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Abstract: Holographic tensor networks model AdS/CFT, but so far they have been

limited by involving only systems that are very different from gravity. Unfortunately, we

cannot straightforwardly discretize gravity to incorporate it, because that would break

diffeomorphism invariance. In this note, we explore a resolution. In low dimensions

gravity can be written as a topological gauge theory, which can be discretized without

breaking gauge-invariance. However, new problems arise. Foremost, we now need a

qualitatively new kind of “area operator,” which has no relation to the number of links

along the cut and is instead topological. Secondly, the inclusion of matter becomes

trickier. We successfully construct a tensor network both including matter and with

this new type of area. Notably, while this area is still related to the entanglement

in “edge mode” degrees of freedom, the edge modes are no longer bipartite entangled

pairs. Instead they are highly multipartite. Along the way, we calculate the entropy

of novel subalgebras in a particular topological gauge theory. We also show that the

multipartite nature of the edge modes gives rise to non-commuting area operators, a

property that other tensor networks do not exhibit.
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1 Introduction

Holographic tensor networks [1–8] are toy models of the holographic map from anti-de

Sitter space (AdS) to the dual conformal field theory (CFT). See Figure 1. While

imperfect models in many ways, their simplicity and concreteness have already allowed

us to make rigorous statements about the emergence of spacetime [2, 9], the quantum

extremal surface prescription [1, 3, 10, 11], reconstruction complexity [12], and the

black hole information paradox [11].

In this note we propose a way to improve these models so that they might continue

to offer insight. So far, perhaps tensor networks’ biggest limitation has been their lack

of time evolution. Straightforward attempts to add interesting local time evolution

in the “bulk” fails to match any local time evolution of the dual “boundary” theory.1

Long term, we would like to fix this shortcoming, adding time evolution and obtaining

a completely explicit instance of holography.

In pursuit of that goal, we can ask: why have tensor networks failed to include

time evolution, when the AdS/CFT duality succeeds? One glaring difference is that in

gravity the diffeomorphism constraints make the physical Hamiltonian a local integral

along the boundary. This leads to an easy match to a local Hamiltonian in the dual

theory. Therefore, a sensible first step towards adding time evolution is to construct

tensor networks that have this feature of gravity, with strong enough constraints that

something similar happens, allowing us to reduce the Hamiltonian to a boundary term.

At first, however, this appears intractable. Tensor networks involve a discretization

of spacetime, which inherently breaks this very diffeomorphism-invariance that we’d like

to have. Nevertheless, in low enough dimensions there is a trick available to us. We

can change variables and describe gravity as a certain kind of topological quantum field

theory (TQFT) [17–19]. The idea is to define a gauge field as a particular combination

of the vielbein and spin connection, transforming the Einstein-Hilbert action into that

of an SL(2,R)× SL(2,R) Chern-Simons theory.2

The advantage is that discretizing the TQFT no longer means breaking diffeomorphism-

invariance. This is because the metric is not a property of the “base space” the TQFT

lives on, and instead is encoded in the dynamical fields. The diffeomorphisms become

1See [13, 14] for discussions of the difficulties in adding interesting time evolution. See [15, 16] for

one approach to a solution that does not seem to utilize gravity-like physics in the bulk.
2While these theories match at the level of the action, there are important known differences at the

level of the path integral. For example, the natural gauge theory path integral would integrate over

configurations corresponding to non-invertible metrics, which are not included in the gravitational

path integral. These subtleties will not concern us, because it seems they can be addressed by using

an appropriately modified TQFT [19] called the Virasoro TQFT, and our main discussion will not

rely on details of any particular TQFT.
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Figure 1. An example tensor network. On the left is a graph representing the “bulk” Hilbert

space Hbulk, analogous to a discretized version of AdS. The links represent the geometry. On

the right is the “boundary” Hilbert space Hbdry analogous to the CFT. The holographic

tensor network is a linear map V : Hbulk → Hbdry, analogous to the holographic map.

“internal” gauge transformations on these fields rather than transformations of the base

space itself. Hence we can try to discretize this TQFT and include it as part of the

tensor network’s bulk Hilbert space.3

We immediately run into a problem. The holographic entropy formula is different in

the TQFT description, in a way that is not obviously compatible with tensor networks.

Recall in AdS/CFT (in time-reversal-symmetric situations), the von Neumann entropy

of a CFT subregion B can be computed by [24–26]

S(B) = min
b

(
⟨Âðb⟩+ S(b)

)
, (1.1)

where the minimization is over AdS regions b whose boundary ðb is homologous to B,

and Âðb measures the area of ðb. Traditional tensor networks satisfy a similar formula

[3], where ⟨Âðb⟩ grows with the number of links cut by ðb. Of course, when we describe

the AdS with the TQFT, the same formula (1.1) holds. However, in this description

the area operator Âðb should be understood differently! The relevant metric is now

3Putting Chern-Simons theories on the lattice is a hard problem in general. However, pure gravity

is parity-invariant. Parity-invariant Chern-Simons theories based on compact groups can be latticized

as string-net models [20], which include the quantum double models we will study below. String-net

models are the Hamiltonian description of Turaev-Viro models [21]. Gravity is not based on a compact

group and so doesn’t fall into this category; some progress for this case has been made in [22, 23].
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a function of the gauge fields; Âðb is a certain Wilson line [27–31]. When there’s no

matter, the theory is topological and this Wilson line gives the same answer evaluated

along any path:

(1.2)

Another way to say this is that the TQFT lives on a spacetime with a metric that is

irrelevant. The operator Âðb is the area of a surface evaluated in the AdS metric, which

is like the target space of the TQFT. This offers a challenge for tensor networks. We

would not obtain an entropy formula with a property like (1.2) if we followed perhaps

the most straightforward method to incorporate the discretized TQFT into existing

tensor networks, from [4–8]. Those tensor networks lead to an entropy formula with

⟨Â⟩ scaling extensively with the number of links along ðb.4

The point of this note is to solve this problem with the area operator. In Section 3

we construct a tensor network with a holographic entropy formula like (1.1), but with

an area operator that is a gauge-invariant function of the fields that encode the metric,

analogous to the one in the TQFT description.

To study this problem, we will not need the full sophistication of SL(2,R) ×
SL(2,R) Chern-Simons theory. Instead we will work with a toy model with the same

subtlety, a much simpler topological theory that we describe in Section 2, which we call

the “doubly gauged (DG) model.”5 We then define a linear map from this DG model

with matter to a “boundary” Hilbert space, in Section 3. This bulk-to-boundary map

(or “holographic map”) is a new kind of tensor network. We explain the motivation

behind the construction in Section 4.

We start with a setup as in Figure 1, like all holographic tensor network models.

There are two tweaks. First, the bulk Hilbert space now includes a topological lattice

gauge theory on the links. Second, the holographic map (the tensor network) is defined

4This sort of extensive contribution is related to the one that appears in the conventional calcu-

lations of entanglement in TQFTs [32–34], in which entropy is calculated by introducing a lattice

regulator, leading to a subregion entropy with a term proportional to the area of the boundary of the

subregion. We do not want to compute entropies this way, because the gravitational entropy should

be independent of the way we choose to regulate the auxiliary space the TQFT lives on [27–31].
5Our doubly gauged models are Kitaev’s quantum double models [35], but with projection onto

the ground space enforced as a constraint.
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in a different, more topological way. The boundary Hilbert space is essentially the same

as before. The result is that now boundary entropies satisfy (1.1) but with a different,

topological Â. The minimization is over where to put the cut ðb relative to the matter.

This new area operator leads to two striking properties of this model, which we

now describe. The first striking property of our model is that its area operators do not

commute, which is a desirable match to gravity [36]. In previous tensor networks, given

two overlapping boundary subregions B and C, one could generally find a bulk state

such that the area operators associated to both B and C had arbitrarily small fluctu-

ations. This is impossible in real AdS/CFT, because of the gravitational constraints.

It is also impossible in our tensor networks, also because of the constraints.

The second, related property is that this area term is the entanglement of naturally

multipartite-entangled edge modes. As in all tensor networks, the “area” term in the

holographic entropy formula quantifies the amount of entanglement in the “edge modes”

across the cut. Historically, the edge modes in tensor networks have been local and

bipartite: each link is a projected entangled pair. The area term simply counted the

number of bipartite entangled pairs that were separated by the cut (this is why the area

grew extensively with the number of cut links). See Figure 2a. In our new model, this

part of the story is completely different. The degrees of freedom entangled across a cut

are not in spatially localized, bipartite entangled pairs, but are in multiparty-entangled

states. See Figure 2b.

These multipartite edge modes arise from a choice of factorization. Given a lattice

gauge theory and a cut defining a subregion, there are many prescriptions for embed-

ding the Hilbert space into one that factorizes across that cut, see e.g. [37–40]. The

conventional choice, introduced in [41, 42], leads to the insertion of a number of de-

grees of freedom scaling extensively with the area of the cut. However, there is one

prescription that works differently, discovered by Delcamp, Dittrich, and Riello (DDR)

in [43], see also [44, 45]. We utilize this prescription, along the way generalizing it to

new contexts.

This note is organized as follows. In Section 2 we introduce the topological gauge

theory. In Section 3 we turn to tensor networks, explaining our new construction. We

also explain the “commuting areas problem” and how this new construction avoids

it. In Section 4 we discuss factorization of gauge theories and argue that the choices

made in the construction of the tensor network are fairly rigid. In Section 5 we explain

the gravitational description of our networks (which is somewhat obscure in the gauge

theory description), and connect it to other work such as [46]. In Section 6 we conclude

and discuss future directions.

While this manuscript was in preparation, the work [23] appeared. They also

discuss the topological description of gravity in the context of a tensor network, and
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(a) (b)

Figure 2. A difference in the entanglement structure of “edge modes” in traditional tensor

networks (Figure 2a) and the tensor networks from this paper (Figure 2b). We consider

two overlapping boundary regions, a blue one and a green one, and we have drawn their

homologous bulk minimal surfaces as dashed lines in their respective color. In 2a, there are

pairs of red dots, each pair associated to a link and representing bipartite entangled degrees

of freedom. The entanglement entropy across each dashed line grows extensively with the

number of links cut. Moreover, the “area operators” associated to each dotted line generally

commute, because they are associated to the entanglement between different pairs of red dots.

In 2b, the entanglement is no longer bipartite. Instead, the red dots are in one multipartite

entangled state, and the entanglement entropy does not grow extensively across the dashed

lines. Furthermore, the two area operators do not generally commute, because the allowed

four party entangled states with fixed spectrum across the blue cut will not also have fixed

spectrum across the green cut.

find a similar non-extensive area operator. Our works agree qualitatively but explore

different aspects. In particular, in this paper we have a bulk Hilbert space with matter

and consider the physics of overlapping area operators. In [23], while they do not

include matter, they use a more realistic TQFT. It would be interesting future work to

combine these constructions.

Notation and conventions

A lattice Λ = {V, L, P} is a set of a collection of vertices V , a collection of links L,

and a collection of plaquettes. A subregion b = {Vb, Lb, Pb} is a set such that Vb ⊆ V ,

Lb ⊆ L, and Pb ⊆ P . We will use ðb to denote the set of links connecting a vertex in b

to a vertex in the complement of b.

– 6 –



2 Doubly gauged lattice models

The goal of this note involves incorporating a topological gauge theory into a tensor

network. This section introduces the topological lattice model we will use, and then

discusses important properties, including its algebra of operators and insensitivity to

the lattice.

2.1 Hilbert space

First we consider the case without matter. The model is essentially Kitaev’s quantum

double model [35] restricted to the ground space. Let G be a finite group, Σ an oriented

2D surface (possibly with boundary), and Λ = (V, L, P ) be an arbitrary oriented lattice

on Σ, where V, L, and P are the sets of vertices, oriented links, and plaquettes of the

lattice respectively. We restrict to Σ = D2 for this work, though we expect it to

straightforwardly generalize to the cylinder Σ = S1 × I as well. For every ℓ ∈ L, let

Hℓ := HG := L2(G) be a Hilbert space associated to that edge, spanned by the basis

{|g⟩ : g ∈ G}, which we call the group basis.6 Note that there is another basis for

Hℓ that will be convenient later, called the “representation basis”: By the Peter-Weyl

theorem (see e.g. Appendix A of [47] for an introduction), the Hilbert space decomposes

as

HG =
⊕
µ∈Ĝ

Hµ ⊗Hµ∗ , (2.1)

where Ĝ is the set of irreducible representations (irreps) of G. The representation

basis is spanned by orthonormal states |µ, ij⟩ where i, j index the states in Hµ,Hµ∗

respectively. The Hilbert space associated to the collection of all the links is

Hpre :=
⊗
ℓ∈L

Hℓ , (2.2)

which we call the “pre-gauged” Hilbert space. This Hpre has a natural basis of states

of the form ∣∣g1, ..., g|L|〉 , (2.3)

which we will use often.

6It will sometimes be convenient to allow ourselves to reverse the orientation of a link while leaving

the physics unchanged. In general we will refer to the reverse of the link ℓ as ℓ̄, and use the isomorphism

between Hℓ̄ and Hℓ given by |g⟩ℓ̄ ∼=
∣∣g−1

〉
ℓ
. Note that a given set L is only allowed to contain one of

ℓ and ℓ̄.

– 7 –



We define the following operators. The shift operators Lℓ(h) (respectively Rℓ(h))

act on Hℓ by left (right) multiplying by h (h−1), i.e.

Lℓ(h)
∣∣g1, ..., gℓ, ..., g|L|〉 = ∣∣g1, ..., hgℓ, ..., g|L|〉 ,

Rℓ(h)
∣∣g1, ..., gℓ, ..., g|L|〉 = ∣∣g1, ..., gℓh−1, ..., g|L|

〉
.

(2.4)

These are sometimes also called the ‘electric’ operators.7 The ‘magnetic’ operators are

defined as follows. Let ρ be a path through Λ, i.e. an ordered collection of vertices

{v1, v2, ..., v|ρ|}, each vertex connected by a link to the one before and after. Let ℓi be

the link connecting vi and vi+1. Let Wρ(f) be defined to compute the product of the

group elements of the edges connecting the vertices in ρ and then apply the function

f : G → C to the product. The prescription for computing the product is to start at

the first vertex and then move along the edge connecting it to the next vertex, right

multiplying by the associated group element, and inverting that group element if that

edge is oriented opposite relative to the direction of travel. If we call this product

gρ ∈ G, then we can write

Wρ(f)
∣∣g1, ..., g|L|〉 = f(gρ)

∣∣g1, ..., g|L|〉 . (2.5)

One useful function f is the Kronecker delta δh(g) which equals 1 if g = h and 0

otherwise.

We use these to define the operators that appear in the gauge constraints as follows.

Define Av(g) to act on edges that touch v ∈ V by Lℓ(g) (or Rℓ(g)) if the link is oriented

away (towards) v. Let (v, p) denote the counterclockwise path around plaquette p

starting at vertex v. Define B(v,p)(h) = W(v,p)(δh) to annihilate a state where the group

element around (v, p) is not h, and to be 1 on states where it is. For example,

(2.6)

7Note that these two shift operators are related by reversing the orientation of the link, i.e. Lℓ(h) =

Rℓ̄(h).
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These operators can easily be shown to satisfy the algebra (known as the quantum

double algebra),

Av(g
−1) = Av(g)

†

Av(g)Av(h) = Av(gh)

B(v,p)(g)B(v,p)(h) = δg,hB(v,p)(h)

Av(g)B(v,p)(h) = B(v,p)(ghg
−1)Av(g) .

(2.7)

To define the physical Hilbert space, we will need the projectors

Av :=
1

|G|
∑
g∈G

Av(g)

Bp := B(v,p)(e) ,

(2.8)

where v is any vertex adjacent to p and e ∈ G is the identity group element. (Note

that when h = e, B(v,p)(h) depends only on p and not on the choice of v.) These satisfy

Av(g)Av = Av

B(v,p)(h)Bp = δ(h, e)Bp .
(2.9)

(2.8) are both projectors by the following argument. By the above equation, AvAv =

Av, and by the invariance of
∑

g∈G under g → g−1 we have Av = A†
v. Likewise,

BpBp = Bp and manifestly Bp = B†
p. Using (2.7), one can check that for all v ∈ V and

p ∈ P , [Av, Bp] = 0.

We now will use these to build projectors onto the “gauge-invariant subspace.”

First, for generality let there be a subset Vbdry ⊂ V of vertices and Pbdry ⊂ P of

plaquettes that we will not impose constraints on. These include plaquettes and vertices

at the boundary of Σ and also any plaquettes that encircle non-trivial cycles of Σ. Let

the complements of these sets be Vbulk and Pbulk. Define the projectors onto the gauge-

invariant subspace

A :=
⊗

v∈Vbulk

Av ,

B :=
⊗

p∈Pbulk

Bp .
(2.10)

A projects onto the subspace satisfying Gauss’s law at each (non-boundary) vertex, and

B projects onto the subspace with a trivial holonomy – i.e. flat connection – around

each (non-boundary) plaquette. Define the physical, “gauged,” Hilbert space

Hphys :=
Hpre

Gauss× Flatness
:= ABHpre . (2.11)
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This equation reflects a very important difference in our perspective compared to

much previous work. In the lattice gauge theory literature, only the A-type, Gauss’s

law, constraints are imposed in the definition of the physical Hilbert space. Similarly,

in the literature on topological phases, it is common to identify our Hpre and Hphys as

the physical and ground state spaces respectively. That is natural from a condensed

matter perspective, since there are no materials whose fundamental theory is topolog-

ical. However, in the comparison to (the gauge theory description of) 2 + 1d general

relativity, both the Gauss’s law and flatness constraints are toy models for the diffeo-

morphism constraints, and so it is important for us that they are both used to define

the physical Hilbert space.8

Including matter changes things as follows. Let ‘site’ denote a pair (v, p) of a

vertex and a plaquette, such that the vertex is on the bottom-left of the plaquette

(this is a convention). Denote by S the collection of sites. To each site we associate

a Hilbert space H(v,p), carrying a representation of the quantum double algebra (2.7).

The pre-gauged Hilbert space is now

Hpre =
⊗
ℓ∈L

Hℓ

⊗
(v,p)∈S

H(v,p). (2.12)

The constraints are modified to

Av(g) → Av(g)Amat,(v,p)(g)

B(v,p)(g) →
1

|G|
∑
h∈G

B(v,p)(gh
−1)Bmat,(v,p)(h), (2.13)

where the operators Amat, Bmat act on H(v,p) and satisfy the algebra (2.7). The con-

straints are (2.8), with these new operators on the right hand side. We allow Amat, Bmat

to be the identity operators at some sites, in which case the constraints at those sites

are not modified; for simplicity we also assume that at these sites the matter Hilbert

space is trivial, H(v,p) = C.

8Readers familiar with the Chern-Simons description of 3d gravity might find this comment a

little confusing, since in that case the diffeomorphism constraints map to flatness constraints on the

gauge field. Flatness constraints in continuum Gk ×G−k Chern-Simons theory become both types of

constraints in the lattice model [20].
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Lattices that we will consider look for example like

(2.14)

Here, black circles denote bulk vertices and white circles denote boundary vertices.

Diagonal lines connected to gray circles denote which bulk sites come with matter

degrees of freedom [43, 48] – the associated vertex is the one connected to the gray

circle by a line, and the associated plaquette is the one that contains the gray circle.

We can think of these gray circles as being where the matter lives – any site without

one has no matter degree of freedom.

It will be important to note how Gauss’s law manifests in the representation basis.

Say we have n links connected to a vertex, all oriented outwards for simplicity. Let

there be matter as well. Recall that each link is spanned by a basis of the form |µ, ij⟩,
as in (2.1), and the matter has some Hilbert space also in general decomposing as a

direct sum over Hilbert spaces associated to irreps, which we might write as spanned

by |µ, i, c⟩ where i is a representation index (like the i, j for links) and c is a multiplicity

index allowed for generality. The subspace invariant under the action of A is the one for

which all the i indices “fuse together” such that the joint representation is the trivial

irrep. There are only particular combinations of the µ that can fuse appropriately, and

the entanglement in the i indices is greatly constrained. For example, if n = 3 and

there’s no matter, a general state takes the form∑
µ1µ2µ3
i1i2i3
j1j2j3

Rµ1µ2µ3

j1j2j3
Cµ1µ2µ3

i1i2i3
|µ1, i1j1⟩ |µ2, i2j2⟩ |µ3, i3j3⟩ , (2.15)

where Rµ1µ2µ3

j1j2j3
are free parameters, but Cµ1µ2µ3

i1i2i3
are the Clebsch-Gordan coefficients, and

are completely fixed, depending only on the group G. The fusion of more than three

legs also has qualitatively similar restrictions, except there tend to be more than one

way to fuse the i indices given the set of µ indices.
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2.2 Physical operators

Given Hphys, what do the physical operators look like? The operators (2.4) are not

gauge-invariant when acting on bulk links. If |ψ⟩ ∈ Hphys, Lℓ(h) |ψ⟩ violates Gauss’s

law at a vertex adjacent to ℓ, since [Lℓ(h), Av] ̸= 0. We can construct the gauge-

invariant operators as follows.

First note that a slight generalization of Lℓ(h) will violate Gauss’s law at a different

vertex instead. Given a link ℓ and a path ρ = {v|ρ|, ..., v1} with ℓ oriented away from

v1, let Tℓ,ρ(h) shift the element assigned to link ℓ by h conjugated by the product of

group elements along ρ, for example for ρ = {v3, v4, v1} and ℓ the link between v1 and

v2,

. (2.16)

We call these transported shift operators. Morally, we are picking an element h ∈ G

in the frame of v3 and then transporting it along ρ to v1. Then at v1 we left multiply

the element on ℓ. We can confirm that Tℓ,ρ fails to commute with Av only for the v

at the start of ρ. Transported versions of the Rℓ(h) can also be constructed. Note the

usefulness of these transported shifts: we can define a shift operator on an arbitrary

edge ℓ that commutes with A by starting ρ at a vertex in Vbdry. However, while

boundary anchored transported shifts commute with A, it is straightforward to show

they do not commute with B as long as ℓ borders some p ∈ Pbulk.

We will now define operators that commute with both, called ribbon operators

[35, 49]. A ribbon is a set of two paths, one through the graph (the “spine”), the other

an adjacent path through the dual graph (the links intersected by this dual graph path

are called the “spokes”). We draw ribbons with an oriented dashed line along the dual

graph path, and shade the space between the two paths, as below. Given a ribbon γ,

we define a ribbon operator as follows. Let g, h ∈ G. The ribbon operator Fγ(h, g) acts

– 12 –



as

(2.17)

One can confirm this commutes with both A,B except possibly at the end points of γ.

Therefore this operator is gauge invariant if its endpoints are at the boundary.

In the presence of matter degrees of freedom, a ribbon can also end on a site with

matter. Any charged matter has to be dressed with the appropriate ribbon operator,

either to another charge or to the boundary.

An important property of ribbon operators is that they are topological. If two

ribbons γ, γ′ share the same end-points and γ can be continuously deformed to γ′

without crossing any matter excitations, then

Fγ(h, g) = Fγ′(h, g). (2.18)

See [49] for a detailed proof.

2.3 Lattice independence

We now describe a powerful idea that we will use heavily: lattice independence. Above,

we started from a lattice Λ which defined a Hpre and then by extension a Hphys. But

ultimately, we only care about Hphys – the lattice and its associated pre-gauged Hilbert

space are just tools helping us visualize the physical Hilbert space. This is a handy

realization because many lattices lead to the same Hphys! Given a physical Hilbert

space, we might as well use whichever lattice makes it easiest to answer the question

at hand.

We will think about lattice independence as follows. Say we start with a lattice Λ1,

definingH(1)
pre, projectors A(1) andB(1), and physical Hilbert spaceHphys = A(1)B(1)H(1)

pre.

– 13 –



There are two “elementary moves” that change the lattice but leave the physical Hilbert

space unchanged, see e.g. [50, 51]. That is, applying one of these elementary moves

would give us a Λ2, such that Λ2 defines H(2)
pre and projectors A(2) and B(2) with

A(2)B(2)H(2)
pre = A(1)B(1)H(1)

pre . (2.19)

We describe the moves visually here. See Appendix A for a mathematical description.

Move 1: Add (or remove) a vertex An example of this move is

(2.20)

Note that we can move in either direction.

This isomorphism between physical Hilbert spaces can be understood as follows.

Consider a state where all five links on the left lattice are carrying fixed irreps µ1,...5.

Gauss’ law requires that the five irreps on the five links fuse to the identity irrep,

µ1 ⊗ · · · ⊗ µ5 → 1. The key fact is that fusion of irreps is associative. If µ2,3,4 fuse to

µ0 and µ1,5 to µ′
0, then Gauss’ law requires that µ0,µ

′
0 also fuse to the identity. This is

only possible if they are conjugate irreps, exactly like the two ends of a link, µ′
0 = µ∗

0.

The new link then carries the irrep µ0.

In general, the state might be in a superposition of many µ0 (or even many copies

of the same irrep), but this map extends linearly. The new link carries the total electric

flux propagating out of ℓ2,3,4, which can be stated mathematically as

Rℓ2(h)Rℓ3(h)Rℓ4(h)Lℓ0(h)
∣∣∣
Hphys

= 1, (2.21)

which is exactly the Gauss’s law constraint on the right lattice. Similarly with the other

end of the new link. To go the other way, we just run the above argument backwards:

since fusion is associative, we don’t need to separately fuse µ2,3,4 and µ1,5.

An illustrative special case of this move is to split one link into two:

(2.22)
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In the irrep basis the map takes the form

Vvertex |µ; ij⟩1 =
1√
dµ

dµ∑
k=1

|µ; ik⟩0 |µ; kj⟩1 . (2.23)

The flux emanating out of ℓ1 (or, more properly, ℓ̄1) is µ, and that is what the new link

carries.

Move 2: Add (or remove a plaquette) The move is simply

(2.24)

If there is a matter degree of freedom in the original plaquette, then we need to make

the decision of which of the two new plaquettes it lives in.

Importantly, it does not matter that we added a link inside of a plaquette that

already existed. We can take an unclosed set of links – which do not form a plaquette

and therefore do not satisfy any flatness constraint – and close them by adding a

new link. The new plaquette satisfies the flatness constraint regardless. The reverse

operation is also important: we can take a plaquette on the edge of a lattice, then

remove the outermost link, removing exactly one plaquette.

Ribbon operator transformation

A ribbon operator F acts on Hphys and therefore must be represented on any associated

lattice. We can ask: given Fγ(h, g) acting on H(1)
pre, what is the associated operator on

H(2)
pre? The answer is that it is also a ribbon operator, now including the new link if a
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plaquette was added along its path. For example:

(2.25)

In general, the rule is as follows. The ribbon γ is completely specified by its

topological properties, i.e. its end-points, orientation, and position relative to matter

degrees of freedom. The equivalent ribbon on the new lattice is simply the one that

has the same properties.

2.4 Subalgebras and their centers

Now that we have understood the properties of the global system, we turn to subregions

and subalgebras. Given a lattice Λ, a subregion b = {Vb, Lb, Pb} is a subset of vertices,

links, and plaquettes, with Vb ⊆ V, Lb ⊆ L, Pb ⊆ P .9 We wish to associate to b an

algebra of physical operators Ab. The feature of the subalgebra that will interest us

most is the center Zb ⊆ Ab, since that is the part associated to the area operator [10].

(The center is the subalgebra of Ab that commutes with all of Ab.)

It turns out there are multiple types of subalgebras we will be interested in. In this

section we will explain the simplest, most natural kind of subalgebra. In Section 2.7

and Appendix C we will explain the other types, and why we consider them. Physically,

all of these subalgebras have in common that their center includes the operator that

measures the net electric flux out of b. This is important, and means we can always

find in the center an area operator with this same physical interpretation.

Given a region b, perhaps the most natural subalgebra to associate to it is all

operators on Hpre that commute with A and B and act trivially on the complementary

9Note that we can also define a region by drawing a dual path. Just use this definition after adding

new vertices wherever the dual path intersects the lattice.
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set of links (Hℓ) and matter (H(v,p)). This is the type of algebra we consider in this

subsection.

We furthermore impose the following restrictions on b for simplicity, in this sub-

section. We will specialize to lattices Λ associated to 2D surfaces Σ with the topology

of a disk, D2. These are analogous to Cauchy slices of global AdS3.
10 As mentioned in

the introduction, ðb is the set of links connecting Vb to V \Vb. The set ðb forms a dual

path in the lattice, which intersects some plaquettes Pðb. We impose the restriction

that ðb is topologically an interval, dividing the D2 into two pieces. We also require

that no plaquette in Pðb contain a matter degree of freedom. It is possible to make

this the case using elementary lattice moves, so there is no loss of generality, and the

subsequent discussion will be simplified with this requirement.

Let γ be a ribbon whose spokes are ðb and whose spine is the path connecting the

vertices in Vb adjacent to links in ðb. The center is generated by the following operators

that live on this ribbon:

Fðb([h]) :=
1

|[h]|
∑
w∈[h]

∑
g∈G

Fγ(w, g) , (2.26)

where [h] := {w ∈ G : ∃g ∈ G s.t. g−1wg = h} is the conjugacy class of h. A different

basis will be convenient:

Fðb(µ) :=
dµ
|G|

∑
h∈G

χµ(h)Fðb([h]) . (2.27)

Here µ labels irreducible representations (irreps) of G, and χµ(h) is the character of

irrep µ and element h. A simple calculation shows that these are a set of orthogonal

projectors,

Fðb(µ)Fðb(µ
′) = δµ,µ′Fðb(µ). (2.28)

We prove these are central in Appendix B, along with other properties, with a

straightforward argument: we write down all operators in Ab and then check which

commute. Physically, these operators measure the total electric flux out of a region.

µ with larger dimensions corresponds to more net flux. Intuitively, these are central

because no gauge-invariant operator confined to a region can change the net flux.

Let’s convince ourselves that these operators measure the net electric flux using the

lattice independence tools from Section 2.3. Consider as indicated here a subregion b

10It would be straightforward to generalize our discussion to the case where Σ is a cylinder, analogous

to the two-sided black hole. In this setting we can consider subregions bounded by cuts ðb that are

topologically S1, and the center for such subregions was written down in [43]. Much like Fγ(µ) projects

onto a sector of fixed electric flux, the central ribbon operators in this case project onto fixed irrep of

the quantum double D(G).
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and the ribbon acting on ðb (note b includes all vertices and links that are even partially

inside the circled region),

(2.29)

Note that we did not draw the ribbon extending all the way to the boundary vertex.

The rules for these central ribbon operators are that they can end on spokes; the part

outside the spokes is irrelevant because it is summed over. See Proposition B.4.

As explained in Section 2.3, we change nothing by removing plaquettes along the

divide (in the right way). After two applications of (2.24), we obtain a lattice with just

one link along the path of this ribbon,

(2.30)

Now we see: the central ribbon operator on the original lattice acts an electric oper-

ator (2.4) on the single link at the edge of the subregion on the new lattice. Again,

nothing physical changed under each lattice manipulation. All that changed was how

we represented the physical Hilbert space. Therefore the physical interpretation of

these central ribbon operators is always the total electric flux, independent of which

(equivalent) lattice we use.

We have explained the central operators of the simplest kind of subalgebra we might

associate to a region b. As mentioned, we will also consider other types of subalgebras

to assign to regions. These we discuss in Section 2.7 (and in more detail in Appendix

C). The basic reason is that we want to associate to all b an algebra in which the

center includes operators measuring the total electric flux out of b, but not operators

measuring the flux out of individual parts. This can make the subalgebra complicated.

For example, say we are given a b with two connected parts b1 and b2, but with b1
and b2 far away from each other. Say we associate to b1 and b2 the natural algebra

described above, and furthermore say we associate to b the algebraic union of these
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two subalgebras, Ab = Ab1 ∨ Ab2 . This is not what we want. In the center of Ab are

operators measuring the net flux out of b1 and b2 individually. We will instead consider

Ab with even more operators, some of which will fail to commute with the individual

centers of b1 and b2. The only electric flux measurement in the center will be the net

flux out of all of b.

2.5 Overlapping central ribbons don’t commute

One important fact about the central ribbon operators is that they generally fail to

commute with the central ribbon operators of other, overlapping regions. This is im-

portant for the following reason. In future sections, the entropy we will assign to (some)

b will have the form11

S(b)|ψ⟩ = ⟨ψ|Âb|ψ⟩+ S(b; alg)|ψ⟩ , Âb :=
∑
µ

log(dµ)Fðb(µ). (2.31)

The first term is the expectation value of a state-independent operator, and we will refer

to it as the area operator, and the second term is the “algebraic von Neumann entropy”

which we will define later. Two crossing area operators generally fail to commute, which

we will interpret as analogous to the “non-commuting areas” property [36] in gravity.

In Section 3.3 we explain this aspect of our tensor network.

We prove that suitably overlapping area operators fail to commute in Appendix B.

Here we show an example. Consider this a and b:

(2.32)

Say we fix the net flux out of the a region. What happens to the net flux out of b? Can

we simultaneously fix it? For a non-abelian G, the answer is no. Fixing the flux out of

a means projecting onto a state of definite µ for the a region, where µ is the label for

the joint representation of all links in ða. In general we cannot simultaneously fix the

joint representation of all links in both ða and ðb if a and b are distinct but overlap.

11More generally, the entropy will still take this form but with an operator Âb of a slightly different

form. Physically, this Âb still measures the net electric flux out of b.
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For example, consider a simple lattice with four links connected at one vertex, with

regions a and b each two of the links (remember, they include the entire link if it is

even partially circled):

(2.33)

Say G = SU(2). Gauge-invariance tells us that all four links must fuse to the trivial

irrep, but there are multiple ways to do this. Consider the case that all four links are in

the spin 1/2 representation. This is the familiar setting of four spin 1/2 particles that

together are in a singlet state. To fuse to the spin 0 representation, the two links in a

could fuse to µa = 0 or µa = 1, and in either case the two complementary links have

to do the same. But fixing µa either way gives a singlet state with µb very not fixed.

There’s no total spin 0 state with both µa and µb fixed. The operators that measure

them fail to commute.

2.6 Reduced lattices

We can use the lattice deformations described in Section 2.3 to make a ‘minimal’ lattice,

which we call the reduced lattice. We describe the reduced lattice for the disk D2, then

argue that any lattice (embedded in D2) can be deformed to it, and finally describe

what the ribbon operators (and fused ribbon operators) in L(Hphys) look like in this

reduced lattice.

Figure 3. Reduced lattice for D2. There are n boundary points denoted by white circles,

and m lollipops. Each lollipop consists of two links connected at a vertex, with some matter

living at that vertex.
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The reduced lattice for D2 is as follows.12 It consists of

1. A central vertex that all boundary points are connected to by links.

2. A “lollipop” for every matter degree of freedom, also connected to the central

vertex.

See Figure 3.

We change the original lattice to the reduced lattice by using the elementary moves.

In particular, for any plaquette we contract all but one of the links so that the plaquette

consists of one link starting and ending on the same vertex, see Figure 4. If the

holonomy around the plaquette is flat, then the flatness constraint implies that the

state on this link is |e⟩. Gauss’s law at this vertex leaves this link invariant, since

e → heh−1 = e. Thus, this link is a one-dimensional tensor factor and we can drop it.

We do this for all contractible plaquettes, resulting in a new lattice where all plaquettes

are inequivalent.13 In the case when the plaquette contains a matter degree of freedom,

we add a link to separate out a lollipop.14 This gives us the reduced lattice described

in Figure 3 for D2.

Let us see an explicit example. Begin with

(2.34)

As before, black circles denote bulk vertices, white circles denote boundary vertices,

and diagonal lines connected to gray circles denote which bulk sites come with matter

12The reduced lattice for the cylinder is similar, with one extra ingredient. There are two more

links, starting as well as ending on the central vertex; all lollipops are between these two links. These

two links are both representatives of the non-contractible loop of the cylinder, one for each boundary

of the cylinder.
13Another way to arrive at the reduced lattice is via the fusion basis lattice of [43, 48]. For D2,

they find a tree lattice with one node for every boundary vertex and one lollipop for every plaquette

with a matter degree of freedom. They show that the different assignments of irreps for links on the

lattice specifies a complete basis for the physical Hilbert space. Our reduced lattice can be obtained

from this tree by removing all but one bulk vertices on the ‘trunk.’
14When constructing the reduced lattice for a more general manifold, some plaquettes may be non-

contractible because it surrounds a hole in the manifold. In that case, do not remove it.
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Figure 4. We contract all but one link of any plaquette, so that the plaquette consists of

one link. If there is no matter inside, we can get rid of the link. If there isn’t, we split it off

into a ‘lollipop.’

degrees of freedom. First,

(2.35)

Here we have used the move (2.24) to remove one link from each of the plaquettes

without matter. Next,

(2.36)
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We have used (2.20) to remove two vertices, consolidating the graph. Next,

(2.37)

Here we have removed four more vertices with (2.20), two from each remaining plaque-

tte. Next,

(2.38)

We again used (2.20) to remove two vertices, one from each plaquette. To reduce clutter

we have suppressed 10 of the 12 boundary vertices and each of their links, indicated by

“· · · ”. Finally,

(2.39)

We added in two vertices using (2.20). This graph is now in the form (3.4).

2.7 Subalgebras revisited

We are now in a position to discuss the general kinds of subalgebras we might assign to

a subregion b. For better or for worse, our tensor network construction will not allow
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us to consider only subalgebras of the simple kind from Section 2.4. Indeed, the tensor

network will satisfy a holographic entropy formula like

S(B) = min
b

(
⟨ψ|Âb|ψ⟩+ S(b; alg)

)
, (2.40)

where the minimization is over a set of bulk subregions b, each candidate b including a

different set of matter legs. What’s important is that given each b, there is an associated

subalgebra (determined by the details of the tensor network). The particular subalgebra

is important, and for example affects the precise value of the algebraic entropy S(b; alg).

The general subalgebras we’ll consider are defined as follows. Say we are given a

reduced lattice as in Figure 3. We pick some subset of “boundary links” (connected

to white circles) and lollipops to be a subregion b̃. To this b̃, assign the natural kind

of algebra from Section 2.4, which we’ll call Ab̃. Now, convert the reduced lattice to a

more regular “full” lattice. The algebra Ab̃ becomes an isomorphic algebra we’ll call

Ab acting on this full lattice. Ab can be associated to a subregion, which we can call b –

indeed it still involves operators acting on a particular set of matter legs, for example.

However, it is not generally just the set of physical operators acting trivially outside

b. We explore these algebras in more detail in Appendix C. What is important is this:

the center consists of operators measuring the net electric flux out of b, and does not

include operators measuring the electric flux out of subregions of b.

3 The tensor network

We are now prepared to present our main result: a tensor network with a novel, topolog-

ical kind of area operator in its holographic entropy formula. This is desirable because

it permits the interpretation that the lattice of the tensor network is analogous to the

discretized geometry on which the TQFT description of gravity lives (which should be

irrelevant to physical quantities, like the CFT entropy). One concrete advantage of this

area operator is that it does not suffer from the “commuting areas problem” of other

tensor networks, as we’ll explain. A related noteworthy feature is that – because it

is topological – this area operator’s expectation value need not grow with the number

of cut links, indicative of the fact that the entanglement accounted for by this area

operator is not that of bipartite pairs associated to each link, a point we will discuss in

detail in Section 4.

3.1 The model

The setup is as follows. Say we are given a system as in Section 2, with some Hphys

defined on some lattice. We regard this as the bulk Hilbert space. We define the
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boundary Hilbert space as the set of links with one end in Vbdry, and let the tensor

product of these links be the boundary Hilbert space. In other words, letting (xy)

denote the link connecting vertices x and y,

Hbulk := Hphys ,

Hbdry :=
⊗

y∈Vbdry

H(xy) .
(3.1)

Our goal is to define a map V : Hbulk → Hbdry. For example,

(3.2)

The V we define has three steps, which we’ll list and then explain:

1. It fully reduces the lattice as in Section 2.6.

2. It (isometrically) embeds Hphys into the pre-gauged Hilbert space associated to

this reduced lattice.

3. It acts random tensors ⟨T | on each lollipop factor.

We can draw this sequence of steps as

(3.3)

Note these steps are schematic – for example, the true reduced lattice of the starting

lattice would only have two lollipops in the next stage. We now explain the steps in

detail.

First, without loss of generality we can imagine Hphys described by a fully reduced

lattice, as explained in Section 2.6. This requires no physical operation on Hphys; it

simply requires using a particular Hpre. There are in general multiple ways to reduce
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the lattice which do not correspond to the same Hpre. However, any choice will work,

and there is a finite amount of data involved in specifying which reduced lattice we wish

to use and which steps we take to obtain it from the original lattice, and so we will

proceed as though some choice has been made, and we have a lattice of the following

form:

(3.4)

Second, we embed this lattice into the pregauged Hilbert space,

(3.5)

(Strictly speaking, Hpre also lifts the Gauss constraint within each lollipop, so we

should really not draw them still connected at their black circles. However, it will not

make a difference in the later steps, and so we will continue to draw them as though

they satisfy Gauss’ law at their respective vertices.) Let us give a simple example to

illustrate what this means. Say there is no matter, m = 0. In this case, that means

a map H⊗n
G /Gauss → H⊗n

G . Embedding into the pre-gauged Hilbert space now simply

means that we lift the Gauss constraint – and now the Hilbert space factorizes. For

example, if n = 2 the bulk Hilbert space would be spanned by states |µ, ij⟩, and the

embedding into the pre-gauged Hilbert space would mean the map

|µ, ij⟩ 7−→
dµ∑
k=1

|µ, ik⟩ |µ, kj⟩ /
√
dµ . (3.6)

Now let’s reintroduce matter to the bulk Hilbert space. Then Hpre is not the same

as Hbdry, because it also includes the lollipop factors. We need to get rid of them, and

we would like to do so in a way that is conducive to obtaining a holographic entropy
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formula (for example, we do not want to simply destroy the information contained in

those factors). We accomplish this by acting random tensors on the extra factors. This

is the third and final step of the map.15

We define the random tensors and their action as follows. After the embedding

into Hpre, we have n +m factors: the n “boundary” links which form a set we’ll call

f∂ and the m lollipops which form a set we’ll call flol. Call the set of all such factors

f = f∂ ⊔ flol. To act with random tensors means to act with the operator ⊗i ⟨Ti| for
i ∈ flol indexing the lollipops. This eliminates the lollipop factors. These ⟨Ti| are each

“gaussian random tensors” that we define as follows, following [52]:16 given some fixed

basis, every entry of the dual vector ⟨Ti| is an independent complex Gaussian random

variable, i.e. can be written as (x+iy)/
√
2 where x and y are independent real Gaussian

random variables of mean 0 and variance 1.17

3.2 Holographic entropy formula

Having defined our tensor network, we now argue it has a holographic entropy formula

S(B)V |ψ⟩ = min
b

(
⟨ψ|Âb|ψ⟩+ S(b; alg)|ψ⟩

)
, (3.8)

where the second term is the algebraic von Neumann entropy defined below. This is

similar to traditional random tensor networks [3], but novel in three ways.

The first novelty is that the minimization over bulk regions b is slightly different.

We do not consider all possible cuts through the lattice homologous to B. Instead,

each candidate b is a different collection of matter legs. The minimization is really over

15As we will mention when deriving the holographic entropy formula, this only preserves the infor-

mation if the original state was sufficiently nice. In particular, it needs to have a large amount of

electric flux (relative to the amount of bulk entropy) from each lollipop to the boundary legs. This

is like the usual random tensor network requirement that the bond dimension of in-plane legs be

sufficiently large relative to the amount of bulk entropy.
16This is different from [3], which did not use Gaussian random tensors but instead chose tensors at

random from the Haar measure. These are the same distribution up to a normalization. The Gaussian

random vectors ⟨Ti| have norm ∥⟨Ti|∥ that is independent of the normalized vector ⟨Ti| /∥⟨Ti|∥, and
these normalized vectors are distributed uniformly. Hence the models agree up to normalization.

17Explicitly, each lollipop Hilbert space is a sum over irreps R of the quantum double flol,i = ⊕RHR,i.

Denoting a basis as |R, I⟩, we are taking ⟨Ti|R, I⟩ to be a Gaussian random variable. We can decompose

⟨Ti| into an irrep probability and a tensor in each irrep as

⟨Ti| :=
∑
R

√
pR ⟨tR,i| , ⟨tR,i| ∈ H∗

R,i. (3.7)

The prescription outlined above is equivalent to averaging over both pR as well as ⟨tR,i| with a corre-

lated weight.
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which matter legs are included. This roughly translates to a minimization over bulk

regions.

The second novelty is that given a subregion b, the subalgebra Ab we associate to

it is not always the natural one described in Section 2.4. This is for reasons discussed

in Sections 2.4 and 2.7 and Appendix C.

The third novelty is that the area operator Âb is quite different than in traditional

tensor networks. It is no longer sensitive to the geometry of the lattice. It is now a

certain physical operator in the DG model of Section 2, in the center of the algebra

Ab. In particular, it is the operator that measures the net electric flux flowing out of b.

Therefore it is topological, only caring about its placement relative to matter degrees of

freedom. Let us be more specific. When Ab happens to be of the simple kind described

in Section 2.4, Âb is the ribbon operator

Âb =
∑
µ

log(dµ)Fðb(µ) , (3.9)

where Fðb(µ) is the projector onto the fixed µ state defined in (2.27). More generally,

Âb is a different kind of operator that we call a “fused ribbon operator”,

Âb =
∑
µ

log(dµ)F
fused
ðb (µ) , (3.10)

where F fused
ðb (µ) is defined in Appendix C.

Let us now derive the holographic entropy formula (3.8). As a warmup, consider

the lattice (3.4) with n = 2,m = 0. That is, two links attached at a vertex. Recall

that we obtain the boundary Hilbert space simply by isometrically embedding this into

the pre-gauged Hilbert space, HG → HG ⊗ HG. Simple as it is, this embedding of

Hphys → Hpre already exhibits a holographic entropy formula.18 Say we have a state

|ψ⟩ ∈ Hphys ⊗HR for this two link Hilbert space and an arbitrary reference system R.

We have a corresponding state |ψ̃⟩ ∈ Hpre ⊗HR. Say we select one of the HG factors

in Hpre and call it B, and we wish to compute the entropy of B in the state |ψ̃⟩. As

we know, Hphys does not factorize, instead taking the form HG⊗HG/Gauss, which we

can decompose as

Hphys =
⊕
µ

(
Hbµ ⊗Hbµ

)
, (3.11)

where µ labels eigenvalues of the “electric” operators. Hence a general state in the bulk

Hilbert space takes the form

|ψ⟩ =
∑
µ

√
pµ |ψµ⟩ , (3.12)

18This is not surprising in light of [10]. This bulk to boundary map is an isometry with complemen-

tary recovery.
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where
∑

µ pµ = 1 and

|ψµ⟩ =
dµ∑

i,j=1

cµij |µ; ij⟩bµbµ , (3.13)

with
∑

ij|c
µ
ij | = 1. The state in the (factorizing) boundary Hilbert space HG⊗HG takes

the form

J |ψ⟩ =
∑
µ

√
pµ

dµ∑
i,j,k=1

cµij√
dµ

|µ; ik⟩B |µ; kj⟩B . (3.14)

By direct computation we see that the entropy of B equals

S(B)J |ψ⟩ =
∑
µ

pµ log dµ −
∑
µ

pµ log pµ +
∑
µ

pµS(bµ)|ψµ⟩ . (3.15)

We combine these last two terms into the “algebraic von Neumann entropy” S(b; alg)|ψ⟩,

for algebra Ab = ⊕µ

(
L(Hbµ)⊗ 1bµ

)
. Then we see this takes the form

S(B)J |ψ⟩ = ⟨ψ|Âb|ψ⟩+ S(b; alg)|ψ⟩ , (3.16)

where

Âb =
∑
µ

log(dµ)Fðb(µ) . (3.17)

Here Fðb(µ) is the central ribbon projector (2.27) in this case acting only on the one

link intersected by ðb, which is the only link in Hbulk.

The case with n > 2 links is completely analogous. The only difference is that the

blocks in the decomposition (3.11) are now related to eigenvalues of the central ribbon

operator (2.27). It is the total electric flux out of B that matters in both cases – in the

two link case that just happens to be measured by a single link operator. Therefore,

for a connected region B like the three links indicated here:

(3.18)

the formula becomes (3.16) with area operator (3.9), and the path ðb labelled as γ in

(3.18). If B is disconnected, the formula is still (3.16) but the area operator is (3.10).
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The difference arises from the topology: when B is disconnected there isn’t one normal

ribbon operator that acts on the links in B but not its complement. Nonetheless, it is

still physical to ask what is the net electric flux out of B, and that is what the fused

ribbon operator (3.10) does.

Now we consider the case with matter. It will be convenient to write explicitly the

division of the map V into multiple parts, say V = TJ . The implicit first step is to map

the given lattice into the reduced lattice – this does not require an explicit operator in

V because both lattices represent the same Hphys. The second step is to act J , which

embeds Hphys → Hpre. The final step is T , which acts the random tensors.

Say we are given a state |ψ⟩ ∈ Hbulk. Letting ⟨T | = ⊗i∈Flol
⟨Ti|, we can write

T = 1∂⊗⟨T |. The factor 1∂ indicates that T acts trivially on f∂. The state on Hbdry is

V |ψ⟩ = (1∂ ⊗ ⟨T |)(J |ψ⟩) = (1∂ ⊗ ⟨T |) |Jψ⟩ . (3.19)

and we can write

V |ψ⟩ ⟨ψ|V † = (1∂ ⊗ ⟨T |) |Jψ⟩ ⟨Jψ| (1∂ ⊗ |T ⟩)
= tr [(1∂ ⊗ |T ⟩ ⟨T |) |Jψ⟩ ⟨Jψ|] .

(3.20)

Now given a boundary subregion B ⊆ f∂ let’s compute the kth Renyi entropy

Sk(B)V |ψ⟩. This is defined as follows: given a state |ϕ⟩ ∈ HB⊗HB, with ρ := trB |ϕ⟩ ⟨ϕ|
the density matrix of B, we have

Sk(B)|ϕ⟩ :=
1

1− k
log

tr
[
ρk
]

tr[ρ]k
, (3.21)

for k ∈ (0, 1) ∪ (1,∞). We care about this because there is a way to compute it in

random tensor networks using standard techniques [3, 52], and the limit k → 1 is the

von Neumann entropy.

Let Sk be the symmetric group on k elements, and let R(π) denote the representa-

tion of π ∈ Sk on H⊗k which acts by permuting the kets according to π. We will write

Ri(π) for i ∈ f when it acts on (k copies of) factor i, and also RB(π) when it acts on

(k copies of) B (similarly for B). Let τ denote the cyclic k-cycle

τ = (12...k) . (3.22)

Now, notice

trB[ρ
k] = tr

[
(RB(τ)⊗RB(e)) |ϕ⟩ ⟨ϕ|

⊗k
]
. (3.23)

Furthermore, note an important property of Gaussian random tensors:

E
[
|Ti⟩ ⟨Ti|⊗k

]
=
∑
π∈Sk

Ri(π) . (3.24)
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Here E denotes the expectation value over the ensemble of tensors. Now let |ϕ⟩ = V |ψ⟩
and compute

E tr
[
ρk
]
= E tr

[
(RB(τ)⊗RB(e)) |ϕ⟩ ⟨ϕ|

⊗k
]

= E tr
[
(RB(τ)⊗RB(e))(1∂ ⊗ |T ⟩ ⟨T |)⊗k |Jψ⟩ ⟨Jψ|⊗k

]
= tr

[
(RB(τ)⊗RB(e))E

[
(1∂ ⊗ |T ⟩ ⟨T |)⊗k

]
|Jψ⟩ ⟨Jψ|⊗k

]
.

(3.25)

To simplify further, we introduce the set

SB,σ :=
{
{πi}i∈F : πi ∈ Sk, where πi = σ for i ∈ B and πi = e for i ∈ B

}
, (3.26)

for any σ ∈ Sk. An element of SB,σ is an assignment of πi to each i ∈ f, subject to

the constraint that all i ∈ f∂ are fixed: i ∈ B have πi = σ and i ∈ B have πi = e, the

identity element. Using (3.24), we have

E tr
[
ρk
]
=

∑
{πi}∈SB,τ

tr

[⊗
i∈f

Ri(πi) |Jψ⟩ ⟨Jψ|⊗k
]
. (3.27)

Now we will make an assumption to simplify the calculation:19 replica symmetry. Under

the assumption of replica symmetry, every i ∈ f is assigned either the element τ or e.

Let us denote by ∆ the set assigned τ (which always includes B), and ∆ the set assigned

e (which always includes B). Let C(B) denote the set of all assignments ∆. Then we

can further simplify

E tr
[
ρk
]
=

∑
∆∈C(B)

tr
[
(R∆(τ)⊗ 1∆) |Jψ⟩ ⟨Jψ|

⊗k
]
=

∑
∆∈C(B)

e−(1−k)Sk(∆)|Jψ⟩ . (3.28)

We can plug this into (3.21) to obtain the average Renyi entropy. A typical selection

of tensors ⟨T | will lead to an answer very close to this average [3], and so we have

effectively computed the Renyi entropy for a given draw of ⟨T | with high probability.

This is as much as we need to say about computing the Renyi entropy.

Now we turn to computing the von Neumann entropy S = limk→1 Sk. We simplify

again by making a second assumption: the validity of the saddle point approximation,

E tr
[
ρk
] !
= e−(1−k)Sk(∆m)|Jψ⟩ , (3.29)

19This assumption will be valid for some states |ψ⟩ but not all, see e.g. [53]. In our model, nice

states include those with large amounts of electric flux relative to matter entropy, and fairly simple

flux patterns. We choose to make this assumption because it neglects subtleties that are not special

to this model, and it allows us to more concisely demonstrate what’s special about this model.
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where ∆m ⊆ f is some fixed set of factors, and the symbol
!
= denotes the assumption.

Specifically, we assume that (3.28) is well-enough approximated by a single ∆ (which

we call ∆m) for all k such that we get approximately the right von Neumann entropy

by neglecting all of the others:

S(B)V |ψ⟩
!
= S(∆)|Jψ⟩ = lim

k→1
Sk(∆)|Jψ⟩ . (3.30)

This assumption is valid for many states and choices of B, as in traditional random

tensor networks [3], and in this note we will not attempt a full discussion of when

it is valid. From now on we will drop the ! above the =, leaving the saddle point

approximation implicit.

To finish computing S(B)V |ψ⟩, we must evaluate S(∆)|Jψ⟩ for a given configuration

∆. This ∆ has two parts: the degrees of freedom that are also in Hbulk which we’ll call

b1, and the part that’s introduced by the embedding into the pre-gauged Hilbert space,

which we’ll call b2. Exactly as in (3.11), the bulk Hilbert space decomposes into blocks,

once again with µ the eigenvalue of the ribbon operator acting on ∂b, associated to the

total electric flux between b and its complement. So, we can again write

|ψ⟩ =
∑
µ

√
pµ |ψµ⟩b1,µb1,µ . (3.31)

In the embedding into the pre-gauged Hilbert space, we tack on a factor that we’ll

write as |χµ⟩ ∈ Hb2,µ ⊗Hb2,µ
, giving a state

|Sψ⟩ =
∑
µ

√
pµ |ψµ⟩b1,µb1,µ |χµ⟩b2,µb2,µ . (3.32)

Computing S(∆)|Jψ⟩ hence gives

S(b)|ψ̃⟩ =
∑
µ

pµS(b2,µ)χµ +
∑
µ

pµS(b1,µ)ψµ −
∑
µ

pµ log pµ . (3.33)

Recalling that trb2,µ |χµ⟩ ⟨χµ| = 1/dµ, and that under the saddle point approximation

S(B)V |ψ⟩ = S(∆)|Jψ⟩ for the ∆ minimizing the right hand side, we finally arrive at

S(B)V |ψ⟩ = ⟨ψ|Â|ψ⟩+ S(b; alg)|ψ⟩ , (3.34)

where Â = ⊕µ log(dµ)1b1,µ and S(b; alg)|ψ⟩ =
∑

µ pµS(b1,µ)ψµ −
∑

µ pµ log pµ. This com-

pletes the argument that our tensor network satisfies the holographic entropy formula

(3.8), if we start from the reduced lattice, i.e. neglecting the first step of (3.3).

We now argue that the holographic entropy formula continues to hold if we start

from a general lattice. The first step of (3.3), changing to the reduced lattice, does not
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change anything physical about Hbulk or the fact that the minimization in (3.8) is over

which matter legs get included in the region b. All that changes is what the physical

operators look like on the lattice. When b is a single connected region in the reduced

lattice, its algebra Ab is straightforward, and maps to the natural subalgebra of a single

connected region in the full lattice. However, in the more general case that b in the

reduced lattice is disconnected, the algebra Ab is different. We explain the details in

Appendix C. Intuitively, we have defined the algebra to include the net electric flux

out of the region b but not out of its sub-parts.

3.3 Non-commuting area operators

As pointed out in [36], traditional tensor networks fail to match the “non-commuting

area operators” property of AdS/CFT. Say in AdS/CFT we consider two boundary

regions A and B that overlap, and a state |ψ⟩ of the AdS bulk. We can consider the

holographic entropy formula for each:

S(A) = ⟨ψ|Âa|ψ⟩+ S(a)|ψ⟩ ,

S(B) = ⟨ψ|Âb|ψ⟩+ S(b)|ψ⟩ ,
(3.35)

where a and b are bulk regions that minimize the respective right hand sides. It turns

out that one can in general find a bulk state |ψ⟩ such that Âa has very small fluctuations

[54, 55] (or in which Âb has very small fluctuations). Specifically, given some ε > 0 we

can in general find a state such that ⟨ψ|Â2
a|ψ⟩−| ⟨ψ|Âa|ψ⟩|2 < ε.20 This was a fortunate

discovery for traditional tensor networks, because their area operators have very small

fluctuations (in fact zero, for most tensor networks). One can imagine these “fixed-

area” states of gravity are in this limited sense the correct AdS analog of traditional

tensor networks.

However, it was pointed out in [36] that this tensor network / fixed-area state

analogy only goes so far. In gravity, one can argue (using the gravitational constraint

equations) that there does not exist a state |ψ⟩ with very small fluctuations for the area

operator of every boundary region simultaneously. In particular, the area operators of

overlapping regions cannot both have small fluctuations. We can’t find states with

arbitrarily small fluctuations in both Âa and Âb. This is different from traditional

tensor networks, which can have small fluctuations across all cuts simultaneously.

Our tensor network improves this situation. In it, it is not possible to find a

non-trivial bulk state that is an eigenstate of overlapping boundary subregions. This

is because the area operators of overlapping boundary regions are overlapping ribbon

operators (or fused ribbon operators) and will not commute, as explained in Section 2.

20To be safe, one should really keep ε sufficiently large relative to exp(−O(1/G)), to stay within the

regime of semiclassical gravity.
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4 Multipartite edge modes

In this section, we attempt to clarify the choices made in the construction of the tensor

network in Section 3. One might wonder, for example, why we chose (unconventionally)

to construct the tensor network based on the reduced lattice rather than the original

extended lattice. Or where is the beloved relation between geometric area and the

length of the cut?

Here, we motivate our choices by studying entanglement in the DG model. As in

all gauge theories, there are multiple prescriptions for defining the entanglement of a

subregion. Of all these prescriptions, we are specifically interested in those that involve

a factorization map, i.e. embedding the gauge theory into a larger, factorizable Hilbert

space. This is because that’s what tensor networks do! The boundary Hilbert space in

Section 3 was the product of factors, H⊗n
G . The holographic entropy formula computes

the entropy of these factors. Therefore it is by definition computing the entropy using

a factorization map – the entropy of a subregion in a factorizable Hilbert space that

the DG model has been embedded into.

Edge modes are what we call the new degrees of freedom present in the factorized

Hilbert space but not the original gauge theory Hilbert space. There are multiple

known ways to define such factorization maps, each of which can be said to introduce

different kinds of edge modes. However, as we’ll argue, most factorization maps will

fail to match certain properties we need in the holographic entropy formula. Their edge

modes will have the wrong entanglement structure. In fact, we can essentially narrow

down which factorizations of the DG model could give certain desired properties, down

to the particular factorization map we employ in Section 3. This argument is the point

of this section – with the goal of motivating the perhaps surprising choices we made in

Section 3.

Let us summarize our reasons for two of the choices we made in Section 3:

1. Usually, entanglement in quantum double models is defined by a local factoriza-

tion map on the original lattice. We do not do this.

The reasons are twofold. Using this local factorization map, the von Neumann

entropy of a region b contains the two terms (|ðb| − 1) log |G|. The first term is a

problem because – as we argued in Section 1 – the size of the cut in the original

lattice does not have a relevant gravitational interpretation. The second term is

also a problem because it makes the entanglement growth sub-extensive in a way

that poorly matches AdS/CFT. We explain this in Section 4.1.

2. We define the holographic map by first deforming the original lattice to the re-

duced one.
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We motivate this in Section 4.2 with a tension between the non-local bipartite

factorization and crossing cuts.

These do not appear as distinct steps in our construction, as the first choice is im-

plemented by the second, but we motivate them separately. There is also a third,

conventional, choice, which is that we factorized the bulk by embedding Hphys into the

Hpre of the reduced lattice. This is a particular choice of edge modes on the reduced

lattice. Surprisingly, it turns out that this is forced upon us by the above two choices,

as we outline in Section 4.3 and prove in Appendix E.

Let us begin by giving some more careful definitions. Suppose we have many

subalgebras A1...n ⊆ L(Hphys) with some network of inclusion relations (which could

be fairly complicated). In general, many of these subalgebras may have non-trivial

centers.

To calculate the entropy of an algebra with center, say A1, we first calculate a

reduced density matrix by embedding Hphys ↪→ H1 ⊗H1′ , using a factorization map J1
[56, 57]. The entanglement entropy takes the form [10, 38].21

S(H1)J1|ψ⟩ = ⟨ψ|A(J1)|ψ⟩+ S(A1; alg)|ψ⟩, (4.1)

for some operator A(J1) in the center A1 ∩ A′
1.

A multipartite factorization map J is an embedding of Hphys ↪→ Hfact such that all

the algebras JA1...nJ
† act on tensor factors of the Hilbert space Hfact. As we will see

below, there can be multipartite factorization maps that are not built out of products

of bipartite factorizations. When this is the case, we say that the map introduced

‘multipartite edge modes.’ One point of this section is to argue that if we want to

incorporate a DG model into a tensor network as a toy model for gravity, then the edge

modes we introduce should be multipartite.

4.1 Bipartite factorization

Issue with local factorization

Previous work on entanglement in gauge theories has introduced a factorization map

[32, 33, 37–39, 41, 42], which consists of (3.6) for every link in ðb. Let us call this the
local factorization map. We now explain why this map has undesirable properties for

building toy models of gravity, expanding on the discussion in [43].

21Alternatively, we can work abstractly in the language of generalized traces [58]. All of the lit-

erature on bipartite entanglement with centers [10, 37–39, 41, 42, 48] can be translated into this

language. We have not attempted to translate the multipartite story below into this language; it is

not straightforward.
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Let b be a subregion of D2, and let there be no bulk charges. The von Neumann

entropy with the local factorization map is [32–34, 59]

Sloc(b) = |ðb| log |G| − log |G|+ Snonloc(b), (4.2)

where Snonloc(b) is going to be the entropy in our factorization defined momentarily.22

Both of the first two terms are problematic for appearing in a holographic entropy

formula. The extensive first term in (4.2) depends on the number of links in the lattice.

This is the length of ðb in the discrete metric we have introduced to regulate the

topological field theory. However, the area of the extremal surface is just a specific

Wilson line in the Chern-Simons formulation [28, 29].23 The central ribbon measuring

the amount of electric flux flowing out of b is such an operator, and its contributions

to the entropy show up only in Snonloc.

Suppose you are not convinced by this argument, taking the perspective that the

whole reason tensor networks have been useful is the area law entanglement. But

then you run into a second problem, which is the second term in (4.2). If we want to

interpret the first term as A/4GN , the second term is an entirely unwelcome −1/4GN .

Furthermore, this negative term is the famous topological entanglement entropy [32, 33],

and its value is a state-independent constant that depends only on the anyon fusion

algebra, so we cannot even get rid of it. There is no analog of this violation of extensivity

in the HRT formula.

This leads to unwelcome behaviour not just in the von Neumann entropy, but

also in other entropic quantities, as pointed out for example in [46]. Consider three

22In the absence of matter, Snonloc can be thought of as the entropy of boundary degrees of freedom

[34], since the central ribbon operator at ðb can be deformed to hug the boundary ∂̃b.
23For completeness, let us briefly describe the Wilson line introduced in these works. Denote by

∂B := ∂ðb = ∂∂̃b the corners of b. ∂B consists of two points on the boundary, and the Wilson line

stretches between them. Then, the Wilson line is the Euclidean quantum mechanical path integral of

a particle on SL(2,R) × SL(2,R), propagating along ðb. The irrep of the Wilson line is encoded in

the mass and spin of the particle, and the initial and final states of the particle at the two points on

∂B are defined by Ishibashi states within the highest-weight irrep the particle lives in. This particle

localizes to a saddle-point in the large mass limit, and the saddle-point corresponds to a bulk geodesic;

the on-shell action is proportional to the length of the geodesic.

Our central ribbons are a little different from the Wilson lines, in that they project onto certain

values of the irrep flowing through ðb. Furthermore, our central ribbons should be valued not in

highest-weight irreps but in principal series irreps [27, 30, 31]. However, both our central ribbon

and their Wilson line measure the same quantity; in the presence of matter, the HRT formula with

both constructions become quantum minimal surface formulas as in Section 3. So, the construction

of [28, 29] is enough to show that area is an operator in the algebra of the topological field theory,

though the precise operator might be harder to pin down at the full quantum level.
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contiguous boundary intervals B1,2,3 in a 2d CFT. The tripartite information is

I3(1 : 2 : 3) := S1 + S2 + S3 − S12 − S23 − S13 + S123, (4.3)

where S1 = S(B1) etc. The classic calculation of this quantity in AdS/CFT [60] shows

that24

S2 ≪ S1,3 =⇒ I3 ∝ S2 (4.4)

Figure 5. The different bulk regions that appear for the calculation of the tripartite infor-

mation. Positive contributions on the left and negative ones on the right. The entanglement

wedge and its boundaries are colour-coded. While the boundary ∂Σ is drawn as a line for

simplicity of notation, in the actual calculation, we take it to be S1.

Now assume that we have a tensor network with a holographic entropy formula

where we minimize (4.2) over bulk regions of the correct homology class, using for

example the construction of [7]. Assume that the entanglement wedges of the various

regions are topologically the same as you would find in AdS/CFT, see Figure 5. Then,

the tripartite information is

I3 = − log |G|+ I3,ð + I3,nonloc, (4.5)

where I3,ð is the contribution of the extensive term (which behaves similarly to the area

term in gravity) and the last term is the same combination of Snonloc. Both of these

last two terms satisfy (4.4).25 However, the first term does not, so (4.5) overall fails to

satisfy (4.4).

To prove (4.5), we can use (4.2) for the regions B1,2,3, B12, B23, B123, since all of their

entanglement wedges have the same topology. While the formula was not originally

proven for the topology of b13, which is a strip connecting B1 to B3, it remains true

24If the three regions have lengths l1, l2, l3, the tripartite information in the vacuum is

I3 =
c

3
log

l1l2l3(l1 + l2 + l3)

(l1 + l2)(l2 + l3)l2(l1 + l2 + l3)

l2→0−−−→ − c
3

(
1

l1
+

1

l3

)
l2.

25The second satisfies (4.4) for the same reason as the holographic entropy. For the third term, note

that as we shrink B2 the volume of b2, and therefore its maximum entropy shrinks also.
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by the following argument, following [33, 38]. Let us recall the derivation of the form

(4.2), say for b2. We deform the lattice as in the left of Figure 6, so that there is

one plaquette in the bulk; the controlled unitaries from Appendix A that implement

this deformation act only within b2. The Hilbert space is labelled in terms of the

group element around the half-loops, labelled as grey arrows. Each half-loop at ðb2
is completely unconstrained in the density matrix, except that the product of all of

them is e, by flatness of the plaquette. Going to a sector of fixed holonomies at ∂Σ,

the reduced density matrix is maximally mixed over a |G||ðb2|−1-dimensional subspace,

labelled by half-loop configurations satisfying the single constraint. The last term in

(4.2) is the entropy of these boundary holonomies. This argument only relies on the

bulk region having topology D2, so it goes over to the strip of b13.

Figure 6. A lattice that makes the calculation of entanglement of the region bounded by the

thick green bars and the boundary easy. We have used lattice deformations to make the bulk

of the region a single plaquette. The flatness constraint is imposed for this plaquette, since it

is in the bulk. We decompose the state in terms of the ‘half-loop’ holonomies, shown as grey

arrows. Left: the subregion intersects the physical boundary once. Right: it intersects the

physical boundary twice, but that doesn’t change the argument.

A non-local factorization map

We define a new factorization map, following [43], that is non-local on ðb. Let us

describe it in some detail for a connected subregion b on D2. Use the elementary

lattice moves in Section 2.3 to make ðb cut a single link as in Figure 7. In that case,

the central ribbon F (µ) is just a projector onto that link being in the irrep µ. And

then the factorization map is simply

J |µ, ij⟩ = 1√
dµ

∑
k

|µ, ik⟩ |µ, kj⟩ (4.6)

on this link. This is the usual (local) factorization map of lattice gauge theory [41, 42]

for the single link; but the lattice moves we did first make it a different way to factorize

the original lattice.
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Figure 7. We deform a lattice so that ðb is a single link.

Another way to think about this is in terms of the original lattice. In that case,

the edge modes we introduce are collective modes that live on the entire cut rather

than local degrees of freedom at different points on the cut, in sharp contrast to the

local factorization map. The lattice deformation is helpful because it allows us to give

a local description of this non-local edge mode.

We show in Appendix D that this factorization map, unlike the local one, has the

property (4.4) (assuming that the tripartite information is negative).

4.2 Bipartite factorizations can fail to commute

Another issue with bipartite factorization maps is that they generally don’t combine

uniquely into a multipartite factorization map.

Let A be an algebra acting on a finite dimensional Hilbert space H. Assume A has

a non-trivial center, i.e. A ∩ A′ contains more than multiples of the identity operator

on H. Any operator in this center can be written as a linear combination of a set of

commuting projectors Pα (see e.g. [10]). They must commute, since the center is a

commutative algebra.

Let J : H → HB ⊗HB be a factorization map with respect to A, i.e. an isometry

such that A acts on HB and its commutant A′ acts on HB.
26 Such a factorization map

can be written in the following way. For |ψ⟩ ∈ H,

J |ψ⟩ =
∑
α

Pα |ψ⟩Bα
pB

α
p
⊗ |χα⟩Bα

f B
α
f
, (4.7)

where we have used a decomposition HB = ⊕α(HBα
p
⊗HBα

f
) ⊕HBr , and similarly for

HB. The central projectors Pα act on HB1 ⊗HB1
. What’s important here is that the

central projectors Pα enter crucially into the definition of the factorization map J .

26In the language of [10], J defines an operator-algebra quantum erasure code with complementary

recovery, with respect to A.
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Now say we have two algebras A1 and A2 both acting on H, with central projectors

Pα1 and Pα2 respectively. Let

J1 : H → HB ⊗HB

J2 : H → HC ⊗HC

(4.8)

be factorization maps, with respect to A1 and A2 respectively. We are interested in

acting both factorizations onH. This can work as follows. Say we first act J1. How does

J2 act on HB⊗HB? Because J1 was an isometry, we can consider the operator J2 pulled

through J1. More explicitly, the action of J2 on J1H is defined using the projectors

J1Pα2J
†
1 . This allows us to define J2J1H, which embeds H into a Hilbert space with

more than two factors. However, because [Pα1 , Pα2 ] ̸= 0, in general J2J1H ̸= J1J2H!

We cannot in general construct a unique multipartite factorization map by the product

of all bipartite factorizations. Factorizing in a different order leads to a different final

Hilbert space.

Let us see this concretely in the DG model. Split the disk into four regions b1...4 as

in Figure 8. We are interested in the subregions b1b2 and b2b4. The non-commutativity

of the bipartite factorization maps for these two subregions can be seen in the fact

that the elementary lattice moves required to achieve each bipartite factorization are

different. For example, if we change to a lattice with only one link along ð(b1b2), then
we have two semicircles that separately need to factorize to split b2 from b1 and b4 from

b3, which would create two total links along ð(b2b4). We cannot draw a lattice where

both ð(b1b2) and ð(b2b4) consist of only one link.

Though it might seem cartoonish, this problem is the central one. To make it more

precise, take a state where there are fixed irreps µ1...4,µ12 flowing out of b1...4, b1b2.

Furthermore, take each of b1, . . . b4 to consist of a single link, so we have four links

total. We can decompose this state into a superposition of states with fixed irrep µ23

flowing out of b2b3 using the F -matrices [20]27∣∣∣∣∣∣
〉

=
∑
ν

F µ1µ2µ
µ3µ4ν

∣∣∣∣∣∣
〉
. (4.9)

For the quantum double model, the F -matrix is the 6j-symbol of G; more generally, it

is part of the definition of the tensor category that defines the topological phase [61].

For a non-Abelian theory, the right hand side generically has many non-zero terms.

Thus, we cannot simultaneously fix the irreps flowing out of b1b2 and b2b3. This is a

27Our convention for the F -matrices do not exactly match those in [20]. This will not affect any of

the following discussion. The only important thing is that (4.9) is a unitary change of basis.
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Figure 8. The lattice deformations that we need to factorize intersecting regions are incom-

patible.

manifestation of the fact that the corresponding central ribbons don’t commute, as we

argued in Section 2.4.

We might try to deal with this by introducing one set of edge modes for every

segment ðbi ∪ ðbi+1 of the subregion boundaries. For example, in Figure 9, we could

factorize all the links crossing the blue lines. But, as detailed in [44], factorizing more

than one link cutting ðb1, even if it is just two links, gives rise to the negative contri-

bution in (4.2). The entropy will again run afoul of (4.4).

Figure 9. In local factorization maps, we can introduce edge modes for every segment of the

boundary of a region.
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This is an important obstacle to constructing a tensor network with non-commuting

area operators. A tensor network acts on a bulk Hilbert space that does not factorize,

and maps it to a boundary Hilbert space which is simultaneously factorized across all

partitions. It is implementing some multipartite factorization map – but which one?

As we have argued, it cannot be some product of bipartite factorizations. It must be

something more sophisticated and inherently multipartite, introducing “multipartite

edge modes.”28

We accomplish this in the tensor network of Section 3 by embedding Hphys into the

Hpre of the reduced lattice. This different kind of factorization is the main idea in this

work that allowed us to define tensor networks with the desired properties.

On the reduced lattice, (4.9) is modified in a simple way. Instead of being a relation

between different lattices, it is now a relationship between different bases for Hphys. The

relation remains true in Hpre, because the physical state is given by the fusion of the

four irreps via Clebsch-Gordan coefficients. Taking the inner product of (4.9) with

⟨µ1, i1, j1; . . .µ4, i4, j4| J makes it a relation between Clebsch-Gordan coefficients and

6j-symbols of the group that is known to be true.

4.3 Bootstrapping the multipartite edge modes

The above discussion explains why our TN is constructed using the reduced lattice.

Now we ask: can we further justify the factorization map we use on the reduced lattice?

This is not possible for bipartite edge modes, as noted in [40]. It turns out that in the

multipartite case the factorization map is much more constrained. In Appendix E, we

prove that the factorization map is unique given certain assumptions. The assumptions

are that the edge modes introduced by the factorization map depend only on the total

irrep flowing out of the region, and that the edge mode state for the identity irrep is

factorized. Let us give an overview of the logic here.

The basic idea is that we can take all possible equations of the form (4.9) for an

arbitrary number of boundary vertices and apply the factorization map. Each of these

equations becomes an equation for the matrix elements of the factorization map J , and

the only solutions to this whole set of equations is the CG coefficients. This is related to

what is known as Tannaka-Krein duality, which says that a group can be reconstructed

from the fusion rules and F -matrices of its irreps. A helpful review is [65].

We prove a weaker statement than either of the above, but it does say that the

required edge modes are (up to local unitaries) those we use in our factorization map.

We take reduced lattices with 2n boundary links, all in the irrep µ, such that they fuse

28The connection between non-commuting modular Hamiltonians and multipartite entanglement

was also explored in [62–64].
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to the identity in pairs. This state can be written in two ways∣∣∣∣∣
〉

=
∑
ν

√
dν
dnµ

[Nnµ]
ν

µ∑
a=1

∣∣∣∣∣
〉

. (4.10)

Then, calculating the entropy in two ways, we find consistency only when the edge

modes are maximally mixed with rank dµ.

This concludes our motivation for our tensor network construction. We had to

transform to the reduced lattice because otherwise we would either run afoul of holo-

graphic tripartite information or not know how to uniquely factorize overlapping re-

gions. The factorization map on the reduced lattice had to be the one we used because

the multipartite edge modes in the DG model are highly constrained.

5 Gravity interpretation

Unlike traditional tensor networks, our tensor networks need not be a tiling of hyper-

bolic space. Instead, the connectivity in our tensor networks is analogous to the geome-

try on which a TQFT lives; that is, it’s not fundamentally important. An advantage is

what we’ve argued in this paper: edge modes with more gravity-like properties, leading

for example to non-commuting area operators. The disadvantage is that the physi-

cal, gravitational interpretation of the state is less clear. In this (largely qualitative)

section, we aim to clarify this interpretation.

We use the fact that 3d general relativity is genuinely a topological theory, albeit

one that is not included in the set of DG models. However, we expect that qualitative

aspects of our results do generalize (with appropriate refinements). The difficulties with

overlapping bipartite factorization that we encountered in Section 4.2 are a consequence

of non-trivial F -matrices, which exist also in other topological theories and also GR

[22, 23]. There is an interesting similarity between the algebraic structure of our tensor

network and that introduced in [46], as we will argue below. Finally, we view the

uniqueness of edge modes formalized in theorem E.2, which holds for a large class of

topological phases (though not GR), as a toy model for the reason that low-energy

gravity ‘knows’ about the UV entropy but not its microstates. Thus, while the rest of

this section has not yet been made precise, we expect that it is possible to do so.

Comparison with Conventional RTNs

The first major difference between our tensor networks and traditional ones is that in

the traditional ones each link is a fixed segment of a fixed curve, and its bond dimension

– 43 –



is interpreted as the area of the segment. Even when the area is a non-trivial operator it

is a sum of areas of segments with fluctuating bond dimension. In our tensor networks,

however, the area of the entire quantum minimal surface is the expectation value of a

single, non-local, topological operator. As justification for this claim, we point to the

works [23, 27–31], which showed that the topological Wilson lines and irrep data are

related (in the semi-classical limit) to the area of quantum extremal surfaces and not to

arbitrary surfaces.29 There is nothing that corresponds to the area of a fixed segment

of a QES, or the area of a non-extremal surface.

The area being a topological operator means that it takes the same value on any

two topologically equivalent cuts. This can seem confusing, however, since multiple

topologically equivalent cuts on the same lattice then correspond to the same geodesic

in the bulk. The apparent puzzle can be resolved by remembering that the gauge field

in the CS description is the metric, meaning that the group element on a link (which

has non-zero fluctuations) is related to a length.30 Secondly, any physical state has

non-zero fluctuations of the group element, due to Gauss’s law. Thus, a state in the

topological theory on the lattice describes a superposition of embeddings of the lattice

into the spacetime.

An important caveat with this last statement, and also the rest of this section,

is that we do not have a precise gravitational interpretation of the fully quantum

topological theory. So, all of these statements are true only in the semi-classical limit

of the TQFT, where the coupling constant goes to zero and we restrict attention to

coherent states.

This superposition presumably includes all ways of embedding the lattice into a

Wheeler-deWitt patch. The reason to believe this is that the gauge constraints of

the Chern-Simons action are (on-shell) equivalent to the Hamiltonian and momentum

constraints of gravity, and both of these generate translations of points on a Cauchy

slice; momentum constraints generate diffeomorphisms of the Cauchy slice, and the

Hamiltonian constraint generates translations of the Cauchy slice within the WdW

29[28, 29] showed that their Wilson lines localised to geodesics, but their Wilson lines are different

from our area operator, see footnote 23. [23, 27, 30, 31] showed that factorizing across cuts of specific

topological classes (roughly the same as those we have considered) gave entropy equal to the area of

the QES in the same topological class. There is less work in the presence of matter; in two dimensions,

[66] established the relationship between the irrep flowing across the cut and the area of the QES of

the same topological class. We will also discuss an important subtlety in this statement due to matter

around Figure 12.
30It’s not quite a length, since the gauge field also has the spin connection in it. It exactly becomes

a length for a geodesic; more generally, it is the length of a topologically equivalent geodesic. The

connection between length of a geodesic and a mixture of length and spin connection (related to

extrinsic curvature) of a different curve is the subject of [67].
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patch. See Figure 10. Since we work with gauge-invariant states, they must be dual to

superpositions over all embeddings of the lattice in the WdW patch. This also explains

why two different ribbons on different sets of links can correspond to the same geodesic.

The expectation value of our area operator on a certain cut agrees with the expectation

value of a geodesic, but that does not mean that the links that the operator is supported

on are dual to the geodesic.

Figure 10. If we imagine the lattice as being embedded in AdS, then the diffeomorphism

constraints (left) and Hamiltonian constraints (right) move the lattice around. Since the

constraints in the TQFT are semi-classically these two types of constraints, we argue that

our TN is a toy model for a superposition of embeddings of the lattice.

Let us see how this works for the simplest case, the reduced lattice for D2 without

matter. The central ribbon on one link b1, and that on two links b1b2, measure the

areas of two spacelike-separated surfaces, as shown in Figure 11. Mathematically, this

is because the irreps µ1,µ2 on two boundary links might be entangled to produce only

a subset of µ1 ⊗ µ2, so that ⟨Â12⟩ < ⟨Â1⟩+ ⟨Â2⟩. So the links b1, b2 should neither be

interpreted as the surface X1 ∪X2 nor as the surface X12. But different operators on

these two links reproduce properties of either of these surfaces.31

Another potentially confusing point is that there are generically more topological

classes of central ribbons than QESs, as shown in Figure 12. For example, if there are

31The most ‘classical’ lattice is the fusion basis lattice of [43, 48]; in that case, each link can be

assigned a particular QES. For example, in Figure 11, b1 and b2 would fuse to a third link, let’s call

it b12, such that the irrep flowing out of b1b2 is the irrep on b12. Thus, a fusion basis lattice can be

said to be lattice-dual to a non-intersecting network of geodesics, as pointed out also in [23]; b1, b2, b12
would correspond to X1, X2, X12 respectively. However, the central ribbon operator on b12 equally

can be represented on b1 ∪ b2, and so there’s still an element of convention to the identification.
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Figure 11. Central operators on individual links b1, b2 measure the area of different HRT

surfaces, but the central operator on b1 ∪ b2 measures the area of a completely different

extremal surface that is spacelike-separated from both of them. Thus the two links should

not be associated to individual extremal surfaces, even in the classical limit.

two matter excitations very close together but very far away from any QES, there is a

ribbon that separates these two excitations but no QES between them. In that case,

the area operator is not measuring the area of a QES in the geometry, but seems to be

related to the outer entropy [68–70] or the holographic covariant entropy bound [67]. It

is the area of a QES that would exist in a different geometry where one of the matter

excitations has been taken away.32

new puri�cation

of

Figure 12. We can calculate the “area” of any cut, but that might not correspond to the

length of any geodesic that exists in the spacetime. However there could be a purification

of the bulk region where the geodesic exists. On the left, the green central ribbon is the

minimal one, whose value should be related to the length of a geodesic. The blue ribbon is

topologically inequivalent, and there may not be a geodesic with the right end-points in that

topological class. However, there is a different purification of the region b1 between the blue

ribbon and the boundary, where there should be a geodesic of the same topological class.

32This is true when there is a normal surface between the two excitations; trapped surfaces are more

confusing, and would likely require more explicit computations.
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A Gauge Theory of Intertwiners

On a related note, there are fascinating connections between our construction and the

algebraic story of [46, 71]. They conceptualize the quantum error-correcting structure

of AdS/CFT as an approximate version of Doplicher-Haag-Roberts theory, which is

the algebraic approach to gapped theories with superselection sectors. The restric-

tion of CFT operators to code subspace operators is implemented by a ‘conditional

expectation,’ which in the DHR case is a restriction to operators that don’t change the

superselection sector.

Consider first the case without matter. There are two algebras acting on the links,

L(Hbdry) and L(Hphys); consider the latter as the vacuum superselection sector of the

former. The conditional expectation from L(Hbdry) to L(Hphys) is implemented by

Gauss’s law at the central vertex.33 For two boundary regions B1, B2, the physical

algebra A12 ∈ L(Hphys) of the two regions is bigger than the algebra union A1 ∨
A2 ∈ L(Hphys) of the two subregion algebras separately. The difference is made up

of operators that create a charge in B1 and an anti-charge in B2, called intertwiners

in the DHR theory. For B1, B2 adjacent, these intertwiners are made up of all ribbon

operators that begin in B1 and end in B2. In the general case, it is the subset shown

in Figure 16.34

Note that DHR theory deals with the boundary theory, but we are giving bulk

descriptions of the objects involved: the TQFT is a bulk gauge theory of boundary

intertwiners. This is perhaps not a surprise, since there is a reconstruction theorem

relating DHR models in 1 + 1 dimensions and tensor categories [72].

What is perhaps more novel is this. Since error-correction in AdS/CFT is approx-

imate [73, 74], we have to back away from this limit of an exact bulk gauge theory

of intertwiners, while keeping the bulk structure. This is hard, because bulk matter

makes the theory non-topological and therefore harder to make holographic; adding

the random tensors seems to be a way to mitigate this problem and allows us to back

away from the topological limit while keeping holography. It would be interesting to

understand these connections in detail.

6 Discussion

We have constructed a map

Hbulk → Hbdry (6.1)

33For general lattices, this is a closed ribbon around the boundary.
34They also define a dual set of ‘twists.’ In the DG model, these are also ribbon operators.
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with the following properties: First, the bulk Hilbert space Hbulk consists of a topologi-

cal theory coupled to matter. Second, boundary entropies satisfy a holographic entropy

formula

S(B)V |ψ⟩ = ⟨ψ|Â(b)|ψ⟩+ S(b; alg)|ψ⟩ (6.2)

in which the minimization is over different sets of matter legs, and the area operator Â

is a (topological) operator measuring the net electric flux out of B∪b. This is desirable
if we would like a tensor network that represents a discretization of the topological

quantum field theory (TQFT) description of 2+1d gravity, because in that description

the area of the Ryu-Takayanagi (or quantum extremal) surface will correspond to some

topological operator in the TQFT. As a byproduct, in this model the area operators of

overlapping boundary regions fail to commute, as in gravity but not traditional tensor

networks [36].

One could worry: isn’t changing the area operator ruining the usefulness of tensor

networks? Wasn’t their whole point that boundary entropies were related to the cut

through the graph that intersected the fewest links – resembling the Ryu-Takayanagi

formula? A map with a topological area operator goes against that, so what is its

point? The point is that the area operator in this model is still in line with the Ryu-

Takayanagi formula. We still interpret Â as measuring the geometric area, and we still

are using random tensor networks to construct a map with an entropy formula mini-

mizing (6.2). The only difference is that the TQFT description obscures the geometry

of the gravitational description – so it is no surprise that what is geometric area in the

gravitational description can be a topological operator in the TQFT description.

The reason the geometric description is obscured is twofold. First, our tensor

networks do not introduce bulk-local degrees of freedom where there should be none.

The matter-free theory is topological, so there is no need to add local tensors in this

case. Secondly, our tensor networks are toy models for states invariant under the

Hamiltonian constraint of gravity, and should be compared not with Cauchy slices but

Wheeler-deWitt patches.

One oddity of our tensor networks is the particular subalgebras it minimizes over

in the holographic entropy formula. While our tensor network has many desirable

properties, these subalgebras seem fairly strange, as we discuss in Section 2.7 and

Appendix C. It would be nice to better understand the gravitational analog of these

subalgebras, or how to construct a tensor network that minimizes over more natural

subalgebras.

The broader question of interest is constructing a tensor network with matching

local dynamics on both sides of the map, akin to AdS/CFT. We believe the model in

this paper will help with this, because it includes constraints that are more gravity-like.
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Perhaps one way to proceed will be to combine with this model the insights of [15, 16].

Having explained our main result and the broader question, let us summarize some

important physics we learned along the way. The first lesson is that there is a qualita-

tive difference between bipartite and multipartite edge modes. Abstractly, this arises

from tensions between additivity and duality in local algebras in the code subspace

[46]. The second, and most important, lesson is this: to model holography, we might

need multipartite edge modes. The fact that the centers of overlapping regions fail to

commute poses a challenge for purely bipartite edge modes.

These lessons lead to a number of structural questions. Remember, historically,

that the bipartite edge modes were originally studied in gauge theories [37–39, 41, 42,

75], but then were shown to be a general feature of error-correcting codes with bipartite

code spaces [10] and holography [76]. Perhaps we should regard this work as the first

half of the same historical progression, for multipartite edge modes. Can we construct

a general theory of multipartite edge modes and prove that they are needed in holog-

raphy? What do multipartite edge modes look like in the gravitational phase space,

analogous to [75] and follow-ups? Does the theorem in Appendix E generalize to a

statement inferring a unique entropy function from a set of subalgebras? Understand-

ing the multi-local operator that is dual to the soap-films of [77] will likely be useful to

learn about these questions.

Let us end with some other interesting, but more specific, questions and directions

for future work. We’d like to be able to interpret quantities in our model, like the

area commutator, in terms of gravitational quantities. This could likely be done in the

model of [23]. On a related note, the lattice model we have used as the base for our

tensor network is related in spirit to loop quantum gravity [43, 48], and perhaps we

can also import some insights from there. Another interesting question is to identify

the operator analogous to our central ribbons in the Virasoro TQFT of [19], and see

whether the factorization maps of [23, 30, 31] are related to these operators. As a

first step, the analog of our factorization map in Chern-Simons is being studied [78].

It would also be interesting to study whether a model like ours realizes a quantum

extremal surface formula, rather than just quantum minimality.35 Finally, we could

mock up identity block domination of the CFT using specific string-net models, and

see which gravity features we get from there.

Finally, we need to understand what we have learned about higher dimensions.

Likely the connection to the story of [46] will be crucial in doing so.

35We would like to thank Jing-Yuan Chen, Bartek Czech, Alex Frenkel, Xiao-Liang Qi and Gabriel

Wong for discussions on similar points.
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A Lattice Deformations

Recall that we think about lattice independence as follows. Say we start with a lat-

tice Λ1, defining H(1)
pre, projectors A(1) and B(1), and physical Hilbert space Hphys =

A(1)B(1)H(1)
pre. There are two “elementary moves” that change the lattice but leave the

physical Hilbert space unchanged, see e.g. [50, 51]. That is, applying one of these

elementary moves would give us a Λ2, such that Λ2 defines H(2)
pre and projectors A(2)

and B(2) with

A(2)B(2)H(2)
pre = A(1)B(1)H(1)

pre . (A.1)

Each move is an isometry (or co-isometry, in the reverse direction) that we can write

down explicitly. To do so, we introduce the following controlled multiplication opera-

tors:

Definition A.1. Let HC
∼= HT

∼= HG. Given the bipartite Hilbert space HC ⊗ HT ,

we call the first factor the “control” and the second factor the “target” when using the

following four controlled multiplication operators:

CII,CT |h⟩C |g⟩T := |h⟩C |gh⟩T (A.2)

CIO,CT |h⟩C |g⟩T := |h⟩C
∣∣h−1g

〉
T

(A.3)

COI,CT |h⟩C |g⟩T := |h⟩C
∣∣gh−1

〉
T

(A.4)

COO,CT |h⟩C |g⟩T := |h⟩C |hg⟩T . (A.5)

The two elementary moves are as follows.
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Move 1: Add (or remove) a vertex

(A.6)

Concretely, we define the isometry Vvertex : H(1)
pre → H(2)

pre in a two step process. First,

we tensor onto our state |ψ⟩ ∈ H(1)
pre the state |1⟩ ∈ HG, where

|1⟩ := 1√
|G|

∑
g∈G

|g⟩ (A.7)

is the state corresponding to the trivial irrep. Second, we act controlled multiplication

operators with the control being this new factor and the target being a set of links

attached to this vertex and all adjacent to each other. It doesn’t matter the order in

which we act these. In (A.6), the targets would be the g5 link and the g1 link (or the

g2, g3, g4 links). Which of the four control operations we use depends on the orientations

of the two links. If they are both oriented “in” towards the vertex, then we use CII
(the II stands for In-In). If the control is oriented in but target out, we use CIO (for

In-Out), and so on. In total, in (A.6) we’d have

Vvertex |g1⟩1 |g2⟩2 |g3⟩3 |g4⟩4 |g5⟩5 = CII,05CII,01 |1⟩0 |g1⟩1 |g2⟩2 |g3⟩3 |g4⟩4 |g5⟩5

=
1√
|G|

∑
g0∈G

|g0⟩0 |g1g0⟩1 |g2⟩2 |g3⟩3 |g4⟩4 |g5g0⟩5 .

(A.8)

It is easy to confirm this satisfies Gauss’s law at both new vertices (if the original vertex

satisfied Gauss’s law), as well as any flatness constraint in any adjacent plaquettes that

satisfied it in the original lattice.

Removing a vertex happens by reversing the steps. In (A.6), we would remove

the g0 link by first acting with C−1
II,05C

−1
II,01, then acting with ⟨1|0. Note this is not an

isometry, so we may be surprised that this leads to a sensible one-to-one identification

of physical operators. Indeed it does. The key point is that no matter what state we

start with in ABHpre, acting C−1
II,05C

−1
II,01 is sure to put link 0 in the state |1⟩0. In

other words, V †
vertex might not be an isometry on Hpre, but it’s bijective on the physical

subspace.
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An important special case of this move is to split one link into two:

(A.9)

In this case,

Vvertex |g1⟩1 =
1√
|G|

∑
g0∈G

|g0⟩0
∣∣g−1

0 g1
〉
1
. (A.10)

Note that in the irrep basis this takes the form

Vvertex |µ, ij⟩1 =
1√
dµ

dµ∑
k=1

|µ, ik⟩0 |µ, kj⟩1 . (A.11)

Move 2: Add (or remove) a plaquette

(A.12)

Concretely, we again proceed in two steps. In the first step, we append to |ψ⟩ ∈
H(1)

pre the state |e⟩ ∈ HG, where e is the identity group element. Second, we move

counterclockwise around the plaquette that was just formed (if two were formed, pick

one), at each link acting a controlled multiplication operator, with the new link as the

target. Which controlled multiplication depends on the orientations of the two links. If

the new link is oriented clockwise (respectively counterclockwise), then the target is I

(respectively O). If the other link is oriented clockwise (respectively counterclockwise),

then the control is O (respectively I). In (A.12), we would start by appending |e⟩0 and
then acting CII,50. Then we would act CII,10 and then CII,20. In total we’d have

Vplaq |g1⟩1 |g2⟩2 |g3⟩3 |g4⟩4 |g5⟩5 = CII,20CII,10CII,50 |e⟩0 |g1⟩1 |g2⟩2 |g3⟩3 |g4⟩4 |g5⟩5
= |g2g1g5⟩0 |g1⟩1 |g2⟩2 |g3⟩3 |g4⟩4 |g5⟩5 .

(A.13)

It is straightforward to see that the new plaquette has trivial holonomy. Here, g−1
0 g5g1g2 =

e. We can see that Gauss’s law is satisfied at the two modified vertices (if they satisfied

Gauss’s law before) by writing out the states before and after explicitly.
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To remove a plaquette, we perform the inverse operations. Here we’d act

⟨e|0C
−1
OO,50C

−1
OO,10C

−1
OO,20 . (A.14)

This is not an isometry onHpre, but it still defines a one-to-one identification of physical

states and operators.

Note that it did not matter that we added a link inside of a plaquette that already

existed. It would have worked to take an unclosed set of links – which do not form

a plaquette and therefore do not satisfy any flatness constraint – and close them by

adding a new link. The new plaquette satisfies the flatness constraint regardless. The

reverse operation is also important: we can take a plaquette on the edge of a lattice,

then remove the outermost link.

Ribbon operator transformation

A ribbon operator F acts on Hphys and therefore must be represented on any associated

lattice. We can ask: given Fγ(h, g) acting on H(1)
pre, what is the associated operator on

H(2)
pre? The answer is that it is also a ribbon operator, now including the new link if a

plaquette was added along its path. For example:

(A.15)

One way to see how Fγ(h, g) maps is to recall that Vplaq = C |e⟩0, where C is a unitary

and ℓ0 is a new link introduced in the identity element state. Then we know that what

we want is an operator O that satisfies

∀ |ψ⟩ ∈ Hphys , OV |ψ⟩ = V Fγ(h, g) |ψ⟩ . (A.16)
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This is satisfied by the anzats O = C(10 ⊗ Fγ(h, g))C
†. In the plaquette example

(A.15), we have C = CIO,10COO,20, COO,30, and we compute

C(10 ⊗ Fγ(h, g))C
† |g0, g1, g2, g3⟩ = C(10 ⊗ Fγ(h, g))

∣∣g−1
3 g−1

2 g1g0, g1, g2, g3
〉

= δg(g1)C
∣∣g−1

3 g−1
2 g1g0, g1, hg2, g3

〉
= δg(g1)

∣∣g−1
1 hg1g0, g1, hg2, g3

〉
= Fγ′(h, g) |g0, g1, g2, g3⟩ .

(A.17)

We see that Fγ(h, g) has become a larger ribbon operator on γ′, which passes across

the g1 link to act on the g0 link.

Equivalence of the Hilbert Spaces

Now let us sketch the argument that the two elementary moves of Section 2.3 leave

the physical Hilbert space unchanged, and that each physical operator maps 1-to-1 to

a physical operator in the new Hilbert space. Consider Vvertex. Let Λ1 = (V1, L1, P1)

and Λ2 = (V2, L2, P2) be two lattices related by a move as in (A.6). Without loss of

generality, say in Λ1 there is an n-valent vertex v1 ∈ V1 with incident links ℓ1, ℓ2, · · · ℓn
all pointing in toward v, while in Λ2 there is an m + 1-valent vertex v2 with m < n

incident links ℓ0, ℓ1, · · · ℓm with ℓ0 pointing out from v2 while the rest point inwards, and

an n −m-valent vertex v′2 with incident links ℓ0, ℓm+1, ℓm+2, · · · , ℓn, with all pointing

inwards toward v′2.

Λ1 and Λ2 define pre-gauged Hilbert spaces H(1)
pre and H(2)

pre respectively. Moreover,

in our initial lattice Λ1, we have the constraint projectors

A(1) =
⊗

v∈V (1)
bulk

A(1)
v

B(1) =
⊗

p∈P (1)
bulk

B(1)
p ,

(A.18)

defining the physical Hilbert space H(1)
phys := A(1)B(1)H(1)

pre. Similarly, Λ2 comes with

constraint projectors A(2) and B(2). Crucially, A(2) is very much like A(1) except that

A(1) acts on v1 while A
(2) instead acts on v2, v

′
2. B

(2) is like B(1) except possibly one or

two plaquettes now also involve the new link ℓ0. By construction,

Vvertex : H(1)
pre → H(2)

pre

V †
vertex : H(2)

pre → H(1)
pre .

(A.19)

What we wish to show is that in particular

Vvertex : A
(1)B(1)H(1)

pre → A(2)B(2)H(2)
pre (A.20)

V †
vertex : A

(2)B(2)H(2)
pre → A(1)B(1)H(1)

pre . (A.21)
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To show (A.20), recall that when acting Vvertex we first append an ancilla in the state

|1⟩, and then we act unitary controlled multiplication operators. Say we start with

state |ψ⟩ ∈ H(1)
pre that satisfies A(1)B(1) |ψ⟩. After appending the ancilla ℓ0 but before

the unitaries, we have the state

|1⟩0 ⊗ |ψ⟩1···m ∈ HG ⊗H(1)
pre , (A.22)

which satisfies

L0(g)⊗ (⊗n
i=1Ri(g)) |1⟩0 ⊗ |ψ⟩1···n = |1⟩0 ⊗ |ψ⟩1···n , (A.23)

Rg(0)⊗ 11···n |1⟩0 ⊗ |ψ⟩1···n = |1⟩0 ⊗ |ψ⟩1···n . (A.24)

To complete the action of Vvertex we then act with the unitary operator

C :=
∏

i∈{m+1,··· ,n}

CII,0i . (A.25)

It follows that

C(R0(g)⊗ 11···n)C
†Vvertex |ψ⟩ = Vvertex |ψ⟩ . (A.26)

We compute that

CII,0i(R0(g)⊗ 1i)C
†
II,0i = R0(g)⊗Ri(g) , (A.27)

and therefore

C

(
1

|G|
∑
g∈G

R0(g)⊗ 11···n

)
C† = A

(2)

v′2
. (A.28)

We have shown A
(2)

v′2
Vvertex |ψ⟩ = Vvertex |ψ⟩. Now we want to show the same for A

(2)
v2 .

We compute

CII,0i(L0(g)⊗Ri(g))C
†
II,0i = L0(g)⊗ 1i . (A.29)

This implies

C (L0(g)⊗ (⊗n
i=1Ri(g)))C

† = L0(g)⊗R1(g)⊗ · · ·⊗Rm(g)⊗1m+1 ⊗ · · ·⊗1n . (A.30)

It follows that A
(2)
v2 Vvertex |ψ⟩ = Vvertex |ψ⟩. All that is left is to argue B(2)Vvertex |ψ⟩ =

Vvertex |ψ⟩. This follows because the introduction of |1⟩ does not change any of the

holonomies, and the action of C also preserves the holonomies.

The reverse direction (A.21) and the analogs for the B constraints can be shown

similarly.
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B Central ribbon operators

Central ribbons

Here we derive the form of the central ribbon operators for a bipartition of the disk

into two regions b and b. We assume that both b, b are topologically D2, and ðb = ðb
is topologically an interval.

Theorem B.1. The center of the algebra Ab associated to b is

Fðb([h]) =
1

|[h]|
∑
w∈[h]
g∈G

Fγ(w, g),

where [k] is the conjugacy class of k ∈ G, and γ is a ribbon whose spokes are ðb, and
whose spine is the path connecting the vertices in Vb adjacent to links in ðb.

Note that two ribbons Fγ1([h]), Fγ2([h]), where γ1 and γ2 are anchored to the same

boundary endpoints, are the same ribbon provided that it is possible to deform γ1 into

γ2 without passing through any charges.

First, we need some results and definitions that appear in [49]. We say that we

have a left joint when two ribbons diverge outwards from a common point, as shown

in Figure 13a. Similarly, we have a right joint when two ribbons converge towards a

common point, as shown in Figure 13b. Then we can use the following result from [49]:

Proposition B.2. Let γ1 and γ2 be ribbons satisfying a left joint relation. Then they

satisfy the following commutation relation:

Fγ1(h, g)Fγ2(k, ℓ) = Fγ2(hkh
−1, hℓ)Fγ1(h, g). (B.1)

Let γ3 and γ4 be ribbons satisfying a right joint relation. Then they satisfy the following

commutation relation:

Fγ3(h, g)Fγ4(k, ℓ) = Fγ3(k, ℓg
−1h−1g)Fγ4(h, g). (B.2)

To prove our theorem, we need a number of intermediate results. The first is that

the ribbons of interest are the center of a particular set of ribbon operators,

Proposition B.3. Consider two ribbons γ, γ′ that satisfy either a left-joint or a right-

joint relation. Then, for k ∈ G, the ribbon operators

Fγ([k]) =
1

|[k]|
∑
k∈[k]
l∈G

Fγ(k, l). (B.3)

commute with all possible ribbon operators on γ′ and γ.
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(a) Example of a left joint. (b) Example of a right joint.

Figure 13. The two types of joints between two ribbons.

Proof. We look for a ribbon on γ that has this property.

Fγ,c =
∑
k,l∈G

f(k, ℓ)Fγ(k, l) (B.4)

Imposing commutation with an arbitrary ribbon on γ′ by plugging this into (B.1)

yields the condition

∀h, f(k, l) = f(hkh−1, hl). (B.5)

The two combinations of k, l invariant under this set of transformations are the conju-

gacy class [k] and l−1kl, so we find f(k, l) = f([k], l−1kl).

The product of two operators on the same ribbon can be easily worked out to be

Fγ(k, l)Fγ(h, g) = δl,gFγ(kh, l). (B.6)

Imposing commutation of (B.4) with Fγ(h, g) gives

Fγ,cFγ(h, g) =
∑
k∈G

f([k], g−1kg)Fγ(kh, g)

=
∑
k′∈G

f([k′], g−1hk′h−1g)Fγ(hk
′, g)

= Fγ(h, g)
∑
k′∈G

f([k′], l−1hk′h−1l)Fγ(k
′, l). (B.7)

In the second line, we have defined k′ = h−1kh and used the invariance of the sum

under conjugation. The last line only equals Fγ(h, g)Fγ,c if we take

f(k, l) = f([k]). (B.8)

The right joint condition doesn’t yield any additional constraints.
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This proposition will be sufficient to prove our theorem in the case without matter.

To include matter, we need some more results.

Proposition B.4. Central ribbon operators live on a special type of ribbon. The

ribbon γ can end on a spoke, as long as that spoke borders only one plaquette in Pbulk,

like

(B.9)

Below, we state this concisely as “central ribbons end on a spoke.”

Proof. We can see this directly from our definition. Focusing on ℓ2 in (B.9), the operator

can be written as

Fðb([h]) =
1

|[h]|
∑

w∈[h],g∈G

Tℓ1,ℓ̄4(w)Tℓ1ℓ2,ℓ̄5(w)Tℓ1ℓ2ℓ3,ℓ̄6(w). (B.10)

Remembering that the operator Fℓ1(e, g1) projects the link ℓ1 to the value g1, we can

write the summand as

Tℓ1,ℓ̄4(w)Tℓ1ℓ2,ℓ̄5(w)Tℓ1ℓ2ℓ3,ℓ̄6(w) =
∑
g1∈G

Fℓ1(e, g1)Lℓ̄1(g
−1
1 wg1)Tℓ2,ℓ̄5(g

−1
1 wg1)Tℓ2ℓ3,ℓ̄6(g

−1
1 wg1).

(B.11)

We exchange the g1 and w sums, then define w′ = g−1wg and use
∑

w =
∑

w′ (because

we are summing over a conjugacy class) to find that

Fðb([h]) =

(∑
g1

Fℓ1(e, g)

)
1

|[h]|
∑

w∈[h],g∈G

Lℓ̄1(w)Tℓ2,ℓ̄5(w)Tℓ2ℓ3,ℓ̄6(w). (B.12)

The operator in the brackets is the identity operator, since it is a sum over a complete

set of projectors. Thus, we find that the central ribbon has no action on ℓ1, justifying

our claim.

The proof extends straightforwardly to arbitrary ribbons γ.

The qualitative reason is this: we need to end a generic ribbon operator on Vbdry
because it violates Gauss’s law at the end-point. But the sum over conjugacy classes
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already makes it commutes with Gauss’s law. We will call these special ribbons that

don’t end on Vbdry while still supporting physical operators central ribbons.

The last intermediate result is the following:

Proposition B.5. The central ribbon operator Fðb([k]) on one side of a cut is the same

as an equivalent ribbon operator Fðb([k
−1]) on the opposite side of the cut. Thus this

operator lives in both algebras.

For example, the two ribbons in

(B.13)

are related in this way.

Proof. The fundamental fact we need is that the electric operator on one side is the same

as the transported shift acting on the other side, Rℓ(h) = Tℓ,ℓ(h
−1). More generally,

denoting by ρℓ the path obtained by adjoining ℓ to the end of ρ,

Tρ,ℓ(h) = Tρℓ,ℓ̄(h
−1). (B.14)

Then, specializing to the example,

Fðb(h) =
1

|[h]|
∑

w∈[h],g∈G

Tℓ̄1,ℓ̄1(w
−1)Tℓ2ℓ̄5,ℓ5(w

−1)Tℓ2ℓ3ℓ̄6,ℓ6(w
−1). (B.15)

But the parallel-transport along ℓ2ℓ̄5 (ℓ2ℓ3ℓ̄6) is the same as the parallel-transport along

ℓ̄4ℓ7 (ℓ̄4ℓ7ℓ8), and so we can shift the first argument in each T operator accordingly.

Then, by the same argument as in the proof of Proposition B.4, we can get rid of the

ℓ̄1. We then find the red ribbon in (B.13), where the shift parameter is summed over

[h−1] instead of [h], as claimed.

Again, the proof extends to other ribbons in a straightforward way.

Note here the importance of our requirement that the dual path ðb not intersect

any plaquettes containing matter. If any of them did contain matter, then we couldn’t

use flatness and the argument would not go through.
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Now we are ready for the following proof.

Proof of Theorem B.1. First, consider the case without matter, since the argument is

more direct. We first remember that the center commutes with every operator in b,

and that the algebra of b is generated by the ribbon operators. We consider three types

of ribbons: those that share no end-points with γ, those that share one, and those

that share two. Operators on ribbons that share no end-points with γ can always be

deformed so that their support has no intersection with γ. Those that share one, which

we will call γ′, can be deformed so that γ, γ′ satisfy either a left-joint or a right-joint

relation. γ and γ′ cannot cross per se, since such a γ′ would leave b. Finally, any

ribbon that shares both end-points with γ is topologically the same as γ itself. So, the

non-trivial commutation relations to check are exactly those checked in Proposition

B.3. This proves it in this case.

In the presence of matter, there are many more topologically inequivalent ribbons

in b. So we opt for an indirect argument. Notice that any operator supported entirely

in b is in the commutant A′
b of the algebra Ab of operators supported in b, for the

simple reason that spacelike-separated operators commute. Furthermore, the center is

defined exactly as Zb = Ab ∩ A′
b. Proposition B.5 shows that our ribbons satisfy this

property.

Finally, we have to show in both cases that these operators generate the full center.

Firstly, note that only ribbon operators containing (a) no projection along the magnetic

part and (b) a sum over the electric parameter weighted by a class function can be

deformed out of b. We need the first because if the ribbon projects the spine then it

has a non-trivial action on a link in Lbdry; and we need the second to run the argument

that proved Proposition B.4 to make the electric action not depend on a link in Lbdry

(in our example, this link is ℓ1). And if an operator has a non-trivial action on a link

in Lbdry ∪ b, then it cannot be supported entirely in b.

Thus, the only candidates are operators that have the same structure as our central

ribbons, but supported on some ribbon γ′ that is topologically distinct from γ. It can be

topologically distinct for two reasons. The first is that there is some matter excitation

between the two. In this case, the operator on γ′ cannot be deformed to b because

it cannot cross the matter excitation. The second reason γ′ might be topologically

distinct is that it does not share both end-points with γ. In that case also, we cannot

deform it to have support only in b. As an example, take the same lattice as before
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but a different choice for b,

(B.16)

Now, the blue ribbon is no longer supported on ðb; trying to deform it towards the

boundary of b, we get first the red and then the green ribbon. The reason is that the

operator has non-zero commutation with the holonomy shown as a thick gray arrow in

(B.16). (Note that this holonomy is a boundary-anchored Wilson line, and therefore it’s

gauge-invariant.)36 But this requirement causes the green ribbon to have the horizontal

parts above and below, so that it is always partly supported in b. So only a ribbon

supported on ðb itself can be deformed to b.

Irrep Basis

It turns out that a Fourier-transformed set that measures the total irrep flowing out of

b is more useful for us.

Theorem B.6. The central ribbons

Fðb(µ) =
dµ
|G|

∑
[k]∈G

χµ(k)Fðb([k]) (B.17)

are a complete, orthonormal set of projectors,

Fðb(µ)Fðb(ν) = δµνFðb(µ),
∑
µ

Fðb(µ) = 1. (B.18)

Proof. We first prove that they are projectors. Unpacking the definition, Fðb(µ) can

be written as

Fðb(µ) =
dµ
|G|

∑
h,g∈G

χµ(g)
1

|[h]
∑
w∈[h]

Fγ(w, g)

=
dµ
|G|

∑
h,g∈G

χµ(g)Fγ(h, g). (B.19)

36This non-commutation is the true reason such a ribbon cannot be in the center. For a ribbon

supported on ðb, this holonomy is contained in neither Ab nor A′
b, allowing our ribbons to be central.
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Here, γ is the ribbon associated to ðb, as defined in the main text. To go from the first

line to the second, we use
∑

h∈G |[h]|−1f([h]) =
∑

h∈CG f([h]) and
∑

h∈CG

∑
w∈[h] f(w) =∑

h∈G f(h).

Taking the product of two irrep ribbons,

Fðb(µ)Fðb(µ
′) =

dµdµ′

|G|2
∑

g,h,g′,h′∈G

χµ(h)χµ′(h′)Fγ(h, g)Fγ(h
′, g′)

=
dµdµ′

|G|2
∑

g,h,h′∈G

χµ(h)χµ′(h′)Fγ(hh
′, g)

=
dµdµ′

|G|2
∑
g,h̃

[∑
h′

χµ(h̃h
′−1)χµ′(h′)

]
Fγ(h̃, g). (B.20)

In the last line, we have defined h̃ = hh′ and used
∑

h,h′ =
∑

h̃,h′ .

To evaluate the quantity in the square brackets, we need to expand the charac-

ters in terms of representation matrices χµ(h) = Dµ
ii (h), summation assumed. These

representation matrices have the following orthogonality property,∑
h

Dµ
ij (h)D

µ′

i′j′(h
−1) =

|G|
dµ
δµµ

′
δij′δji′ . (B.21)

We apply it as follows,∑
h′∈G

χµ(h̃h
′−1)χµ′(h′) = Dµ

ji (h̃)
∑
h′∈G

Dµ
ij (h

′−1)Dµ′

i′i′(h
′)

= Dµ
ji (h̃)

|G|
dµ
δµµ′δii′δji′

=
|G|
dµ
χµ(h̃)δµµ′ . (B.22)

Plugging this back in to (B.20), we find the orthogonality of projectors, as advertised.

To prove completeness of the set of projectors we use character orthogonality in

the following form ∑
µ

dµχµ(h) =
∑
µ

χµ∗(e)χµ(h) = |G|δh,e. (B.23)

We use this to evaluate∑
µ

Fðb(µ) =
1

|G|
∑
h∈G

∑
µ

dµχµ(h)Fðb([h])

= Fðb([e]) = 1. (B.24)

Fðb([e]) is the identity operator because it neither shifts nor projects any links.
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Non-commutation relation

We claim that two intersecting central ribbons, corresponding to γ and γ′, fail to

commute. Again, by intersecting we mean that γ and γ′ intersect at one point, as all

other cases can be deformed to this case assuming that the path of deformation does

not pass through any charges.

Theorem B.7. The central ribbons Fγ([h]) and Fγ′([k]) fail to commute. Here γ and

γ′ denote paths on the lattice that intersect exactly once.

Proof. One way to show this is to just directly commute the two ribbons past each other

using the left and right joint relations. We will instead take the following route because

it has a nicer interpretation. Letting |ψ⟩ be any state on the lattice, we will show this

by directly demonstrating that Fγ([h])Fγ′([k]) |ψ⟩ is not equal to Fγ′([k])Fγ([h]) |ψ⟩.
Note that the only places where the operators can possibly not commute are on

the two links, a and b, located at the intersection of the two ribbons, as in the following

diagram. Here both a and b are located on the incoming spines of their respective

ribbons.

Figure 14. Two ribbons that intersect exactly once. We will call the links bordering the

intersection point a and b, so that the path of the blue ribbon can be written in the form

γ = γ1aγ3, and the path of the red ribbon can be written in the form γ′ = γ2bγ4.

We will also label the elements on these two links as a and b, so that |a⟩ |b⟩ is the
part of |ψ⟩ that we are concerned with. Without loss of generality we take a to be

located on the spine of γ′, and b to be located on the spine of γ. We can also break up

the paths as γ = γ1aγ3 and γ′ = γ2bγ4, i.e. into a piece that comes before the link and

piece that comes after the link. We let gγ1 denote the product of all the elements on

the links in γ1 in the order traversed by the ribbon, and similarly we let gγ2 denote the
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same quantity for γ2. Then

Fγ′([k])Fγ([h]) |a⟩ |b⟩ = Fγ′([k])
∣∣b−1g−1

γ1
hgγ1ba

〉
|b⟩

=
∣∣b−1g−1

γ1
hgγ1ba

〉 ∣∣a−1b−1g−1
γ1
h−1gγ1bg

−1
γ2
kgγ2b

−1g−1
γ1
hgγ1bab

〉
=
∣∣b−1hba

〉 ∣∣a−1b−1h−1bkb−1hbab
〉

(B.25)

where to get to the last line we took h→ g−1
γ1
hgγ1 and k → g−1

γ2
kgγ2 . Similarly,

Fγ([h])Fγ′([k]) |a⟩ |b⟩ = Fγ([h]) |a⟩
∣∣a−1g−1

γ2
kgγ2ab

〉
=
∣∣b−1a−1g−1

γ2
kgγ2ag

−1
γ1
hgγ1a

−1g−1
γ2
kgγ2aba

〉 ∣∣a−1g−1
γ2
kgγ2ab

〉
=
∣∣b−1a−1kaha−1kaba

〉 ∣∣a−1kab
〉

(B.26)

where we again took h→ g−1
γ1
hgγ1 and k → g−1

γ2
kgγ2 .

These two expressions are not equal. We can see this clearly by taking G to be

some continuous Lie group. In that case, we can write h = eiϵH ≈ 1 + iϵH and

k = eiϵK ≈ 1 + iϵK. Then

F [h]
c (γ)F [k]

c (γ′) |a⟩ |b⟩ =
∣∣b−1hba

〉 ∣∣a−1kab+ ϵ2gH
〉

(B.27)

for some gH , and similarly

F [k]
c (γ′)F [h]

c (γ) |a⟩ |b⟩ =
∣∣b−1hba+ ϵ2gK

〉 ∣∣a−1kab
〉

(B.28)

for some gK .

C General subalgebras

As stated in Section 2.4, in general when we consider a subregion b of the lattice, the

subalgebra we associate to that b is not just the set of physical operators that act

trivally on its complement b. It is instead a larger subalgebra which includes some

operators that act non-trivially on b. In this appendix, we describe this subalgebra and

its center in detail.

The fundamental principle is that these subalgebras do correspond to subregions

of the reduced lattice. Once we convert the reduced lattice back to the full lattice,

that subalgebra turns out to be this novel type, not the one we would most naturally

ascribe to a subregion. That said, this is indeed a natural subalgebra to assign to
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(disconnected) b if you were interested in having the center of that subalgebra include

the operator that measures the net electric flux out of b.

The summary description of these subalgebras is as follows. Say b has n connected

regions. These subalgebras are the algebraic union of the natural subalgebra associated

to each connected region, along with a network of Wilson lines connecting all of these

subregions in pairs. These Wilson lines allow us to compare the electric flux leaving

each subregion. The center is generated by “fused ribbon” operators that measure the

total electric flux leaving all the subregions.

Subregion subalgebras on the reduced lattice

We use the notation of Section 3 for the parts of the reduced lattice. It has n vertices

v1 . . . vn, with corresponding links ℓ1 . . . ℓn oriented out of the central vertex; together

these links form the set f∂. There are also m lollipops l1 . . . lm, which form the set flol.

In our figures, we will label ℓr with r and lr with r
′. Together, f = f∂ ∪ flol consists of

f1 . . . fn+m, numbered clockwise around the central vertex.

Figure 15. An example of the setup for this section.

The set of subregions we minimize over in the TN are subsets b ⊆ f. We split b

into contiguous sets b1 . . . bp. By convention, b1 = f1 ∪ . . . f|b1|. Similarly, we split the

complement b into b1 . . . bp, also arranged clockwise.
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Subalgebras for each component

For a factor fi ∈ f∂, the algebra Afi (projected to the gauge-invariant subspace) is the

set of operators that act on the boundary vertex,

Afi = {Rfi(h)|h ∈ G}′′ =
⊕
µ

L(Hµ). (C.1)

Note that, when we factorize, fi will actually be the Hilbert space of the entire link,

but the gauge-invariant algebra on a single link is that on just one end of the link.

For a factor fi ∈ flol, the algebra consists of the closed ribbon operator that measures

the quantum double charge of the matter, and the operator that measures the irrep

of the stem. Call the algebra of closed ribbons Ai,cl; the details will not be important

to us. To describe the rest, name the three links on the lollipop si, bi, hi (the stem,

boundary and heart),

(C.2)

The other set of operators measures the total electric flux leaving the lollipop,

Lsi(µ) :=
1

|G|
∑
h

χµ(h)Lsi(h). (C.3)

We can use Gauss’s law to rewrite the electric operator as a ribbon

Lsi(µ) = Rsi(µ
∗) =

1

|G|
∑
h∈G

χµ(h)Tbi,si(h)Thi,si(h)Tb̄i,si(h)

= (C.4)

Along with Ai,cl, these operators generate Afi .

Now consider a contiguous region bi. Apart from the operators on each factor,

there are now also ribbon operators Fγ(h, g), γ ⊆ bi,

Abi = {Fγ(h, g)|γ ⊆ bi}′′
∨
f∈bi

Af. (C.5)

Under lattice deformations, these contiguous regions map to those considered in Section

2.4, and the center Zbi is generated by irrep ribbons Fðbi(µ) of the sort defined there.
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The full subalgebra

With multiple components, the algebra Ab is made out of three types of operators.

1. The additive algebra Ab1 ∨ · · · ∨ Abp .

2. The Wilson lines Fℓ̄iℓj(e, g), ∀ {fi, fj} ⊆ f∂ ∩ b. An example is shown in blue in

Figure 16.

3. The transported shifts Tsi,ℓ̄1(h) acting on the stem of lollipop fi, with group el-

ement transported from v1. An example is shown in green in Figure 16. As in

(C.4), we can transport it to shift hi and bi (on both ends) similarly to (C.4).

Figure 16. Examples of non-local operators in a region consisting of the links numbered

1, 3, 6 and the lollipop labelled 1′. In blue, a Wilson line from 1 to 3. In green, a shift acting

on the stem of 1′, transported to the boundary end of link 6.

The crucial fact is that we have arbitrary ribbons in each component, but only a

subclass of those that cross between components. This subclass is the one that doesn’t

contain any electric action; we call these the magnetic ribbon operators and the others

electric ribbon operators.37 These can be used to parallel-transport all electric actions

to any boundary vertex in b. We denote a group element parallel transported along γ

as hγ, so

Lℓ(hγ) = Tγ,ℓ(h). (C.6)

The central operator is the fused ribbon operator

Fðb(µ) =
1

|G|
∑
h∈G

χµ(h)
∏
fi∈b

Lfi(h). (C.7)

37A more accurate name would be ‘non–purely magnetic,’ but we opt for the shorter name.
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If fi ∈ flol, then Lfi = Lsi . The reason we call it a fused ribbon operator is as follows.

We can see from the definition that it measures the total electric flux leaving b. This

irrep arises in the fusion of the fluxes leaving individual components, µ1 ⊗ . . .µp → µ.

This can be seen at the level of the operator by defining the ribbons in each component

Fðbr;v1(h, 1) :=
∏
fj∈br

Lfj(hℓ̄1). (C.8)

Here, 1 denotes the function 1(h) = 1. We can use the fact that the character is a class

function to parallel transport the group element to v1 in (C.7); as a result, we can write

Fðb(µ) =
1

|G|
∑
h∈G

χµ(h)

p∏
r=1

Fðbr;v1(h, 1), Fðbr(µ) =
1

|G|
∑
h∈G

χµ(h)Fðbr;v1(h). (C.9)

This is the sense in which the central operator for b is a fusion of the central ribbons

in the separate components.

Mapping to the Original Lattice

We are also interested in the algebra and center on the original lattice. It will be

instructive to begin with some examples.

Basic Examples

First, consider n = 4,m = 0, and take b = ℓ1 ∪ ℓ3, as shown in Figure 17. Do the “add

a vertex” move, such that ℓ1 and ℓ3 are separated by the new link, which we call ℓ0.

The constraints on the new lattice are Lℓ1(h)Lℓ4(h)Lℓ0(h) = Lℓ2(h)Lℓ3(h)Rℓ0(h) = 1,

and so the electric operator on this new link is neither in Ab nor in Ab. As a result,

the magnetic operator is in both algebras (or rather, since it is not gauge-invariant

on its own, it appears as a component of some operator in both algebras). This is

important, since this magnetic operator is required to parallel transport a shift on ℓ3
to v1 or parallel transport a shift on ℓ4 to v2. Mathematically,

Ab = Aℓ1 ∨ Aℓ3 ∨
{
Fℓ̄1ℓ0ℓ3(e, g)

}
Ab = A′

b = Aℓ2 ∨ Aℓ4 ∨
{
Fℓ̄2ℓ0ℓ4(e, g)

}
. (C.10)

We can also derive this explicitly using the unitaries in appendix A; the Wilson line in

the reduced lattice maps to that in the bigger lattice. To find the central operator in the

new lattice, we write the one on the reduced lattice as in (C.9), with Fðℓ1;v1 = Rℓ1(h)

and Fðℓ3;v1 = Tℓ3,ℓ̄1(h).

This generalises to larger lattices; we define b1...4 to be regions on the larger lattice

as in Figure 17. We include a Wilson line on the path ρ13 that connects b1 to b3. The
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Figure 17. An example where the reduced lattice consists of four links.

central operator straightforwardly generalises (C.9)

F µ
12 =

1

|G|
∑
h∈G

χµ(h)Fðb1(h, 1)Fðb2 (Tρ13(h), 1) . (C.11)

As a second example, consider two matter degrees of freedom, as shown in Figure

18. b consists of b1 = ℓ1 ∪ ℓ2 and b2 = l1, labelled 1′ in the figure. For Fðb2;v1 in the

fused ribbon operator, we use (C.4) to deform it as in the rightmost arrow of the figure.

This is the ribbon deformation shown in the rightmost arrow of Figure 18. Following

this through the lattice deformations, we find

F µ
ðb =

1

|G|
∑
h∈G

χµ(h)Fðb1(h, 1)Fðb2 (hγ, 1) . (C.12)

First we remove a vertex (second arrow) and add five vertices (all but one of the ones

adjacent to the red links). The add/remove a vertex move acts on a transported shift

by transporting a shift to the same origin vertex (v1 in this case); the path of the

parallel transport includes the original path along with a subset of the new links.

Figure 18. Second example.

This can be found without explicit computation. Remember that the central oper-

ator is a fusion of central ribbon operators, all parallel-transported to the same vertex.
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Notice that b on the reduced lattice separates b1 = ℓ3∪ℓ4∪ℓ5 from b2 = ℓ6∪ l2 (labelled
2′ in the figure). Similar to how electric ribbons can’t cross from b1 to b2, they can’t

cross from b1 to b2. Thus, (a) the central ribbons that make up the fused ribbon must

surround b1, b2 respectively without surrounding anything else, and (b) the parallel-

transport path should separate b1 from b2. The central ribbon surrounding b1 is no

different from that considered in Section 2.4. To find the one surrounding b2, we first

note that a central ribbon must end on links which border only one plaquette in Pbulk.

There are three such ribbons surrounding l1 on the larger lattice, σ in Figure 18 along

with the following ribbons,

(C.13)

but only one of them does not separate ℓ5 from ℓ1...3. Here, it is important to remember

that the green ribbon shifts the group element on the link it ends on, and that link

cannot be used for parallel-transporting in the complement region. Similarly, there is

only one path from the end of this ribbon to v1 that separates b1 from b2.

A Complicated Example

Finally, we should consider the possibility that the matter degree of freedom is deep

in the original lattice. Unlike the above case, the central ribbon passing through the

matter link cannot live on just one plaquette, since commutation with the plaquette

constraints requires that central ribbons end on links bordering only one element of

Pbulk. On the reduced lattice, it does live on just the one plaquette in the lollipop.

When we go back to the original lattice, we have to use (A.15) to extend the ribbon

while modifying the lattice.

Let us see an example, shown in Figure 19. On the reduced lattice, b has three

components, b1 = ℓ2, b2 = ℓ3 and b3 = l6.
38 Similarly, b has three components b1 = l2,

b2 = l3 . . . ℓ10 and b3 = {l7 . . . ℓ1}. The relations between the numberings was found

by explicit lattice transformations (not shown here, in order to preserve the reader’s

sanity). Note that the correspondence is not unique.

38The numbering is off from previous conventions by 1, due to a clerical error that propagated till

it was too late to change it. Please bear with us.
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Figure 19. A big lattice where b contains a matter degree of freedom deep in the lattice,

along with its corresponding reduced lattice.

Because ℓ2 and ℓ3 separate l2 from the rest of b, the Wilson line connecting them

must go around the corresponding matter vertex. This tells us how to parallel transport

Fðb2(h, 1) = L3(h) to v2 to fuse the ribbons.

The situation with b3 = l6 is more interesting. We have to be very careful that the

central ribbon avoids all matter links, while ending at the right place on the boundary.

To find the right end-point, note first that l6 lies between ℓ10 and l7. So the ribbon

should separate these two. However, it must not separate ℓ10 and l5. Visually, it is

clear that the only ribbon which satisfies this property must change orientation! The

simplest way to deal with this to add new links like the red on in Figure 19. Then the

central ribbon as drawn has the right properties.39 The central operator is the fusion

of the three ribbons, parallel-transported along the purple paths.

Finally, there is the issue of the physical interpretation of the central ribbon oper-

ator for b3, Fðb3(µ). In the reduced lattice, it clearly measures the electric flux leaving

b3; but this is not so clear in the original lattice.

The Lessons

The algorithm to map the central operator is as follows. First, remember that there

is a unique bijective correspondence between matter degrees of freedom and boundary

vertices on the two lattices. Labelling these physical degrees of freedom in the same

39Alternatively, one could mathematically define a twisted ribbon on the original lattice. Just use

the relation between left actions and right actions on the links being shifted twice, along with flatness

of the new plaquettes bounded by red links.
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way on both lattices, Ab on the original lattice is not the algebra of all operators in

some subregion. Each Abi is, but there are also some magnetic operators connecting

the different components. The set of extra magnetic operators are the ones that don’t

commute with electric ribbons that cross from bi to bj.

The central ribbon for each component can be fixed using the topological proper-

ties as above. We might need to add a small number of new links to easily describe

the corresponding operator. The area operator is the fusion, like in (C.9), of ribbon

operators surrounding each component bi.

A subtlety with our tensor network

Let us look again at Figure 19, keeping in mind that we are building a tensor network for

the boundary links. Suppose we define the tensor network using the lattice deformations

shown there and find upon minimization that the entanglement wedge of the boundary

region B = ℓ2 ∪ ℓ3 is the region b. Notice the following oddity: the region B is a

contiguous set of boundary links in the original lattice (and it is also contiguous in the

reduced lattice once we project out the lollipops). However, two subregions of B are

topologically separated by the dressing of the matter l6.

This never happens in AdS/CFT. If B is an interval, then any two points in B can

be connected through the bulk by a path that doesn’t leave the entanglement wedge.

In particular, in the continuum TQFT description, all Wilson lines stretching between

any pair of points in B which are homotopic to a sub-interval of B are included in the

entanglement wedge subalgebra. (They measure things like two-point functions and

entanglement of subintervals [28, 29].) So, our tensor network is a bad toy model for

gravity if subalgebras like this form the entanglement wedge. It will be important to

address this in future work.

There is a second oddity. Suppose, in the example of Figure 19, that the lollipop

l2 was also included in b. In that case, even though the plaquettes containing l2 and l6
are adjacent to each other, the algebra does not contain ribbons stretching from l2 to
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l6. The central ribbon operator is then

(C.14)

Despite the bulk region being contiguous, the algebra is still a fused subalgebra of two

subalgebras dressed to different parts of the boundary.

We look forward to dealing with these subtleties in future work. For now, let

us note that we can get around this by restricting our matter to be electric. That

means that the flatness constraints are not modified. In the example of Figure 19

(where we return to the case where l2 is excluded from b), note that the green ribbon

around l6 shifts the links below it twice, once with a left-multiplication and once with a

right-multiplication. If the matter doesn’t have magnetic charge, the parallel transport

around the plaquette containing l6 is equivalent to a parallel transport along the link

itself (by the flatness constraint). Now, note that for any link ℓ

Lℓ(h)Tℓ,ℓ̄(h) |g⟩ℓ =
∣∣hg(g−1h−1g)

〉
= |g⟩ . (C.15)

Thus, the green ribbon only acts as a shift on the matter,

(C.16)

The only role of its spine is to parallel transport the group element. But, because of

flatness, the exact path of parallel transport is immaterial; only the origin (in this case,

ℓ2) matters. Thus, the fused ribbon can be deformed to completely avoid the plaquette

containing l7, opening up a path for a ribbon to cross between the two components of
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b,

(C.17)

Let us sketch the general argument. For general matter, the reason that Ab does

not include general ribbons from ℓ2 to l6 is that they are not adjacent on the reduced

lattice. But this is somewhat arbitrary, since different lattice deformations can result

in different reduced lattices. The ordering of the boundary vertices is of course fixed,

but the ordering of the lollipops is not so. We state without proof that we can move

the lollipop around on the reduced lattice with a braiding unitary.40 A braiding of a

quantum double charge (which general matter that modifies both types of constraints

carries) and electric charge is not trivial, but the braiding of electric charges with each

other is [35]. Denoting quantum double charge with R, R⊗ µ ̸= µ⊗ R.41 Thus, if the

matter is purely electric, then we can braid all the matter lollipops to be adjacent to

one of the boundary links we began with, and the unitary is trivial.

D Tripartite information in the DG model

We show that there are four-party states such that the tripartite information (4.3)

satisfies (4.4). Consider a reduced lattice with four links b1...4, in a state |ψ⟩ such that

the states Fðbi(µ) |ψ⟩ are factorised between bi and the complement, so that all the

entanglement entropy is edge mode entropy.

Assume that the four links have fixed irreps µ1...4. This is a reasonable approx-

imation for holography, where we can make the fluctuations of four non-overlapping

extremal surfaces small to leading order in GN .

Let us then calculate a bound on the tripartite information. The positive contri-

butions are

Sr = log dµr , r = 1, 2, 3, S123 = S4 = log dµ4 . (D.1)

40An example of this can be found in the appendix of [43] for an example.
41This is not the tensor product physicists are used to. The notation ⊠ is common in the Hopf

algebra literature for this abstract tensor product.
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The negative contributions can be bounded above as

Sr2 ≤ log dµrdµ2 , r = 1, 3, 4, (D.2)

since the fusion of the two irreps µ2,µr necessarily gives a subspace of µr ⊗ µ2. Using

S13 = S24, the tripartite information can be bounded below

I3(b1 : b2 : b3) =
4∑
r=1

Sr −
∑
r=1,3,4

S2r ≥ −2 log dµ2 . (D.3)

Thus, (4.4) must be satisfied, as long as I3 is negative.

We have to fine-tune the group and class of states to make I3 ≤ 0 and match

holography. We have not done so in this work, and hope to do so in later work.

However, this argument shows that once we make the relevant choices to make I3 ≤ 0,

the tripartite information automatically has the right limit.

E Uniqueness of the factorization map

Our factorization map might seem like an obvious consequence of the gauge-theoretic

description, but we should be more careful. This obviousness comes from the fact

that we defined the physical theory using unphysical gauge degrees of freedom, and

the factorization map consists of re-introducing some of these. However, this is not a

unique affair; for example, there are dualities in which the same physical system can

arise from gauging different groups on the two sides of the duality.

Furthermore, in the bipartite case, there is in fact an irreducible ambiguity. The

center is a commutative algebra, and so there is, a priori, no constraint on the edge

modes [40]. [40] also found that, in JT gravity, the inclusion of matter resolves this

ambiguity. [54] showed that, once we fix the edge mode von Neumann entropy, the

entanglement spectrum of each |χα⟩ in (4.7) is completely fixed by the form of holo-

graphic Rényi entropies. In this section, we show a similar uniqueness theorem for the

edge modes we have introduced in this work. Our basic tool is the consistency of the

multi-party factorization.

The fusion multiplicities of the irreps are defined by µ ⊗ ν = ⊕ρρ
⊕Nρ

µν . The

identity irrep 1 satisfies Nν
µ1 = δνµ. There is an important relation between the fusion

multiplicities Nρ
µν and the quantum dimensions, see [79] for a physicists’ explanation,

Proposition E.1. [80, 81] Regard the fusion multiplicities with one index µ fixed as

a matrix,

(Nµ)
ρ
ν := Nρ

µν. (E.1)
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Then, the quantum dimension is the largest eigenvalue of this matrix. In other words,

there is a set (aρ), such that

(Nµa)ν = dµaν, and lim
n→∞

(Nn
µ)

ρ
ν = dnµaνa

ρ. (E.2)

Our uniqueness theorem is the following:

Theorem E.2. Consider the DG model (without matter) on a reduced lattice for D2

with m links, and call its Hilbert space Hm. Assume the existence of a factorization

map J : Hm ↪→ H⊗m
ℓ , for some Hℓ, satisfying the following two properties:

1. For any subset b, define Hb as the tensor factor of H⊗m
ℓ on which Ab lives. The

first condition is that for any state |ψ⟩ ∈ Hm,

J |ψ⟩ =
∑
µ

Fðb(µ) |ψ⟩ ⊗ UU ′ |χµ⟩ , U ∈ L(Hb), U
′ ∈ L(Hb). (E.3)

where µ is valued in the irreps of G and |χµ⟩ is a state in an auxiliary bipartite

Hilbert space Hµ,l ⊗Hµ,r, such that both the state and auxiliary Hilbert space are

completely fixed by µ. U,U ′ are isometries that embed this abstract bipartite state

into the H⊗m
ℓ .

2. |χ1⟩ is a factorized state.

Then,

|χµ⟩ =
1√
dµ

dµ∑
i=1

|i⟩ |i⟩ . (E.4)

Proof. Since our final aim is to prove a statement about the edge mode state |χµ⟩, we
can choose a specific lattice and state |ψ⟩ that are most convenient for us.

Take a reduced lattice with 2n links. We will work in the limit n → ∞. Call the

links ℓ1...n, ℓ1̃...ñ, and let them all be oriented out of the central vertex. Denote by γr
the path ℓ̄rℓr̃. Define the subregions b := ℓ1 ∪ . . . ℓn and br := ℓr ∪ ℓr̃.

The state we work with is the following:

|ψ0⟩ :=
n∏
r=1

[∑
g∈G

Dµ
ij (g)Fγr(e, g)

]
|1⟩⊗2n . (E.5)
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Here i, j are some fixed indices in Hµ that won’t play a role below. It is useful to

abstract away the lattice and keep track of only the fusion structure,

|ψ0⟩ =

∣∣∣∣∣
〉

(E.6)

The state can also be written as∣∣∣∣∣
〉

=
∑
ν

√
dν
dnµ

[Nnµ]
ν

µ∑
a=1

∣∣∣∣∣
〉

. (E.7)

a denotes the various copies of ν that appear in the fusion, and each copy is orthogonal.

We calculate the reduced density matrix ρ, and more specifically tr ρq, of the region

b in two ways, using the two representations of the state. We have implicitly used J

(acting on the original 2n links) to define ρ. Similarly, we define ρr as the density

matrix for br.

The first calculation follows simply from the fact that the irrep flowing out of the

region br is the identity irrep. This is because Fγr ∈ Abr , and the operator Fðbr(µ
′)

that measures the irrep is in the center of Abr , so

Fðbr(µ
′) |ψ0⟩ = δµ′,1 |ψ0⟩ . (E.8)

As a result, ρr is a pure state, meaning that

ρ =
n⊗
r=1

ρℓr =
n⊗
r=1

UχµU
†. (E.9)

Finally, this means that

tr ρq =
[
trχqµ

]n
=⇒ [tr ρq]1/n = trχqµ. (E.10)

where we have defined χµ as the reduced density matrix of |χµ⟩ on one of the factors.

The second calculation uses the second representation of the state in (E.7). Using

the fact that each total irrep ν and each copy of ν is orthogonal, the reduced density

matrix is

ρ =
∑
ν

dν
[
Nn

µ

]ν
µ

dnµ


[Nnµ]

ν

µ∑
a=1

1[
Nn

µ

]ν
µ

∣∣∣∣∣
〉 〈 ∣∣∣∣∣


⊗

χν (E.11)

:=
⊕
ν

pνρν ⊗ UχνU
†,

– 77 –



where ρν is the object in square brackets and pν is the scalar prefactor. In the limit

n→ ∞, we can use Proposition E.1 to simplify

pν =
dν
[
Nn

µ

]ν
µ

dnµ

n→∞−−−→ dνa
νaµ,

ρν =
1[

Nn
µ

]ν
µ

n→∞−−−→ 1

dnµa
νaµ

. (E.12)

Then,

tr ρq =
∑
ν

pqν tr ρ
q
ν trχ

q
ν =

∑
ν

dqν(a
νaµ) trχ

q
ν

d
n(q−1)
µ

=⇒ [tr ρq]1/n =
1

dq−1
µ

. (E.13)

In the first line, we have used tr (1d/d)
q = d1−q, and in the second line we have used

the fact that the numerator in the rightmost expression on the first line does not scale

with n in any way.

Comparing (E.10) and (E.13), we find

trχqµ =
1

dq−1
µ

=⇒ χµ =
1dµ

dµ
. (E.14)

This means that |χµ⟩ can be written as (E.4) in some basis, proving our claim.

We expect that a version of this theorem holds in a much more general class of topo-

logical field theories than doubly gauged models. Topological field theories (including

the DG model) are believed to be specified by unitary fusion categories, see [61, 82] for

an introduction. We have not assumed any particular braiding relations between the

excitations, and so we can apply it to any unitary fusion category. In general, quantum

dimensions need not be integers, and the trace on the edge mode Hilbert space might

be a quantum trace. Our theorem allows this possibility (since we never used cyclicity

of the trace). The result that generalizes is the fact that tr χqµ = d1−qµ . There is some

evidence that quantum traces are relevant in gravity, with edge modes satisfying this

statement [30, 31, 83].

Finally, this result should be compared to the result of [40], which states that adding

matter fixes the entropy of the edge modes. In our model, our result states that the

entropy of the edge modes is fixed by the structure of the multipartite algebra. We can

also consider our result to be a theorem fixing the edge mode entropy by incorporating

matter effects, if we imagine that all the excitations live on bulk matter degrees of

freedom.
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