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ABSTRACT: The entanglement negativity £(A : B) is a useful measure of quantum entan-
glement in bipartite mixed states. In random tensor networks (RTNs), which are related to
fixed-area states, it was found in ref. [1] that the dominant saddles computing the even Rényi
negativity £ (2k) generically break the Zoj replica symmetry. This calls into question previous
calculations of holographic negativity using 2D CFT techniques that assumed Zo replica
symmetry and proposed that the negativity was related to the entanglement wedge cross
section. In this paper, we resolve this issue by showing that in general holographic states,
the saddles computing E2K) indeed break the Zoy replica symmetry.

Our argument involves an identity relating €2 to the k-th Rényi entropy on subregion
AB* in the doubled state |pap)aa-pB+, from which we see that the Zgj replica symmetry
is broken down to Zj. For k < 1, which includes the case of £(A: B) at k = 1/2, we use a
modified cosmic brane proposal to derive a new holographic prescription for £ (2k) and show
that it is given by a new saddle with multiple cosmic branes anchored to subregions A and
B in the original state. Using our prescription, we reproduce known results for the PSSY
model and show that our saddle dominates over previously proposed CFT calculations near
k = 1. Moreover, we argue that the Zo, symmetric configurations previously proposed are
not gravitational saddles, unlike our proposal. Finally, we contrast holographic calculations
with those arising from RTNs with non-maximally entangled links, demonstrating that the
qualitative form of backreaction in such RTNs is different from that in gravity.
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1 Introduction

It is well known that entanglement plays a crucial role in the emergence of a semiclassical
spacetime description in holographic systems [2-5]. While this connection has been well
understood in the context of calculating entanglement entropy via the Ryu-Takayanagi
(RT) formula and its subsequent generalizations [6-8], the precise structure of multipartite
entanglement has only recently been explored [1, 9-16]. For general mixed states pap, the
correlations between subsystems A and B can be both classical and quantum. A state with
only classical correlations is called separable and takes the form

pap =Y pipY @pW,  pi>0,  Spi=1, (1.1)
i i
where px)/ p are density matrices themselves. The entanglement entropy (or more precisely
the mutual information) is sensitive to both classical and quantum correlations between A

and B, and generally does not vanish for separable states. Thus, it is of clear interest to



obtain a quantity that faithfully measures only quantum entanglement. Among a whole

1

zoo of such measures,” we are interested in a measure that is computable, operationally

meaningful, and potentially has a geometric interpretation in holography.

Entanglement negativity. With this motivation, our primary focus in this paper will be on
the logarithmic negativity (henceforth called the “negativity”), which is a genuine measure of
entanglement [18-24] because it vanishes for all separable states and decreases monotonically
under local operations and classical communications [22]. Negativity is defined as

E(A: B) =log (Z ])\Z(T)O , (1.2)

where )\ET) are the eigenvalues of ,05%, obtained by performing a partial transpose T of
the density matrix pap. In order to analyze the negativity, it is useful to study a family

of quantities called the even Rényi negativity (ERN)?
ECM(A: B) =1log (Z |A§T)|2k> : (1.3)

which can be analyzed using a replica trick since ), |)\§T)|2k = Tr [(pﬁ’gB)%} for integer
k. Notably, the replica trick for ERN has a Zo; symmetry that cyclically permutes the
replicas. This quantity can be analytically continued to other values of k. The negativity
is then given by the & = 1/2 ERN.

Given the usefulness of the negativity, it is natural to ask whether it has a useful
holographic dual. Several previous attempts have been made to answer this question [1, 10,
25, 26]. However, no consensus has been reached on a universal bulk dual. We will briefly
review some of the literature on this topic below.

Holographic negativity. Negativity was computed in 2D holographic conformal field theory
(CFT) in refs. [10, 11, 27]. This calculation was done under the assumption of the dominance
of a single Virasoro conformal block, which is standard in computations of entanglement
entropy in 2D holographic CFTs [28]. On the bulk side, this translated into a Zsj replica
symmetric configuration for £%), resulting in £(A : B) being related to a backreacted version
of the entanglement wedge cross section, EW (A : B), shown in figure 1.

Meanwhile, this problem was also analyzed in random tensor networks (RTNs) in
ref. [1]. RTNs are useful toy models for holography and accurately model fixed-area states
in gravity that possess a flat entanglement spectrum [29-31]. RTNs allow for a rigorous
calculation of the negativity as well as the ERN. Somewhat surprisingly, the dominant saddle,
shown on the right side of figure 1, has at most Z; symmetry generically. This leads to
E(A:B)=1I(A: B)+ O(1), where I(A : B) is the mutual information and O(1) denotes
subleading (in Newton’s constant ) corrections. In particular, the mutual information is

!See, for instance, ref. [17] for a review of such entanglement measures.

2There is a separate family of Rényi negativities arising from the odd moments of pﬁ%. In this paper,
we primarily focus on the even case which is related to the negativity £. We comment on the odd case in
section 5.1.
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Figure 1. The RTN calculation of even moments of the partially transposed density matrix piBB
is given by the free energy of a spin model with boundary conditions {X, X ! e} at the subregions
{A, B, C} respectively. {X, X! e} denote the cyclic, anti-cyclic and identity permutations respectively.
In the connected phase, the naive saddle (left) has a domain wall at the entanglement wedge cross
section EW (A : B) (red, dashed), which is the minimal area surface that divides the entanglement
wedge of AB, bounded by the RT surface ¢, into portions containing subregions A and B respectively.
The naive saddle can be split (left) by a small domain of an at-most-Z-symmetric permutation 7
(blue) and eventually allowed to relax to the true ground state configuration (right).

computed by extremal surfaces anchored to the subregions, quite unlike EW (A : B). More
generally, assuming a Zj, replica symmetry motivated by the RTN calculation, a prescription
was provided in ref. [1] to compute the negativity for general holographic states using the
cosmic brane proposal® of refs. [33, 34].

Our results. The goal of this paper is to revisit the proposal of ref. [1] for general holographic
states with arbitrary entanglement spectra. Our first result in this paper is to demonstrate
that in general, only a Z;, replica symmetry is preserved by the saddles computing £2) at
integer k for general holographic states. This allows us to obtain our second result, an explicit
holographic proposal for the ERN at arbitrary k, and thus also for the negativity. The final
answer, which we shall briefly summarize below, agrees with the prescription for computing
ERN provided by ref. [1] only for k¥ > 1. On the other hand, for k£ < 1 the original cosmic
brane proposal provably fails at leading order, and we instead need to apply the modified
cosmic brane proposal provided in ref. [32]. In particular, this modified cosmic brane proposal
is crucial to reproduce the negativity itself since it arises as the k = 1/2 ERN.

In order to obtain our results, we find a very useful identity relating the partially
transposed density matrix pﬁ% to the doubled (“Choi”) state |paB) 44+ g+, Which is obtained
by applying channel-state duality to the operator pap to convert it into a pure state in a
doubled Hilbert space Ha ® Ha+ ® Hp @ Hp- [35, 36]. In particular, we have the identity

2
(b5)" = pShe = Trarn[lpan) (panl), (1.4)

3We will henceforth refer to it as the original cosmic brane proposal to distinguish it from the modified
cosmic brane proposal of ref. [32].
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Figure 2. A diagrammatic proof of the identity eq. (1.4) where the boxes represent tensors, a
transpose is performed by switching legs and tensor contraction is done by gluing legs together. We
have added a green strip to clarify the orientation of the tensor. In the second line, we first obtain
(pap| by a mirror image and then use hermiticity of p4p in the second step.

where |pap) and p(jj)g* are unnormalized. We provide a diagrammatic proof of this fact

in figure 2.

The 2k-th moments of the partially transposed density matrix are thus related to the
(2)
k-th moments of a properly normalized density matrix defined as ﬁf) . = pAB*):
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Tr

(i)™ - (5 - o () (). s
The ERN then becomes
V(A B) = —(k = 1Sk (k) — kS2 (pas) (16)

where S, (p) is the Rényi entropy of p.

The calculation of Rényi entropy is by now standard in the context of holography, and
there is a lot of evidence that at integer k, the dominant saddles are Zj, replica symmetric [33,
34]. Using this assumption, one can then quotient the bulk saddle by the Zj replica symmetry

to obtain a manifold with conical defects located at the fixed points of the Z; symmetry.
k—1
4kG*

2k
The preservation or breaking of Z9, symmetry in the bulk saddles for Tr (pﬁ%) is then

Such conical defects can be thought of as being sourced by cosmic branes of tension T =

controlled by the location of the cosmic branes and whether they preserve the remaining
Z5 symmetry. For integer k > 1, it is then easy to see in examples that this Zs symmetry

“The state |pap) belongs to the one-parameter generalization ‘ pfl/;> which includes the canonical purifica-

tion |« /DA B>. Such states have been well studied in the context of the reflected entropy whose holographic
dual is related to EW (A : B) [9].



A B A* B*

Figure 3. The spatial geometry dual to the doubled state |pag) 4 4« g+ for A, B chosen to be disjoint
intervals in the vacuum state of a 2D holographic CFT is depicted. The left and right horizontal edges
are identified so that the spatial slice is topologically a cylinder. The saddles computing Rényi entropy

for AB* involve cosmic branes anchored to the respective subregions. For k > 1, the true location

of the cosmic brane of tension T} (opening angle 27”) is at either the solid or dashed green surface,

thus breaking the Z, symmetry exchanging AB with A*B*. The previously proposed Zs symmetric
configuration involves a union of cosmic branes on the entanglement wedge cross section (red) and the

RT surface for AB (blue; note that the left and right horizontal edges are identified). For k < 1, the

dominant saddle has cosmic branes of tension Lt (opening angle 7 + 7) at both the solid and dashed

2
green surfaces.

is generally broken. We demonstrate one such example in figure 3 which arises in the
computation of negativity for two disjoint intervals in the vacuum state. In the phase where
the entanglement wedge of the union of the two intervals is connected, preservation of the
7, symmetry requires the cosmic branes to intersect orthogonally, but such a configuration
cannot descend from a Zj quotient of a smooth parent manifold, as we prove in appendix C.
Moreover, there is a natural continuation of the cosmic brane saddles to arbitrary k& > 1. Near
k = 1, where the cosmic brane becomes a probe RT surface, it is easy to see that any “saddle”
with intersecting branes, even if included, would be subleading, since the area can be decreased
by smoothing the corners. In this example, the Z9; symmetric configuration has cosmic branes
at the connected RT surface vo, EW (A : B), and EW(A* : B*). On the other hand, there
are two Z; symmetric configurations involving cosmic branes of tension T} at either v4 U~yp«
or v4+ U~p, which are clearly smaller in area compared to the Z9, symmetric configuration.
This breaking of the Zy; replica symmetry in general holographic states is our first result.

A key feature of these Z; symmetric saddles is that they are exactly degenerate with
their image under the 75 transformation exchanging AB <> A*B*. This means that for the
ERN, we are always situated precisely at a “phase transition.” In general, and particularly
near phase transitions, there can be leading order corrections to the Rényi entropies for
k < 1 [32, 37-39]. In this situation, we instead need to apply the modified cosmic brane
proposal of ref. [32] to compute the Rényi entropy.

In particular, for the ERN, we will demonstrate that the original cosmic brane proposal
fails for all £ < 1, except in a few special situations. Moreover, we prove that the ERN for
k < 1 is dominated by a saddle in the “diagonal phase,” where two cosmic branes with equal
areas are on surfaces y4 Uvp+ and v~ U yp; see e.g., figure 3. Interestingly, this restores
the Zs symmetry that was lost for £ > 1, allowing us to perform a further Zs quotient.



This leads to our second result: a new, concrete holographic proposal for the ERN in the
connected phase at arbitrary k£ < 1 summarized by

E(A: B) = 2k [1(My) — I (My,753, (raUg) "), (1.7)

where I(f) is the gravitational action of the solution with boundary conditions f, M

represents the boundary conditions preparing the original state, and 'y@)

;~ represents the

insertion of a conical defect of opening angle ¢ at surface ;.> In particular, the holographic
proposal for the negativity in the connected phase is

E(A:B) =1(My) I (My,A), (yaUyp) ™). (1.8)

Overview. In section 2, we discuss the holographic dual of negativity. Motivated by the
identity eq. (1.4), we formulate the holographic dual in terms of the doubled state |pap). We
first review the holographic construction of |p4p) using the gravitational path integral. Using
this, we compute the ERN by applying the modified cosmic brane proposal to subregion AB*
in the |pap) state. We show that the original cosmic brane proposal must generally fail for
any k < 1 (except for very special cases). Moreover, we show that the ERN for k£ < 1 is always
dominated by a saddle in the diagonal phase, resulting in a simple bulk dual for the negativity.

In section 3, we illustrate our proposal using the simple example of the PSSY model [37],
reproducing the results obtained in ref. [40] and finding some new results.

In section 4, we revisit the example of computing the negativity for two disjoint intervals
in the vacuum state of a 2D holographic CFT. We describe how the wrong assumption of
Zoi, symmetry and dominance of a single channel was used in the calculations in refs. [10, 11].
In appendix A, we provide a simpler example of the Petz Rényi mutual information, where
a calculation under analogous assumptions can be performed that leads to an obviously
incorrect answer. We argue that the Zo; symmetric configurations proposed by refs. [10, 11]
fail to be gravitational saddles and, moreover, we demonstrate that our saddle dominates
over their non-saddle contribution for the calculation of £€®). This provides significant
evidence for our argument.

In section 5, we summarize our results and discuss various aspects of our work. In
section 5.1, we discuss the calculation of odd moments of the partially transposed density
matrix. In section 5.2, we discuss shortcomings of random tensor networks with non-flat
entanglement spectra (nfRTNs) and potential ways to improve them as models of holography.
The detailed differences in nfRTNs and gravity are explained in appendix B. Appendix C
discusses brane intersections that can descend from a quotient of smooth parent spacetimes.

2 Holographic dual of negativity

In this section, we describe our proposal for the holographic dual of negativity. First, we
describe the gravity dual of the auxiliary state |pap). With this state in hand, we simply need

®In fixed-area states, we use the more general definition that 'yl.w) represents the insertion of a cosmic brane
of tension Thy/p = 2;:(;). Under this general definition, egs. (1.7) and (1.8) also hold in the disconnected

phase, where ,ng =(ya U 'yB)(7T> coincides and thus partially cancels (ya U 'nge)“rJ”r/k)7 resulting in a cosmic
brane of net tension 28klc_Gl'



to evaluate the Rényi entropies. We review the modified cosmic brane proposal for computing
Rényi entropy holographically. Putting these ingredients together, we arrive at a proposal for
the holographic dual of ERNs, and most importantly the logarithmic negativity itself.

2.1 The holographic dual of |paB)

For simplicity, let us consider a CFT state [1) 45~ that enjoys a time-reversal symmetry
and can be prepared using a Euclidean path integral on a manifold M;. By the AdS/CFT
dictionary, its bulk dual can then be obtained from the corresponding gravitational saddle
consistent with the boundary conditions specified by the CFT path integral. In particular, we
use the Euclidean path integral to compute its norm (t|¢)) and the corresponding Euclidean
bulk geometry is labelled B; which satisfies 0B; = M;. The Z, symmetric slice X1 of By
provides initial data for obtaining the Lorentzian spacetime associated to [¢)).

Given the reduced density matrix p4p on subregion AB in state |¢)), we would like to
reinterpret it as a pure state |pap) that lives in a doubled Hilbert space Hap ® Hax 5.5 In
particular, the map defines the inner product between states as (o1|os) = Tr {0102}, where
01,092 are operators acting on H 4p.

More explicitly, let us pick a basis |i) 4, [j) 5 for Ha, " p respectively. In this basis, the
reduced density matrix pap takes the form

da dp
pap= > > piiy ) ali)p (|4 (|5 (2.1)
ii'=17,j'=1

Then the doubled state |pap) is given by

dy  dp
paB) = > > pigig )40 g i) e 3) e - (2.2)
ii'=1j.j'=1

Using these expressions, it is also straightforward to derive the identity eq. (1.4) for which we
have provided a diagrammatic proof in figure 2. Note that the state |pap) depends on the
choice of the basis |i) 4, |j) 5 for Ha,Hp used in transforming to the doubled Hilbert space.
However, entropies computed in |p4p) for any combination of A, A*, B, B* are independent
of the basis choice for H 4, HB.

The norm of the doubled state is given by’

(pasloas) = Tr g (2.3)

which can be computed using a Euclidean path integral in the CF'T on manifold MQAB that
is a double branched cover of M; over subregion AB. Following the same logic as above, we
can find the dual bulk geometry associated to |pap) by considering the Euclidean saddle
By such that By = M3'B. Following ref. [33], it is standard to assume that the dominant
saddle Bs respects the Zo symmetry permuting the two copies of the boundary CFT glued

5This procedure of mapping operators acting on Hap to states in a doubled Hilbert space is familiar in the
context of canonical purification, and the interested reader can find more details in ref. [9]. In mathematical
literature, it is commonly known as the Choi-Jamiolkowski isomorphism [35, 36].

"We remind the reader that |paB) is unnormalized in general.
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Figure 4. The Euclidean geometry By computing the norm of |pap) has a Z5 time reversal symmetry,

as well as a Z; symmetry under the exchange AB <> A*B*. The time reversal symmetric slice ¥

(blue) contains ’yf)g (red) which is the RT surface for subregion AB in the state |pap).

C
2
/ 7
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together in computing eq. (2.3). Moreover, in the presence of a time-reflection symmetry as
we have assumed, this symmetry is enhanced to a dihedral Dy symmetry [9].

Cutting open Bs on the time-symmetric slice 3o gives us the initial data for obtaining the
Lorentzian spacetime associated to |pap). For the purpose of computing €% (A : B), we are
interested in computing the k-th Rényi entropy of subregion AB* in the state [pap). In order
to do so, we will briefly review the computation of Rényi entropies in general holographic
states closely following ref. [32].

2.2 Holographic Rényi entropy

In a state |¢), the Rényi entropy of a subregion R is defined as

Su(R) = —— log Tr pl, (2.4)
1—n
where pp is the reduced density matrix on R. For integer n > 1, the Rényi entropy may
be computed via the gravitational path integral using the standard replica trick. In the
semi-classical limit (G — 0), the saddle point approximation is valid and we may approximate
the path integral by a single gravitational configuration, B,,. It is standard to assume that
this dominant configuration in the bulk preserves the Z,, replica symmetry of the boundary
manifold M [33] which is an n-sheeted branched cover over R of manifold M; that computes
the norm (1|¢)). By now there is a lot of evidence in the literature for this assumption of
replica symmetry to be true at leading order in G.
Assuming replica symmetry, one may then quotient B,, by Z,, to obtain a new geometry

B,, that has a conical defect with opening angle 2%

emanating from the branching points
of M. While B,, made sense only for integer n, there is a natural continuation of B, to
non-integer n by tuning the opening angle. This is equivalent to solving the bulk equations

of motion with a cosmic brane anchored to the boundary entanglement surface with tension



T, = =4 [33, 34]. The moments of the density matrix are then
Trplh = e~nUBal=1[B1]) (2.5)

where I[B] is the gravitational action of bulk manifold B.

In ref. [32], we have argued that the original cosmic brane proposal can fail when there
are two or more candidate extremal surfaces for the subregion of interest, in which case one
must employ a modified cosmic brane proposal that correctly computes the Rényi entropy
even for n < 1. Consider a situation when there are two candidate extremal surfaces 71 2 with
areas Ap o as will be relevant for the negativity calculation. Let p (Aq, A2) be the probability
distribution over the two areas in state [¢)) defined as

<¢’PA17A2W}>
(@ly)

where Py, 4, is a projector onto definite values A;2 of the areas of surfaces 712. The

p (A1, As) = (2.6)

probability distribution can be computed using the gravitational path integral as [32, 38, 39, 41]
p (Ah A2) = €Xp (I [‘81] -1 [BAl,A2]) ) (27)

where By, 4, is the fixed-area saddle obtained by solving the equations of motion given M;
as asymptotic boundary condition and areas A; s at the surfaces ;2.
The original cosmic brane proposal can then be reformulated as [32]

1 1-—
max max (n logp (A1, Aa) + (4Gn)Az> n>1,

1 —n =12 Al,AQ

1 ) (1—-n)
[, min max (nlogp(Al,A2)+ e Al) n < 1.

SS(R) = (2.8)

It is useful to understand this by writing down the maximization condition coming from
eq. (2.8): e.g., in the case of i = 1 we have

ol [BAl,AQ] _ 1—n

8141 N 4nG’ (2.9)
or [BA1,A2] _
o =0 (2.10)

where we have used eq. (2.7). These equations are the equations of motion arising from the
insertion of a cosmic brane of the appropriate tension 7;,. For a holographic state prepared
using a smooth gravitational path integral, the right-hand side (r.h.s.) of eq. (2.9) and
eq. (2.10) can be related to the conical opening angle at the given surface and result in
P1 = 2% and ¢y = 27 as required for the original cosmic brane proposal [32].

On the other hand, the modified cosmic brane proposal, based on the assumption of a

diagonal approximation in the fixed-area basis, is given by [32]

1

(1-n)
max max (n logp (A1, Aa) + A; n>1,
SyC(R) _ 1—-n A1,Az i=1,2 4G (211)

1 . (1—mn)
[, fax miny (nlng(A17A2)+ e Az) n <1,




which differs from the original cosmic brane proposal in the order of optimization. It is
straightforward to see that the two proposals agree for n > 1 but can disagree for n < 1 [32].
For n < 1, we will compute Rényi entropies using the modified cosmic brane proposal
eq. (2.11).

It was shown in ref. [32] that the modified cosmic brane proposal agrees with the original
cosmic brane proposal if and only if one of the original cosmic brane saddles satisfies the
minimality constraint, i.e., the area of the cosmic brane is no greater than the area of the other
candidate RT surface. However, for n < 1, it is possible that neither of the original cosmic
brane saddles satisfies the minimality constraint. In this case, the dominant contribution to
the modified cosmic brane proposal comes either from a diagonal saddle with A; = Ay where
the cosmic brane tension is distributed over the two surfaces, or from a subleading saddle for
the original cosmic brane proposal which satisfies the minimality constraint. This will in fact
always turn out to be the case for the computation of ERNs with & < 1, which we now turn to.

2.3 Holographic negativity

Using our identity eq. (1.4), we have the following formula for the ERN as discussed in section 1:
EP(A: B) = ~(k = 1)S (i) — kS2 (pan) (2.12)

where we remind the reader that the above formulas are purely from the boundary perspective,
and we have not used holography in deriving them. With the holographic description of the
state |pap) in hand, it is now straightforward to obtain the ERN by applying the modified
cosmic brane proposal eq. (2.11). Since k > 1 and k < 1 have qualitatively different behaviors,
we will discuss them separately.

231 k>1
For the £ > 1 ERN we obtain

ECK)(A: B) = —kSa(pap) + max max (kz log p'?) (A1, Ag) + (1- k)AZ> (2.13)
A,Ag i=1,2 4G

where p(®) (A}, Ay) is the probability distribution over the areas of the two candidate HRT

surfaces, y4 U yp+ and ya+ U g, for subregion AB* in the doubled state |pap).® Note that

eq. (2.13) applies to holographic states with arbitrary area distributions, but we will now

focus on the case of greatest interest: holographic states prepared by a smooth gravitational
path integral.

As discussed before, we can equivalently apply the original cosmic brane proposal for

k > 1 by swapping the order of maximization in eq. (2.13). By symmetry, there are two

degenerate saddles (one for each of i = 1,2) and we can consider either of them at leading

order. From the maximization conditions eq. (2.9) and eq. (2.10), we see that a cosmic brane

of tension T}, is inserted at either 44 = 4 Uyp= or 72 = ya+ Uyp. Let us label the saddle that

solves these maximization conditions as [5’5’“) which satisfies 0[5’5}{) = M4'P and has conical

8We assume that other candidate HRT surfaces (which would lead to a connected phase for the entanglement
wedge of AB*) are not relevant. We will give an argument for this in the case of k¥ < 1 at the end of
this subsection.

— 10 —



defects of opening angle %’T at the surfaces y4 and g+ (or equivalently at y4+« and vg).

Recalling eq. (2.7) for the probability distribution over areas, the fact (pag|pas) = Tr (p%45),
and the definition of the Rényi entropy, we arrive at

E(A:B) =k (2181 - T [B"]) . (2.14)

Following ref. [1], we can define I {l’;’gg)} =1 (M{‘B , 7512”/ k), 7](32? / k)) to emphasize the bound-
ary conditions associated to the on-shell action and rewrite eq. (2.14) as

EPM(A: By = k [21 (M) — I (Mz'B 4§/ A 27/9)]. (2.15)

This is precisely the result of ref. [1] which made this proposal for general holographic states
after obtaining their RTN results. We have provided a boundary argument here for justifying
their proposal for general states (in the sense of converting the calculation for the ERN to
one for Rényi entropies on the boundary). Moreover, we will see that their proposal only
agrees with ours for £ > 1 since the original cosmic brane proposal fails for k < 1.

For integer k, it is clear from eq. (1.4) and the standard assumption of replica symmetry

2k
in the Rényi entropy calculation that the saddle computing Tr {(pEBB) ] is guaranteed to

preserve a Zj symmetry. Whether it preserves the full Zog symmetry depends on whether the
location of the cosmic branes preserves the remaining 7, symmetry. We will show multiple
examples in section 3 and section 4 where the remaining Z5 symmetry is indeed broken, and
in general we expect to always have a codimension-0 region in the parameter space where
this occurs, although this is difficult to prove.

Before moving on to k < 1, we would briefly like to mention a related quantity called
the refined Rényi negativity (RRN)? given by

ECK)(A: B) = —k20; (;8(2’“)(,4 : B)) . (2.16)

The RRN is convenient to study because it will turn out to have a relatively simple geometric
dual. Using eq. (1.4), the RRN simply becomes a refined Rényi entropy [34]

5 oA = k—1
EMA:B) =5 (%), S ;:kmk( - sk), (2.17)

which can also be computed using either the original or the modified cosmic brane proposal
for £ < 1. A particularly useful limit for later purposes will be the RRN at k& = 1, where the
refined Rényi entropy becomes an entanglement entropy and the bulk dual is given by

Area (ya U~vyp : Ba)

EX(A:B) = e :

(2.18)

which is the area of probe extremal surfaces in the geometry corresponding to the doubled
state. By symmetry, of course, the same area also corresponds to y4+ U yp.

9As mentioned earlier, we will focus on the even case, so we will refrain from using the long name “refined
even Rényi negativity”.
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2.3.2 k<1
For the £ < 1 ERN we obtain

@) (4. By — _ : ) (1-k) )
EVY(A:B) kS2(pap) + max min (kz logp'* (A1, A2) + e Ai . (2.19)
In particular for the negativity (k= 1/2), we obtain
E(A: B) = —~S(pan) + = max min (10 @ (4 A)+Ai) (2.20)
: = 7502 PAB B ALXZ ey gp 1, A2 1aq ) .

As a sanity check, we can see that our results agree with those of ref. [1] for fixed-area states
as expected. For simplicity, we will only look at the negativity. For fixed-area states, the
Rényi spectrum for pap is flat [29-31]. Moreover, p(?) (A1, As) is a probability distribution
sharply localized at A; = As = 4G(S(pa) + S(pB)), since the areas of these surfaces are
fixed; see, e.g., figure 1. Using this in eq. (2.20), we obtain (A4 : B) = $1(A : B) at leading
order, in agreement with ref. [1].

We now discuss the failure of the original cosmic brane proposal. In the special case of
the calculation of ERN, this will in fact be quite generally true as we now show. The special
feature of the calculation of ERN is that the state |pap) has a Zy symmetry. Assuming the
doubled state is in the connected phase, for any candidate RT surface that breaks the Z-
symmetry, we have another candidate RT surface arising from its Z, image.'® Moreover,
because of the Z; symmetry in |pap), we have the symmetry p(® (A1, Ay) = p®) (Ag, Ay).
We can now compare the original cosmic brane proposal and the modified cosmic brane
proposal in this setting.

To do so, we will first establish some notation borrowed from ref. [32]. Let f; =
klogp® (Ay, Ag)+ (1 — k)f—é for i =1,2. Let A® = (Agi), Ag)) be the point in the (Aj, A2)
parameter space that maximizes f; subject to the minimality constraint A; < As_;. Further
define A = (flgi), flg) ) to be the point in the parameter space that maximizes f; without
any constraint. Each of the above points in the parameter space depends on k.

For the ERN, we can then prove the following theorem:

Theorem 1. The original cosmic brane proposal fails to correctly compute E@F) (A: B) for
k<1 unless A = AP and they both lie on the diagonal Ay = As.

Proof. If neither A = AM nor A® = A®@) then it is clear from Theorem 2 of ref. [32]
that the original cosmic brane proposal fails. If A®) = A then by the Z; symmetry, we
also have A(®) = A(®)| Moreover, for k < 1, we repeat the argument proving Lemma 1 of
ref. [32] and find

o (RD) = 7, (AD) = klogp? (4, 40) + (1 - AL 1)
< klogp® (A, A8)) + (1 - k:)‘ig = f2(A®™) (2.22)
< f,(A®), (2.23)

10The results of ref. [1] remain unchanged for the disconnected phase, so we will not focus on it.
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where the second line uses k < 1 and the fact that A1) by definition lies within the constrained
domain A; < As, and the third line uses the fact that A?) is the unconstrained maximum of
f2. Due to the Z5 symmetry, the same argument can be repeated with the two candidate RT
surfaces swapped to obtain f (A@)) <h (A(l)), thus implying equality. The condition
of equality implies that A(®) and A® both lie on the diagonal A; = As. Moreover, on

the diagonal, the functions f; are identical and thus, the optimums must be the same, i.e.,
A — A@), n

Theorem 1 shows that the original cosmic brane proposal fails generically, with the
exception being the case where the two cosmic brane saddles are identical and they both
have two exactly degenerate RT surfaces. This exceptional case does happen, for instance,
for fixed-area states, but for general holographic states, the modified cosmic brane proposal
becomes crucial.

So far we only used the Zs symmetry of the doubled state, but we will now use its explicit
form in order to obtain a stronger result. We will show that for £ < 1, and in particular for
the negativity, the optimum in eq. (2.19) and eq. (2.20) is always achieved on the diagonal
Ay = As. This phase was called the diagonal phase in ref. [32] and our theorem below
amounts to proving that the saddle computing the negativity is always in the diagonal phase.
This then allows us to write down a simpler holographic dual for negativity.

We start by proving the following lemma:

Lemma 1. Let p be a density operator and Py, Py be two mutually orthogonal projections.
Then

Tr(pPipPy) < |/ Te(pPipP1) Te(pPapPs). (2.24)

Proof. Using block matrices where the first (second) row/column corresponds to the image
of Py (P,) and the third row/column corresponds to the orthogonal complement, we write

P11 P12 P13 100 000
p=1|ply po2pos|, PL=]000|, Po=|010], (2.25)
pls phs ps3 000 000
and eq. (2.24) becomes
Tr(plopiz) </ Tr(phy) Te(p3,) (2.26)
which is equivalent to
[Tr(plom)]” < Te(oh) Tr(o3y). (2.27)

We now prove this.
Since p is positive (meaning positive semidefinite), p11 is also positive. Let us work in an
orthonormal basis |i) that diagonalizes p11:

A1
p11 = A2 . (2.28)

If any eigenvalue \; vanishes, positivity of p requires the entire i-th row and column of p
to vanish, and we can remove the i-th row and column without affecting eq. (2.27). Thus
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we only need to show eq. (2.27) when all \; > 0. In this case, positivity of the principal

(P%l 1)12) (2.29)
P12 P22

means that the Schur complement poy — pbpﬁlplg is positive. Since pa2 + pbpﬁlplg is

submatrix

manifestly positive, we find
To—1 o —1
Tr {(mz — P12p11 P12) (P22 + P1ap1 Pu)} >0, (2.30)
which simplifies to
Tr(p3y) > Tr(plopiltprantapiiore) = Tr(pil ApiltA), A= piapl 2.31
r(p22) > Tr(piap1y p12P12P11 P12) r(p11 Api A), = p12P12- (2.31)

Evaluating the trace using the basis |i), we find

1, - 1 1 oAl
Tr(p Api A) =) W|Aij|2 > FA?Z" Agj = (1| Al7). (2.32)
; 34V i i

Z7j

Multiplying this by Tr(p2,), we find

DUALCAEENERD DETES ok SRS W R 200 ICES
7 () )
> Y Aidy; = (Tr AP = [Te(plyon2)] (2.34)
tj
proving eq. (2.27) and thus also eq. (2.24). O
This leads us to our next main result:
Theorem 2. For 0 < k < 1 and at leading order in G,
max ng% <klogp(2) (A1, A2) + (14_Gk) Ai) (2.35)
is achieved on the diagonal A; = Ay M
Proof. Using eq. (2.6), we find
p? (A1, 43) = N <pAB ‘P\'yAU'yB*|:A1,|'yA*U'yB|=A2 PAB>7 (2.36)
where N = <pAB|pAB>_1 is a normalization constant and |y4 U yp«| = A; means fixing

the area of 74 U yp+ to A;. On the doubled Hilbert space, the inner product is given

1Note that in cases of degenerate optima, not all optima need to be on the diagonal, but the theorem
guarantees that at least one optimum is on the diagonal.
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by (C|D) = Tr (CTD), and the action of operators on AB (A*B*) is given by left (right)
multiplication on pap [9]. Using this, we can rewrite the expectation value as a trace:

p@ (A1, 42)

:N/daldagdbldbg(S(al +bg—A1)5(a2+b1—A2) <PAB ‘P|’YA|=CL1,|’YB|=51 IJ\’YA* |=az, |y« |=b2

pAB>
(2.37)
:N/daldanbldbg(S(al +b2—A1)(5(a2+b1—A2)’I‘r (pAB P|’YA|:al7|’YB|:b1 pABljl’YA|:027|’YB|:b2) .
(2.38)

At leading order in G, the integral is well approximated by the maximal value

p? (A1, A) =~ N max Tr (PAB Py s1=ar, ysl=br PAB Py s |=as, |73|:b2) - (239)

a1,a2,b1,b2
a1+ba=A1,a2+b1=A2

Let (@1, as, by, bo) be a location where this maximum is achieved; they depend on A;, Ay and
satisfy the constraints

ay + Z_)Q =Ay, as+ 1_71 = As. (2.40)
Using Lemma 1, we find
2 ~ _ _
p® (A1, 42) = N'Tx (pan Py ca iy P8 Pyl ol =5a) (2.41)
<N \/ [T T (pas Bosmaspsios P48 Posicapsis)  (242)
i=1,2

2
< J Hp(2) (C_Li +bi,a; + l_%), (2.43)
i=1

where in going to the second line we have used that the two projections are either mutually
orthogonal or identical (in the latter case the second line follows trivially), and in the last
step we have used

P (@ + biyai +bi) = N (pan Bojca, falb, P48 Falan, a5 ) (2.44)

since the right-hand side is one contribution to the left-hand side according to eq. (2.38), and
all contributions are nonnegative because Tr (pP1pPs) = Tr [(Pl pPg)T(Pl pPz)] > 0.

Note that eq. (2.43) holds for an arbitrary (A;, A2). We can now show that (A, A2)
cannot give a more optimal value to eq. (2.35) than a corresponding point on the diagonal.
Due to the symmetry p(® (A1, Ay) = p® (Aa, Ay), the image location (A, A;) is degenerate
with (A1, A2). Thus, without loss of generality, we assume A; < Ay. Since A; < Ag,
the contribution of (Aj, Ag) is fi1 (A1, A2), where we remind the reader that we defined
fi = klogp® (Ay, Ag) + (1 — k)f—é’ for i = 1,2. Rewriting eq. (2.43) as

logp@ (A1, Ag) < Zlogp (ai +bi,ai + b) (2.45)
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and using eq. (2.40) to find

2
> (@i +b) = Ay + Ay > 24, (2.46)
i=1

we arrive at

— k)

1
i (A1, 42) = logp® (41, 4) + 4, (247)
13 N (1—k) /. -
1 @ (7 07 = 4] T
§2;[klogp (@i +bi,as + bi) + e (al—i—bl)] (2.48)
13 _ _
=1
< max bil (@i + bi, a@; + Bi) : (2.50)

)

Thus we have found a point on the diagonal which contributes no less than (Aj, As). Since
we showed this for arbitrary (A;, A2), we have shown that eq. (2.35) is achieved on the
diagonal. O

This is a very powerful result since it highly simplifies the calculation of ERN for k < 1
and in particular, the negativity. Anticipating that the optimum for the modified cosmic
brane proposal is achieved on the diagonal, we can remove the inner minimization in eq. (2.19)

and replace A; with 41542 finding
(2k) @) (1-k)
E(A: B) = —kS2(pap) + max | klogp'™ (A1, A2) + W(Al + As) | . (2.51)
1,42

To see that this maximization is also achieved on the diagonal and thus gives the same result
as eq. (2.19), we use an argument similar to (2.47)—(2.50):

AL A AL A 1-k
fl( 1, 2)—;f2( 1 2):klogp(2)(Al7A2)+(SG)(A1+A2) (252>
1< N (k)
- @ (G 4b: a:Lb: 1
< D) ; |:k10gp (az_i‘bz;az‘i‘bz) + PTe. (az+bz):| (253)
< Z.:fli?;fl (di+5i,5i+5i) - (2.54)

The maximization conditions in eq. (2.51) then become [32]

o1 [gAl,AQ] _ 1—k

0A; 8kG’ (2:55)
ol [gA1 AQ] 1—k
: = 2.
0As 8kG’ (2.:56)

where we remind the reader that I [ga, 4,] is the action of the fixed-area saddle.
Analogous to eq. (2.9) and eq. (2.10), eq. (2.55) and eq. (2.56) are precisely the bulk
equations of motion obtained by inserting cosmic branes of tension % = lgk;é at the surfaces

YaUvp+ and a4+ U~yp. In other words, the proposal is to insert cosmic branes of half the usual
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tension considered in the original cosmic brane proposal at each of the surfaces va,vg5, 74+ and
~p=+. For a holographic state with a sufficiently smooth area distribution, the r.h.s. of eq. (2.55)
and eq. (2.56) can be related to the deficit angle at the surfaces [32] leading to a saddle with
opening angle 7 + - at each of the candidate RT surfaces which are degenerate by symmetry.

We again label the resulting saddle ng), with the understanding that it satisfies Gégk) =
M3'B and has conical defects of opening angle 7 + 7 at each of the surfaces ya, vp, 74~ and
~vp+. Then, similar to the case of k > 1, eq. (2.19) simplifies to

E(A:B) =k (21 By — I [ng>]) . (2.57)

Curiously, the diagonal phase restores the Zs symmetry that was lost for £ > 1, allowing us to
further quotient by the Zy symmetry. Using this to rewrite eq. (2.57) while also emphasizing
its boundary conditions, we obtain

EV(A - B) = 2k [T (My) = T (My,5 ), (va Uyg) "9 | (2.58)

In particular, we have arrived at a remarkably simple geometric prescription for the
negativity summarized by

E(A:B) =1 (M) — I (Mi,'5}, (va Uyp)®7), (2.59)

where the second term corresponds to a gravitational saddle with boundary conditions set by
the original state and has conical defects of opening angle 7 at y4p and 37 at y4 and ~vp.

Throughout this subsection, we have restricted our attention to the two candidate HRT
surfaces, 74 U~yp+ and y4+ U7y, for subregion AB* in the doubled state |pap). In principle,
when applying the modified cosmic brane proposal we should also include other candidate
HRT surfaces (which would lead to a connected phase for the entanglement wedge of AB*).
They include, for example in the case of figure 8, the union of a line connecting the left
endpoint of A to the right endpoint of B* and a line connecting the right endpoint of A to the
left endpoint of B* (as well as analogues with higher winding numbers). Near k = 1 (the case
without backreaction), it is easy to see generally that these surfaces are subdominant because
they have larger areas than v4 Uyp= or 74+« Uyp due to the Zy symmetry [9]. For general
k < 1, an analogue of Theorem 2 shows that the ERN is dominated by the diagonal for
these surfaces as well (i.e., they have the same area as their Z, images). Then using this Zo
symmetry and an argument similar to the holographic proof of strong subadditivity [42], we
find that these surfaces are subdominant to the two surfaces studied above and can be ignored.

3 PSSY model

In this section, we analyze the negativity for the PSSY model of black hole evaporation [37].
This problem was previously studied in ref. [40], and related models have been studied
using the equilibrium approximation in refs. [43, 44]. We will find perfect agreement with
these previous results.

The PSSY model is a theory of Jackiw-Teitelboim (JT) gravity coupled to end-of-the-
world (ETW) branes. The ETW branes are entangled with two auxiliary radiation systems
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Figure 5. The PSSY model consists of a JT gravity black hole coupled to ETW branes with flavor
indices (black and green) entangled with auxiliary radiation systems R; and Rs.

Ry and Rs. The state of the whole system as depicted in figure 5 is

k1 ko
)= =303 i, i) W) (31)
i=1j=1
where |;(8)) g is the state of the black hole system B at inverse temperature 3 with the
ETW brane chosen to be of sub-flavors ¢ and j respectively.

To apply our proposal, we need to consider the doubled state |pg, r,) of the radiation
systems in the PSSY model. This problem was studied in ref. [45], which found that the
gravitational description of the doubled state is as shown in figure 6. There are two phases
depending on whether k& = kjky is smaller/larger compared to the parameter Sy in JT
gravity. More precisely, the transition is determined by the dominant saddle for the second
Rényi entropy of the thermal black hole, or equivalently the black hole entropy at inverse
temperature 23. When the radiation is in the disconnected phase for small k, the doubled
state simply involves a doubled copy of the radiation system. On the other hand, for large k
the radiation has an island and is in the connected phase, in which case the doubled state
includes a closed universe. The closed universe involves two copies of the island obtained
in the computation of the second Rényi entropy.

We can now use the gravitational description of the doubled state to compute the ERN
and RRN. For simplicity, we will only focus on the RRN since it has an easier holographic dual
— the areas of RT surfaces anchored to R;R5 as depicted in figure 6. Furthermore, we will
approximate the area of the black hole by Sy and ignore % corrections for simplicity, although
our results agree with those of ref. [40] even after including them. In this approximation,
all the entanglement spectra are flat.

In the disconnected phase, we find & (2k)(R1 : Ry) = log k. This is the identity phase of
ref. [40]. In the connected phase, €2*)(R; : Ry) depends on how large ki, ko are relative to
cach other. If they are comparable, then we have £*)(R; : Ry) = log k. This is the so-called
7 phase of ref. [40]. If instead log k1 > log ko + Sp (which is the cyclic phase of ref. [40]),
then we obtain &£ (Qk)(Rl : Ry) = 2log ko + Sp. Similarly, we obtain the anti-cyclic phase of
ref. [40] by swapping 1 <> 2 in the previous phase.

In the previous example, we see that the modified cosmic brane proposal did not play a
key role. This would have been true even if we included % corrections. This is because the
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Figure 6. The doubled state |pg,r,) in (a) the disconnected phase and (b) the connected phase
(where we have further assumed a so-called 7 phase where neither k; nor ks is too large). The RT
surfaces computing the RRN are depicted in orange in both geometries. In the connected phase, the
magenta surface is degenerate with the orange surface.

Figure 7. The doubled state |ppg,) in the connected phase is depicted. The degenerate RT surfaces
computing the RRN are shown in orange and magenta.

only situations with two degenerate candidate surfaces, i.e., the ones which break the full
replica symmetry, involve a flat entanglement spectrum as shown in figure 6.

We can instead consider the negativity between R; and B as the simplest setting where
the modified cosmic brane proposal becomes important. In this case, the doubled state in the
connected phase is depicted in figure 7. In the phase where neither k1 nor Sy is too large, we
find that the RT surface is as shown in figure 7. In this case, there are non-trivial fluctuations
in the area spectrum due to the thermal fluctuations of the black hole area. The modified
cosmic brane proposal thus becomes important in this situation. This setup was not analyzed
previously in the literature, and it would be interesting in the future to compute it using a
full resolvent calculation to check the validity of our modified cosmic brane proposal.
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Figure 8. (left): the state pap for A, B chosen to be disjoint intervals in the vacuum state is
computed by a square with open boundary conditions at the subregions A, B, A*, B*. (right): the

bulk dual of the state |paB) 44 g+ is the BTZ black hole geometry up to conformal transformations.

The Rényi entropy involves computing Tr[(pfl)g*)k] whose bulk dual involves conical defects (green)

sourced by twist operators (red). For k > 1, the cosmic brane is placed at either the solid or the
dashed green lines(thus breaking the Zsj replica symmetry at integer k), whereas for k < 1 it is
distributed over both surfaces. The Zyj replica symmetric configuration with intersecting cosmic
branes is shown in blue.

4 Two intervals in the vacuum state

In refs. [10, 11], 2D holographic CFT calculations were presented that provided evidence for
the conjecture that the negativity was related to the area of a cosmic brane located at the
entanglement wedge cross section. Given that this disagrees with our results, it is helpful to
revisit these calculations to identify the assumptions that do not hold.

For simplicity, we only consider the case of the negativity between two disjoint intervals,
[0, 2] and [1, 00], in the vacuum state. The even moments of the partially transposed density
matrix are given by the following four-point function in the product of 2k copies of the
original CFT [46, 47]

T (7)™ = (0200003 (@) (Dorar(o0) ) (4.1)

where 95 and a;kl are cyclic and anti-cyclic twist operators respectively which are scalar
Virasoro primary operators with identical conformal dimensions

Agp = = <2k - i) : (4.2)

To find the negativity, one analytically continues this correlation function to k = 1/2.
Using our formalism, we are interested in the doubled state |pap), which can be computed
from the path integral computing Tr (p?q p). For the case of two intervals in the vacuum
state, it is well known that this path integral is related to the torus partition function via a
conformal transformation [48]. The leading bulk saddle for torus boundary conditions is given
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either by thermal AdS in the disconnected phase or the BTZ black hole in the connected
phase. In the disconnected phase, the negativity vanishes and the resulting saddle is fully
replica symmetric. In the connected phase, one finds replica symmetry breaking (RSB) as
expected in general. We depict the geometry of the doubled state along with the relevant
RT surfaces computing the RRN in figure 8.

The configuration considered in the proposal of ref. [11], which has intersecting cosmic
branes, is also shown in figure 8 for comparison. Ref. [11] considered this family of intersecting
brane configurations with a k-dependent tension at & > 1 and analytically continued the
tension to k£ < 1 in order to compute the negativity. However, at integer k, it is crucial that
any candidate saddle comes from a smooth parent space, with cosmic branes resulting from
performing the quotient by Z;. By understanding the possible brane intersections that can
arise from a quotient of a smooth manifold, we are able to prove in appendix C that it is
impossible to have an intersection of the type proposed by ref. [11]. Thus, this family of
configurations should not be considered saddles for the negativity problem at any k.

The reason this configuration fails to be a saddle is simplest to understand when we
consider the intervals to be adjacent, using a version of the argument presented in ref. [49]

for a different entanglement quantity. In figure 9, we show the Zo; quotient!?

of the putative
fully (Za) replica symmetric saddle where three branes meet at a vertex. The parent space
can be obtained by gluing together 2k such copies in a manner specified by the permutations
labelling different bulk regions in figure 9. Using a radial coordinate r along the branes (which
has the range [0, 1]), we find that the topology of this parent space is (a5 x [0,1]) / ~, where
Yok is the topology of the Riemann surface that computes the boundary replica partition
function and ~ identifies all the points at 7 = 0. Using the Riemann-Hurwitz formula, one
finds that the genus of Yo is £ — 1. Since the neighborhood of every point in a smooth
manifold is topologically a ball, the parent space can be a smooth manifold only if o is a
sphere. Thus, it is clear that for £ > 2, the replica symmetric configuration shown in figure 9
cannot be a saddle. Since this argument is local at the intersection, the same is true for
multiple intervals. A more rigorous version of this argument is presented in appendix C.

Having presented our proposal, it is useful to understand why the CFT calculation
in ref. [11] failed. When presented with a four-point function such as (4.1), it is usually
convenient to perform a conformal block decomposition. When the intervals are close, we
may take the o9 X g9i and oz_kl X 0'2_k,1 OPEs, expanding in the t-channel as

2k _
T (ph5)" =D |Coponp ol — 2)Fp(1 = &), (43)
p

where the sum is over primary fields, F is the Virasoro conformal block. The vacuum
state does not contribute to this sum because it has twist number 0. Instead, the primary
field contributing to the sum with the lowest dimension is the “double-twist” operator that
performs two consecutive cyclic permutations.

In the large central charge limit, the conformal blocks approximately exponentiate

12We caution the reader that this is unlike most of our discussion in the rest of the paper where we consider
Zi, quotients.
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Ces

A B

Figure 9. The quotient space description of the naive Zs; replica symmetric bulk configuration
with three intersecting branes (solid lines) is shown for A, B being adjacent intervals in the vacuum
state. 2k such copies are glued together in a manner specified by the permutations {X, X! e} on
the different regions to obtain the parent space; see figure 1 for details. The radial coordinate r goes
from the intersection point r = 0 to the asymptotic boundary at r = 1.

as [b0, 51]

F(x) ~ exp [_(ij (hcp, h?“,a:)] . (4.4)
Under seemingly mild assumptions on OPE coefficients and the spectrum, one can argue [28]
that the primary field in the OPE with the lowest conformal dimension then dominates
the sum eq. (4.3). Namely, one assumes that the Cardy density of states times the OPE
coefficients |Co,, o0p|? does not grow exponentially with c¢ faster than the suppression from
the conformal block for a finite range of z. It is therefore this assumption that must break
down. This suggests that the holographic formula for RRN may lead to interesting constraints
on the Cy,, 5y, p OPE coefficients. A similar result is shown in appendix A for the Petz Rényi
mutual information, where an analogous assumption leads to an obviously wrong answer.

Nevertheless, sticking with this assumption, one may compute the conformal block
with the double-twist operator as the intermediate state, which has conformal dimension
Aéi) = %(k: — %), although this computation is generally difficult to do explicitly and
analytically because the operator is heavy, i.e., O(c). However, it may be evaluated numerically
with arbitrarily high precision using Zamolodchikov’s recursion relations [50, 52].

The more general idea of ref. [11] was to relate the negativity calculation to a calculation
of the (m,n)-Rényi reflected entropy and then argue that the negativity is given by the
entanglement wedge cross section, due to the known connection between reflected entropy
and entanglement wedge cross section [9]. In particular, the (m,n)-Rényi reflected entropy
is evaluated via a four-point function of twist operators

(m,n) 1 Zm,n .
SR = 0 i = (0000070 (81055 (10,1 (00) (4.5)
in mn copies of the original CFT. Labeling the copies from 1 to mn, the permutations
are given in cycle notion as
n
ga=[[Gi+n,...;itnm/2-1)i+1+nm/2,...;i+1+n(m-1)), (4.6)
i=1

gB:ﬁ(i,i+n,...,i+n(m—1)). (4.7)
=1
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The relevant conformal dimensions are

Ay, =Dy = % (m*=1), A= 6Cn (n*=1). (4.8)

For the following choice of (n,m), the dimensions of the operators computing the four point
function for negativity can be matched to the four point function for reflected entropy:

_AR? + V32K — 8k +1— 1

n==k, 102

(4.9)

The idea was then to use the fact that the dominant conformal block for the reflected
entropy calculation is known to be related to a backreacted version of the entanglement
wedge cross section by a path integral argument, and moreover the conformal blocks only
depend on the relevant operator dimensions. Thus, the answers can be matched by using
the identification eq. (4.9).

We would now like to demonstrate that our proposed saddle is strictly better than this
replica symmetric configuration near k = 1, which we have already argued quite generally
from the gravitational side earlier. The calculation of the reflected entropy can be performed
gravitationally by computing the replica partition function Z,,,. The RRN is given by

£k — k29, (; log ng) , (4.10)

where Zp is the replica partition function for the negativity problem. We reproduce the
answer from the replica symmetric configuration by assuming Zor, = Z,,(k)n(k), i-€., the
replica partition functions for negativity and reflected entropy agree upon identification
eq. (4.9). We will call the resulting RRN géZFk%, and eq. (4.10) becomes

£y = —k20y ( 10g Z(k ),n(k)) : (4.11)

Note that since Zs computes Tr (p% p) where the two proposals agree, our proposed saddle
dominating over the replica symmetric configuration would mean that géQFk% is larger than
EK) computed using our proposal, which amounts to computing the areas of minimal
surfaces anchored to AB* in the doubled state.

In order to test this, we need to compute c‘ngk% gravitationally. We can do this by
using the Lewkowycz-Maldacena method [33]. However, it is important to note that the

Lewkowycz-Maldacena method implies

1 An

—n?0, ( log Z,, ) i (4.12)

where Z,, is the replica partition function for Rényi entropies and A,, is the area of a cosmic

brane with tension 7;, = 2==. So for the £ = 1 RRN (corresponding to m = 2, n = 1), we have
5 1

£y = — K20, (mn log Znm, n) ‘ (4.13)

mn k k=1
n\ log Zn.n 8m on 1
= —k? — ) = log Z — 0, | —logZ
(a’“< k) o ok < % ’“”) aka”(mn % m)) -
(4.14)
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2 1 As(yve) 12EW®)
Ew®@ 9. 2
=2 G + 552(143) + 552(143), (4.16)

where EW ) is the entanglement wedge cross section that computes the (2,1) Rényi reflected
entropy/CCNR. [53]. Moreover, S,(AB) and S, (AB) are the Rényi and refined Rényi entropy
for two intervals in the vacuum state.

In order to show that our saddle is better than this, we will show

~ 2 .

Sp(AB) > —S5(AB) (4.17)
n

within the range n € [1,2]. This can be reliably computed using CF'T methods, which we

use to demonstrate the validity of the inequality eq. (4.17) numerically in figure 10. From

eq. (4.17), we have

25, (AB
Sy(AB) = 2 / SwlAB) v (4.18)

1 n
548 [ an = 35,04

> 45, B)/1 —dn' = S 5:(AB). (4.19)

From this it follows that,
. @
€2 > oPW T L5 ap), (4.20)

but it is easy to see geometrically that our proposed saddle is strictly better than this by
smoothing corners.

It is also useful to note that the geometric proposal of ref. [11] continues to disagree
with our proposal even in the adjacent interval limit. For adjacent intervals of lengths [y
and [2, the even moments are given by

2k
Tr (o) = (oar(~1)752(0)o2(la) ) (4.21)
The scaling of the three-point function is fixed by conformal invariance, such that

c —2
2k O2k02K0 ),

() - (1.22)
( ) (lllQ)Agk2>(l1+l2)2A2k_A(2k2)

where Aé;z) denotes the conformal dimension of ¢,,>. Our proposal and that of ref. [11]

both reproduce the correct scaling, though they disagree on the value of Co_2k02k0_72. For
2k

the logarithmic negativity, this leads to a relative constant shift between the two proposals
that can be tested from the CFT.

5 Discussion

5.1 Odd/transposed entropy

We have mainly focused on the even moments of the partial transpose due to their relation with
the negativity. The odd moments have also been proposed to be useful as an entanglement
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Figure 10. The difference in refined Rényi entropies (normalized by ¢) for n from 1.1 (bottom
line) to 1.9 (top line) in steps of 0.1. These are approximated by the vacuum conformal block using
Zamolodchikov’s recursion relation. Clearly, (4.17) is satisfied. We note that in the adjacent (z — 1)
and distant (z — 0) limits, the difference disappears.

measure. Namely, ref. [15] introduced the odd entropy, later called the partially transposed
entropy in ref. [1]. It is defined as

§T8(A: B) = -3 A" 10g |A"]. (5.1)
i
This may also be evaluated using a replica trick by analytically continuing the odd moments
1 2k—1
Ta( 4 . o Tx
S*B(A:B) = %1_)1111 50— F) log Tr (pAB) . (5.2)

Similar to the tension for holographic negativity, Refs. [15] and [1] have conflicting proposals
for the holographic dual of S75. Using 2D holographic CFT techniques (nearly identical to
the incorrect derivation of Petz Rényi mutual information in appendix A), ref. [15] showed
that ST8 was equal to the area of the entanglement wedge cross section plus the RT surface,
without any backreaction for either surface. In contrast, ref. [1] showed that for fixed-area
states, STB was equal to half the mutual information plus the area of the RT surface.
The proposal of ref. [15] again assumes the full Zo_; symmetry for calculating Tr (pﬁ%)%_l
For the case of adjacent intervals in the vacuum state of a 2D CFT, this leads to a bulk
configuration whose quotient space again has three intersecting branes as shown in figure 9.
The only difference from figure 9 is that now the number of copies being glued together is
2k — 1 and the permutations {X, X! e} are correspondingly the cyclic, anti-cyclic, and
identity permutations on 2k — 1 elements. By the same argument made in section 4, we
can just look at the topology of the Riemann surface computing the boundary partition
function. For the case of the odd entropy, the genus is k£ — 1 and thus, we again see that
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for k > 2, this space time is not a smooth manifold.!> Our study of brane intersections in
appendix C makes this precise more generally.

More generally, one may hope to use continuity bounds on the odd entropy in order to
find its holographic dual, given that we already know the answer for fixed-area states. The
fact that the computation of odd entropy involves tensionless branes makes it promising for
it to have a continuity bound similar to other such quantities like entanglement entropy [56]
and reflected entropy [13]. However, the partially transposed density matrix does not satisfy
good continuity properties as can be checked in simple examples.'*

5.2 Replica symmetry restoration for RTNs

Random tensor networks have been demonstrated to be very useful models of holographic
states [57], clarifying various information theoretic aspects of the holographic mapping.
In standard random tensor networks, the links in the network are taken to be maximally
entangled, which causes the entanglement spectrum for states to be “flat,” i.e., all Rényi
entropies are equal. This is unlike general states in conformal field theory, where the spectrum
is far from being flat [58]. As was noted in [57], this can be implemented in random tensor
networks by having the links in the network be non-maximally entangled. In appendix B, we
demonstrate that when sufficiently non-maximally entangled states are taken for the links
in the network, the replica symmetric saddle becomes dominant over the replica symmetry
breaking saddles. We comment on why the conclusion in random tensor networks is so
different from full quantum gravity that we have discussed in the main text. We expect this
to be useful in the pursuit of better tensor network models of AdS/CFT.

5.3 Implications for holography

An important future direction is to explore what the quantum information theoretic implica-
tions of this holographic dual of the negativity are. It is well known that the Ryu-Takayanagi
formula led to a much better understanding of the bulk-boundary dictionary in AdS/CFT. It
remains for us to understand what mileage we can gain from our holographic prescription
for the negativity.

For instance, refs. [43, 44] argued that there are instances in holography where the
negativity can be large while the mutual information is small. They interpreted such situations
as consisting of bound entanglement between the two parties, which is not distillable. Using
our holographic prescription for the negativity, it is easy to see that such cases arise quite
generally in the presence of entanglement phase transitions. The negativity, and the ERNs
more generally, are sensitive to the doubled state which corresponds to a saddle computing
the second Rényi entropy. In general, the phase transition in Rényi entropy can happen at
different locations in the parameter space depending on the Rényi parameter. This would
give rise to situations where the negativity can be large while the mutual information is small,
the case of an evaporating black hole being a particular example.

13Similar arguments can be used to rule out replica symmetric saddles for the multi-entropy discussed in
refs. [54, 55]. This argument however does not work for the reflected entropy since there the topology around
the intersection point ends up being a sphere.

MWe thank Isaac Kim for discussions related to this.
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A Petz Rényi mutual information

To gain further understanding of this misidentification of the dominant channel, it is useful to
consider a similar quantity called the Petz Rényi mutual information (PRMI), which may be
evaluated using a similar replica trick [59, 60]. Unlike the usual linear combination of Rényi
entropies frequently studied in the literature, the PRMI is a well-behaved generalization of the
mutual information in that it is never negative and monotonically decreases under quantum
channels. This is a consequence of its definition using the Petz Rényi relative entropy

Io(A,B) := Do (paBllpa ® pB) =

> i 7 logTr [p“AB(pA ® pB)l‘“] : (A.1)
The usefulness of the quantity for our purposes is that, by definition, it must limit to the
standard mutual information in the o — 1 limit, and we know with confidence, from the
Ryu-Takayanagi formula, what the holographic dual for mutual information is (away from
phase transitions).

We now demonstrate that using the same assumptions for holographic correlation func-
tions used in refs. [10, 11] for negativity leads to an answer that we know for certain is
incorrect. We then conclude that RSB must be incorporated into CFT computations in
order to determine the correct answers.

The replica trick for PRMI involves two replica indices

I,(A,B) = lim

m—l—-a o —1

log [Tr (pp(pa @ pB)™)] - (A.2)

The joint moments may be evaluated using twist fields implementing a g4 permutation on
region A and a gp permutation on region B, where in cycle notation

ga=(1,...,0,a+1,...,a+m), gg=(1,...,c,a+m+1,....,a+2m). (A.3)
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The analogue of the double twist operator is the twist field corresponding to the permutation
coming from fusing gATl and gp

g;llgB =l,a+ma+m—-1,....,.a+lL,a+m+La+m+2,...,a+2m). (A.4)
The conformal dimensions are fixed by the cycle structures

c 1 & 1
A=Ay, =0y, = 9 <a+m—a+m> , Ag;gB =15 (2m+1—2m+1) . (A.5)

For disjoint intervals, the moments are given by

Tr (ph(pa @ pB)™) = (004 (11)05, (22)00, (23)05,} (24) ) (A.6)
For close intervals, we expand in the t-channel

Tr(045(pa©p5)™) = 3 |Cap P Fp(1-2) Fp(1-7), 3= Ez:g;giji;. (A7)

We assume that at large ¢, we only need to keep the ggl gp twist field in the sum. Unlike the
case of negativity, we note that as m — 1 — « and o — 1, all operators become light. In such
a limit, the Virasoro conformal blocks are known analytically at large ¢ [61], giving

lim T (4, B) = log G - g) +0(1), (A.8)

where the additive constant comes from the OPE coefficient and is not important for our
purposes. This is proportional to the area of the entanglement wedge cross section in the
vacuum [12], which is very different from the known answer for mutual information

1A, B) = S log (1 : x) . (A.9)

Clearly, our assumption regarding the dominant conformal block was incorrect.

For the PRMI, there is also a clear analogue of the RSB saddle in the bulk. The RSB
permutation that lies simultaneously on geodesics between g4 and 1 and between gp and
1 with the most residual symmetry is

X=(01,...,a). (A.10)
The compositions of this permutation with g4 and gp are
X lga=0,a+1,....,a+m), X lgg=0,a+m+1,...,a+2m). (A.11)

It is clear that we need a general CFT prescription for evaluating RSB saddles to obtain
the correct answer. The naive argument for single-block dominance in the conformal block
decomposition is insufficient.
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B Random tensor networks vs. gravity

In this appendix, we consider random tensor networks, simple toy models of holographic duality
that are remarkably effective in modeling the information theoretic aspects of AdS/CFT [57,
62]. The negativity has been analyzed in random tensor networks where replica symmetry
breaking saddles provided the dominant contributions [1, 63, 64]. A key feature of these tensor
networks was that their link states were maximally entangled, such that the entanglement
spectra were approximately flat. This is unlike the entanglement spectra in general holographic
states, and it has been suggested that a better model of holographic states can be made
by modifying the link states to be sub-maximally entangled such that their spectra are not
flat [57, 65]. We consider this modification and find that for sufficiently non-flat link spectra,
replica symmetry is restored. We first review the construction of random tensor networks,
explain the mechanism for replica symmetry restoration, and then comment on why this
conclusion differs from that in a full theory of gravity.

B.1 Random tensor networks with non-flat link spectra

A tensor network is defined on a graph with vertices V', and edges F connecting pairs of
vertices. For each vertex x € V, we assign a rank-k tensor, TZ(1 )Zk, where k is the number
of edges connected to x. Each tensor defines a state

Z 21 Zk ’Zl |7fk> ) (B].)

010k

where the states on the right-hand side are basis vectors. To each edge {zy} € E, we define
(zy)

a rank-2 tensor E;;° with the corresponding state

lay) = BT i i)y - (B.2)
0,3
Frequently, these are taken to be maximally entangled (up to normalization), i.e., EZ(JI Y = ij-
The total tensor network state is then defined as

n-( @ wi) (@m). (33
{zy}eFE zcV
In a random tensor network, the |T,)’s are drawn from the uniform (Haar) measure on
a D -dimensional Hilbert space, where D, is the local Hilbert space dimension at a given
vertex z. The (unnormalized) moments are then given by

T (T = > o (B.4)
TESYmMy
where g, is the matrix representation of permutation 7 in the symmetric group Symg. In
order to compute negativities, we will need the moments of the partially transposed density
matrix. These may be evaluated using correlation functions of twist operators, i.e., cyclic
() and anti-cyclic (X7!) permutations. For example,

®k -1 Rk
= o 5 e 535
g:c}

Tr

(prB) '
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In the second equality, the correlation function is reinterpreted as the partition function for a
classical statistical mechanics model involving spins valued in Symy located at each tensor.
{gx} represents the set of all allowed spin configurations obeying the boundary conditions set
by the twist operators. That is, we set the boundary condition to the cyclic permutation X
on subregion A, the anti-cyclic permutation X! on B, and the identity permutation e on C.
When all bond dimensions are taken to be large, the spin model will be in its ferromagnetic
phase such that the dominant contributions to the partition function are given by simple
domain wall configurations between groups of tensors that are all aligned.
The spin model action is given by

Aot = > J(g:'9), J(h) = —logTr [hpf*], (B.6)
{zy}eE
where p, is the density matrix for the link states, i.e., pS“v’) = Try |zy) (zy|. If permutation

h contains C'(h) cycles of lengths ki,...,kc(p), then

Ch)
J) = 3 (ki = 1Sk (o). B.7)
=1
In the simplifying case where the links are maximally entangled, all Rényi entropies are
the same, so

J(h) = (k — C(h))log D = d(e, h) log D, (B.8)

where D is the dimension of the link state p., and d(g1,92) = k — C(g1g5 ') is the Cayley
distance metric on Symyg.

B.2 Replica symmetry breaking

To warm up, let us first consider a tensor “network” consisting of a single random tensor
with maximally entangled links (the topic of ref. [63]). There is only a single spin to sum
over in the partition function, i.e.,
k
T
(PA%)

-1 _
Tr =y p§T TR ek pe (B.9)

heSk

where the subscripts indicate the different bond dimensions on different links. The relevant
parameter regime for holography is 1/D¢c < D4/Dp < D¢. Therefore, to maximize the
exponents, we would like to find an h that simultaneously maximizes C' (X _lh) + C(h) and
C (Xh)+C(h). This means that h is on the intersection of a geodesic between X and e and a
geodesic between X ~! and e, as measured by the Cayley metric of Symy,. These are given by
non-crossing permutations consisting of only one-cycles and two-cycles [1, 63]. Furthermore,
in the regime where there is significant entanglement between A and B (DaDp/Dc > 1),
the number of two-cycles is maximized, such that there is no one-cycle for even k£ and a
single one-cycle for odd k. We denote this set of non-crossing pairings as NCs. Including the
contributions of all such elements and computing the spectrum of pz% via the resolvent method,

one obtains a semicircle distribution centered at (D 4Dp)~! and with radius 2(D 4D BDC)_I/ 2,
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At leading order, the logarithmic negativity is then found to equal half of the mutual

information

E(A: B) = %I(A:B) _ LligPals

B.10
5198 —p (B.10)

Considering more general tensor networks with more than one tensor, ref. [1] further
showed that the NCs permutations are the only relevant ones for a large class of RTNs
with maximally entangled links.'® The twist operators that set the boundary conditions in
the spin model fix the domain wall structure at the boundary between X or X! and the
identity e. One would naively think that these domain walls extend into the bulk as in the
left figure of figure 1. However, as the domain wall “tension” for maximally entangled links
is given by eq. (B.8), the domain wall between the X and X! domains can split creating
a new domain filled in by some permutation A, without incurring any energy cost so long
as h lies on the intersection of pairwise geodesics between X, X! and e. Once the domain
walls split, they can relax into their minimal area positions in order to minimize the global
energy cost (right figure of figure 1). The final dominant spin configurations in the partition
function consist of a large region in the center filled in by some 7 € NC5. The calculation
thus reduces to that of the single-tensor network with D4, Dp, D¢ replaced by the product
of the dimensions of the bonds on the corresponding domain walls. Thus, it is clear that
the negativity again equals half of the mutual information.

B.3 Replica symmetry restoration

The simplest RTN model that realizes the restoration of replica symmetry by virtue of a
non-flat spectrum comprises two random tensors, which we call the 2TN model.

A T T B
(B.11)

This models a generic situation in holography where the internal bond plays the role of the

entanglement wedge cross section. This model has been studied in detail in the case of flat
link spectra [64]. We specialize to a particular spectrum motivated by the single interval
Rényi entropy in 2D CFT and analyze the problem using the resolvent method.

Consider the 2TN model with all link spectra following 2D CFT behavior S, ”2—‘;1
Explicitly, we may take the links to be

)\max
o) = [ VAN [Ny = 752 (B.12)

where the density of states is [58]

) SUN
)\\/QSUN log(

15For random tensor networks that exhibit negativity spectra different from the semicircle distribution,
see [64].

P(A) =0(Amax—A) +O(Amax — A

SV W?S”N log{Amax/ M) . (B13)
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The above spectrum ensures the Rényi entropies for single intervals agree with the answer
obtained in the vacuum state of a CFT.
In this situation, it is straightforward to check that the RSB saddle is subdominant

to the RS saddle. We are then left with comparing the connected and disconnected RS
saddles. We have

A(n) A(n) (n - 1) (S”L}N,A + SvN,B - nTtLlSvN,C> - (n - 2)SUN,EW> ne Zeven

disc ~ “‘conn — .

> (n—1) (SUN,A + Sonv,g — B SN — SUN,EW) , n € Zodd
(B.14)

In the regime where the entanglement wedge of AB is connected, S,y 4 + Sun,B > Sun,C,
the difference is always positive, so we can safely ignore the disconnected saddle.

To evaluate the negativity, we first find the full negativity spectrum using the resolvent
method. The negativity resolvent is defined as

pis
R(z) =Tr <ABTB> . (B.15)
Z = PaAB

The negativity spectrum is given by the discontinuity over the real axis

1
Aps(A) = - Im R(\ + ie)

(B.16)

e—0t

Following similar calculations to [58], we obtain

010, Amax] \/SUNC+4S’UNEW \/SUNC+4SUNEW
N)= D , EW ) [ 9[22 EW. Nlog(Amax/ A
pe(A) 02 s V) 5 1 5 og( /A)

+\/SUN,C+QSUN,EW I (2\/SUN10+25”N’EW IOg()\max/)‘)) )

or_
B [=Amax,0] \/SUN,C +4SUN,EW Il 2\/SUN’C+4SUN’EW log(_)\max/)\)
20y/1og(—Amax/A) 2 2

_\/SUN,C+281;N,EW I (2\/SUN,C+25uN,EW log(_)\max/)\)> ) O = A

(B.17)
SyN,cTSuN,EW .
where A\pax (= €~ 2 . The above spectrum reproduces all the integer moments
of pz;%. One may furthermore evaluate the RRNs and logarithmic negativity directly from
the spectrum to find

5 dA\pg(X) A" log A Sun,c + 4Sun,Ew
EM(A:B)=1o (/d)\ A A”)—nf = ==, (B.18

£+ B) =log ( [ drps A ) = 3Suvew, (B.19)

in agreement with the naive analytic continuation.
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B.4 Comparison to gravity

We have explicitly shown that the replica symmetric saddle is the dominant contribution when
there are sufficiently non-flat link spectra. It is instructive to analyze why this conclusion
was distinct from gravity.

Consider computing the RRN for even integer 2k using the gravitational path integral
for two intervals in vacuum AdS. For the candidate RSB saddle, we focus on the permutation
(1,2)(3,4)...(2k — 1,2k) because it retains a Zj replica symmetry that cyclically permutes
the pairs of copies.'® It is convenient to quotient the bulk by this symmetry, giving a bulk

geometry, Bék)

, whose asymptotic boundary is a two-fold cover of the original boundary,
branched over AU B. In the quotient space, there are conical defects at the fixed points
of the quotient with opening angle 2L These are homologous to subregions A and B* as
shown in figure 11. At k = 1, the defects disappear and the geometry is smooth. If this

saddle dominates, the RRN is given by

Avea (1879 U B9 B
e !

E@H) = k20,1 |BY"| = (B.20)
where we remind the reader that (2™/%) means a conical defect of opening angle 2% At k=1,
eq. (B.20) gives the area of the surface y4 Uyp~ in By. Bs is locally the original single-copy
geometry with the additional backreaction of Rényi-2 branes of tension % located at the
RT surface of AB (which we will call 7¢). Note that at k& = 1 the backreaction from the
surfaces v4,yp+ vanishes, and thus, it does not matter whether we compute the area of v4
or 4+ since there is a symmetry relating them.

There is a new effect here not seen in the nfRTN. We understand this effect in gravity
as follows: in l’;’gk), there is a backreaction effect due to the branching at o that has the
effect of a Rényi-2 brane!” with tension 81G There is also a backreaction effect due to the
Rényi-k branes at v4 and yp~ with tensions 4kG Near the asymptotic boundary, these branes
converge, and naively adding their tensions gives %, which (for & > 1) is larger than the
28kkG1 tension of a Rényi-2k brane that one would have from the replica symmetric solution if
taking the full Zs; quotient. This larger tension would naively suggest that the RSB saddle
is always subdominant due to this IR divergence, just as in the nfRTN. However, this naive
argument has crucially neglected the fact that in gravity, the branes will backreact on each
other, which will be in just the right way to cancel this effect. It is this mutual backreaction
that is not captured by the nfRTN, causing the RS saddle to dominate in the nfRTN.

We mention that a similar effect has been observed previously in the literature of
nfRTN [57] in the simpler case of the Rényi entropies of disjoint intervals. Because the
Rényi entropies are holographically computed from the areas of tensionful branes [34], the

additional gravitational action due to even very distant branes is different from the sum of

The degeneracy between different choices of RSB saddle breaks once we move away from the fixed-area
limit. Perturbatively, for nfRTNs, it can be shown that this choice of saddle is indeed the best RSB candidate.
However, it remains an open interesting question whether this is true in gravity. For our analysis, we will
assume this is the case.

17Strictly speaking, we have a Rényi-2 brane only after taking a Z, quotient of B’;k), but the other Rényi-k
branes break the Z2 symmetry. Nonetheless, we will refer to the backreaction effect in l’;’z as that of a
Rényi-2 brane.
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C C

Figure 11. The RRN £® is computed by the sum of minimal surfaces (solid, black) homologous to

subregions A and B* in a gravitational solution By which has the topology of a double-cover of the
original spacetime branched over the “cosmic branes” (red) anchored on subregion AB. The analogous
answer obtained in nfRTNs is given by the dashed line, which is non-minimal.

additional actions of the solutions with just one brane, owing to the mutual backreaction
between the branes. This implies that the Rényi mutual information is never zero, even
at leading order in G [34, 48]. While it is caused by a similar mechanism, this well-known
example is a milder critique of nfRTN as models of holography than the negativity case
that has been the topic of this paper because at least, the nfRTN faithfully captures the
correct bulk saddle topology for the Rényi entropy.

C Ruling out intersecting branes

In this appendix, we prove that geometries § with certain intersecting branes or branes
ending on other branes cannot be obtained from a Zj quotient of a smooth parent geometry
g. Therefore, these geometries are not saddles of the gravitational path integral and will
not contribute to calculations such as for the negativity.

Theorem 3. Let § be a geometry with intersecting branes or a brane ending on another
brane. If all involved branes are codimension-2 and at least one has conical opening angle
27 /k, then § cannot be obtained by a Zj, quotient of a smooth geometry g.

In order to prove this theorem, we first prove the following lemma.

Lemma 2. Under the assumptions of Theorem 3 and further supposing that § is the quotient
of a smooth geometry g by a Zy, isometry generated by r, any reqular point on any brane with
conical opening angle 2w /k in § must be a fived point of . Here, a regular point on a brane
is defined as a point at which the union of all the branes is locally a smooth manifold, thus
omitting intersection points.

Proof. Let p be a regular point on a brane. We aim to rule out the possibility that p is a
fixed point of a power of r, but not r itself. In a sufficiently small neighborhood of p, g is
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approximately a Euclidean space Fp (where D is the dimension). The isometry group of the
Euclidean space, ISO(Ep), is generated by translations, rotations, and reflections. It is well
known that the set of fixed points, Fix(s), of any s € ISO(Ep) in Ep is an affine subspace
of K D-

By definition, the union of all the branes is the fixed point set 7]3;:11 Fix(r™), i.e., the
union of the fixed point sets of all non-identity elements of the group Zj. In a sufficiently
small neighborhood of a regular point p on a codimension-2 brane, the brane is approximately
a codimension-2 plane, and each Fix(r™) can be viewed as an affine subspace of Fp: either
r™ acts within the neighborhood and thus can be identified with an element of ISO(Ep), or
7™ does not act within the neighborhood'® and thus Fix(r™) is empty in the neighborhood.
Since each Fix(r"™) is an affine space, their union can only be a codimension-2 plane if Fix(r"™)
is the full plane for some m and all other Fix(r"™) are subspaces of the plane. Let mg be the
smallest m € {1,2,...,k — 1} such that Fix(r") is the codimension-2 plane. If my = 1, every
point on the codimension-2 plane, including p, is a fixed point of r, and this shows what we
wanted to prove.

If mp > 1, we now derive a contradiction. For 1 < m < mg — 1, by assumption, Fix(r")
is a proper subset of the plane, and since Fix(r™) must still be affine, it must be of higher
codimension than two. Therefore, we can find a point ¢ in the neighborhood of p that is in
Fix(r™0) but not in Fix(r™) for any 1 < m < mg — 1. This implies that ¢ is a fixed point
of any element of (r™9) (the group generated by ™) but not a fixed point of any other
element of Z;. We then use the fact (which we prove in Lemma 3 below) that if s € ISO(Ep)
generates a group of finite order n and Fix(s) is a codimension-2 plane, then s must be a
rotation of order n in some 2-plane. Thus, ™9 must be a rotation of order |(r™°)| (the size
of (r"°)). Since ¢ is a fixed point of " and its powers but not other elements of Zj, the
conical opening angle at ¢ in § must be 27 /|(r"°)|, which contradicts our assumption that
the conical opening angle is 27 /k, completing the proof of the lemma. ]

In the proof above, we promised to prove the following lemma.

Lemma 3. If s € ISO(Ep) generates a group (s) of finite order n, and Fix(s) is a
codimension-2 plane, then s must be a rotation of order n in some 2-plane.

Proof. s generally acts as
¥’ = Mz + v, Vx € Ep, (C.1)

where v is a D-vector, and M € O(D). Choose coordinates so that Fix(s) is the codimension-2

= 22 =0, we have

plane given by 2! = 22 = 0. In other words, as long as
x=Mazx+wv. (C.2)

Writing this in a block form and, in particular, writing « = (0, 22) where 0 denotes a 2-vector
specifying the first two components, we find

0 M1 M 0 M
_ 11 Ma2 4 vy _ 1222 + U1 . (C.3)
) Mo Mas ) \ 22 v Moozo + v

18This happens in the examples studied in section 3 of ref. [66].
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In particular, we have
0= Miszs +v1, Vo (04)

Setting o = 0, we find v; = 0. Thus 0 = Mjsxs, Vxa. Therefore Mo = 0. Similarly, we have
To = Mooxs + v, Vxo. (C5)

Setting zo = 0, we find v9 = 0. Thus z9 = Maosxs, Vra. Therefore Moy = 1. Now, since
M € O(D), we find

LT — My M1\ (Min 0\ _ (M{} My + Mgy Moy M3, (C6)
0 1 )\ M1 Moy, 1) '

Thus, we find Moy = 0 and M{;M;; = 1. Using MM7T = 1, we find M;;M{; = 1. Thus
Mji; € O(2). It is well known that any such Mj; must be either a rotation by some angle ¢
or a reflection in some direction. But in the case of a reflection, it is clear that the resulting
Fix(s) would be codimension-1 instead of codimension-2. Therefore, Mj; is a rotation by

some angle ¢, and the action of s can be written as a rotation in the 12-plane:

cos¢ sing 0
2= | —sin¢g cosg 0 | z, (C.7)
0 0 1

where 1 denotes the identity matrix of dimension D — 2. Since (s) has order n, s must be a
rotation of order n. In other words, ¢ = 27m/n with (m,n) = 1. O

We now prove Theorem 3. Suppose that § is the quotient of a smooth geometry g by a
Z}, isometry generated by r. Let p be a non-regular point on the branes (e.g., an intersection
point or ending point between two branes). In a sufficiently small neighborhood of p, let
q1 be a regular point on the first brane and g2 a regular point on the second. Without loss
of generality, we take the second brane to have conical opening angle 27/k. By definition,
the angle between m and qu% is not 0 or . According to Lemma 2, ¢5 is a fixed point
of r. We cannot guarantee the same for ¢, but by definition ¢; is a fixed point of some
r™ with 1 < m < k — 1. Therefore, ¢; and g2 both belong to Fix(r™), which must be an
affine space. Thus, any affine combination Ag; + (1 — X\)g2 must also be in Fix(r™), which
is part of the branes. But this is a contradiction: such an affine combination cannot be on
the branes, since the angle between m and quz) is neither 0 or w. Thus, we conclude that
such a smooth geometry g does not exist, proving Theorem 3.
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