
2792 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 21, NO. 3, JULY 2024

Fed-ensemble: Ensemble Models in Federated
Learning for Improved Generalization and

Uncertainty Quantification
Naichen Shi, Fan Lai, Raed Al Kontar , and Mosharaf Chowdhury , Member, IEEE

Abstract— The increase in the computational power of edge
devices has opened up the possibility of processing some of
the data at the edge and distributing model learning. This
paradigm is often called federated learning (FL), where edge
devices exploit their local computational resources to train models
collaboratively. Though FL has seen recent success, it is unclear
how to characterize uncertainties in FL predictions. In this
paper, we propose Fed-ensemble: a simple approach that brings
model ensembling to FL. Instead of aggregating local models
to update a single global model, Fed-ensemble uses random
permutations to update a group of K models and then obtains
predictions through model averaging. Fed-ensemble can be readily
utilized within established FL methods and does not impose a
computational overhead compared with single-model methods.
Empirical results show that our model has superior performance
over several FL algorithms on a wide range of data sets and excels
in heterogeneous settings often encountered in FL applications.
Also, by carefully choosing client-dependent weights in the
inference stage, Fed-ensemble becomes personalized and yields
even better performance. Theoretically, we show that predictions
on new data from all K models belong to the same predictive
posterior distribution under a neural tangent kernel regime.
This result, in turn, sheds light on the generalization advantages
of model averaging and justifies the uncertainty quantification
capability. We also illustrate that Fed-ensemble has an elegant
Bayesian interpretation.

Note to Practitioners—Fed-ensemble provides an algorithm that
extracts a set of K solutions without imposing any additional
communication overhead in FL. Given multiple solutions, Fed-
ensemble can be exploited to personalize inference as well
as quantify uncertainty. Such capabilities may be beneficial
within multiple practical systems that require uncertainty-aware
decision-making. Further, Fed-ensemble may be useful for model
validation and hypothesis testing.

Index Terms— Federated learning, ensemble learning, kernel
method, uncertainty quantification.

Manuscript received 4 January 2023; revised 28 March 2023; accepted
8 April 2023. Date of publication 1 May 2023; date of current version
8 August 2024. This article was recommended for publication by Associate
Editor C. Yang and Editor L. Moench upon evaluation of the reviewers’
comments. The work of Naichen Shi was supported by NSF CAREER Award
under Grant 2144147. (Corresponding author: Raed Al Kontar.)

Naichen Shi and Raed Al Kontar are with the Department of Industrial and
Operations Engineering, University of Michigan, Ann Arbor, MI 48109 USA
(e-mail: alkontar@umich.edu).

Fan Lai and Mosharaf Chowdhury are with the Department of Computer
Science and Engineering, University of Michigan, Ann Arbor, MI 48105 USA.

This article has supplementary material provided by the authors and
color versions of one or more figures available at https://doi.org/10.1109/
TASE.2023.3269639.

Digital Object Identifier 10.1109/TASE.2023.3269639

I. INTRODUCTION

SMART and connected Internet of Things (IoT) systems
are rapidly infiltrating the industry. The conventional way

of analyzing the data collected by IoT devices is to upload
them to a cloud/data center, where complex models are learned
on the aggregated data. As the size of datasets scales, such
an approach leads to high communication and storage costs.
Sharing data with others also raises concerns about data
privacy.

Rapid computational power growth on edge devices has set
forth federated learning (FL) as an elegant alternative to tra-
ditional cloud/data center-based analytics. FL brings training
to the edge, where devices collaboratively extract knowledge
and learn models with the orchestration of a central server
while keeping their personal data stored locally. Only model
parameters are shared. This paradigm shift reduces privacy
concerns and brings many intrinsic advantages, including cost
efficiency, diversity, and reduced communication, amongst
many others [1], [2].

The earliest and perhaps most popular FL algorithm is
FederatedAveraging (Fedavg) [3]. In Fedavg, the central server
broadcasts a global model (set of weights) to selected edge
devices. These devices run updates based on their local data.
The server then takes a weighted average of the resulting local
models to update the global model. This process iterates over
multiple training rounds to maximize the performance of all
devices. Fedavg has seen prevailing empirical successes in
many real-world applications [4], [5]. The caveat, however,
is that aggregating local models is prone to overfitting and
suffers from high variance in learning and prediction when
local datasets are heterogeneous; be it in size or distribution
or when clients have limited bandwidth, memory, or unreli-
able connection that affects their participation in the training
process [6], [7]. Indeed, in the past few years, multiple
papers have shown the high variance in the performance of FL
algorithms and their vulnerability to overfitting, specifically in
the presence of data heterogeneity or unreliable devices [6],
[7], [8], [9], [10].

Another critical challenge in FL is uncertainty quantifica-
tion. Due to the randomness in the model initialization and
training process, it is essential to characterize the variance in
the model prediction. However, very little literature exists on
uncertainty quantification in FL.

1545-5955 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 15,2025 at 18:33:29 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4546-324X
https://orcid.org/0000-0003-0884-6740

SHI et al.: Fed-ensemble: ENSEMBLE MODELS IN FEDERATED LEARNING 2793

In this paper, we adopt the idea of ensemble training to
FL and propose Fed-ensemble, which iteratively updates an
ensemble of models. Using an ensemble in FL brings several
benefits. Firstly, Fed-ensemble can characterize uncertainty in
predictions. With an ensemble of K models, we can naturally
use variance in the prediction as a measure of knowledge
uncertainty. Secondly, Fed-ensemble improves generalization.
We show, both theoretically and empirically, that ensembling
is efficient in reducing variance and achieving better general-
ization performance in FL. Thirdly, Fed-ensemble provides a
means for personalization to different clients as highlighted in
Sec. V-D.

It is worth noting that our approach does not increase any
additional communication cost though we train an ensem-
ble of K models. What’s more, Fed-ensemble is orthogonal
to current efforts in FL aimed at reducing communica-
tion cost, alleviating heterogeneity, or finding better fixed
points, as such approaches can be directly integrated into
our ensembling framework. Our contributions are summarized
below:
• Model: We propose an ensemble treatment to FL that

updates K models over local datasets. Point predictions
are obtained by model averaging. We also show that Fed-
ensemble excels at uncertainty quantification (UQ), which
is still an under-investigated topic in FL. Our approach
does not impose an additional burden on clients, as only
one model is assigned to a client at each communication
round. We then show that Fed-ensemble has an elegant
Bayesian interpretation.

• Convergence and Generalization: We motivate the gen-
eralization advantages of ensembling under the bias-
variance decomposition. Using neural tangent kernels
(NTK), we show that predictions at new data points
from all K models converge to samples from the same
limiting Gaussian process in sufficiently overparame-
terized regimes. This result highlights the improved
generalization and reduced variance obtained from
averaging predictions as all K models converge to sam-
ples from that same limiting posterior. To the best of
our knowledge, this is the first theoretical proof for
the convergence of a general multilayer neural network
in FL in the kernel regime and the first justification
for using model ensembling in FL. Our proof also
offers standalone value as it extends NTK results to FL
settings.

• Personalization: We propose an approach through which
clients can personalize their Fed-ensemble predictions by
taking a locally optimized weighted average over the
K models. Compared to current literature, this approach
provides a new viewpoint on how personalization can be
achieved in FL.

• Numerical Findings: We demonstrate the superior per-
formance of Fed-ensemble over several FL techniques
on a wide range of datasets, including realistic FL
datasets in FL benchmarks [11]. Our results high-
light the unique advantages of ensembling in FL in
terms of generalization, uncertainty quantification, and
personalization.

II. RELATED WORK

A. Single-Model FL

Many approaches have been proposed to tackle the afore-
mentioned FL challenges. Below we list a few, yet this is by no
means an extensive list. Fedavg [3] allows multiple steps of
local updating to balance communication vs. computation on
resource-limited edge devices. Fedavg reports decent perfor-
mance on mitigating performance bias on skewed client data
distributions. Fedprox [12] attempts to solve the heterogeneity
issue by adding a proxy term to control the shift of model
weights between the global and local client updates. This
proxy term can be viewed as a Gaussian prior on model
weights. Several influential works aim at expediting conver-
gence, like FedAcc [13], FedAdam and FedYogi [14], reducing
communication cost, like DIANA [15], DORE [16], or find-
ing exact optimal solutions, like FedSplit [17], FedPD [18],
FedDyn [19]. As aforementioned, although single model
approaches are useful in some applications, they are not
capable of uncertainty quantification. Also, several techniques
introduced in these efforts can be integrated into our ensem-
bling framework. An example of marrying Fed-ensemble with
FedDyn is shown in Sec. V-D.

B. Personalized FL

To tackle excessive heterogeneity, personalized FL allows
each client to retain their own model while borrowing strength
from each other. Current literature handles personalization
from two perspectives. The first is specific to deep neural
networks, where layers are split into common and personalized
layers (often the last few layers), then all clients exploit
the global modeling approaches discussed above to learn
the common layer parameters [20], [21]. In contrast, the
other perspective follows train-then-personalize thinking (often
iteratively), where a global model is first learned, and then
each client fine-tunes this model using their own data. Popular
approaches encourage the weights of personalized models to
stay in a small region in the parameter space of the global
model to balance each client’s shared knowledge and unique
characteristics [22], [23], [24].

C. Ensemble of Deep Neural Nets

Recently, ensembling methods in conventional, non-
federated deep learning have seen great success. Amongst
them, [25] analyzes the loss surface of deep neural networks
and uses cyclic learning rate to learn multiple models and
form ensembles. [26] visually demonstrates the diversity of
randomly initialized neural networks and empirically shows
the stability of ensembled solutions. Also, [27] connects
ensembling to Bayesian deep neural networks and highlights
the benefits of ensembling. These works mainly show the
benefits of ensembles in the centralized regime. It is not clear
how to extend these results to the federated settings, where
communication cost is a key bottleneck.

D. Bayesian Methods in FL and UQ

There are also some recent attempts to exploit Bayesian
philosophies in FL. Very recently, Fedbe was proposed [28] to

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 15,2025 at 18:33:29 UTC from IEEE Xplore. Restrictions apply.

2794 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 21, NO. 3, JULY 2024

couple Bayesian model averaging with knowledge distillation
on the server. Fedbe fits a Gaussian or Dirichlet distribution
for local models and then uses knowledge distillation on the
server to update the global model. This procedure, however,
requires additional datasets on the server and a significant
computational overhead, thus being demanding in FL. Besides,
Bayesian non-parametrics have been investigated for advanced
model aggregation through matching and re-permuting neu-
rons using neuron matching algorithms [29], [30]. Despite the
adopted Bayesian philosophy above, these methods above do
not provide predictive UQ. Indeed, UQ in FL is yet to be fully
investigated.

E. Industrial Applications of FL

Recently, FL has been applied to several industrial applica-
tions [31], [32], [33], [34], [35]. Among them, [31] and [32]
use FL to improve the predictive performance on several
prognosis tasks, [35] applies FL to distributed manufactur-
ing, and [36] discusses the applications of FL in healthcare.
We also use Fed-ensemble on distributed 3D printers for
improved vibration predictive performance.

For a comprehensive review of recent FL literature, please
refer to Kontar et al. 2021 [34].

III. FED-ENSEMBLE

In this section, we elaborate on the details of the training and
inference procedures of Fed-ensemble. We carefully design our
training algorithm so that an ensemble of K models is trained
efficiently without additional communication costs.

A. Parameter Updates Through Random Permutations

Let N denote the number of clients where the local dataset
of client i is given as Di = {xi j , yi j } j∈[1,2,..,ni] and ni is the
number of observations for client i . Also, let D be the union
of all local datasets D =

⋃N
i=1 Di , and fw(·) denote the model

parametrized by weight vector w.
1) Design Principle: To train the ensemble efficiently, our

goal is to have multiple models (fw1 , fw2 , .., fwK) engaged
in the training process. Specifically, we use K models in
the ensemble, where K is a predetermined number. The K
models are randomly initialized by standard initialization of
neural networks, which is usually Gaussian with zero mean
and width-dependent variance, [37], [38]. In each training
round, the server sends one of the K models to every client to
train on the local data. The server then aggregates the updated
models received from the clients. All K models eventually
learn from the entire dataset. Hereon, we use model or weight
to refer to wk and model to refer to the corresponding fwk .

2) Objective of Ensemble Training: Since we aim to learn
K models, the objective of FL training can be simply defined
as:

min
W

K∑
k=1

N∑
i=1

piℓi (wk) (1)

where W = {w1, w2, . . . ,wK }, ℓi is the local empirical loss
on client i , ℓi (wk) =

1
ni

∑
(xi j ,yi j)∈Di

L(fwk (xi j), yi j), pi is a
weighting factor for each client and L is a loss criterion such
as cross entropy.

Algorithm 1 Fed-ensemble training
1: Input: Client datasets {Di }

N
i=1, T , K , N , initialization for

{wk}
K
k=1

2: for t = 0, 2, · · · T do
3: for i = 1, 2, · · · N do
4: if t = 0(mod K) then
5: Index Permutation: P i,·← shuffle_list[1, 2, · · · K]
6: end if
7: Server sends model wPi,t mod K to client i
8: u(i)

← local_training [wPi,t mod K , Di]

9: Client i sends u(i) to server
10: end for
11: {wk}

K
k=1 ←server_update [u(1), .., u(N)].

12: end for

3) Model Training With Fed-ensemble: We now introduce
our algorithm Fed-ensemble (shown in Algorithm 1), which is
inspired by random permutation block coordinate descent used
to optimize (1). Let t ∈ [1, .., T] denote the communication
rounds. Every K communication rounds, at the beginning of
the t-th round where t = 0(mod K), each client decides how
K models will be trained in the following K communication
rounds. To do so, we can define a permutation matrix P of
size N × K such that at each round t , each row of P is an
independent random shuffle of {1, 2, · · · , K }. Then in the t-th
communication round, client i gets assigned model wPi,t mod K

as its initialization for w and then performs a training proce-
dure on the local data, denoted as u(i)

= local_training[w =
wPi,t mod K , Di], where u(i) is the updated model weight. The
local_training can be any local optimization method like
SGD or Adam. Note that the use of the random permutation
matrix P ensures that every model is downloaded and trained
on all clients in K consecutive communication rounds. Thus
models are trained on diverse clients. Upon receiving updated
models from all N clients, the server activates server_update
to calculate the new set of weights {w1, ..,wK }.

Remark 1: The simplest form of the server_update function
is to average models from the same initialization: wk ←∑N

i=1 δik u(i)∑N
i=1 δik

∀k, where δik = 1 if client i downloads model
k at communication round t, and 0 otherwise. δik can
also be obtained from P . This approach is an extension of
Fedavg. However, one can directly utilize any other scheme in
server_update to aggregate models from the same initializa-
tion. Similarly, different local training schemes can be used
within local_training.

Remark 2: The use of multiple models does not increase
computation or communication overhead on clients compared
with single-model FL algorithms, as for every round, only one
model is sent to and trained on each client. However, after
carefully selecting models by random shuffling, models trained
by Fed-ensemble can efficiently learn statistical patterns on all
clients as proven in the convergence and generalization results
in Sec. IV.

B. Model Prediction With Fed-ensemble

We differentiate the model inference procedures for existing
and new clients. After the training process is complete, all K

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 15,2025 at 18:33:29 UTC from IEEE Xplore. Restrictions apply.

SHI et al.: Fed-ensemble: ENSEMBLE MODELS IN FEDERATED LEARNING 2795

models are sent to clients. For a new client, we do not have
any additional information on their data. Thus a reasonable
prediction is simply achieved via a uniform averaging of
predictions at a new input point x⋆.

fW(x⋆) =
1
K

K∑
k=1

fwk (x⋆) (2)

While for clients that participated in model training, one
may take an additional step that leverages the information on
the local training dataset. Specifically, client i uses a weighted
average of predictions:

fi (x⋆) =

K∑
k=1

α̂ik fwk (x⋆) (3)

where α̂i is the model weighting coefficients in RK determined
by solving the following problem on client i :

α̂i = arg min
αi

K∑
k=1

αikℓi (wk)+ γH(αi)

subject to
K∑

k=1

αik = 1 , (4)

where H(αi) is the entropy of αi defined as H(αi) =

−
∑K

k=1 αik log αik . The rationale of objective (4) is simple;
we want to choose αi to minimize the weighted empirical
loss while penalizing a radical αi by adding an entropy
regularization term. The closed-form solution to problem (4)
is α̂ik = exp(−γ ℓi (wk))/

∑K
k=1 exp(−γ ℓi (wk)). The hyperpa-

rameter γ thus controls the variation of entries in α̂. Small γ

encourages α̂ to put more weights on low loss models, while
large γ drives α̂ close to uniform weighting.

In the following, we simply call (2) uniform weighting
and (3) personalized weighting. Here we should highlight that
personalized weighting offers a new perspective on current
personalization techniques. Instead of fine-tuning weights or
splitting a network into shared and individual weights, Fed-
ensemble can naturally personalize by simply taking a per-
sonalized weighting scheme of the ensemble solutions. In the
numerical sections, we will show that besides uncertainty
quantification, this approach allows improved personalization
compared to state-of-the-art techniques like Ditto [22].

C. Bayesian Interpretation of Fed-ensemble
Interestingly, Fed-ensemble has an elegant Bayesian inter-

pretation as a variational inference (VI) approach to estimate
a posterior Gaussian mixture distribution over model weights.
To view this, let model parameters w admit a posterior
distribution p(w|D). Under VI, a variational distribution
q(w) is used to approximate p(w|D) by minimizing the
KL-divergence between the two:

min
q

DK L
[
q(w) || p(w|D)

]
= Ew∼q(w)

[
ln q(w)− ln p(w|D)

]
, (5)

Now, if we take q(w) as a mixture of isotropic Gaussians,
q(w) = 1

K

∑K
k=1 N

(
wk, σ

2 I
)
, where wk’s are the variational

parameters to be optimized.

Given (5), DK L
[
q(w) || p(w|D)

]
can be decomposed by

conditional expectation law:

Ek∼Uni f orm(K)

[
Ew∼N (wk ,σ 2 I)

[
ln q(w)− ln p(D|w)

]]
,

where Uniform(K) denotes a uniform distribution on
{1, · · · , K }. To estimate the expectation, we take the assump-
tion that the variance parameter σ is very small, then different
Gaussian centers (wk) are well-separated such that q(w) is
close to zero outside small vicinity of wk’s. Thus,

Ew∼N (wk ,σ 2 I)

[
ln q(w)

]
≈ Ew∼N (wk ,σ 2 I)

[
−

1
2σ 2
∥w − wk∥

2
− d ln σ

]
+ C

= −
d
2
− d ln σ + C (6)

where C is a constant independent of k. As a result, the entire
expectation (6) is independent of wk . Now taking a first-order
Taylor expansion of ln p(w|D) around wk , we have

ln p(w|D) = ln p(wk |D)+ (w − wk)
T
∇ ln p(wk |D)

+ h.o.t. (7)

where h.o.t. represents higher order terms. After taking expec-
tation on w, we have Ew∼N (wk ,σ 2 I)

[
ln p(w|D)

]
≈ ln p(wk |D)

in the small σ limit. As a result, by conditional expectation,
the KL-divergence reduces to:

DK L(q(w) || p(w|D))

= Ek∼Uni f orm(K)

[
− ln p(wk |D)

]
+ C

=
1
K

K∑
k=1

− ln p(wk)− ln p(D|wk)+ C ′. (8)

where p(D|wk) is a function of wk and p(wk) is the prior
p.d.f. of p(w) when w = wk .

Notice that data on different clients are usually indepen-
dent. Therefore the log-likelihood factorizes as ln p(D|wk) =∑

i ln p(Di |w). If we take the loss function in (1) to be
ℓi (wk) =

−1
ni

ln p(Di |wk) −
1∑
i ni

p(wk), we then recover (1)
from (8). The p(wk) term acts as a regularizer on negative
log-likelihood loss p(D|wk). This Bayesian view highlights
the ensemble diversity as the K models can be viewed as
models of a mixture of Gaussian.

IV. CONVERGENCE AND LIMITING BEHAVIOR OF
SUFFICIENTLY OVER PARAMETERIZED

NEURAL NETWORKS

In this section, we present theoretical results on the training
and prediction of Fed-ensemble. We analyze sufficiently over-
parametrized networks trained by Fed-ensemble and explain
their advantageous generalization performance through the
lens of bias-variance decomposition. Technically, we prove
the convergence of the training loss and derive the limiting
model after sufficient training, from which we show how
generalization can be improved, and UQ can be established
using Fed-ensemble.

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 15,2025 at 18:33:29 UTC from IEEE Xplore. Restrictions apply.

2796 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 21, NO. 3, JULY 2024

A. Convergence and Variance Reduction Using Neural
Tangent Kernels

Inspired by recent work on neural tangent kernels [39], [40],
we analyze Fed-ensemble in sufficiently overparametrized neu-
ral networks. We focus on regression tasks and define the local
empirical loss in (1) as:

ℓi (wk) =
1

2ni

∑
(xi j ,yi j)∈Di

(
fwk (xi j)− yi j

)2 (9)

For this task, we will prove that when overparameterized
neural networks are trained by Fed-ensemble, the training
loss converges exponentially to a small value determined by
stepsize and that fwk (x) for all k ∈ {1, .., K } converge to sam-
ples from the same posterior Gaussian Process (GP) defined
via a neural tangent kernel. Note that for space limitations,
we only provide an informal statement of the theorems, while
details are relegated to Appendix 1. Prior to stating our result,
we introduce some needed notations.

For notational simplicity, we drop the subscript k in wk and
use w instead unless stated otherwise. We let w(0) denote the
initial value of w, and w(t) denote w after t local epochs
of training. The local epoch of training t is defined as the
product between the number of communication rounds and
the number of local updates in each communication round.
We also let pinit denote the initialization distribution for
weights w. Conditions for pinit are found in Appendix 1.
We define an initialization covariance matrix for any input
x as K(x, x ′) = Ew∼pinit(w)[fw(x) fw(x ′)]. Also, we denote the
neural tangent kernel of a neural network to be 2(l)(·, ⋆) =∑U

u=1 ∂wu fw(·)∂wu fw(⋆), where l represents the minimum
width of neural network fw in each layer and U denotes the
number of trainable parameters. Indeed, [39] shows that this
limiting kernel 2 remains fixed during training if the width of
every layer of a neural network approaches infinity and when
the stepsize η scales with l−1: η =

η0
l . We adopt the notation

in [39] and extend the analysis to FL settings.
Below we state an informal statement of our convergence

result.
Theorem 1: (Informal) For the least square regression task

min 1
2 E(x,y)∼D| f (x)− y|2, where f (x) is a neural network

whose width l goes to infinity, l →∞, then under the following
assumptions

1) 2 is full rank i.e., λmin(2) > 0
2) The norm of every input x is smaller than 1: ||x || ≤ 1
3) The stationary points of all local losses

coincide: ∇wE(x,y)∼D| fw(x)− y|2 = 0 leads to
∇wE(x,y)∼Di | fw(x)− y|2 = 0 for all clients

4) The total number of data points in one communication
round is a constant, n

when we use Fed-ensemble and local clients train via gradient
descent with stepsize η =

η0
l , the training error associated to

each model decreases exponentially

E(x,y)∼D
∣∣ fw(t)(x)− y

∣∣2

≤ e−
η0λmin (2)t

3n E(x,y)∼D
∣∣ fw(0)(x)− y

∣∣2
+ o(η2

0)

if the learning rate η is smaller than a threshold.

Remark 3: Assumptions (i) and (ii) are standard for theo-
retical development in NTK. Assumption (iii) can be derived
directly from B-local dissimilarity condition in [12]. It is
actually an overparametrization condition: it says that if the
gradient of the loss evaluated on the entire union dataset is
zero, the gradient of the loss evaluated on each local dataset is
also zero. Here we note that recent work [18], [19] has tried to
propose FL algorithms that work well when this assumption
does not hold. As aforementioned, such algorithms can be
utilized within our ensembling framework. Assumption (iv) is
added only for simplicity: it can be removed if we choose
a step size according to the number of data points in each
round.

We would like to note that after writing this paper, we find
that [41] shows the convergence of the training loss in
FL under a kernel regime. Their analysis, however, is lim-
ited to a special form of 2-layer relu activated networks
with the top layer fixed while we study general multi-layer
networks. Also, their work is mainly concerned with the
theoretical understanding of the optimization of FL under NTK
regimes, while our overarching goal is to propose an algorithm
aimed at ensembling, Fed-ensemble, and motivating its use
through NTK.

More importantly and beyond convergence of the training
loss, we can analytically calculate the limiting solution of
sufficiently overparametrized neural networks. The following
theorem shows that models in the ensemble will converge into
independent samples in a Gaussian Process:

Theorem 2: (Informal) If Algorithm 1 is used to
train {wk}k=1,...K for the regression task (1) and (9),
then after sufficient communication rounds, functions
fwk (x) can be regarded as independent samples
from a GP

(
m(x), k(x, x ′)

)
+ o(η2

0), with mean and
variance defined as m(x) = 2(x, X)2−1(X, X)Y and
k(x, x ′) = K

(
x, x ′

)
+ 2(x, X)2−1K2−12

(
X, x ′

)
−(

2(x, X)2−1K
(
X, x ′

)
+2

(
x ′, X

)
2−1K(X, x)

)
, and (X, Y)

represents the entire dataset D.
Remark 4: The result in Theorem 2 is illustrated in Fig. 1.

The central result is that training K models with Fed-ensemble
will lead to predictions fwk (x), all of which are samples from
the same posterior GP . The mean of this GP is the exact result
of kernel regression using 2, while the variance is dependent
on initialization. Hence via Fed-ensemble, one can obtain
multiple samples from the posterior predictive distribution.
As the variance in posterior Gaussian distribution naturally
represents the knowledge uncertainty, this evidences the abil-
ity of Fed-ensemble to quantify uncertainty. Our result is
similar to the simple sample-then-optimize method by [42],
which shows that for a Bayesian linear model, the action of
sampling from the prior followed by deterministic gradient
descent of the squared loss provides posterior samples given
normal priors.

To see the implications of theorem 2 in predictive perfor-
mance, we introduce some notations in bias-variance decom-
position to explain the variance reduction effect in ensemble
learning. We use θ to parametrize a general hypothesis class
hθ , and hθ (x) to denote the average of hθ (x) under some
distribution q(θ), i.e. hθ (x) = Eθ∼q(θ)[hθ (x)]. Similarly y(x)

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 15,2025 at 18:33:29 UTC from IEEE Xplore. Restrictions apply.

SHI et al.: Fed-ensemble: ENSEMBLE MODELS IN FEDERATED LEARNING 2797

Fig. 1. An illustration of an ensemble of 3 samples from the posterior distribution.

is defined as the conditional expectation y(x) = Ey
[
y|x

]
, then:

Ey,x,θ

[
(y − hθ (x))2]

= Ey,x,θ

[
(y − y(x))2]

+ Ex,θ

[(
y(x)− hθ (x)

)2
]
+ Ex,θ

[(
hθ (x)− hθ (x)

)2
]

(10)

where the expectation over x is taken under some input
distribution p(x), and that over θ is taken under q(θ). On the
right-hand side of (10), the first term represents the intrinsic
noise in the data, or data uncertainty. The second term is the
bias term which represents the difference between expected
predictions, and the expected predicted variable y. The third
term characterizes the variance from the discrepancies of
different functions in the hypothesis class, also referred to
as knowledge uncertainty in [43]. In FL, this variance is
often large due to data heterogeneity, partial participation,
etc. However, we will show that a direct consequence of
the theorem 2 indicates that knowledge uncertainty decreases
through model ensembling. In Fed-ensemble, the prediction is
given by hθ (x) = 1

K

∑K
k=1 fwk (x), and the expected prediction

is simply hθ (x) = m(x), where m(x) is the maximum a
posteriori solution of the limiting Gaussain Process obtained
in Theorem 2. From theorem 2, fwk are K i.i.d. samples,
therefore the variance shrinks as the K grows. More formally,
we have the corollary 1:

Corollary 1: Let θ = {wk}k=1,··· ,K be the parameters of all
models in the ensemble. If the assumptions in theorem 1 are
satisfied, when we train with Fed-ensemble with K models,
after sufficient iterations, for a given test input x⋆, we have
that:

Eθ

∣∣∣∣∣ 1
K

K∑
k=1

fwk (x⋆)− m(x⋆)

∣∣∣∣∣
2
 = k(x⋆, x⋆)

K
+ o(η2

0) (11)

where k is the posterior covariance function in theorem 2.
This corollary shows that the variance decreases at the rate of
1
K . Therefore, averaging over multiple models is capable of
getting closer to m(x). If we take expectation over x∗ on (11),
it becomes clear that knowledge uncertainty also decreases at
the rate of 1

K .

V. EXPERIMENTS

In this section, we provide empirical evaluations of Fed-
ensemble on five representative datasets of varying sizes.
We start with a toy example to explain the bias-variance

TABLE I
BIAS-VARIANCE DECOMPOSITION ON THE TOY REGRESSION MODEL

decomposition, then move to realistic tasks. At the end of
this section, we benchmark Fed-ensemble on a 3D printing
dataset. We note that since ensembling is an approach yet to
be fully investigated in FL, we dedicate many experiments to
a proof of concept.

A. A Simple Toy Example With Kernels

We start with a toy example of kernel methods that illustrate
the benefits of using multiple models and reinforce the key
conclusions from Theorem 2. We create 50 clients and gen-
erate the data of each client following a noisy sine function
y = a sin(2πx) + ϵ, where ϵ ∼ N (0, 0.22), and a denotes
the parameter unique for each client that is sampled from a
random distribution N (1, 0.22). On each client, we sample
2 points of x uniformly in [−1, 1]. We use the linear model
f (x;W) =

∑100
p=1 wpϕp(x), where ϕp(x) is a radial basis

kernel defined as: φp(x) = exp
(
−

(x−νp)
2

2b2

)
. In this basis

function, b = 0.08 and νp’s are 100 uniformly randomly
sampled parameters from [−1, 1] that remain constant during
training. Note that the expectation of the generated function
is E(y|x) = sin(2πx).

We report our predictive results in Table I.
In Table I we vary K and calculate the bias-variance

decomposition in (10) in each case. For each choice of K ,
we run 100 experiments from different random initializations
and calculate the predictive variance for models trained from
different initializations. As seen in the table, the variance
of Fed-ensemble can be efficiently reduced compared with a
single model approach such as Fedavg.

B. Uncertainty Quantification (UQ)

As discussed before, UQ is important in understanding
the reliability of predictions given by FL models. An ideal
model should acknowledge the level of confidence in its

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 15,2025 at 18:33:29 UTC from IEEE Xplore. Restrictions apply.

2798 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 21, NO. 3, JULY 2024

Fig. 2. Linear model on a toy dataset. Dots represent data points from a
subset of clients. The green area denotes 95% predictive interval, fwk (x).
The “averaged” reports the final prediction obtained after model averaging in
Fed-ensemble.

prediction. From (10), the total average error is decomposed
as the summation of data uncertainty, bias, and knowl-
edge uncertainty. From a single model, one cannot estimate
knowledge uncertainty. While for an ensemble of models,
we can naturally estimate knowledge uncertainty by sample

variance: 1
K

∑K
k=1

(
fwk (x)− 1

K

∑K
k ′=1 fwk′

(x)
)2

. To show the
difference between the two models in uncertainty quantifi-
cation, we examine their performance again on sine func-
tion regression. The training data are uniformly generated
from the domain [−1,−0.5]

⋃
[0.5, 1]. We train single and

ensemble models, respectively, then calculate point predictions
and uncertainty over the entire domain. Since single-model
algorithms cannot output predictive variances, we instead use
residual fitting error to estimate the variance and provide a
confidence interval. Note that here the variance is constant
over all input points.

Fig 2(a) and 2(b) show that Fed-ensemble can appropriately
characterize knowledge uncertainty on regions without labeled
data. In contrast, the Fedavg-trained model is overconfident
about the prediction in such a region.

C. Experimental Setup
In our evaluation, we compare the performance of Fed-

ensemble with several existing FL approaches. We experiment
with six different datasets of varying sizes:
• MNIST: a popular image classification dataset with 55k

training samples across 10 categories.

• FEMNIST: a federated dataset of handwritten digits and
alphabets of 62 classes from over 3k writers [44].

• CIFAR10: a dataset containing 60k images from
10 classes.

• CIFAR100: a dataset with the similar images of CIFAR10
but categorized into 100 classes.

• Shakespeare: the complete text of William Shakespeare
with 3M characters for the next work prediction.

• OpenImage: a real-world image dataset with 1.1M images
of 600 classes from 13k image uploaders [45]. We use
the realistic distribution of client data in FedScale bench-
mark [11].

In our experiments, we use K = 5 models by default, except
in the sensitivity analysis, where we vary K .

We compare Fed-ensemble with uniform weighting with
Fedavg, Fedprox, Fedbe and Fedbe without knowledge distil-
lation, where we use random sampling to replace knowledge
distillation. Some entries in Fedbe/Fedbe-noKD columns are
missing either because it’s impractical (the dataset on the
central server does not exist) or we cannot fine-tune the hyper-
parameters to achieve reasonable performance.

Also, we compare Fed-ensemble with personalized
weighting with popular personalization methods, including
LG-fedavg [20] and Ditto [22]. The testing results on MNIST,
CIFAR10/100, Shakespeare, and OpenImage are evaluated
on new clients where we do not have labeled data available,
while results on FEMNIST are tested on existing clients,
where we can fine-tune some parameters based on the local
training set.

Note that we train a 2-layer CNN for MNIST, and
ResNet18 [46] for CIFAR10, across two popular but different
settings: (i) Homogeneous setting: data are randomly shuffled
and then uniformly randomly distributed to clients; (ii) Het-
erogeneous setting: data are distributed in a non-i.i.d. manner:
we first sort the images by label and then assign them to
different clients to make sure that each client has images from
exactly two labels. The dataset FEMNIST and OpenImage are
naturally separated by contributors/users.

We now specify some hyperparameters in our experi-
ments. For experiments on MNIST, we partition the data
to 100 clients. For local_training in algorithm 1, we use
10 epochs of SGD with the batch size 16, learning rate
0.001, and weight decay 0.001. For experiments on CIFAR10,
we also partition the data to 100 clients. We use Resnet18 to
fit CIFAR10. For local_training in algorithm 1, we also use
10 epochs of SGD, with a learning rate 0.005, batch size 16.
For CIFAR100, we use the i.i.d. partition scheme to partition
the data to 10 clients. We train Resnet34 with batch size
16 and a learning rate 0.01. On Shakespeare, we partition
the dataset to 10 clients by the i.i.d. partition scheme. For
local_training, we use Adam [47] with batch size 128 and
learning rate 0.001. On the OpenImage dataset, we simulate
the real FL deployment in Google [48], where we select
130 clients to participate in training, but only the updates
from the first 100 completed clients are aggregated in order
to mitigate stragglers. In all experiments, we decay learning
rates by a constant of 0.99 after 10 communication rounds.

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 15,2025 at 18:33:29 UTC from IEEE Xplore. Restrictions apply.

SHI et al.: Fed-ensemble: ENSEMBLE MODELS IN FEDERATED LEARNING 2799

Fig. 3. Projection of the loss surface to a plane spanned by 3 models
of the ensemble trained by Fed-ensemble. Color represents the logarithm of
cross-entropy loss on the entire training set.

TABLE II
TESTING ACCURACY OF MODELS TRAINED BY DIFFERENT FL

ALGORITHMS ON FIVE DATASETS

Other algorithm-specific hyper-parameters are chosen based
on the existing literature for each method.

We run Fed-ensemble and benchmark algorithms under the
same communication cost budget, then calculate the mean and
standard deviation of test accuracy for the last 3 communica-
tion rounds. Results are shown in Table II. From Table II,
it is clear that Fed-ensemble outperforms all benchmarked
single-model FL algorithms. This confirms the effectiveness
of ensembling over single-model methods in improving gen-
eralization. Fedbe turns out to perform closely to single model
algorithms eventually. We conjecture that this happens as the
diversity of local models is lost in the knowledge distillation
step. To show the diversity of models in Fed-ensemble, we plot
the projection of the loss surface on a plane spanned by
3 models from the ensemble at the end of MNIST training
in Fig 3. Fig 3 shows that models {wk} have rich diversity:
different models correspond to different local minima with
a high loss barrier on the segment connecting them. In the
non-i.i.d. setting, the performance gap between Fed-ensemble
and single model algorithms becomes larger compared with
i.i.d. settings. This shows that Fed-ensemble can better fit more
variant data distributions compared with Fedavg and Fedprox.
This result is indeed expected as ensembling excels in
stabilizing predictions [27].

We also present the round-to-accuracy figure on the Shake-
speare dataset in Fig.4 to better visualize the training process.
The next-word-prediction model we use has 2 LSTM layers,
each with 256 hidden states. Due to the page limit, we plot
round-to-accuracy curves on other datasets in Appendix 2.

In Fig 4, the comparison between Fed-ensemble and single-
model algorithms is conspicuous. One can see that Fedavg and
Fedprox suffers from severe overfitting when communication
rounds exceed 20, while Fed-ensemble continues to improve.
Fedbe is unstable on this dataset.

Fig. 4. Round-to-accuracy curves of shakespeare.

TABLE III
AVERAGE TESTING ACCURACY ON FEMNIST

D. Fed-ensemble With Personalized Weighting

We test Fed-ensemble with personalized weighting on
FEMNIST. As writers have different writing styles, FEMNIST
is naturally a heterogeneous dataset. On FEMNIST, we choose
Fedavg, Ditto, LG-fedavg, FedDyn as our baseline meth-
ods. Among them, Ditto and LG-fedavg are state-of-the-
art personalized FL algorithms, and FedDyn [19] is a
communication-efficient FL algorithm for training a global
model. Intuitively, FedDyn adopts constrained optimization
algorithms and uses dynamic regularization terms to accelerate
training. To show that the proposed Fed-ensemble can work
well with other methods, we combine Fed-ensemble with
FedDyn to create a new algorithm called FedDyn-ensemble.
In FedDyn-ensemble, we simply use the FedDyn objective
as our local training objective for each model and use the
corresponding server average step also for each mode. We run
each experiment three times and calculate the mean and
variance of the testing accuracy averaged on all clients.
Results are shown in Table III. The comparison between Fed-
ensemble and state-of-the-art personalized models confirms
Fed-ensemble’s flexibility to fit the heterogeneous dataset.
Moreover, as FedDyn-ensemble outperforms the vanilla Fed-
Dyn, our model demonstrates its ability to collaborate with
other FL algorithms to produce even stronger results.

E. Effect of Non-I.i.d Client Data Distribution
We change the number of classes (N.o.C.) assigned to each

client from 10 to 2 on the CIFAR-10 dataset. Conceivably,
when each client has data from fewer categories, the data
distribution is more variant. The results are shown in Table IV.
As expected, the performance of all algorithms degrades with
such heterogeneity. Furthermore, Fed-ensemble outperforms
its counterparts, and the performance gap becomes signifi-
cantly clear as variance increases (i.e., smaller N.o.C.). This
highlights the ability of Fed-ensemble to improve generaliza-
tion, specifically with heterogeneous clients.

F. Effect of Number of Models K
Since the number of models, K , in the ensemble is an

important hyperparameter, we choose different values of K

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 15,2025 at 18:33:29 UTC from IEEE Xplore. Restrictions apply.

2800 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 21, NO. 3, JULY 2024

TABLE IV
SENSITIVITY ANALYSIS WITH DIFFERENT ASSIGNED N.O.C ON

CIFAR-10. GAP DENOTES THE DIFFERENCE IN TESTING ACCURACY

BETWEEN Fed-ensemble AND Fedprox

TABLE V
SENSITIVITY OF NUMBER OF MODELS K ON MNIST. ACC MAX/MIN IS

THE MAXIMUM/MINIMUM TESTING ACCURACY AMONG ALL MODELS IN

THE ENSEMBLE. AVG ENTROPY IS THE AVERAGE OF THE ENTROPY OF

THE EMPIRICAL PREDICTIVE DISTRIBUTION ACROSS ALL MODELS

TABLE VI
Fed-ensemble’S TEST ACCURACY ON CIFAR10 WITH DIFFERENT

NUMBER OF MODELS K

and test the performance on MNIST. We vary K from 3 to 80.
The results are shown in Table V. Besides testing the accuracy
of ensemble predictions, we also calculate the accuracy and
the entropy of the predictive distribution of each model in the
ensemble. As shown in Table V, as K increases from 3 to 40,
the ensemble prediction accuracy increases as a result of
variance reduction. However, when K is very large, entropy
increases, and model accuracy drops slightly, suggesting that
model prediction is less certain and accurate. The reason here
is that when K = 80, the number of clients, hence the number
of data points assigned to each model, significantly drops.
This, in turn, decreases learning accuracy, specifically when
datasets are relatively small.

To see if similar patterns arise in larger image datasets,
we also study the relation between predictive performance and
the number of models K in the larger dataset CIFAR10. More
specifically, we randomly partition the CIFAR10 dataset to
100 clients. Then we fit Fed-ensemble with a different number
of models K on the partitioned dataset. Results are shown in
Table. VI.

From Table. VI one can see that when the number of
models K increases, the test accuracy also increases. This is
especially the case for the non-i.i.d. data partition. Table. VI
again corroborates our theoretical analysis in Corollary IV that
the prediction becomes more accurate when K is larger.

G. Ablation Study on Different Training Algorithms

In this set of ablation studies, we compare algorithm 1
with another algorithm to train the ensemble. Remember

TABLE VII
TEST ACCURACY OF Fed-ensemble UNDER DIFFERENT

SAMPLING SCHEMES

that algorithm 1 uses random shuffling to ensure that each
model in the ensemble is trained on all clients every K
communication rounds. To show the effect of this mechanism,
we design a simplified version of algorithm 1, wherein every
communication round, each client randomly receives one from
K models and updates it. We compare Fed-ensemble with
the random sample method on CIFAR10. Results are shown
in Table. VII. We use “ensembling with random sampling”
to denote the simplified algorithm where clients randomly
receive one model to update in every communication round.
Still, we calculate the mean and standard deviation of the test
accuracy from the last 3 communication rounds.

It is seen that the algorithm with random sampling per-
forms comparably to Fed-ensemble in the i.i.d. partition
regime. However, in the non-i.i.d. regime, Fed-ensemble out-
performs the algorithm with random sampling. The results
show that numerically, the random shuffling mechanism in
Fed-ensemble is helpful for model optimization. This high-
lights Fed-ensemble’s ability to train ensemble models reliably
and efficiently.

H. Extension to Fully Decentralized Setting

In this subsection, we discuss the extension of Fed-ensemble
in the fully decentralized setting, where multiple connected
clients train models collaboratively without the orchestration
of a central server. One effective algorithm in decentralized
learning is the random walk. Random walk algorithms are
related to incremental gradient methods [49] and are active
research topics in distributed optimization [50], [51], [52].
The motivation of the random walk algorithm is very simple.
Suppose that in a decentralized system, clients are connected
by a graph G, where the nodes denote clients and edges denote
connectivity, i.e., client i is connected to client j if and only
if there is an edge connecting node i and j in G. An example
of G is shown in Fig. 5. The random walk algorithm works as
follows. In one round, one client updates a model on its local
dataset, then randomly sends the updated model to one of its
neighbors in G. That neighbor receives the model, updates it,
and again sends it to a random neighbor. It is shown [50], [53]
that theoretically, such procedures converge into stationary
points in expectation and have good numerical performance
with carefully designed transition probability matrix on the
graph G.

We term the above process as Fedavg Random Walk. A nat-
ural extension of Fed-ensemble in the decentralized setting is
Fed-ensemble Random Walk, where we independently train
K models using a random walk and still use the ensemble
average to make predictions.

To compare the performance of Fedavg Random Walk and
Fed-ensemble Random Walk, we run numerical simulations

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 15,2025 at 18:33:29 UTC from IEEE Xplore. Restrictions apply.

SHI et al.: Fed-ensemble: ENSEMBLE MODELS IN FEDERATED LEARNING 2801

Fig. 5. Ring topology of clients connectivity graph G. Circles denote clients,
and edges denote client connectivity.

Fig. 6. Learning curve of two random walk algorithms. The x-axis is the
round of random walks of individual models.

on CIFAR10. In the experiment, we use 10 clients connected
in a ring graph, shown in Fig. 5. In Fig. 5, every client is
connected to only 2 neighbors.

We use the i.i.d. partition to separate the CIFAR10 dataset
into 10 clients. We then run Fedavg Random Walk and Fed-
ensemble Random Walk on this instance and compare the
testing accuracy of the two models. Results are shown in
Fig. 6.

We can see that the random walk version of Fed-ensemble
again outperforms the random walk version of Fedavg.

I. 3D Printing Dataset

Finally, we present the results of a case study on 3D printers.
3D printing is a popular technology in modern manufacturing.
A 3D printer usually prints an object layer by layer. For
material extrusion printers, the printhead moves along the
predefined trajectory to stack the printing material on top of
base materials.

Printing quality and time efficiency are two important
factors in material extrusion 3D printing. During printing,
the printhead vibrates due to various operating conditions.
Such vibration degrades the quality of the printed objects and
even results in model distortions or scrapped parts [54]. The
printhead vibration is directly related to the speed at which
the printhead moves along the trajectory. When the speed
is higher, the printhead carries larger momentum and thus
vibrates more. Time efficiency is another issue for material
extrusion 3D printers. It can take hours for an ordinary material
extrusion 3D printer to print a simple object. Increasing
printing speed can decrease the time for printing the object,
but printers can suffer from a higher level of vibration.

Fig. 7. An illustration of 6 smart and connected 3D printers. Vibration data
are collected by sensors attached to print heads.

Fig. 8. The printing speed and average acceleration of 6 different 3D printers.
Different colors represent different clients. Dots represent observations, and
lines represent Fed-ensemble predictions.

To balance printing quality and time efficiency, we study
the print speed to vibration curve of material extrusion 3D
printers. The dataset is collected on 6 Ender 3D printers (The
dataset can be found at [55]). The printers have the same type
but are shipped in the package and assembled in different
places. Therefore, they share similarities in mechanical design
while retaining some uniqueness from the assembling process.
The 6 printers are asked to print the same object at different
printing speeds. Vibration is measured by accelerometers glued
to the print head to measure the acceleration in the x and y
direction. When the measured accelerations are higher, the
vibration level is also higher. In each printing experiment,
the accelerometers collect acceleration signals on the x and
y axis at the frequency of 227 Hz. We calculate the root
mean square of acceleration signals in x axis σax and in y axis
σay , and use the mean square acceleration σa =

√
σ 2

ax
+ σ 2

ay

to represent the average level of acceleration. The task is to
predict the acceleration σa at a given print speed s for a printer.
An illustration of the 3D printers is shown in Fig. 7.

We split the dataset collected on each printer into a training
and a testing set. The testing set contains the data when the
print speed is set to 30. And the training set contains the
remaining collected data. We compare Fed-ensemble and
Fedavg on the acceleration prediction task. We use a fully
connected neural network as the parametric model fw. The
input to the model fw is the printing speed s, and the printer
label, and the output is the acceleration.

We plot the data and predictions of the fully trained model in
Fig. 8. Measured data are denoted as dots, and the predictions
are denoted as solid lines. Different colors represent data and
predictions on different clients. From Fig. 8, it is clear that
Fed-ensemble is flexible to fit observations on each dataset
while learning the shared information about the shape of the
speed-vibration curve.

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 15,2025 at 18:33:29 UTC from IEEE Xplore. Restrictions apply.

2802 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 21, NO. 3, JULY 2024

TABLE VIII
TESTING MEAN SQUARE ERROR ON THE 3D PRINTER VIBRATION

DATASET. WE REPEAT EACH EXPERIMENT 5 TIMES TO

ESTIMATE THE STANDARD DEVIATION

Furthermore, the testing error is shown in Table VIII. From
Table VIII, Fed-ensemble has a lower testing error, which
indicates Fed-ensemble has a better predictive performance.
Therefore, Fed-ensemble can give a more precise prediction
on acceleration.

VI. CONCLUSION

In this work, we propose Fed-ensemble. Fed-ensemble
provides a systematic approach to quantify uncertainty and
boost the model capacity of existing FL techniques, all while
retaining the same communication cost of training a single
model. We provide convergence guarantees that extend FL
literature to the kernel regime. The theory presents insights on
the improved generalization power of Fed-ensemble through
reducing variance in the predictions. An approach to obtain
personalized predictions from Fed-ensemble is also proposed
to further mitigate heterogeneity.

We believe Fed-ensemble opens up new directions in FL
where clients collaboratively build more robust and flexible
models without increasing communication costs. It may find
value across different predictive models where uncertainty
quantification is critical. A key realization from Fed-ensemble
is its unique ability to handle heterogeneity by ensembling,
which is shown to be advantageous when compared to existing
techniques that add strong regularizers. An in-depth investiga-
tion of this phenomenon is an interesting direction we are
currently pursuing. Also, we believe that exploiting different
models in the ensemble for detecting client drift, anomalies,
or fairness challenges in model training may be an area worth
investigating.

VII. SUPPLEMENTARY MATERIAL

The supplementary material contains: Appendix 1) A formal
proof of our main theorems. Appendix 2) Additional commu-
nication round-to-accuracy figures.

REFERENCES

[1] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Trans. Intell. Syst. Technol., vol. 10,
no. 2, pp. 1–19, 2019.

[2] P. Kairouz et al., “Advances and open problems in federated learning,”
2019, arXiv:1912.04977.

[3] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. AISTATS, 2017, pp. 1273–1282.

[4] W. D. Brouwer, “The federated future is ready for shipping,” doc.ai,
Palo Alto, CA, USA, Tech. Rep., Accessed: Jul. 18, 2020.

[5] A. Hard et al., “Federated learning for mobile keyboard prediction,”
2018, arXiv:1811.03604.

[6] T. Nishio and R. Yonetani, “Client selection for federated learning with
heterogeneous resources in mobile edge,” in Proc. IEEE Int. Conf.
Commun. (ICC), May 2019, pp. 1–7.

[7] J. G. Moreno-Torres, T. Raeder, R. Alaiz-Rodríguez, N. V. Chawla, and
F. Herrera, “A unifying view on dataset shift in classification,” Pattern
Recognit., vol. 45, no. 1, pp. 521–530, 2012.

[8] Y. Jiang, J. Konečnỳ, K. Rush, and S. Kannan, “Improving feder-
ated learning personalization via model agnostic meta learning,” 2019,
arXiv:1909.12488.

[9] K. Wang, R. Mathews, C. Kiddon, H. Eichner, F. Beaufays, and
D. Ramage, “Federated evaluation of on-device personalization,” 2019,
arXiv:1910.10252.

[10] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated
multi-task learning,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 4424–4434.

[11] F. Lai et al., “FedScale: Benchmarking model and system performance
of federated learning at scale,” 2021, arXiv:2105.11367.

[12] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in Proc. 3rd MLSys
Conf., 2018, pp. 429–450.

[13] H. Yuan and T. Ma, “Federated accelerated stochastic gradient descent,”
in Proc. NIPS, 2020, pp. 5332–5344.

[14] S. J. Reddi et al., “Adaptive federated optimization,” in Proc.
Int. Conf. Learn. Represent., 2021, pp. 1–38. [Online]. Available:
https://openreview.net/forum?id=LkFG3lB13U5

[15] K. Mishchenko, E. Gorbunov, M. Takáč, and P. Richtárik, “Dis-
tributed learning with compressed gradient differences,” 2019,
arXiv:1901.09269.

[16] X. Liu, Y. Li, J. Tang, and M. Yan, “A double residual compression
algorithm for efficient distributed learning,” 2019, arXiv:1910.07561.

[17] R. Pathak and M. J. Wainwright, “FedSplit: An algorithmic framework
for fast federated optimization,” in Proc. NIPS, 2020, pp. 7057–7066.

[18] X. Zhang, M. Hong, S. Dhople, W. Yin, and Y. Liu, “FedPD: A federated
learning framework with optimal rates and adaptivity to non-IID data,”
2020, arXiv:2005.11418.

[19] D. A. E. Acar, Y. Zhao, R. Matas, M. Mattina, P. Whatmough, and
V. Saligrama, “Federated learning based on dynamic regularization,” in
Proc. Int. Conf. Learn. Represent., 2021, pp. 1–43. [Online]. Available:
https://openreview.net/forum?id=B7v4QMR6Z9w

[20] P. P. Liang et al., “Think locally, act globally: Federated learning with
local and global representations,” 2020, arXiv:2001.01523.

[21] M. G. Arivazhagan, V. Aggarwal, A. K. Singh, and S. Choudhary, “Fed-
erated learning with personalization layers,” 2019, arXiv:1912.00818.

[22] T. Li, S. Hu, A. Beirami, and V. Smith, “Ditto: Fair and robust federated
learning through personalization,” 2020, arXiv:2012.04221.

[23] F. Hanzely and P. Richtárik, “Federated learning of a mixture of global
and local models,” 2020, arXiv:2002.05516.

[24] C. T. Dinh, N. H. Tran, and T. D. Nguyen, “Personalized federated
learning with Moreau envelopes,” in Proc. 34th Conf. Neural Inf.
Process. Syst., 2020, pp. 21394–21405.

[25] T. Garipov, P. Izmailov, D. Podoprikhin, D. Vetrov, and A. G. Wilson,
“Loss surfaces, mode connectivity, and fast ensembling of DNNs,” in
Proc. 32nd Conf. Neural Inf. Process. Syst., 2018, pp. 1–10.

[26] S. Fort, H. Hu, and B. Lakshminarayanan, “Deep ensembles: A loss
landscape perspective,” 2019, arXiv:1912.02757.

[27] A. G. Wilson and P. Izmailov, “Bayesian deep learning and a proba-
bilistic perspective of generalization,” 2020, arXiv:2002.08791.

[28] H.-Y. Chen and W.-L. Chao, “Fedbe: Making Bayesian model ensem-
ble applicable to federated learning,” in Proc. Int. Conf. Learn.
Represent., 2021, pp. 1–21. [Online]. Available: https://openreview.
net/forum?id=dgtpE6gKjHn

[29] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khazaeni,
“Federated learning with matched averaging,” in Proc. Int.
Conf. Learn. Represent., 2020, pp. 1–16. [Online]. Available:
https://openreview.net/forum?id=BkluqlSFDS

[30] M. Yurochkin, M. Agarwal, S. Ghosh, K. Greenewald, T. N. Hoang,
and Y. Khazaeni, “Bayesian nonparametric federated learning of neural
networks,” in Proc. ICLR, 2019, pp. 7252–7261.

[31] W. Zhang and X. Li, “Data privacy preserving federated transfer
learning in machinery fault diagnostics using prior distributions,”
Struct. Health Monitor., vol. 21, no. 4, pp. 1329–1344, Jul. 2022, doi:
10.1177/14759217211029201.

[32] W. Zhang and X. Li, “Federated transfer learning for intelligent
fault diagnostics using deep adversarial networks with data pri-
vacy,” IEEE/ASME Trans. Mechatronics, vol. 27, no. 1, pp. 430–439,
Feb. 2022.

[33] M. Dhada, A. Parlikad, and A. S. Palau, “Federated learning for
collaborative prognosis,” Dept. Eng., Inst. Manuf., Univ. Cambridge,
Cambridge, U.K., Tech. Rep. 288348890, 2020.

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 15,2025 at 18:33:29 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1177/14759217211029201

SHI et al.: Fed-ensemble: ENSEMBLE MODELS IN FEDERATED LEARNING 2803

[34] R. Kontar et al., “The internet of federated things (IoFT),” IEEE Access,
vol. 9, pp. 156071–156113, 2021.

[35] N. Shi and R. A. Kontar, “Personalized federated learning via domain
adaptation with an application to distributed 3D printing,” Technomet-
rics, pp. 1–22, Jan. 2022, doi: 10.1080/00401706.2022.2157882.

[36] N. Rieke et al., “The future of digital health with federated learning,”
NPJ Digit. Med., vol. 3, no. 1, pp. 1–7, 2020.

[37] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proc. 13th Int. Conf. Artif. Intell.
Statist., 2010, pp. 249–256.

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rec-
tifiers: Surpassing human-level performance on ImageNet classifica-
tion,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015,
pp. 1026–1034.

[39] A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent kernel: Conver-
gence and generalization in neural networks,” in Proc. NIPS, 2018,
pp. 1–10.

[40] J. Lee et al., “Wide neural networks of any depth evolve as linear models
under gradient descent,” in Proc. 33rd Conf. Neural Inf. Process. Syst.,
2019, pp. 1–12.

[41] B. Huang, X. Li, Z. Song, and X. Yang, “FL-NTK: A neural tangent
kernel-based framework for federated learning convergence analysis,”
2021, arXiv:2105.05001.

[42] A. G. D. G. Matthews, J. Hron, R. E. Turner, and Z. Ghahramani,
“Sample-then-optimize posterior sampling for Bayesian linear models,”
in Proc. NeurIPS Workshop Adv. Approx. Bayesian Inference, 2017,
pp. 1–5.

[43] A. Malinin, L. Prokhorenkova, and A. Ustimenko, “Uncertainty
in gradient boosting via ensembles,” in Proc. Int. Conf. Learn.
Represent., 2021, pp. 1–17. [Online]. Available: https://openreview.
net/forum?id=1Jv6b0Zq3qi

[44] S. Caldas et al., “LEAF: A benchmark for federated settings,” in Proc.
NIPS, 2019, pp. 1–9.

[45] A. Kuznetsova et al., “The open images dataset v4,” Int. J. Comput. Vis.,
vol. 128, no. 7, pp. 1–26, 2020.

[46] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[47] N. Shi, D. Li, M. Hong, and R. Sun, “RMSprop converges with proper
hyper-parameter,” in Proc. Int. Conf. Learn. Represent., 2021, pp. 1–10.
[Online]. Available: https://openreview.net/forum?id=3UDSdyIcBDA

[48] K. Bonawitz et al., “Towards federated learning at scale: System design,”
in Proc. MLSys, 2019, pp. 374–388.

[49] D. P. Bertsekas, “A new class of incremental gradient methods for least
squares problems,” SIAM J. Optim., vol. 7, no. 4, pp. 913–926, 1997.

[50] A. Triastcyn, M. Reisser, and C. Louizos, “Decentralized learning
with random walks and communication-efficient adaptive optimiza-
tion,” in Proc. Workshop Federated Learn., Recent Adv. New Chal-
lenges (NIPS), 2022, pp. 1–30. [Online]. Available: https://openreview.
net/forum?id=QwL8ZGl_QGG

[51] T. Sun, D. Li, and B. Wang, “Adaptive random walk gradient descent
for decentralized optimization,” in Proc. Int. Conf. Mach. Learn., 2022,
pp. 20790–20809.

[52] X. Mao, K. Yuan, Y. Hu, Y. Gu, A. H. Sayed, and W. Yin, “Walkman:
A communication-efficient random-walk algorithm for decentralized
optimization,” IEEE Trans. Signal Process., vol. 68, pp. 2513–2528,
2020.

[53] T. Sun, Y. Sun, and W. Yin, “On Markov chain gradient descent,” Adv.
neural Inf. Process. Syst., vol. 31, 2018, pp. 1–10.

[54] M. Duan, D. Yoon, and C. E. Okwudire, “A limited-preview filtered
B-spline approach to tracking control–with application to vibration-
induced error compensation of a 3D printer,” Mechatronics, vol. 56,
pp. 287–296, Dec. 2018.

[55] IoFT Datasets. (2021). The Internet of Federated Things (IoFT) Data
Directory. Accessed: Jul. 18, 2021. [Online]. Available: https://ioft-
data.engin.umich.edu/

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 15,2025 at 18:33:29 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1080/00401706.2022.2157882

