
half of the same historical progression, for multipartite edge modes. Can we construct
a general theory of multipartite edge modes and prove that they are needed in holog-
raphy? What do multipartite edge modes look like in the gravitational phase space,
analogous to [75] and follow-ups? Does the theorem in Appendix E generalize to a
statement inferring a unique entropy function from a set of subalgebras? Understand-
ing the multi-local operator that is dual to the soap-films of [77] will likely be useful to
learn about these questions.

Let us end with some other interesting, but more specific, questions and directions
for future work. We’d like to be able to interpret quantities in our model, like the
area commutator, in terms of gravitational quantities. This could likely be done in the
model of [23]. On a related note, the lattice model we have used as the base for our
tensor network is related in spirit to loop quantum gravity [43, 48], and perhaps we
can also import some insights from there. Another interesting question is to identify
the operator analogous to our central ribbons in the Virasoro TQFT of [19], and see
whether the factorization maps of [23, 30, 31] are related to these operators. As a
first step, the analog of our factorization map in Chern-Simons is being studied [78].
It would also be interesting to study whether a model like ours realizes a quantum

extremal surface formula, rather than just quantum minimality.?’

Finally, we could
mock up identity block domination of the CFT using specific string-net models, and
see which gravity features we get from there.

Finally, we need to understand what we have learned about higher dimensions.

Likely the connection to the story of [46] will be crucial in doing so.

35We would like to thank Jing-Yuan Chen, Bartek Czech, Alex Frenkel, Xiao-Liang Qi and Gabriel
Wong for discussions on similar points.
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A Lattice Deformations

Recall that we think about lattice independence as follows. Say we start with a lat-
tice Ay, defining 7—[&%, projectors A and BMW, and physical Hilbert space Hphys =
A(l)B(l)Hl(;,lr)e. There are two “elementary moves” that change the lattice but leave the
physical Hilbert space unchanged, see e.g. [50, 51]. That is, applying one of these
elementary moves would give us a A, such that A, defines Hg% and projectors A
and B® with

AP BR19y2) — A4 1)1

pre pre *

(A1)
Each move is an isometry (or co-isometry, in the reverse direction) that we can write

down explicitly. To do so, we introduce the following controlled multiplication opera-
tors:

Definition A.1. Let He = Hr = He. Given the bipartite Hilbert space He ® Hr,
we call the first factor the “control” and the second factor the “target” when using the
following four controlled multiplication operators:

Crror|Welg)r = )¢ gh) 1 (A.2)
Crocr|h)el9)r = 1h) ¢ ‘h_19>T (A.3)
Corcr [N e l9)r = |h) e ‘gh_1>T (A.4)
Coo.cr M) 19)r = |h) ¢ |hg) (A.5)

The two elementary moves are as follows.
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Move 1: Add (or remove) a vertex

92 g2

g3 g3

gt 90 91 (A.6)

94 ga

gs
gs

Concretely, we define the isometry Vietex : Hélr?g — Hp()%)e in a two step process. First,
we tensor onto our state [1)) € HO the state |1) € He, where

1) = \/IFZ |9) (A7)
geG

is the state corresponding to the trivial irrep. Second, we act controlled multiplication
operators with the control being this new factor and the target being a set of links
attached to this vertex and all adjacent to each other. It doesn’t matter the order in
which we act these. In (A.6), the targets would be the g5 link and the g; link (or the
92, g3, g4 links). Which of the four control operations we use depends on the orientations
of the two links. If they are both oriented “in” towards the vertex, then we use Cf;
(the 11 stands for In-In). If the control is oriented in but target out, we use Co (for
In-Out), and so on. In total, in (A.6) we’d have

Viertex |91)1 19202 193)3 194) 4 95)5 = Cr1.05CT1.01 11) [91)1 192)5 193) 5 |94) 4 195)5

\/@Z 190)0 19190)1 192)2 193) 5 194) 4 |9590) 5

goclG

(A.8)

It is easy to confirm this satisfies Gauss’s law at both new vertices (if the original vertex
satisfied Gauss’s law), as well as any flatness constraint in any adjacent plaquettes that
satisfied it in the original lattice.

Removing a vertex happens by reversing the steps. In (A.6), we would remove
the go link by first acting with CI_I%OBCI_I%OI’ then acting with (1[,. Note this is not an
isometry, so we may be surprised that this leads to a sensible one-to-one identification
of physical operators. Indeed it does. The key point is that no matter what state we
start with in ABH e, acting Cj;l0;Cr;ly, is sure to put link 0 in the state [1),. In
other words, Vvlrtex might not be an isometry on H,e, but it’s bijective on the physical
subspace.
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An important special case of this move is to split one link into two:

g1
® grl * <— @ 9'0 ® > ° (A,Q)
In this case,
‘/Vertex |91 Z |90 }g() gl>1 : (AlO)
QOEG

Note that in the irrep basis this takes the form

Zm,lk 1 ki), - (A.11)

“kl

V;/ertex | ]J, U

Move 2: Add (or remove) a plaquette

g3 92 g3 g2

(A.12)
<
94 g1 4 g1

g5 g5

Concretely, we again proceed in two steps. In the first step, we append to |¢)) €
”Hl()lr)e the state |e) € Hg, where e is the identity group element. Second, we move
counterclockwise around the plaquette that was just formed (if two were formed, pick
one), at each link acting a controlled multiplication operator, with the new link as the
target. Which controlled multiplication depends on the orientations of the two links. If
the new link is oriented clockwise (respectively counterclockwise), then the target is [
(respectively O). If the other link is oriented clockwise (respectively counterclockwise),
then the control is O (respectively I). In (A.12), we would start by appending |e), and
then acting Crr50. Then we would act Cr109 and then Cpy99. In total we’d have

Vhlag |91>1 |92>2 |93>3 |g4>4 |g5>5 = Cr120C11,10C11 50 |€>0 |91>1 |92>2 |93>3 |94>4 |95>5

(A.13)
= ’929195% |91>1 |g2>2 ’93>3 |g4>4 \95>5

It is straightforward to see that the new plaquette has trivial holonomy. Here, gy ' 959192 =
e. We can see that Gauss’s law is satisfied at the two modified vertices (if they satisfied
Gauss’s law before) by writing out the states before and after explicitly.
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To remove a plaquette, we perform the inverse operations. Here we’d act

<€|o 5(1),5005(1),10 55,20- (A.14)

This is not an isometry on Hy,., but it still defines a one-to-one identification of physical
states and operators.

Note that it did not matter that we added a link inside of a plaquette that already
existed. It would have worked to take an unclosed set of links — which do not form
a plaquette and therefore do not satisfy any flatness constraint — and close them by
adding a new link. The new plaquette satisfies the flatness constraint regardless. The
reverse operation is also important: we can take a plaquette on the edge of a lattice,
then remove the outermost link.

Ribbon operator transformation

A ribbon operator F' acts on Hpnys and therefore must be represented on any associated
lattice. We can ask: given F,(h, g) acting on H&)e, what is the associated operator on
Hé%)e? The answer is that it is also a ribbon operator, now including the new link if a
plaquette was added along its path. For example:

g3 93'
921 ) Yolaa 5, (gy) g2t v 4 90 = g1 9293
g1 g'1
l Fy(h,g) l Ey(h, g)
93' 93'
hga4 ] N N Y 490 = (97" hg1)gr " 929
o 9

(A.15)
One way to see how F,(h, g) maps is to recall that Vji.q = C'le),, where C is a unitary
and £; is a new link introduced in the identity element state. Then we know that what
we want is an operator O that satisfies

VIY) € Honys . OV[Y) =V E,(h,g)[¢) - (A.16)
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This is satisfied by the anzats O = C(1y ® F,(h,g))Ct. In the plaquette example
(A.15), we have C' = C10.10C00.20, Coo,30, and we compute
C(Lo® Fy(h, 9))C" |90, g1, 92, g5) = C(Lo @ F,(h, 9)) |95 " 95 9190, 1., g2, 93)
= 04(91)C |95 93 ' 9190, 91, hg2, g3)
= d4(01) |g1_1h9190,917 hga, g3 )
= Ey(h, 9) 190, 91, 92, g3) -

We see that F,(h,g) has become a larger ribbon operator on 7/, which passes across

(A.17)

the gy link to act on the gq link.

Equivalence of the Hilbert Spaces

Now let us sketch the argument that the two elementary moves of Section 2.3 leave
the physical Hilbert space unchanged, and that each physical operator maps 1-to-1 to
a physical operator in the new Hilbert space. Consider Vigex. Let Ay = (Vi, Ly, P)
and Ay = (V, Lo, P») be two lattices related by a move as in (A.6). Without loss of
generality, say in A there is an n-valent vertex v; € V; with incident links ¢4, 45, --- £,
all pointing in toward v, while in Ay there is an m + 1-valent vertex vy with m < n
incident links ¢q, {1, - - - £,,, with ¢y pointing out from vy while the rest point inwards, and
an n — m-valent vertex vy with incident links ¢y, €11, bmio, - -+, €n, with all pointing
inwards toward v5,.

Ay and A, define pre-gauged Hilbert spaces HS% and Hg)e respectively. Moreover,
in our initial lattice A;, we have the constraint projectors

AWM — ® A

vEV(l)

bulk (A18)

B — ® BI(?D,

(1)
PEP, Ik

defining the physical Hilbert space Hé}l)ys = A(l)B(l)HSrZ:. Similarly, Ay comes with
constraint projectors A® and B®. Crucially, A® is very much like A% except that
AWM acts on v; while A instead acts on vy, vh. B? is like B! except possibly one or

two plaquettes now also involve the new link /3. By construction,

V;/ertex : H(l) — 7_[(2)

pre pre
A.19)
T .y(2 1 (
V;/ertex : H}E)r)e - Hl()rgs .
What we wish to show is that in particular
V;/ertex : A(I)B(l)ngi)e — A(2)B(2)%[()%)e <A20>
Ve : AOBOHE), — AW BOHO) (A.21)
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To show (A.20), recall that when acting Vierex We first append an ancilla in the state
|1), and then we act unitary controlled multiplication operators. Say we start with
state |1b) € HL that satisfies ADBM [4)). After appending the ancilla £y but before
the unitaries, we have the state

L)o@ ¥) 1. € Ho @ HOL | (A.22)

which satisfies
Lo(Q) ® (®?:1Rz‘(9)) |1>0 ® |¢>1n = |1>0 ® |¢>1n ) (A-23)
Ry(0) @110 [1)g @ [¥) ., = 1) ® [¥0), ., - (A.24)

To complete the action of Vieex We then act with the unitary operator

C = H C][}o,; . (A25)
i€{m+1,-,n}
It follows that
C<R0(g> ® ]ll---n)CTV;zertex ‘w> = ‘/vertex |w> . <A26)
We compute that
Crroi(Ro(g) ® 1)C]; o, = Rolg) @ Rig) (A.27)

and therefore

1
C (|—G’ > Ry(g)® 111...n> ch =A% (A.28)

geG

We have shown Ai) Viertex [) = Viertex [). Now we want to show the same for A,
We compute

OH,Oi(LO(Q) ® Ri(g))C;I,Oi = Lo(g) ® 1; . (A.29)
This implies

C (Lo(g) @ (®1=1 Ri(9))) CF = Lo(g) @ Ra(9) ® -+ ® Rin(9) @ Lynsa @ - @ 1y . (A.30)

It follows that A%)Vvertex [9) = Viertex |10). All that is left is to argue B® Ve [¢0) =
Viertex |¢).  This follows because the introduction of |1) does not change any of the
holonomies, and the action of C' also preserves the holonomies.

The reverse direction (A.21) and the analogs for the B constraints can be shown
similarly.
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B Central ribbon operators

Central ribbons

Here we derive the form of the central ribbon operators for a bipartition of the disk
into two regions b and b. We assume that both b, b are topologically D?, and db = db
is topologically an interval.

Theorem B.1. The center of the algebra Ay, associated to b is

Fo([h]) = ﬁ > Fy(w,g),

welh]
geG

where [k is the conjugacy class of k € G, and 7 is a ribbon whose spokes are 0b, and
whose spine is the path connecting the vertices in Vi, adjacent to links in 0b.

Note that two ribbons F, ([h]), F.,([h]), where 7, and 7, are anchored to the same
boundary endpoints, are the same ribbon provided that it is possible to deform ~; into
~v9 without passing through any charges.

First, we need some results and definitions that appear in [419]. We say that we
have a left joint when two ribbons diverge outwards from a common point, as shown
in Figure 13a. Similarly, we have a right joint when two ribbons converge towards a
common point, as shown in Figure 13b. Then we can use the following result from [49]:

Proposition B.2. Let 7; and v be ribbons satisfying a left joint relation. Then they
satisfy the following commutation relation:

Ey, (h, g) Fyy (k, €) = Foy (hkh™" WO F, (R, g). (B.1)

Let v3 and 4 be ribbons satisfying a right joint relation. Then they satisfy the following
commutation relation:

Foy(h, ) Fyy (ki 0) = Foy (k, Lg™ h ™ g) oy (, g). (B.2)

To prove our theorem, we need a number of intermediate results. The first is that
the ribbons of interest are the center of a particular set of ribbon operators,

Proposition B.3. Consider two ribbons v, that satisfy either a left-joint or a right-
joint relation. Then, for k € G, the ribbon operators

F () = T ZH £ (k. ). (B.3)
leG

commute with all possible ribbon operators on 4’ and ~.
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v

(a) Example of a left joint. (b) Example of a right joint.

Figure 13. The two types of joints between two ribbons.

Proof. We look for a ribbon on ~ that has this property.

F’Y,C = Z f(k>£)F7(k;> l) (B4)

kleG

Imposing commutation with an arbitrary ribbon on 4’ by plugging this into (B.1)
yields the condition
Vh, f(k,l) = f(hkh™', hl). (B.5)

The two combinations of k, [ invariant under this set of transformations are the conju-
gacy class [k] and [7'kl, so we find f(k,1) = f([k],I7 k).
The product of two operators on the same ribbon can be easily worked out to be

F(k, 1) Fy (b, g) = b1, (kh, 1), (B.6)
Imposing commutation of (B.4) with F,(h, g) gives

FyoFy(h,g) =Y f([K], g7 kg)F,(kh, g)

= > f(K).g WK B g F (B g)
=Fy(h.g) Y f(K],I7" hE B D) Py (K 1). (B.7)

k'eG

In the second line, we have defined ¥’ = h~'kh and used the invariance of the sum
under conjugation. The last line only equals F,(h, g)F, . if we take

Sk, 1) = f([E]). (B.8)

The right joint condition doesn’t yield any additional constraints. O
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This proposition will be sufficient to prove our theorem in the case without matter.
To include matter, we need some more results.

Proposition B.4. Central ribbon operators live on a special type of ribbon. The

ribbon v can end on a spoke, as long as that spoke borders only one plaquette in Py,
like

(B.9)

i

Below, we state this concisely as “central ribbons end on a spoke.”

Proof. We can see this directly from our definition. Focusing on ¢5 in (B.9), the operator
can be written as

Fabqh]):ﬁ S T () T () T (). (B.10)
welh],geG

Remembering that the operator Fy, (e, g1) projects the link ¢; to the value g;, we can
write the summand as

T, (W) Ty 05 (W) Ty 005,05 (W) = Z Fu,(e,91) L, (91 'wgn)Te, 55 (97 ' w001) Ty, 7 (97 wan).
g1€G

(B.11)
We exchange the g; and w sums, then define w’ = g~ 'wg and use y_ =, (because
we are summing over a conjugacy class) to find that

Féb([h]) = (Z Fél (67 g)) L Z Llﬂ (w)TZQ,[s (w)Tfﬂg,Z@' (w) (Blz)

Hh” welh],geG

The operator in the brackets is the identity operator, since it is a sum over a complete
set of projectors. Thus, we find that the central ribbon has no action on /¢y, justifying
our claim.

The proof extends straightforwardly to arbitrary ribbons ~. O]

The qualitative reason is this: we need to end a generic ribbon operator on Viqy
because it violates Gauss’s law at the end-point. But the sum over conjugacy classes
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already makes it commutes with Gauss’s law. We will call these special ribbons that
don’t end on Vyq,y while still supporting physical operators central ribbons.
The last intermediate result is the following:

Proposition B.5. The central ribbon operator Fy,([k]) on one side of a cut is the same
as an equivalent ribbon operator Fy;([£7']) on the opposite side of the cut. Thus this
operator lives in both algebras.

For example, the two ribbons in

o o 0
o o
N g N
sl U 6
o ) 0 (B.13)
0y by
o 7 o
1%
@] @] . ([

are related in this way.

Proof. The fundamental fact we need is that the electric operator on one side is the same
as the transported shift acting on the other side, Ry(h) = T;,(h™'). More generally,
denoting by pf the path obtained by adjoining ¢ to the end of p,

The(h) = Tppe(h7Y). (B.14)

Then, specializing to the example,

1 _ _ _
inb(h) = T Z TZLZl ('LU 1)T£2l75,f5 (w 1)T€2€326,€6 (w 1)' <B15>
H ]| welh],geG

But the parallel-transport along fo05 (£20505) is the same as the parallel-transport along
(407 (£4070g), and so we can shift the first argument in each 7" operator accordingly.
Then, by the same argument as in the proof of Proposition B.4, we can get rid of the
1. We then find the red ribbon in (B.13), where the shift parameter is summed over
(L] instead of [h], as claimed.

Again, the proof extends to other ribbons in a straightforward way.

Note here the importance of our requirement that the dual path b not intersect
any plaquettes containing matter. If any of them did contain matter, then we couldn’t
use flatness and the argument would not go through. O]
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Now we are ready for the following proof.

Proof of Theorem B.1. First, consider the case without matter, since the argument is
more direct. We first remember that the center commutes with every operator in b,
and that the algebra of b is generated by the ribbon operators. We consider three types
of ribbons: those that share no end-points with ~, those that share one, and those
that share two. Operators on ribbons that share no end-points with v can always be
deformed so that their support has no intersection with +. Those that share one, which
we will call 7/, can be deformed so that v, satisfy either a left-joint or a right-joint
relation. ~ and 4/ cannot cross per se, since such a 7 would leave b. Finally, any
ribbon that shares both end-points with ~ is topologically the same as « itself. So, the
non-trivial commutation relations to check are exactly those checked in Proposition
B.3. This proves it in this case.

In the presence of matter, there are many more topologically inequivalent ribbons
in b. So we opt for an indirect argument. Notice that any operator supported entirely
in b is in the commutant A, of the algebra A, of operators supported in b, for the
simple reason that spacelike-separated operators commute. Furthermore, the center is
defined exactly as 2, = A, N A;. Proposition B.5 shows that our ribbons satisfy this
property.

Finally, we have to show in both cases that these operators generate the full center.
Firstly, note that only ribbon operators containing (a) no projection along the magnetic
part and (b) a sum over the electric parameter weighted by a class function can be
deformed out of b. We need the first because if the ribbon projects the spine then it
has a non-trivial action on a link in Ly4yy; and we need the second to run the argument
that proved Proposition B.4 to make the electric action not depend on a link in Lygyy
(in our example, this link is ¢1). And if an operator has a non-trivial action on a link
in Lypgry U b, then it cannot be supported entirely in b.

Thus, the only candidates are operators that have the same structure as our central
ribbons, but supported on some ribbon 7’ that is topologically distinct from . It can be
topologically distinct for two reasons. The first is that there is some matter excitation
between the two. In this case, the operator on 7/ cannot be deformed to b because
it cannot cross the matter excitation. The second reason 7’ might be topologically
distinct is that it does not share both end-points with v. In that case also, we cannot
deform it to have support only in b. As an example, take the same lattice as before
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but a different choice for b,

(B.16)

Now, the blue ribbon is no longer supported on 0b; trying to deform it towards the
boundary of b, we get first the red and then the green ribbon. The reason is that the
operator has non-zero commutation with the holonomy shown as a thick gray arrow in
(B.16). (Note that this holonomy is a boundary-anchored Wilson line, and therefore it’s
gauge-invariant.)?® But this requirement causes the green ribbon to have the horizontal
parts above and below, so that it is always partly supported in b. So only a ribbon
supported on 9b itself can be deformed to b. O

Irrep Basis

It turns out that a Fourier-transformed set that measures the total irrep flowing out of
b is more useful for us.

Theorem B.6. The central ribbons

R DIROCEA(C) (B.17)
k]leG

are a complete, orthonormal set of projectors,

Fop (1) Fop (V) = Oy Fian (1), Z Fap(n) = 1. (B.18)

Proof. We first prove that they are projectors. Unpacking the definition, Fg (1) can
be written as

%mﬂgzmwﬁ%ﬁwm

= = > xulg)F(h.g). (B.19)

36This non-commutation is the true reason such a ribbon cannot be in the center. For a ribbon
supported on 0b, this holonomy is contained in neither Aj; nor Aj;, allowing our ribbons to be central.
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Here, v is the ribbon associated to 0b, as defined in the main text. To go from the first

line to the second, we use Y, . |[P]| 7' f([h]) = D pec,, F([P]) and 37, 0. > e f(w) =
2 nec F(h)-

Taking the product of two irrep ribbons,

dudy
Gr 2 Xl (W)B (g B (K, g)
g,h,g’ W' €G

G S (B () F (B g)

- 2
| ’ g,h,h' €G
dudu’ Tr—1 /
:WZ ZXu(hh )xw (B)
g’i:L h,

In the last line, we have defined h = hh' and used Dohh = D

To evaluate the quantity in the square brackets, we need to expand the charac-

Fo(1) Fap (W) =

Ey(h,g). (B.20)

ters in terms of representation matrices x,(h) = D% (h), summation assumed. These
representation matrices have the following orthogonality property,

ro G
> DE(h)DY(h7h) = ’d g 8ij O (B.21)
h

We apply it as follows,
> " Xl )xw(B') = DY (h) Y~ D () Dy (1)
hed hed

G
= Dj%(h) l |(5HH’6"'5J'

dp-
G
= |d_|Xp'(h)5M1/' <B22)

Plugging this back in to (B.20), we find the orthogonality of projectors, as advertised.
To prove completeness of the set of projectors we use character orthogonality in
the following form

> dxu(h) qu = |G|0n.e. (B.23)
i

We use this to evaluate

ZF(%( ’G| ZZdHXH Fab ])

heG u
= Fy([e]) = 1. (B.24)
Fsu([e]) is the identity operator because it neither shifts nor projects any links. O
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Non-commutation relation

We claim that two intersecting central ribbons, corresponding to 7 and +/, fail to
commute. Again, by intersecting we mean that v and 7 intersect at one point, as all
other cases can be deformed to this case assuming that the path of deformation does
not pass through any charges.

Theorem B.7. The central ribbons F,([h]) and F,/([k]) fail to commute. Here v and
~" denote paths on the lattice that intersect exactly once.

Proof. One way to show this is to just directly commute the two ribbons past each other
using the left and right joint relations. We will instead take the following route because
it has a nicer interpretation. Letting [1)) be any state on the lattice, we will show this
by directly demonstrating that F. ([h])F, ([k]) [¢) is not equal to F..([k])F,([h]) |¥).

Note that the only places where the operators can possibly not commute are on
the two links, a and b, located at the intersection of the two ribbons, as in the following
diagram. Here both a and b are located on the incoming spines of their respective
ribbons.

Y4

ga! a 73

"72

Figure 14. Two ribbons that intersect exactly once. We will call the links bordering the
intersection point a and b, so that the path of the blue ribbon can be written in the form
v = vy1a7y3, and the path of the red ribbon can be written in the form ' = y3b74.

We will also label the elements on these two links as a and b, so that |a) |b) is the
part of |[¢)) that we are concerned with. Without loss of generality we take a to be
located on the spine of 4/, and b to be located on the spine of v. We can also break up
the paths as v = yiay3 and 7' = by, i.e. into a piece that comes before the link and
piece that comes after the link. We let g,, denote the product of all the elements on
the links in «; in the order traversed by the ribbon, and similarly we let g,, denote the
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same quantity for 7. Then

Ey ([K)E([R]) |a) [b) = Fy ([K]) [b7" g3, hgn, ba) [b)
= [b7 g5 hgy,ba) |0 g W gy, by kg, b gl g, bab)
= [b~"hba) |a"b~ " h~ bkb ™" hbab)
(B.25)

where to get to the last line we took h — g;llhg71 and k — g;;kgw. Similarly,

F([h]) Fy ([K]) |a) [b) = F,([R]) |a) |a™" g2, kg, ab)
= |b_la_lg;;kgwag;llhgyla_lg;;kgwab@ |a_1g;21kgwab>
= |b’1a’1kaha’1kaba> ‘a’lkab>
(B.26)

where we again took h — g;llhg71 and k£ — g%lkgw. O

These two expressions are not equal. We can see this clearly by taking G to be
some continuous Lie group. In that case, we can write h = e ~ 1 + ieH and
k =e*“f ~ 1+ ieK. Then

FM ) EFE(5) |a) b) = b~ hba) |a kab + gy (B.27)
for some gg, and similarly
Fc[k] (’y’)Fc[h] () |a) |b) = }b_lhba + 629K> ‘a_lkab> (B.28)

for some gg.

C General subalgebras

As stated in Section 2.4, in general when we consider a subregion b of the lattice, the
subalgebra we associate to that b is not just the set of physical operators that act
trivally on its complement b. It is instead a larger subalgebra which includes some
operators that act non-trivially on b. In this appendix, we describe this subalgebra and
its center in detail.

The fundamental principle is that these subalgebras do correspond to subregions
of the reduced lattice. Once we convert the reduced lattice back to the full lattice,
that subalgebra turns out to be this novel type, not the one we would most naturally
ascribe to a subregion. That said, this is indeed a natural subalgebra to assign to
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(disconnected) b if you were interested in having the center of that subalgebra include
the operator that measures the net electric flux out of b.

The summary description of these subalgebras is as follows. Say b has n connected
regions. These subalgebras are the algebraic union of the natural subalgebra associated
to each connected region, along with a network of Wilson lines connecting all of these
subregions in pairs. These Wilson lines allow us to compare the electric flux leaving
each subregion. The center is generated by “fused ribbon” operators that measure the
total electric flux leaving all the subregions.

Subregion subalgebras on the reduced lattice

We use the notation of Section 3 for the parts of the reduced lattice. It has n vertices
V1 ...0,, wWith corresponding links /¢y .../¢, oriented out of the central vertex; together
these links form the set f9. There are also m lollipops [; ... [,,, which form the set f,.
In our figures, we will label ¢, with r and [, with »’. Together, f = fo U fio1 consists of
f1 .- fnem, numbered clockwise around the central vertex.

by

Figure 15. An example of the setup for this section.

The set of subregions we minimize over in the TN are subsets b C §f. We split b
into contiguous sets b ...b,. By convention, by = f; U ... fj,. Similarly, we split the
complement binto by .. .Bp, also arranged clockwise.
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Subalgebras for each component

For a factor f; € fs, the algebra A, (projected to the gauge-invariant subspace) is the
set of operators that act on the boundary vertex,

As, = {Ry,(h)|h € G} = D L(H,). (C.1)

Note that, when we factorize, f; will actually be the Hilbert space of the entire link,
but the gauge-invariant algebra on a single link is that on just one end of the link.

For a factor §; € fi1, the algebra consists of the closed ribbon operator that measures
the quantum double charge of the matter, and the operator that measures the irrep
of the stem. Call the algebra of closed ribbons A, ; the details will not be important
to us. To describe the rest, name the three links on the lollipop 4;,6;, i; (the stem,
boundary and heart),

: ¢ (C.2)
The other set of operators measures the total electric flux leaving the lollipop,
1
Lu(w) =15 > Xu(h) Ly, (). (C.3)
h

We can use Gauss’s law to rewrite the electric operator as a ribbon

. 1
Lh(u) = RJ(H ) = @ ZXu(h)j}'wdz(h)Tﬁudz(h)Ez,Jz(h)
heG

Il
®
S

a

N
SN—

Along with A, o, these operators generate Ay, .
Now consider a contiguous region b;. Apart from the operators on each factor,
there are now also ribbon operators F,(h, g), v C b;,

Abi = {F'Y(hvg)h/ c bi}/, \/ Af‘ (C5>

feb;

Under lattice deformations, these contiguous regions map to those considered in Section
2.4, and the center Z;, is generated by irrep ribbons Fyp, (1) of the sort defined there.
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The full subalgebra

With multiple components, the algebra A, is made out of three types of operators.
1. The additive algebra Ay, V ---V Ay, .

2. The Wilson lines Fy, (e, 9),V{fi,f;} C fo Nb. An example is shown in blue in
Figure 16.

3. The transported shifts 7} ; (h) acting on the stem of lollipop §;, with group el-
ement transported from v;. An example is shown in green in Figure 16. As in
(C.4), we can transport it to shift ; and 6; (on both ends) similarly to (C.4).

Figure 16. Examples of non-local operators in a region consisting of the links numbered
1,3,6 and the lollipop labelled 1’. In blue, a Wilson line from 1 to 3. In green, a shift acting
on the stem of 1/, transported to the boundary end of link 6.

The crucial fact is that we have arbitrary ribbons in each component, but only a
subclass of those that cross between components. This subclass is the one that doesn’t
contain any electric action; we call these the magnetic ribbon operators and the others
electric ribbon operators.?” These can be used to parallel-transport all electric actions
to any boundary vertex in b. We denote a group element parallel transported along

as h., so
Lf(hv> = T%Z(h)- (C.6)

The central operator is the fused ribbon operator

Fao(w) = ‘gl S valh) [T 26 (8). (©7)

hedG fi€b

37A more accurate name would be ‘non—purely magnetic,” but we opt for the shorter name.
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If f; € fiol, then Lj; = L,,. The reason we call it a fused ribbon operator is as follows.
We can see from the definition that it measures the total electric flux leaving b. This
irrep arises in the fusion of the fluxes leaving individual components, 1 ® ... 1, — H.
This can be seen at the level of the operator by defining the ribbons in each component

Py, (1) = T Ly, (n (C.8)

Fj€br

Here, 1 denotes the function 1(h) = 1. We can use the fact that the character is a class
function to parallel transport the group element to vy in (C.7); as a result, we can write

p
Fa(u qu W [T Fovwn (1), Fa, ( qu Fop 0, (h). (C.9)

hGG r=1 hEG

This is the sense in which the central operator for b is a fusion of the central ribbons
in the separate components.

Mapping to the Original Lattice

We are also interested in the algebra and center on the original lattice. It will be
instructive to begin with some examples.

Basic Examples

First, consider n = 4, m = 0, and take b = ¢, U /3, as shown in Figure 17. Do the “add
a vertex” move, such that ¢; and ¢35 are separated by the new link, which we call £,.
The constraints on the new lattice are Ly, (h)Lg, (h) Ly, (h) = Le,(h) Lo, (h)Rey(h) = 1,
and so the electric operator on this new link is neither in A, nor in A;. As a result,
the magnetic operator is in both algebras (or rather, since it is not gauge-invariant
on its own, it appears as a component of some operator in both algebras). This is
important, since this magnetic operator is required to parallel transport a shift on /3
to vy or parallel transport a shift on ¢4 to vy. Mathematically,

Ay = Ao VA V{Frues(e,9) ) A=Ay = A V Ay V { Frype, (e, 9)} - (C.10)

We can also derive this explicitly using the unitaries in appendix A; the Wilson line in
the reduced lattice maps to that in the bigger lattice. To find the central operator in the
new lattice, we write the one on the reduced lattice as in (C.9), with Fys,., = Ry, (h)
and F5€3;’U1 = Tég,lﬂ(h)'

This generalises to larger lattices; we define by 4 to be regions on the larger lattice
as in Figure 17. We include a Wilson line on the path p;3 that connects b; to bs3. The
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Figure 17. An example where the reduced lattice consists of four links.

central operator straightforwardly generalises (C.9)

Fy = 120 3 Xk, (1) P, (T, (1), 1) 1)
Gl
As a second example, consider two matter degrees of freedom, as shown in Figure
18. b consists of by = ¢1 U ly and by = [y, labelled 1’ in the figure. For Fi,.,, in the
fused ribbon operator, we use (C.4) to deform it as in the rightmost arrow of the figure.
This is the ribbon deformation shown in the rightmost arrow of Figure 18. Following
this through the lattice deformations, we find

Z Xu(h)}%bl (h7 1)F5b2 (h“ﬂ 1) . (0'12)
heG

1
Fy = —

ob |G|
First we remove a vertex (second arrow) and add five vertices (all but one of the ones
adjacent to the red links). The add/remove a vertex move acts on a transported shift
by transporting a shift to the same origin vertex (v; in this case); the path of the
parallel transport includes the original path along with a subset of the new links.

Figure 18. Second example.

This can be found without explicit computation. Remember that the central oper-
ator is a fusion of central ribbon operators, all parallel-transported to the same vertex.
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Notice that b on the reduced lattice separates by = (53Ul Ul from by = (g ULy (labelled
2" in the figure). Similar to how electric ribbons can’t cross from b; to by, they can’t
cross from by to by. Thus, (a) the central ribbons that make up the fused ribbon must
surround by, by respectively without surrounding anything else, and (b) the parallel-
transport path should separate b, from b,. The central ribbon surrounding by is no
different from that considered in Section 2.4. To find the one surrounding b,, we first
note that a central ribbon must end on links which border only one plaquette in P,y
There are three such ribbons surrounding /; on the larger lattice, o in Figure 18 along
with the following ribbons,

2 3 4
@]
2k 1/ (C.13)
O
1 6 5)

but only one of them does not separate /5 from ¢, 3. Here, it is important to remember
that the green ribbon shifts the group element on the link it ends on, and that link
cannot be used for parallel-transporting in the complement region. Similarly, there is
only one path from the end of this ribbon to v; that separates by from bs.

A Complicated Example

Finally, we should consider the possibility that the matter degree of freedom is deep
in the original lattice. Unlike the above case, the central ribbon passing through the
matter link cannot live on just one plaquette, since commutation with the plaquette
constraints requires that central ribbons end on links bordering only one element of
Pouk. On the reduced lattice, it does live on just the one plaquette in the lollipop.
When we go back to the original lattice, we have to use (A.15) to extend the ribbon
while modifying the lattice.

Let us see an example, shown in Figure 19. On the reduced lattice, b has three
components, by = l, by = {3 and by = [3.*® Similarly, b has three components b, = I,
by = l3...0y and by = {l;...¢;}. The relations between the numberings was found
by explicit lattice transformations (not shown here, in order to preserve the reader’s
sanity). Note that the correspondence is not unique.

38The numbering is off from previous conventions by 1, due to a clerical error that propagated till
it was too late to change it. Please bear with us.
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Figure 19. A big lattice where b contains a matter degree of freedom deep in the lattice,
along with its corresponding reduced lattice.

Because ¢, and (5 separate I, from the rest of b, the Wilson line connecting them
must go around the corresponding matter vertex. This tells us how to parallel transport
Fsp,(h,1) = L3(h) to vy to fuse the ribbons.

The situation with b3 = [g is more interesting. We have to be very careful that the
central ribbon avoids all matter links, while ending at the right place on the boundary.
To find the right end-point, note first that [ lies between f19 and [l;. So the ribbon
should separate these two. However, it must not separate ¢19 and [5. Visually, it is
clear that the only ribbon which satisfies this property must change orientation! The
simplest way to deal with this to add new links like the red on in Figure 19. Then the
central ribbon as drawn has the right properties.?® The central operator is the fusion
of the three ribbons, parallel-transported along the purple paths.

Finally, there is the issue of the physical interpretation of the central ribbon oper-
ator for by, Fy,(1). In the reduced lattice, it clearly measures the electric flux leaving
bs; but this is not so clear in the original lattice.

The Lessons

The algorithm to map the central operator is as follows. First, remember that there
is a unique bijective correspondence between matter degrees of freedom and boundary
vertices on the two lattices. Labelling these physical degrees of freedom in the same

39 Alternatively, one could mathematically define a twisted ribbon on the original lattice. Just use
the relation between left actions and right actions on the links being shifted twice, along with flatness
of the new plaquettes bounded by red links.
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way on both lattices, A, on the original lattice is not the algebra of all operators in
some subregion. Each A, is, but there are also some magnetic operators connecting
the different components. The set of extra magnetic operators are the ones that don’t
commute with electric ribbons that cross from b; to Ej.

The central ribbon for each component can be fixed using the topological proper-
ties as above. We might need to add a small number of new links to easily describe
the corresponding operator. The area operator is the fusion, like in (C.9), of ribbon
operators surrounding each component b;.

A subtlety with our tensor network

Let us look again at Figure 19, keeping in mind that we are building a tensor network for
the boundary links. Suppose we define the tensor network using the lattice deformations
shown there and find upon minimization that the entanglement wedge of the boundary
region B = f, U (5 is the region b. Notice the following oddity: the region B is a
contiguous set of boundary links in the original lattice (and it is also contiguous in the
reduced lattice once we project out the lollipops). However, two subregions of B are
topologically separated by the dressing of the matter [g.

This never happens in AdS/CFT. If B is an interval, then any two points in B can
be connected through the bulk by a path that doesn’t leave the entanglement wedge.
In particular, in the continuum TQFT description, all Wilson lines stretching between
any pair of points in B which are homotopic to a sub-interval of B are included in the
entanglement wedge subalgebra. (They measure things like two-point functions and
entanglement of subintervals [28, 29].) So, our tensor network is a bad toy model for
gravity if subalgebras like this form the entanglement wedge. It will be important to
address this in future work.

There is a second oddity. Suppose, in the example of Figure 19, that the lollipop
[, was also included in 0. In that case, even though the plaquettes containing I, and [g
are adjacent to each other, the algebra does not contain ribbons stretching from [y to
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lg. The central ribbon operator is then

N
1 |2 3 4
(o] o Q Q
)|
16 o T o 5
1] ]y2 (:a’
15 o = o 6
— 8L il 4 (C 14)
14 o (4 07 )
o % o
e
13 © - o 8
o o o o

Despite the bulk region being contiguous, the algebra is still a fused subalgebra of two
subalgebras dressed to different parts of the boundary.

We look forward to dealing with these subtleties in future work. For now, let
us note that we can get around this by restricting our matter to be electric. That
means that the flatness constraints are not modified. In the example of Figure 19
(where we return to the case where [y is excluded from b), note that the green ribbon
around [g shifts the links below it twice, once with a left-multiplication and once with a
right-multiplication. If the matter doesn’t have magnetic charge, the parallel transport
around the plaquette containing ls is equivalent to a parallel transport along the link
itself (by the flatness constraint). Now, note that for any link ¢

Li(h)Ty 5(h) |g), = |hg(g'h7g)) = lg). (C.15)

Thus, the green ribbon only acts as a shift on the matter,

(C.16)

o (o) fe} fe}

The only role of its spine is to parallel transport the group element. But, because of
flatness, the exact path of parallel transport is immaterial; only the origin (in this case,
{5) matters. Thus, the fused ribbon can be deformed to completely avoid the plaquette
containing [7, opening up a path for a ribbon to cross between the two components of
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12 11 10 9

Let us sketch the general argument. For general matter, the reason that A, does
not include general ribbons from /5 to lg is that they are not adjacent on the reduced
lattice. But this is somewhat arbitrary, since different lattice deformations can result
in different reduced lattices. The ordering of the boundary vertices is of course fixed,
but the ordering of the lollipops is not so. We state without proof that we can move
the lollipop around on the reduced lattice with a braiding unitary.* A braiding of a
quantum double charge (which general matter that modifies both types of constraints
carries) and electric charge is not trivial, but the braiding of electric charges with each
other is [35]. Denoting quantum double charge with R, R® u # u® R4 Thus, if the
matter is purely electric, then we can braid all the matter lollipops to be adjacent to
one of the boundary links we began with, and the unitary is trivial.

D Tripartite information in the DG model

We show that there are four-party states such that the tripartite information (4.3)
satisfies (4.4). Consider a reduced lattice with four links b;_4, in a state [¢)) such that
the states Fuy, (1) 1)) are factorised between b; and the complement, so that all the
entanglement entropy is edge mode entropy.

Assume that the four links have fixed irreps @y 4. This is a reasonable approx-
imation for holography, where we can make the fluctuations of four non-overlapping
extremal surfaces small to leading order in G .

Let us then calculate a bound on the tripartite information. The positive contri-
butions are

S, =logd,,, r=1,2,3, Sia3 = Sy = logd,,. (D.1)

40 An example of this can be found in the appendix of [43] for an example.
41This is not the tensor product physicists are used to. The notation X is common in the Hopf
algebra literature for this abstract tensor product.
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The negative contributions can be bounded above as
Spe <logd,, d,,, r=1,34, (D.2)

since the fusion of the two irreps Ws, W, necessarily gives a subspace of u, ® p,. Using
Si3 = So4, the tripartite information can be bounded below

4

I(by:byibg) =Y Sp— Y Sy > —2logd,,. (D.3)

r=1 r=1,3,4

Thus, (4.4) must be satisfied, as long as I3 is negative.

We have to fine-tune the group and class of states to make I3 < 0 and match
holography. We have not done so in this work, and hope to do so in later work.
However, this argument shows that once we make the relevant choices to make I3 < 0,
the tripartite information automatically has the right limit.

E Uniqueness of the factorization map

Our factorization map might seem like an obvious consequence of the gauge-theoretic
description, but we should be more careful. This obviousness comes from the fact
that we defined the physical theory using unphysical gauge degrees of freedom, and
the factorization map consists of re-introducing some of these. However, this is not a
unique affair; for example, there are dualities in which the same physical system can
arise from gauging different groups on the two sides of the duality.

Furthermore, in the bipartite case, there is in fact an irreducible ambiguity. The
center is a commutative algebra, and so there is, a priori, no constraint on the edge
modes [40]. [40] also found that, in JT gravity, the inclusion of matter resolves this
ambiguity. [54] showed that, once we fix the edge mode von Neumann entropy, the
entanglement spectrum of each |x) in (4.7) is completely fixed by the form of holo-
graphic Rényi entropies. In this section, we show a similar uniqueness theorem for the
edge modes we have introduced in this work. Our basic tool is the consistency of the
multi-party factorization.

The fusion multiplicities of the irreps are defined by p ® v = @pp@NSV. The
identity irrep 1 satisfies N; = d;. There is an important relation between the fusion
multiplicities Nf, and the quantum dimensions, see [79] for a physicists’ explanation,

Proposition E.1. [80, 81] Regard the fusion multiplicities with one index p fixed as
a matrix,

(N,)8 = NG, (E.1)
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Then, the quantum dimension is the largest eigenvalue of this matrix. In other words,
there is a set (a,), such that

(Nya)y = dyay, and lim (IN})§ = djjaya’. (E.2)

n—oo

Our uniqueness theorem is the following:

Theorem E.2. Consider the DG model (without matter) on a reduced lattice for D?
with m links, and call its Hilbert space H,,. Assume the existence of a factorization
map J : Hpy < HY™, for some Hy, satisfying the following two properties:

1. For any subset b, define Hy as the tensor factor of Hy™ on which Ay lives. The
first condition is that for any state |) € Hp,

J ) = ZFab VY)Y @UU" |xy) , U e L(My), U € L(Hp) (E.3)

where W is valued in the irreps of G and |x,) is a state in an auziliary bipartite
Hilbert space H,; @ Hy,r, such that both the state and auziliary Hilbert space are
completely fized by w. U, U’ are isometries that embed this abstract bipartite state
into the HY™.

2. |x1) is a factorized state.

Then,

Xu) = Z i) (E.4)

H.l

Proof. Since our final aim is to prove a statement about the edge mode state |x,), we
can choose a specific lattice and state |¢)) that are most convenient for us.

Take a reduced lattice with 2n links. We will work in the limit n — oco. Call the
links 41, ,,¢; , and let them all be oriented out of the central vertex. Denote by 7,
the path ¢,4;. Define the subregions b := ¢, U ... ¢, and b, := {, U {;.

The state we work with is the following:

[tbo) - H[ZD wg)] 1)%%". (E.5)

r=1 LgeG
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Here i,j are some fixed indices in H, that won’t play a role below. It is useful to
abstract away the lattice and keep track of only the fusion structure,

1
p———
oy = | (E6)
p—_—"_
The state can also be written as
I + I u21 p
fo————— I v, a 1
: Z dn Z : : ’ (E.7)
n K a=1
=" e "

a denotes the various copies of v that appear in the fusion, and each copy is orthogonal.

We calculate the reduced density matrix p, and more specifically tr p?, of the region
b in two ways, using the two representations of the state. We have implicitly used J
(acting on the original 2n links) to define p. Similarly, we define p, as the density
matrix for b,.

The first calculation follows simply from the fact that the irrep flowing out of the
region b, is the identity irrep. This is because F, € A , and the operator Fg, (1)
that measures the irrep is in the center of A, , so

Fip, (W) [t0) = Sy1 [¢0) - (E.8)

As a result, p, is a pure state, meaning that

p=0Q) e, =R UxuU". (E.9)
r=1 r=1

Finally, this means that
trp? = [trx?]" = [tr PV = tr X (E.10)

where we have defined y,, as the reduced density matrix of |x,) on one of the factors.
The second calculation uses the second representation of the state in (E.7). Using
the fact that each total irrep v and each copy of v is orthogonal, the reduced density

matrix is
n] [lNﬁ],vl ) 12u
. Z 2 N, mE | Q@ (B
¢ " nH
= @pvpv ® UXVUT,
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where p, is the object in square brackets and p, is the scalar prefactor. In the limit
n — 00, we can use Proposition E.1 to simplify

dy [N7]”
pv _ I:dnuj|p TL—>OO, d.\,avau,
w
I e 1
Pv = v ” mava (Elz)
LN dyavay
Then,
di(avay,) trx§
trp?=>> pitrplteyd = g
v v
al/n 1
= [trp!]’" = =g (E.13)
n

In the first line, we have used tr (14/d)? = d*~%, and in the second line we have used
the fact that the numerator in the rightmost expression on the first line does not scale
with n in any way.

Comparing (E.10) and (E.13), we find

L4
trxg = = — Xu =~ =5 (E.14)
H n
This means that |x,) can be written as (E.4) in some basis, proving our claim. O

We expect that a version of this theorem holds in a much more general class of topo-
logical field theories than doubly gauged models. Topological field theories (including
the DG model) are believed to be specified by unitary fusion categories, see [61, 82| for
an introduction. We have not assumed any particular braiding relations between the
excitations, and so we can apply it to any unitary fusion category. In general, quantum
dimensions need not be integers, and the trace on the edge mode Hilbert space might
be a quantum trace. Our theorem allows this possibility (since we never used cyclicity
of the trace). The result that generalizes is the fact that tr x{ = dijq. There is some
evidence that quantum traces are relevant in gravity, with edge modes satisfying this
statement [30, 31, 83].

Finally, this result should be compared to the result of [40], which states that adding
matter fixes the entropy of the edge modes. In our model, our result states that the
entropy of the edge modes is fixed by the structure of the multipartite algebra. We can
also consider our result to be a theorem fixing the edge mode entropy by incorporating
matter effects, if we imagine that all the excitations live on bulk matter degrees of
freedom.
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