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ABSTRACT: We investigate the differential geometry of the moduli space of instantons on
S3 x S'. Extending previous results, we show that a sigma-model with this target space can
be expected to possess a large N = 4 superconformal symmetry, supporting speculations
that this sigma-model may be dual to Type IIB superstring theory on AdSsz x S3 x S3 x S
The sigma-model is parametrized by three integers — the rank of the gauge group, the
instanton number, and a “level” (the integer coefficient of a topologically nontrivial B-
field, analogous to a WZW level). These integers are expected to correspond to two five-
brane charges and a one-brane charge. The sigma-model is weakly coupled when the level,
conjecturally corresponding to one of the five-brane changes, becomes very large, keeping
the other parameters fixed. The central charges of the large N' = 4 algebra agree, at least
semiclassically, with expectations from the duality.
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1 Introduction

1.1 Overview

Among the original examples of AdS/CFT duality [1] were Type IIB superstring theory
on AdSs x S% x T% and AdS3 x S? x K3, which are believed to be dual to two-dimensional
sigma-models in which the target space is the moduli space of instantons on T4 or K3,
respectively. Some of the arguments were recently assessed and extended in [2], where
one can also find detailed references. These examples have N' = 4 supersymmetry, which
greatly facilitates their understanding.

However, the superficially similar example of Type IIB superstring theory on AdSs x
S3 x 83 x S! has been less well understood, despite having an even larger superconformal
symmetry. This model and a related one based on AdS3 x S? x S x R have been studied
extensively [3-10] and in particular it is known that a dual conformal field theory should
possess a “large” N = 4 superconformal algebra (in fact, two copies of this algebra, for
chiral and antichiral modes, respectively), as opposed to the more familiar “small” N =4
superconformal algebra relevant to strings on AdSz x S3 x T4 or AdS3 x S? x K3. The
large N = 4 superconformal algebra is an extension of the small one with an additional
SU(2) R-symmetry and some additional free fields [11, 12]. The simplest indication that
AdS3 x S? x S? x S! leads to a large superconformal algebra is simply that it has many
SU(2) symmetries, acting on the left and right on the two copies of S* = SU(2) [3]. These
all turn out to be R-symmetries of the left or right superconformal algebra. The detailed
analysis demonstrating the existence of a large N' = 4 algebra was made in [4] from a
worldsheet point of view (for the case that the fluxes on AdSz x S? x S? x S! are of Neveu-
Schwarz type) and in [5] in supergravity. A simple example of a two-dimensional conformal
field theory with the “large” N = 4 symmetry is an SU(2); x U(1) supersymmetric WZW
model, which is the same thing as a supersymmetric sigma-model with target S® x S! and
k units of flux of H = dB (where B is the sigma-model B-field).

The Type IIB supergravity solutions on AdSz x S? x S x S!, which were analyzed in [4,
5], depend on three parameters, namely the three-form fluxes on AdS3 and on the two S’s.
Supersymmetry requires that all fluxes are of the same type, Neveu-Schwarz or Ramond-
Ramond or a mixture. The three fluxes can be parametrized by integers Q1, @5, Q%, where
Q5 and Q% have been interpreted as the numbers of fivebranes wrapped in two different
ways that produce the fluxes on the two S®’s, and Q) is similarly interpreted! as the number
of one-branes, related to the flux on AdSs.

Proposals for a dual of superstring theory on AdSs x S? x S? x S! have been mainly
of two types. One idea is that, at least for some values of @1, @5, and Qf, the dual might
be a symmetric product of N copies of the SU(2); x U(1) model, for some N [4, 5]. One
motivation for this proposal is simply that this symmetric product is one of the relatively
few known examples of a model with the large N/ = 4 superconformal symmetry. Another
motivation is that the duals of AdS3 x S3 x T4 and AdSs x S? x K3 are related to similar
symmetric products (if the integers @1 and Q5 that characterize those models are relatively

!The integrality of Q1 is not visible in the supergravity solution.



prime). An obvious limitation of this proposal is that the symmetric product only depends
on two integers, k and N, while strings on AdS3 x S? x S3 x S! depend on three integers
Q1,Q5, Q5. It is believed that strings on AdSs3 x S3 x $% x S! do not have dualities that
would make one of the three integers irrelevant. However, if Q5 = 1 (or Qf = 1), there
is reasonably strong evidence that strings on AdSz x S? x S3 x S! are indeed dual to a
symmetric product of many copies of the SU(2); x U(1) WZW model [9, 10].

A second idea has been that the dual of strings on AdSs x S x S3 x S! might be a
sigma-model with target the moduli space M of instantons on S? x S! [6]. A question
about this idea has been whether it is true that this sigma-model does have the large
superconformal symmetry. There are important partial results in this direction [13-16].
Roughly, by combining previous results, it is known that M is a generalized hyper-Kahler
manifold, also known as a bi-HKT or (4,4) manifold. Assuming conformal invariance,
this is enough to show that the model has N = 4 supersymmetry with the small NV = 4
algebra. The main goal of the present article is to complete this story and show that
this sigma-model actually possesses large N' = 4 superconformal symmetry. For this, one
must show that Killing vector fields on M that come from the symmetries of S? x S! are
covariantly constant for appropriate connections on M with torsion. It is also necessary
to show that the sigma-model with target M is conformally-invariant and not just scale-
invariant, something that is non-trivial for sigma-models with A" = 4 supersymmetry [17].
We address this point by applying arguments of [18, 19].

If Q; and Q5 are relatively prime, the moduli space of instantons on T4 or K3 is a
deformation of a symmetric product of copies of T4 or K3. If a similar statement were
true for S3 x S!, then potentially the two proposals about the dual of string theory on
AdS3 x S? x §% x S! could both be correct. However, generically (except for gauge group
U(1)) it is not true that the moduli space M of instantons on S? x S! is deformation
equivalent to a symmetric product. This will be explained in section 2.3.

1.2 Motivation For The Conjecture

The idea that a sigma-model with target M is dual to Type IIB string theory on AdSs3 x
S3 x S? x S! can be motivated by a simple brane construction. In describing this, we
slightly amplify the discussion in [6] (see scenario 3 in section 3 of that article) as well as
[9]. We also assume that the fluxes considered are of Ramond-Ramond (RR) type, so the
corresponding branes are D-branes. We denote the RR two-form field as Cy and its three-
form field strength as GG3 = dCs. For the starting point, we consider Type IIB superstring
theory on X = R? x S! x T*S? x R, where T*S? is a noncompact Calabi-Yau manifold
(the deformed conifold) with Q% units of RR flux on S* C T*S3. The deformed conifold
with this flux is a supersymmetric configuration, studied originally in [21, 22]. Then we
wrap Qs D5-branes on R? x S! x S3 x p € X, where p is a point in the last factor of
X = R? x S' x T*S? x R. These D5-branes support a U(Q5) gauge theory, with gauge
connection A and field strength ' = dA + A A A. Because of the assumed G3 flux, the



effective action of the gauge theory (in Euclidean signature) contains a coupling?

) G
- A — 1.1
l/uvxs,lxs?l oS A 27 (1)

involving the Chern-Simons three-form CS(A) = ﬁtr (AdA + %Az). This configuration,
in which @ has not yet been introduced, has actually been discussed previously [23]. (For
related examples, see for instance [24-26].) In everything that we have said up to this
point, R? x S could be replaced with any three-manifold W, or simply with W = R3.
As explained in [23], the low energy physics on W is a three-dimensional topological field
theory, a U(Q5) Chern-Simons theory at level Q% (where the Chern-Simons coupling comes
from (1.1)). We will return to this Chern-Simons theory momentarily.

We can now add Q1 D1-branes wrapped on R? xp; € R?xS3xS!, where p; are points in
St x S3. However, we assume that these D1-branes “dissolve” into instantons in the U(Q5)
gauge theory. Generically, a U(Q5) instanton on S® x S! completely breaks the U(Q5) gauge
symmetry down to the center U(1). (This is true for all positive values of the instanton
number.) The U(1) gauge field becomes massive because of the coupling (1.1), and is
described at low energies by a U(1) BF theory at level Qf (which can be understood as
the reduction to R? of a U(l)Q/5 Chern-Simons theory on W = R? x S!). Being a topological
field theory, this level Q1 BF theory plays no role in the analysis of the large N' = 4 algebra,
though it is undoubtedly important in some subtle aspects of the story.> The rest of the
low energy physics is described, by standard arguments, by a supersymmetric sigma-model
with target the moduli space M of instantons on S? x S!, except that we must understand
the role of the interaction (1.1). As this interaction depends on an integer @)1, is odd under
reflection of R?, and cannot be written as the integral of a gauge-invariant local density, it
should come as no surprise that in the sigma-model this interaction becomes the coupling
to a topologically non-trivial B-field, that is, a B-field whose field strength H = dB has
nonzero periods that must satisfy a Dirac quantization condition. This will be explained
in section 2.

So far we have arrived at a sigma-model with target space the moduli space M of
instantons on S? x S'. But what does this have to do with string theory on AdSz x S? x
S3 x S'? To answer this question, we just follow the original analysis of holographic duality
of the D1-D5 system [1]. If the flux Qf is small compared to @1 and @5, so that its local
effects are small, then we can simply borrow the original analysis. The normal bundle to
R? x S! x §% x p € R? x S x T*S3 x R is, of course, locally a copy of R*. When we take
the near horizon geometry, the zero-section of the normal bundle (that is, the origin in this
R*) is omitted, the radial direction in the normal bundle combines with the first factor of
R? x S! x T*S? x R to make a copy of AdS3, and the angular directions in the normal
bundle simply survive in the near horizon geometry as a factor of S3. In general, this S3

2With G3 = dCs, integration by parts puts this in the form 8%2 J C2 Atr F A F, which may be more
familiar.

3Since U(Qs) = (U(1) x SU(Q3))/Zq, is only locally a product group, there will be a subtle coupling
between the U(1) BF theory and the sigma model associated to SU(Qs) instantons, which we concentrate
on in this article.



would be fibered over the worldvolume of the D5-branes, which in our present discussion
is R? x S' x S3. But as S? is parallelizable, the fibration is trivial and the angular variables
just give another factor of S3. Thus the near horizon geometry is AdSs x S2 x S3 x S*.

Particularly if Qf is not assumed to be small compared to 1 and Qs, it is not entirely
clear from this analysis that the near horizon geometry will be the standard maximally
symmetric AdS3 x S? x S? x S! geometry. If, however, this is the case (which is plausible
but will not be proved here), then we get a reasonable basis for expecting that Type IIB
superstring theory on AdSsz x S? x S3 x S! is dual to a sigma-model with target the instanton
moduli space M. We also learn the dictionary in this relationship: @5 maps to the rank
of a U(Q5) gauge group; Qi is the instanton number; and @Qf is the “level,” that is, the
coefficient of a topologically non-trivial B-field in the sigma-model.

A puzzle here is that the AdSs x S? x S3 x S! geometry, with Q5 and Q% understood
as the flux of G3/27 over the two S*’s, has a manifest symmetry between Qs and Q5.
It is not at all clear why the low energy limit of the D-brane system would have that
property. However, an encouraging observation was made in [23]. As remarked earlier, for
Q1 = 0, the low energy limit is a U(Q5) Chern-Simons theory at level Q%, which has a
symmetry Qs <> Qf, usually called level-rank duality [27]. If it is true that string theory
on AdSz x S? x §3 x S! is dual to the sigma-model, then for any value of @, the low
energy limit must have the same Q5 <> Qf symmetry. The symmetry is only predicted
in the low energy limit because on the gravity side, it only emerges in the near horizon
limit of the geometry. Since level-rank duality is rather subtle, this example suggests that
understanding the Q5 <> Qf symmetry of the sigma-model may not be easy.

A final remark is that conformal invariance of the sigma-model depends crucially on a
renormalization group flow. The sigma-model whose target is the instanton moduli space
M is somewhat analogous to a sigma-model with target a compact Lie group G: it is
constructed from a target space metric as well as a B-field. Conformal invariance will
hold only if these are properly related. In the case of the group manifold, if the target
space radius is large compared compared to the “level,” then the model is asymptotically
free but flows in the infrared to a conformally invariant fixed point at which the radius is
determined in terms of the level [28]. We anticipate a similar behavior for the sigma-model
with target M. In the preceding discussion, we assumed no relation between the radius of
the S2 ¢ T*S? on which the D5-branes were wrapped and the sigma-model level Q5. If the
radius is too large, the sigma-model is definitely not conformally invariant; it has a target
space metric that is large compared to the level. What we will argue in the body of this
article is that with a correctly adjusted radius, the sigma-model has a conformally invariant
fixed point with large N' = 4 superconformal symmetry. This will be an infrared stable
fixed point, since a theory with large N' = 4 symmetry does not have relevant couplings
[6]. Hopefully, for any (or perhaps any sufficiently large) initially assumed radius, there is
a renormalization group flow to this fixed point.

Just as in the case of the WZW model, the metric of the target space at the critical
point is proportional to the level, which here is Q5. Hence at its critical point, the sigma-
model becomes weakly coupled if Qf is taken to be large, for fixed @); and Q5. By contrast,
the supergravity description becomes reliable when Q1 > Q5, Q% > 1.



By wrapping an orientifold plane on the D5-brane world-volume, one can as usual
replace the U(Q5) gauge group of the D5-branes by an orthogonal or symplectic group.
The duality conjecture considered in this article likely has an analog for those cases, but
we will not discuss this in detail. Most considerations regarding instanton moduli space
in this article are valid for any compact gauge group, although exceptional gauge groups
have no obvious application in AdS3 x S3 x S3 x U(1) duality.

1.3 Differential Geometry Of A Four-Manifold and Its Instanton Moduli Space

In many cases, if a four-manifold M has a differential geometric structure which ensures
that a sigma-model with target M possesses a certain supersymmetry algebra, then the
moduli space M of instantons on M has the same differential geometric structure, so a
sigma-model with target M possesses the same supersymmetry algebra.

The most familiar results of this kind arise in the absence of a B-field. If M is Kahler,
so that a sigma-model with target M has global (2,2) supersymmetry, then M is also
Kahler, and a sigma-model with target M also has global (2,2) supersymmetry. If M is
hyper-Kahler, so that a sigma-model with target M has N’ = 4 superconformal symmetry
with the small N' = 4 algebra for both left- and right-movers, then M is also hyper-Kahler,
again leading to small NV = 4 superconformal symmetry for both chiralities.

Some results along these lines that are relevant to sigma-models with a B-field are as
follows:

1. If M satisfies the conditions for (0,2) supersymmetry — it is a complex manifold with
a hermitian metric whose torsion is closed in a sense reviewed in section 3.1 — then
M is also a complex manifold? [29, 30], with a natural hermitian metric that also has
closed torsion [13], so the sigma-model with target M also has (0, 2) supersymmetry,

2. If M is a generalized Kahler manifold (the geometry that leads to (2,2) supersym-
metry with a B-field) then so is M [14, 16].

3. If M is an HKT manifold (the geometry that leads to (0,4) supersymmetry, with a
small N' = 4 algebra), then so is M [15].

4. If M is generalized hyper-Kahler or bi-HKT (leading to (4,4) supersymmetry with
the small A/ = 4 algebra), then so is M. This follows on combining results in [14]
and [15]; see section 5.

5. Finally, if M has the properties that lead to invariance under the large N' = 4 algebra,

then so does M. This is shown in section 6.

1.4 Organization Of The Paper

This article is organized as follows.
In section 2, we describe basic aspects of the moduli space M that will be important
in this article. In section 3, we review the geometry required for extended supersymmetry

“The theorem of [29, 30] actually identifies M as a moduli space of stable bundles on M.



in a two-dimensional sigma-model and the relevant geometry of S* x S'. In section 4,
we explain how to prove that the moduli space M is a hypercomplex manifold, and in
section 5 we extend that and prove that it has the geometry associated with small N' = 4
symmetry. These two sections are primarily based on previous results [13-16], with some
details added. In section 6, we show that the sigma-model with target M actually has
the geometry associated to the large A/ = 4 algebra, not just the small one. For this, one
has to show that the Killing vector fields on M associated to the symmetries of S3 x S!
are covariantly constant for appropriate connections with torsion. We also determine the
central charges of the N' = 4 algebra. In section 7, we complete the story by arguing
that the sigma-model with target M, with appropriate metric and B-field, is conformally-
invariant and not just scale-invariant. This is argued in several ways, using considerations
in [18, 19]. Putting all this together, it follows that the sigma-model with target M is a
conformal field theory with large N/ = 4 superconformal symmetry for both chiralities.

In section 1.2, in the starting point, we could have replaced T*S? with T*(S3/Z,) for
some integer n > 2, where Z,, acts on S® = SU(2) on, say, the left. Then the same logic as
before would motivate the idea that Type IIB superstring theory on AdSg x S3 x S3/7Z,, x S!
is dual to instantons on S®/Z, x S'. Most of our considerations carry over directly to that
case, but there is an interesting novelty, discussed in section 8, and related to the possibility
of turning on a discrete NS B-field (assuming the background is of Ramond type). A gauge
bundle on S3/Z,, xS has a Z,-valued discrete topological invariant that is absent for S3 xS,
and this makes it possible to construct examples that may be interesting purely from a
geometrical point of view. Hyper-Kahler manifolds can be generalized to include a non-flat
B-field, leading to the concept of a strong HKT manifold, a notion that we will review in
section 3. In general, a o-model with target a compact strong HKT manifold will have
a large N' = 4 superconformal algebra for one chirality. (To get large N' = 4 algebras
for both chiralities, one needs a pair of strong HKT structures with equal and opposite
torsion.) However, known examples of manifolds of this type are very limited; apart from
hyper-Kahler manifolds, one has only homogeneous examples [31, 32], of which the simplest
is 82 x S!, and products of hyper-Kahler and homogeneous manifolds. As we explain in
section 8, for certain values of the instanton number and the discrete topological invariant,
the instanton moduli spaces on S3/Z, x S! are smooth and compact. These may potentially
give the first examples of compact strong HK'T manifolds that are not merely products of
hyper-Kahler manifolds and homogeneous spaces.

We conclude this introduction with a note on notation and terminology. Concerning
notation, we generally denote a four-manifold on which we study the instanton equation as
M and the corresponding instanton moduli space as M. The metric on M is denoted as g
and tangent space indices to M are denoted i, j, k or k,l,m; the metric on M is denoted
G and tangent space indices to M are denoted «, 5,7y. Given a geometric structure on M,
a corresponding structure on M is denoted with a hat. For example, if Z is a complex
structure and V' is a vector field on M, then the corresponding complex structure and
vector field on M are denoted as Z and V. The target space of a general sigma-model is
denoted X; the metric on X is denoted as G and tangent space indices are denoted I, J, K.
Lie algebra indices of SU(2) and (related to this) tangent space indices of S* are denoted



a,b,c. At some points, it is hard to be completely consistent with these conventions; for
example, although we usually consider S? x S! as a four-manifold on which we study the
instanton equation, it is also considered in section 3.4 as the target space of a sigma-model.

Concerning terminology, the geometry that leads to a small N' = 4 algebra (for both
left-movers and right-movers) has been called twisted generalized hyper-Kahler geometry,
where “twisting” means that the three-form H is topologically nontrivial (closed but not
exact). Similarly, the analog with A" = 2 supersymmetry has been called twisted general-
ized Kahler geometry [20]. The generalized hyper-Kahler manifolds of primary interest in
the present article are twisted in that sense® and we will take the liberty of sometimes omit-
ting the word “twisted.” Somewhat similarly, the geometry that leads to a small NV = 4
algebra for, say, right-movers only (or left- and right-movers both) has been called strong
HKT geometry (or strong bi-HKT geometry), where HKT stands for a generalization of
hyper-Kahler geometry to allow torsion, “strong” means that dH = 0, and “bi” means
that there are two separate HK'T structures with opposite torsion. Likewise, the analogs
for (0,2) (or (2,2)) have been called strong KT (or strong bi-KT) geometry. In this article,
we only consider geometries with dH = 0, appropriate to Type II superstrings, and we
sometimes omit the word “strong.”

2 Some Properties of the Instanton Moduli Space

In discussing general properties of the moduli spaces described in the introduction, we will
take the gauge group to be SU(Qs5), since the center of U(Q5) leads to a BF' topological
field theory that generally decouples. We view the Lie algebra of SU(n) as the algebra of
traceless antihermitian n X n matrices and we define the invariant quadratic form

(a,b) = —trab, (2.1)

where the minus sign is needed for positivity.

Most of what we will say will apply with minor modifications for other compact semi-
simple gauge groups, such as orthogonal and symplectic groups that one would encounter
in an orientifold construction. Sometimes we consider a general compact simple Lie group

G.

2.1 Cohomology: Some Simple Observations

Some low-dimensional cohomology classes of the instanton moduli space M will be impor-
tant. One thing that will emerge in the following analysis is that some statements are only
true, or are only known to be true, if Q1 and/or Q5 is sufficiently large. For small values
of the charges, there may be exceptional behavior not seen in supergravity.

2.1.1 More on the B-Field

First let us explain in more detail the statement that the interaction

) G
- A — 2.2
1/]R?><S3><Sl oS A 27 (2:2)

®There are, however, interesting complete but not compact examples in which H is non-zero but exact.

See [14] for examples. The analysis in this article should apply to those examples, with minor changes.



can be interpreted at low energies in terms of a B-field on M. The fact that the model
is at low energies a sigma-model with target M means that, if m®, « = 1,--- ,dim M
are local coordinates on M, then at low energies the model can be expressed in terms of
fields m®(x), z € R?, along with their supersymmetric partners. This implies in particular
that after integrating out massive fields, the gauge field A — both its components A,
i = 1,2 along R? and its components along S? x S'- can be expressed in terms of the
me. The A, vanish if the m’s are constant along R? (a constant set of m®’s simply
describes an instanton on S? x S' with no dependence on R?). So the A, are proportional
to the derivatives of the m’s. The general form, modulo irrelevant terms of higher order, is
Au(z,y) =5, fa(m(:c),y)%mo‘, where y € S% x S! and f,(m,y) are Lie algebra valued
functions of m and y. So we have 0,4, — 0,4, = Zaﬂ(aafg — aﬁfa)aumo‘(?ymﬁ, and
[Ap, Al = X2, glfas f]0um® ,mP. Since CS(A) depends on A, through 9,4, — 9,4,
and [A,, A,], the form of these expressions shows that the interaction (2.2) reduces at low
energies, after integrating over S? x S!, to something of the general form

i/ d%z e Baﬁ(m)(?“maa,,mﬁ, (2.3)
R2

with B,g = —Bpg,. This is the standard form of the contribution of a B-field to the
sigma-model action.

If the m® are constant at infinity along R?, so that A, vanishes there, then in evaluating
the expression (2.2) we can compactify R? to S?. If we then view S? as the boundary of a
ball U and extend the gauge field from S? x S3 x S! over U x S3 x S!, then we can replace

eqn. (2.2) with

-4/ WEANE Gy (2.4)

Uxs3xst 4w 2

This is an improved formula because the integrand is gauge-invariant, but it does potentially
depend on the choice of U and of the extension of the gauge field over U. To compare two
different choices with different extensions over possibly different manifolds U and U’, we
glue together U and U’ along their boundaries to make a closed oriented manifold W and
learn that the difference in the two evaluations of the action is

ttFAF G
4/‘ LA ANy (2.5)
W xS3xS! 41 2

We can explicitly do the integral over S, using the fact that in the setup described in

section (1.2), G3 is a pullback from S* and fs3 % = Q%. So the coupling turns out to be

o trFFANF
— _ 2.6
1@5 /W><81 . ( )

The integral is 27Z, where T is the instanton number of the gauge field on W x S'. Thus
the action is
—27iZQs5. (2.7)

As T is in general an arbitrary integer, this formula explains the interpretation of Q% as
the sigma-model “level.” In other words, the formula shows that the effective B-field is Q%
times a minimal B-field that would satisfy the appropriate Dirac quantization.



This characterizes the sigma-model B-field topologically, but the reader may wonder
if it is possible to write an explicit formula for the gauge-invariant field strength H = dB
as a three-form on M. Indeed, to understand the supersymmetry of the sigma-model, we
will need to understand explicit formulas. We explain some necessary tools in section 2.4
and eventually arrive at the final formula in section 5.

2.1.2 Theta-Angles And The Second Betti Number

Another important question is whether the o-model admits a theta-angle. In general, a
(continuous) theta-angle is associated to a term in the Euclidean action of the form —ifT",
where I' is an integer-valued topological invariant and therefore 6 is an angular variable,
0 = 0 + 27. In the present context, there is exactly one suitable invariant, namely the
integral of the third Chern class,®

1
I'=— tr FFAF A F. 2.8
2471'3 /RQ><Sl><SS 8 ( )

Thus a single theta-angle will appear as a modulus of the sigma-model with target M. Pre-
cisely the same coupling appears in the gauge theory description of Type IIB superstrings
on T4 or K3. In that context, this coupling is interpreted as the dual to a Ramond-Ramond
parameter that appears in the supergravity solution [33]. We expect that this coupling has
the same interpretation in the case of Type IIB on AdSs x S? x §2 x S!. Indeed, in that
case the supergravity solution has precisely one Ramond-Ramond modulus [6].

It is straightforward to compare the moduli space of sigma-model parameters to super-
gravity. Since I' is odd under a charge conjugation symmetry of SU(Q5) that exchanges the
fundamental and anti-fundamental representations, the angle § contributes a factor S!'/Zs
to the moduli space. In this article, we will always assume that the metric on S? x S! is a
product of standard round metrics on the two factors, in general with arbitrary radii r,7’.
Since the instanton equation is conformally invariant, only the ratio r’/r is relevant. It is a
positive number, taking values in the positive half-line R . Including also the theta-angle,
the sigma-model moduli space is Ry x S!'/Z,. This is precisely the moduli space of Type
IIB supergravity on AdS3 x S x S3 x S!, as determined in [6]. That gives some preliminary
support to the duality conjecture relating the the sigma-model with target M to string
theory on AdSs x S3 x S3 x S!. We have assumed that no unknown dualities are present;
this was argued in [6] based on an examination of the ends of the moduli space.

The parameter 6 has a qualitative effect on the sigma-model spectrum. For any oriented
four-manifold M, the moduli space M of instanton solutions on M is compact and smooth
except for the small instanton singularity as well as singularities associated with “un-
Higgsing” — that is, singularities associated with reducible instanton solutions that do not

SFor Qs = 2, the third Chern class vanishes and the sigma-model with target the SU(2) moduli space
does not have a continuous theta-angle. (It does have a discrete one because 75(SU(2)) = Z2.) For Qs = 2,
possibly the parity-odd supergravity modulus found in [6] decouples from the low energy physics. We note
that the gauge group of the brane system is really not SU(Qs) but U(Qs), or U(2) for Qs = 2. The third
Chern class is nonzero for U(2), but at least for most purposes, the center U(1) C U(2) decouples at low
energies because of a Chern-Simons coupling, as reviewed in the introduction. For Q)5 = 2, perhaps some
subtle effects depend on the coupling to the third Chern class.
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completely break the gauge symmetry. These singularities are “universal” — the small
instanton singularity does not depend on the four-manifold in which the small instanton is
embedded, and the un-Higgsing singularity depends only on the unbroken gauge group and
the spectrum of massless charged hypermultiplets, not on details of the four-manifold.” In
the case of T4 or K3, there are four parameters, related to each other by supersymmetry,
that control the singularities. Three of these are parameters associated to Neveu-Schwarz
(NS) B-field modes, which resolve the small instanton singularity via a noncommutative
deformation of the instanton equation [35]. The same parameters also resolve the un-
Higgsing singularities as long as 1 and @5 are relatively prime. (If @1 and @5 are not
relatively prime, the model has unavoidable un-Higgsing singularities.) The fourth is a
Ramond-Ramond mode, which in the sigma-model becomes the theta-angle associated to
the third Chern class [33]. It resolves the same singularities that the NS parameters resolve
in the abstract sense of giving the sigma-model a discrete spectrum (not in the sense of
classically resolving the singularities of M). In the case of S* x S!, the B-field modes that
could resolve the singularity in a classical sense are absent globally, since H2(S?xS!; R) = 0.
However, the theta-angle is still present. One expects the small instanton singularity to
be resolved as long as 6 # 0, and (though this point deserves a more careful study) one
expects the un-Higgsing singularities to be resolved as long as the triple @1, @5, Q5 has no
common divisor.

The reader might notice the following gap in our reasoning. In the sigma-model with
target M, we are not interested in arbitrary gauge fields on R? x S® x S! but only in
those that can be interpreted in terms of maps of R? to M. Concretely, these are gauge
fields on R? x S! x S? that when restricted to p x S' x S3, for any point p € R?, satisfy the
instanton equation on S x S3. With this restriction, is it still true that I' can take arbitrary
integer values? General results that will be described in section 2.4 imply that, for any Qs,
this is true for sufficiently large Q1. This allows the possibility that, for example, when
we approximate the six-dimensional gauge theory by a two-dimensional sigma-model, T’
might vanish identically for some small values of (. If this happens (and the duality
conjecture that we are discussing is correct), it would mean that the modulus that is seen
in supergravity and is related to the theta-angle of the sigma-model decouples from the
low energy physics for those particular values of (1.

A similar question concerns the coupling (2.2) that we interpret in terms of a two-
form field B on M. If A is a completely general gauge field on W x S' x S3, then the
expression in eqn. (2.4) can equal an arbitrary integer multiple of 2rQ%, and therefore the
coupling (2.2) is well-defined precisely mod 27Q%. That is the basis for interpreting Q% as
the sigma-model “level.” However, if we constrain A so that its restriction to p x S' x §3
satisfies the instanton equation for every p, then is it still true that eqn. (2.4) can equal
an arbitrary integer multiple of 2r@Q%? Again, for sufficiently large @1, this is true by the
general results that will be explained in section 2.4.

One can also consider the possibility of discrete theta angles associated to torsion
in H2(M;U(1)). There is no evidence in supergravity that any such discrete parame-

"These statements fail in some exceptional cases described in section 7.
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ters should exist. It seems quite likely that for gauge group U(Q5), there is no torsion
in H?(M;U(1)). This would follow from results in [42] together with the Atiyah-Jones
conjecture described in section 2.4.

2.1.3 First Betti Number

We will also need to understand H'(M;R) and its dimension, which is the first Betti
number by (M). In general, a generator of H'(M;R) is a closed 1-form A that is not exact.
A closed 1-form A can always be written locally as A = dg with some function ¢, but ¢
may not be single-valued; it may be well-defined only modulo a constant. Conversely, if
@ is a function on M that is well-defined modulo a constant, then A = dy is a nonzero
element of H'(M;R).

For the case that M is the instanton moduli space on S? x S!, a real-valued function
that is only well-defined modulo a constant is

1 d
A 99

CS(4) A 5, (2.9)

- % S3 xSt
with ¢ an angular variable on S'. Here we have chosen to integrate over ¢, but for the
purpose of finding a generator of H'(M;R), it would not matter if we instead set ¢ to a
specific value. The function ¢ defined in eqn. (2.9) is multi-valued because of the usual
multi-valuedness of the Chern-Simons form.

Therefore, the exterior derivative of ¢ is a generator of H'(M,R). Let A be the space
of all gauge connections on S? x S! (not just the ones that satisfy the instanton equation),
and let G be the group of gauge equivalences (locally, this is simply the group of maps
of M to the gauge group SU(Q5)). We can view ¢ as a multi-valued function defined on
the space A/G of gauge fields modulo gauge equivalences, and likewise we can define the
exterior derivative of ¢ as a 1-form on A/G. We will reserve the symbol d for the exterior
derivative on a finite-dimensional manifold such S? x S! or M, and write § for the exterior
derivative on the infinite-dimensional manifold A or its quotient A/G. We also define

B(y) = 0A(y), ye S xS (2.10)
We can compute an explicit formula for A = do:
1 1
)\:—/ trF/\éA/\%:—/ trF/\w/\% (2.11)
(271')2 §3 %Sl 2 (27’(’)2 93 Q1 2

One might wonder how to explicitly describe a loop in M on which A has a nonzero
integral. This can be done as follows. Let u denote a point in S* and let A(u,$) be any
instanton solution on S x S! of instanton number @1, representing a point in M. Introduce
a second circle S parametrized by another angular variable 5 Then A(u, ¢ + 5) is, for
each fixed 5, an instanton solution describing a point in M; as 5 varies over gl, A(u, o+ 5)
varies over a loop v € M. It is also true that for fixed ¢, A(u, ¢ + 5) can be viewed as an
instanton solution, again of instanton number @1, on S x St Using this, we can evaluate

the integral that defines ﬁ/ A

far-an (2.12)
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Here, since f51 g—f =1, we have to evaluate

1
WAngl trF/\zb (213)

Here we can view 1 as a two-form with one index along S3 and one along St (the reader
might want to return to this point after reading section (2.4)), so we can replace tr F' A ¢
by 2tr A F. (There is a factor of 2 here because either factor of F' in tr F' A F might have
an index along §1) So we arrive at the integral that computes the instanton number on
53 x St

2.1.4 Zeroth Betti Number

Though this will play less of a role in the present article, one may also ask whether M
is connected, that is, whether its zeroth Betti number vanishes. It appears that the fact
that S3 x S! is elliptically fibered can be used to prove that M is connected. To see that
S3 x St is elliptically fibered, one can use the Hopf fibration S® — S? with fibers S*,
implying a fibration S% x ST — S? with fibers S' x S'. Since S? = CP! and since S x S!
can be regarded as an elliptic curve, the fiber and base of this fibration are both complex
manifolds. The description of S3 x S' in section 3.3 shows that the total space of the
fibration is also a complex manifold. So S3 x S! is a complex (but not Kahler) elliptic
fibration. The use of the elliptic fibration to prove that M is connected would follow ideas
explained in [36], generalized to higher instanton number and gauge groups of higher rank.

The generalization to S x S' of the Atiyah-Jones conjecture, described in section 2.4,
would also imply that M is connected.

These two remarks may be related as it may be possible® to use the elliptic fibration
to prove the Atiyah-Jones conjecture for S x S*.

2.2 Symmetries Of M

Here we will discuss properties of the instanton moduli space M that are associated to
symmetries of S? x S!.

First of all, S? x S! has discrete symmetries that act by a reflection of S* and/or S!.
But separate reflections of the two factors reverse the orientation of S? x S!, so they are
not symmetries of the instanton equation and do not lead to symmetries of M. Only a
combined reflection of S? and S! leads to a symmetry of M. We will denote such a joint
reflection of the two factors as p. This only characterizes p up to a rotation of the two
factors, but the precise choice of p will never be important.

The restriction to a joint reflection of the two factors agrees with what one would
expect based on a presumed duality with Type IIB superstrings on AdSs x S3 x S3 x S
As analyzed originally in [4], the superstring solution on AdS3 x S? x S? x S! has a nonzero
three-form field on each of the first three factors, AdSs and the two S®’s. This three-

form is invariant under all continuous symmetries of AdS3 x S? x S2 x S! and is of the

8E. Gasparim, private communication.
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same type (Neveu-Schwarz, Ramond-Ramond, or a combination) on all three factors. S-
duality implies that the type of three-form does not affect the following remarks, and for
definiteness we will assume a Neveu-Schwarz three-form H. A reflection of one of the S*’s
will reverse the sign of H. To get a symmetry, we can compensate for this by reversing the
worldsheet orientation, which also reverses the sign of H. But as there is H flux on each
of the first three factors of AdSz x S? x S3 x S!, to get a symmetry that involves reversing
the world-sheet orientation, we must make a simultaneous reflection of all three of those
factors. Finally, as Type IIB superstring theory does not have a symmetry that reverses
the spacetime orientation, to get a symmetry we must also simultaneously reflect the S'.
This explains that in a dual description involving gauge fields on the product S? x S! of
the last two factors, we should only expect to see a joint reflection of the two factors as a
symmetry, not a reflection of just one factor. But we also see that this discrete symmetry
of $3 x S! is accompanied in the full string theory by a reflection of AdSs, which will reverse
the boundary orientation. So therefore the joint reflection p of the two factors of S3 x S!
will be a parity symmetry of the dual CFT — a symmetry reverses the orientation and
exchanges left- and right-moving modes.

Now we move on to discuss continuous symmetries of S? x S! and their action on M.
For a convenient model of S? x S!, describe S? with real variables gy, A = 0, - - - , 3 satisfying
Zizo yi = 1, and parametrize S' by a periodic variable 7 with 7 = 7 + T for some T.
Choose a metric g on S? x S! that is described by the line element

3
ds® =) dy3 +dr”. (2.14)
A=0
In what follows, indices i, 7, k are tangent to S* x S!, while indices a,b,c = 1,---,3 are

tangent to S3, and an index 7 is tangent to S'. We denote the orientation of S? via the
antisymmetric Levi-Civita tensor e, and orient S? x S! so that the instanton equation
reads

Fop + 6cLb(:.gcc,F1t:’7- = 0. (215)

Let us look at the vector field V = a% that generates a rotation of S', and the corre-
sponding vector field V on M. In general, the action of a vector field V on a gauge field
A, with field strength F' = dA + A A A, is only uniquely determined up to an infinitesimal
gauge transformation and takes the form

§A; = VIF;; — Dyo, (2.16)

where o is the generator of a gauge transformation. Let us prove that the particular vector
field V = 8% acts without fixed points on the instanton moduli space M (aisuming that
the instanton number is nonzero). A zero or fixed point of the vector field V' on M that
corresponds to the vector field V on S x S would be an instanton solution such that, for
some o, eqn. (2.16) reduces to

0= Fﬂ‘ - DZ'O'. (217)
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Squaring, taking a trace, and integrating, we get
0=— / d*z\/g ) tr(Fr — Do)’ (2.18)
S3 xSt P

The term linear in ¢ vanishes after integrating by parts, since an instanton connection
satisfies the second order Yang-Mills equation DiFji = 0. Hence

0= —/SBXS1 d4x\/_2tr (Dio)?). (2.19)

In particular, a fixed point satisfies F;; = 0. Since the instanton equation (2.15) then
implies that F;; = 0 for all 4, j, it follows that a fixed point is actually a flat connection
and can only exist if the instanton number is zero.

Note that V has constant length as a vector field on S* x S!. In section 6, after
defining the metric of M, we will show that the vector field V on M that is associated
to V also has a constant length, which will determine one of the central charges in the
large N' = 4 algebra. Of course, the assertion that V has (nonzero) constant length is
much more precise than the statement that we just proved showing that V has no zeroes
or fixed points. Similarly, writing SU(2), and SU(2), for the left and right actions of SU(2)
on S* = SU(2), a generator Ty or T, of SU(2), or SU(2), is a vector field on S? x S* of
constant length. In section 6, we will learn that the corresponding vector fields fg and T\r
on M likewise have (nonzero) constant length, and hence act without fixed points. More
generally, if T; and T} have unequal lengths (as vector fields on S?), then T, —|—T acts on M
without fixed points. It will turn out as well that any linear combination uT, v+ UT +wV
with w # 0 has no fixed point. The fact that M has many symmetry generators that act
without fixed points is likely to mean that some attempts at supersymmetric localization
will give a trivial result.

However, if Ty and T, have equal length, then fg + T\r does have fixed points in M, as
analyzed in [36]. We discuss some consequences in section 2.3. For now, we just note that
an example of a vector field T = T, + T} on S? such that 7, and T, have equal length is

0 0

T = 3—.
Y2 0ys dys 8y2

(2.20)

The corresponding vector field T = T\g + Tr on M does have fixed points.

2.3 Is The Moduli Space A Symmetric Product?

As explained in the introduction, in the literature there are primarily two proposals for
the dual of Type IIB superstring theory on AdS3 x S? x S x S': the dual might be a
symmetric product of n copies of S* x S! for some n, denoted Sym™(S3 x S!), or it might
be a sigma-model with target the instanton moduli space M on S? x S'.

One can also ask — and this question has been raised as well — whether the two con-
jectures are different. Or is M, which according to an index theorem has real dimension
4Q1Qs5, the same as, or possibly deformation equivalent to, Sym®1@s (S3 x SH? A moti-
vation for this question is that the instanton moduli spaces on T* or K3 are indeed such
symmetric products. Is the same true for S® x S!, at least for some values of the charges?
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The answer to this question is that in fact (for @5 # 1) the instanton moduli spaces
on S3 x S! are not symmetric products of copies of S? x S! or deformation equivalent to
such products. One can show this by considering the fixed points of the U(1) symmetry
of S* x S! that is generated by the vector field T' of eqn. (2.20). It is shown in [36] that
instantons on S? x S! that are invariant under this U(1) are equivalent to BPS monopoles
on a hyperbolic three-manifold Hs/Z, where Hs is hyperbolic three-space (the Euclidean
version of AdSs), and a generator of Z acts by a hyperbolic element of the symmetry group
of Hs; thus Hs/Z is simply the Euclidean version of a BTZ black hole. For G = SU(2),
the magnetic charge is a single integer ¢, which as shown in [36] must be a divisor of
the instanton number Q1. For every divisor ¢, the monopole moduli space is non-empty
according to Corollary 5.3 in [37]. For any”? @1 > 2, there are at least two divisors, namely
1 and @¢. Thus the fixed point set always has at least two topological components. For
Q5 > 2, the magnetic charge of a monopole is classified by Q)5 — 1 integers, and the number
of topological components of the fixed point set grows rapidly.

By contrast, the zeroes of the vector field 7" on S? comprise the circle ys = y3 = 0, so
its zeroes on S? x S! make up the connected manifold S! x S!, a two-torus. The zeroes of T'
on Sym@195(S3 x S1) make up Sym®@1@5 (S x S!). This is still a connected manifold, and
will remain connected after any deformation or resolution. So the instanton moduli space
on 83 x S' is not deformation equivalent to Sym®1@s(S3 x S1).

We should remark that for Q5 = 1, there is reasonable evidence that the dual of string
theory on AdS3 x S% x 3 x S! is a sigma-model with target Sym®! (S x S!), with each
factor taken at level Qf [7]. Of course, for Q5 = 1, the gauge group is U(1) and instantons
only exist after a noncommutative deformation [35]. In the case of T* or K3, there are
four parameters associated to such a deformation. Three of these parameters arise from
Neveu-Schwarz B-field modes and are studied in [35] and the fourth, related to these by
supersymmetry, is the expectation value of a certain Ramond-Ramond field. The NS B-
field modes have no analog for S3 x S!, because H2(S? x S};R) = 0. But the RR mode does
have an analog [6], and it is plausible that with this mode turned on, the instanton moduli
space on S? x S! for Q5 = 1 is a symmetric product, potentially providing a framework for
the results of [7].

2.4 Cohomology: Systematic Approach

At the end of section 2.1.2, we asked whether certain topological statements about gauge
fields on R? x S! x S3 (with prescribed behavior at infinity along R?) are modified if one
requires that the restriction of the gauge field to p x S! x S3, for any p € R?, is an instanton
solution. These are questions about the relationship between the topology of the space
A/G of gauge fields modulo gauge transformations on a given G-bundle E — S3 x S!, and
the topology of the moduli space M of instanton connections on F. Here A is the space of
all connections on E and G is the group of gauge equivalences, so M is a subspace of A/G,
namely the subspace that parametrizes gauge equivalence classes of instanton solutions.

9For SU(2) gauge theory with instanton number 1, the instanton modulli space is described explicitly
in [36] and does not appear to be a symmetric product.
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The original mathematical statement about questions of this nature was the Atiyah-
Jones conjecture [34] about SU(2) gauge fields on S*. It asserts, roughly speaking, that in
the limit that the instanton number is large, M and A/G are topologically equivalent. This
equivalence means, for instance, that for any d > 0, the restriction map j* : H4(A/G;Z) —
H¥(M;Z) associated to the embedding j : M — A/G is an isomorphism. The original
Atiyah-Jones conjecture was proved in [38] and its generalization to SU(n) bundles on S*
was proved in [39]. For a short survey of related results and questions, see [40].

In this article, we are primarily interested in instantons on S® x S!, rather than S*.
Hence a generalization of the Atiyah-Jones conjecture is relevant. A plausible generalization
would say that for any compact gauge group G and any oriented compact four-manifold
M, M and A/G are topologically equivalent in the limit of large instanton number. What
has actually been proved for general G and M is a somewhat weaker statement (Theorem
2* in [41]), which says in particular that for any M and G, the map on homology j, :
Hy(M;7Z) — Hy(A/G;Z) is a surjection if the instanton number is large enough compared
to d. This implies that for any manifold N, constraining a gauge field on N x S! x S3
to satisfy the instanton equation when restricted to p x S' x S3 for any p € N places
no topological restriction if the instanton number is sufficiently large. So it answers the
questions raised at the end of section 2.1.2, which involved the case that NN is of dimension
2 or 3.

However, several issues that arise in the present article require further information
concerning the relation between the topology of M and of A/G. In particular, it would
be nice to know that the restriction maps j* : H*(A/G;Z) — H*(M;Z) are isomorphisms,
at least for ¢ = 1,2 and suitable @1, Q5. The relevance to arguments in this paper is as
follows. In general, the number of continuous theta-angles in a sigma-model with target
M is the dimension of H?(M;R). The invariant defined in eqn. (2.8) can be viewed as a
generator of H2(A/G;Z) and therefore (forgetting its integrality) of H2(A/G;R). As we
explain shortly, this invariant generates H?(A/G;R). It can be restricted to M and this
restriction is nonzero according to [41]. In comparing the sigma-model moduli space to the
supergravity moduli space, we assumed that this restriction generates H?(M;R), leading
to a unique theta-angle. This is true if the map j* is an isomorphism on the degree two
cohomology. Somewhat similarly, in eqn. (2.11), we defined a closed one-form A that is a
generator of H'(A/G;R). As we explain shortly, A generates H'(A/G;R). We proved that
the restriction of A\ to M is nonzero by exhibiting a curve in M on which A\ has a nonzero
integral. In section 7, in one approach to proving conformal invariance of the sigma-model
with target M, we will want to know that A\ actually generates H'(M;R). This is true if
the map j* is an isomorphism on the degree one cohomology. In the present article, we will
assume that some sort of analog of the Atiyah-Jones conjecture is true and justifies these
statements, at least for suitable @)1, Q5. Hopefully, such a statement holds at least in the
regime in which supergravity is valid, namely Q1 > Q5 > 1.

The context for some statements in the last paragraph is the following. In [42], Atiyah
and Bott explicitly described a set of generators of the real cohomology ring of A/G, along
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lines that we will explain shortly.'® For the case of M = S? x S!, in degree 1 and degree 2,
the generators that they describe are precisely the ones that we considered in eqns. (2.8)
and (2.11).

We will need some knowledge of the explicit generators of the real cohomology of A/G
constructed by Atiyah and Bott, mainly because we will in section 5 need to recognize a
certain explicit three-form on M that represents the three-dimensional cohomology class
that was described somewhat implicitly in section 2.1.1. The following discussion is in
the spirit of [42], as later refined and extended for applications to four-manifolds [47] and
interpreted more physically [44]. Recall that we denote the exterior derivative on A as ¢
and we also define ¢ = §A. The components Af,(z) (z is a point in M and p and a are
tangent space and Lie algebra indices, respectively) are understood as functions on .4, while
¥y (x) is a one-form on A. A general function F'(A,) that is homogeneous of degree k in
1) represents a k-form on A. We will extend the definition of § with other fields included so
that 6 will generate a gauge transformation and therefore will vanish on gauge-invariant
functions.

If we were interested in differential forms on A, we would simply define d¢) = 0 and
then & would represent the exterior derivative acting on functions of A and ¢. But in order
to construct differential forms on .4/G, it is necessary to take into account the gauge group.
For this purpose, we introduce a Lie algebra valued scalar field ¢ on M. The action of §

on the three fields A, ), o is defined by

SA =1
ey
S0 = 0. (2.21)

Here d4 = d + [A, -] is the gauge-covariant extension of the exterior derivative. These
formulas imply that 62 is equivalent to a gauge transformation generated by o; for example,
5%2A = 51 = —d o is the infinitesimal transformation of A under a gauge transformation
generated by o, and similarly 62y = [0,v], 620 = [0,0] = 0. Since we want & to increase
the degree of a differential form by 1, and we have assigned degree 0 to A and degree 1 to
1, we have to assign degree 2 to 0. We will call this degree the d-degree; it has also been
called ghost number. In keeping with the fact that o has J§-degree 2, we will eventually
learn that it can be converted for many purposes to a two-form on A/G.

Since in general §2 is the generator of a gauge transformation, it follows that acting on
gauge-invariant functions F'(A,1, ), 62 = 0. We will explain explicitly how to convert a
gauge-invariant function F'(A, 1), o) that is homogeneous of degree k to a k-form on A/G. A
function F that is d-closed, that is, one that satisfies 6 F = 0, will map to a closed form on

10 Atiyah and Bott were studying the case that M is a two-manifold. However, as long as one considers
only the real cohomology of A/G, not the integer cohomology, their considerations carry over to the case
that M is of any dimension. For the group U(n), they described the classifying space. The upshot was to
show that on any manifold M, the cohomology of A/G is generated by certain classes associated to Chern
classes. For the real cohomology, one can use differential forms and this leads to the generators that they
described and that are introduced presently. Since U(n) = (SU(n) x U(1))/Z,, the same result applies to
the real cohomology of A/G for gauge group SU(n).
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A/G. What we have described is in fact the Cartan model of the equivariant cohomology
of G acting on A. Because G acts freely'! on A, this equivariant cohomology is the same
as the cohomology of A/G.

Before explaining!? how to map functions F(4,v,0) to differential forms on A/G,
we will describe the important gauge-invariant and Jd-invariant functions on A. The most
obvious possibility is to pick a point x € M and a homogeneous polynomial P of degree s
on the Lie algebra g of G, and consider the function P(o(z)). This is gauge-invariant and
d-invariant and is of d-degree 2s, so it will map to a closed 2s-form on A/G. This form is
not d-exact, since P(o(z)) is not 00 for any O, so it will potentially lead to a nontrivial
cohomology class on A/G.

To minimize the notation that is required in the following discussion, let us assume
that G = SU(Q)5), in which case the ring of invariant polynomials on g has a simple set
of generators that we will denote pY (0) =tro(z)®, s =2,---,Q5. Now with d as the
exterior derivative on M, we compute dPSgO) = stro* !dyo. This does not vanish, but we
find stro®~1dy o = —5P8(1) with Ps(l) = stro® "Ly

sPY) = PO, (2.22)

S S

In this formula, PS(O) is a scalar function on M, which can be defined at any point x € M,
and has d-degree 2s; on the other hand Ps(l) is a one-form on M of d-degree 2s — 1.

The formula (2.22) can be read in two ways. First of all, reading the formula from
right to left, it says that although PS(O) is not J-exact, its derivative along M is J-exact.
Hence, once we learn how to interpret tro(z)® as a 2s-form on A/G, this 2s-form will be
independent of x, up to an exact form.

On the other hand, reading the formula from left to right, it says that although the
1-form Ps(l) on M is not d-closed, its variation under ¢ is d-exact. Hence if v C M is a
closed loop, then fv Ps(l) is 0-closed, since

57{138(1) =— f{ dr© =o. (2.23)
Y v

Hence, once we learn to convert functions F(A,1,0) that are gauge-invariant and o-
invariant to closed differential forms on A/G, the function f,y Pél) of §-degree 2s — 1 will
correspond to a closed differential form of degree 2s — 1 on A/G.

What we have described so far is the first step in a “descent” procedure. For m > 0,
one finds inductively gauge-invariant polynomials P§m)(A, 1, 0) such that PO = o’ (x)
and dPs(m) = —5P5(m+1). These relations imply that if ¥ C M is any m-cycle, then [y Ps(m)
is d-closed (indeed, & fz Ps(m) = — fz dPS(m_l) =0). So fz Ps(m)7 which has §-degree 2s—m,
will correspond to a closed form on A4/G of degree 2s — m. The cohomology class of this

HExcept for the center of G and except for subtleties involving gauge connections on M that are reducible,
that is, those that do not completely break the gauge symmetry down to the center of G. For our purposes,
these subtleties are unimportant, because reducible instantons on S® xS! arise only in very high codimension,
and the center of G acts trivially on gauge fields. However, a more careful treatment of the cohomology
might be important for more delicate questions beyond the scope of the present article.

12The reader might prefer to return to the following discussion after reading section 5.
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form on A/G only depends on the homology class of ¥, since if ¥ = 9B is a boundary,
then fz Ps(m) = fB dPs 5fB m“ is d-exact.

The construction just sketched has been important in the theory of smooth four-
manifolds [47]. As follows from the arguments in [42], the cohomology classes corresponding
to [5 P™ for various ¥ and m generate the (real) cohomology ring of A/G. All these
classes can be restricted from A/G to M. An analog of the Atiyah-Jones conjecture would
potentially say that these restrictions generate the real cohomology of M, but at any rate,
the cohomology classes of M that will be important in this article can be obtained as such
restrictions.

For the particular case M = S3 x S!, we can only make one generator of H'(M;R)

(3)
2

this way, namely fsgxq P,” for an arbitrary point ¢ € S', and one generator of H?(M;R),

namely fslxsg P?E4). These correspond to the generators described in more direct terms in

(1)

sections 2.1.2 and 2.1.3. In degree 3, there are two possible generators, namely f wg1 o

with p € $3, and fS3 (3), g € S'. The first of these corresponds as we will see to the
field strength of the B field on M, and the second will not play an important role in the
present article.

Before explaining how to concretely interpret fz Ps(m) as a closed differential form on
M, we will make the descent procedure more explicit in the case that is actually important
for understanding the B-field on M. Setting s = 2 and changing the normalization, we set
pO) = #tr o2. Inductively solving dP™) = —§P(m+1)  we find

PO = 1,2

82
1
P(l) - mtraw
1 1
2 - - - —
P 47T2tr <21/)/\1/) 0F>

1
3) _

1
4) _
PW = St FAF. (2.24)

So P® is the four-form whose integral over M is the instanton number J5 c2(E), where ¢,
is the second Chern class of the gauge bundle & — M. This statement can be generalized
as follows. Consider a family of gauge connections on £ — M, parametrized by some
parameter space S. These will fit together'? into a gauge connection in the M direction
on a bundle £ — M x S (for a point s € S, E restricts on s x M to the original &' — M,
up to isomorphism). In section 2.1.1, in discussing the B-field on M, with M = S3 x S!,
we made this construction for S = R?, and subsequently for S a three-manifold W. The
universal choice of S is simply \A/G, which parametrizes all possible gauge fields on M, up

3For a more complete description, see section 5. We disregard a potential obstruction involving the
center of the gauge group, which can be circumvented by considering the bundle ad(E) associated to E in
the adjoint representation of G and is inessential for our purposes. Note that rather than a single G-bundle
E — M, we really should begin this construction with a family of G bundles £ — M, parametrized by S.
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to gauge transformation. Any other S is obtained by mapping some other space into this
one.

The bundle E — M x A/G has a second Chern class of degree 4. We will consider this
second Chern class as a real cohomology class, valued in H*(M x A/G;R). This cohomology
group has a decomposition H*(M x A/G;R) = @4 _H™(M;R) @ H*™(A/G;R). The
geometrical interpretation of the descent procedure [45, 46| is that P corresponds to
the part of cz(ﬁ) that is valued in H™(M;R) ® H*™(A/G;R). Then if we are given an
m-cycle ¥ C M, we can integrate!* P(™) over ¥ to get a d-closed function of d-degree
4 —m, namely [y P representing an element of H*™(A/G;R). This element can be
restricted from A/G to M C A/G to get a d-closed function on M, which will correspond
to a closed form of degree 4 — m.

To get a three-dimensional cohomology class on A4/G, we have to implement this pro-
cedure with m = 1. So we pick a point p € S? and integrate P(Y) over p x S to get
ﬁ st T o1. Once we learn how to interpret o as a two-form on A/G, this will indeed
become a closed three-form on A/G, normalized so that its periods (its integrals over closed
three-cycles in A/G) are integers. That integrality will follow from the integrality of the
second Chern class. The cohomology class of # prSI trovy does not depend on p, as
explained in the discussion of eqn. (2.23). Any choice of p will give a representative of
the same cohomology class, but we can get a particularly nice representative by averaging
over p. If d3Q is a “round” volume form on S? normalized so that the total volume is 1,
then the average is just fsgxsl d3Q P After converting o to a two-form, this will become
a three-form on A/G — and therefore, by restriction, on M — with integer periods. Since
the field strength of the B-field is supposed to have periods that are 27 times integers, a
minimal three-form that satisfies Dirac quantization will be 27 times this or

Hy =2x / a*Q P, (2.25)
S3 xSt

In a moment, we will explain how to turn the expression (2.25) into a concrete three-
form on A/G, by eliminating o in favor of A and . But for now, let us compare the
expression (2.25) to eqn. (2.5). Since eqn. (2.5) is a formula for [j;, H (rather than a
description of a three-form H), to make this comparison we will integrate eqn. (2.25) over
a three-cycle W C A/G, corresponding to a family of gauge connections on S? x St. We

/ Hy =27 / aapW. (2.26)
w W xS3 xSt

Since [g5 d*Q = 1, we can do the integral over S3, giving [i;, Ho = 27 [;;, g1 PM)_ But since
P just represents the part of #trF ANF ~ CQ(E’) that is of degree 1 on S x S! and
degree 3 on A/G, we have [;, Hyo =27 [;;,, o1 tré;/;F. Comparing this to eqn. (2.6), we see

that the relation between Hy and the field strength H = dB of the sigma-model is

get

H=QLHy+d(--). (2.27)

“This procedure, which was introduced in [42], was used to great effect by Donaldson [47] in studying
four-manifolds.
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The derivation of this statement involved integrating over an arbitrary cycle W, so the
statement only holds modulo an unknown exact form, denoted here as d(-- ).

The reader who has gotten this far may well feel that we have not learned much, since
we already asserted at the end of section 2.1.1 that the B-field of the sigma-model is Q%
times a minimal B-field that obeys Dirac quantization. However, by turning ¢ into an
explicit differential form, we can now do what was not available previously and describe
explicit three-form representatives of Hy.

Actually, though the formula for Hy that we will get makes sense and is correct as a
three-form on A/G, it is possibly easier to get some intuition if we restrict to M, which is
in any event what we want to do for our application. In this analysis, we make use of the
way this construction fits into an actual quantum field theory, as explained in [44].

When we restrict to M, the gauge field A on S® x S! satisfies the instanton equa-
tion'®> F'* = 0. (In the construction in [44], the restriction to M is made in the sense of
supersymmetric localization.) Therefore 1 = JA satisfies the linearization of the instan-
ton equation, namely (da1)*t = 0. However, being a one-form in four-dimensions, 1 has
four components, and (since the bundle of selfdual two-forms has rank three) the equation
(dav)™ = 0 is only three equations. Therefore in any physical model in which this con-
struction is embedded, ¢ will obey a fourth equation. That equation is model-dependent,
and different choices will actually lead to different three-forms all representing the same
cohomology class on M.

In [44], the theory considered was a twisted version of N' = 2 super Yang-Mills theory.
In that theory, in addition to A, %, o, the important fields for our present purposes are a
pair @,7n. These are spin zero fields in the adjoint representation; @ is a boson of J-degree
—2 and 7 is a fermion of J-degree —1. They transform under § as

0 =1
& = [o,7). (2.28)

We note that these formulas are consistent with § having d-degree 1, and with 62 being a
gauge transformation generated by o (thus, 62 = [0, 5], and similarly for 7).

The action of the theory is d-invariant, and the part of the action that is relevant for
our purposes is d-exact. There is much arbitrariness in the d-exact part of the action. The

minimal choice made in [44] amounted to
—5/ d4x\/§trEDi¢i = / d4x\/§tr (EDiDiO' — T, '] — nDiW) . (2.29)
M M

Assuming that these are the only terms by which & and 1 appear in the action (or the only
terms that are relevant in lowest order, which is good enough in the localization argument),
we can read off the equations of motion:

Dyt =0
D;Dio = [1p;, "] (2.30)

15We denote the selfdual and anti-selfdual parts of a two-form b as b* and b™.
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We have simultaneously accomplished two things. First, we have found the desired extra
equation of motion for ¢, namely D;1)* = 0. And second, we have learned how to express
o in terms of ¢, namely by solving the equation D;D'c = [1/;, "], implying that

o) = [ B0, (231)
X
where B(z,y) is the Green’s function of the Laplace operator:
D D
. — B = 5*(z,y)1d. 2.32

Here /g, is just /g regarded as a function of y, and Id is the identity operator acting on
the fiber of the adjoint bundle ad(E).
Using in eqn (2.25) the explicit formula for P from eqn. (2.24) and using eqn. (2.31)

to eliminate o, we get an explicit formula for Hy as a three-form on M:

1

Hy = —
0 2

/ d*drdlyy/Gytr @ e (0) Bl y) [0 0" )0). (233)
S3xS1xS3 xSt
Here the two copies of S3 x S! are parametrized respectively by x and 3. We have used the
fact that the only part of ¢)(z) that contributes in the evaluation of eqn. (2.25) is ¢, (z)dr.
The preceding derivation can be generalized by replacing D;1* on the left hand side of
eqn. (2.29) with another expression. Then the auxiliary condition D;4* = 0 in eqn. (2.30)
will be replaced by another condition. As we will learn in section 5, to understand the
moduli space M of instantons on S® x S!, a different auxiliary condition is more useful,

namely

Dyt +x(H AY) =0 (2.34)

(where « is the Hodge star). To modify the preceding derivation to incorporate this condi-
tion, we merely add another J-trivial term to the action, taking it to be

—6 / d'z\/gtr7 (D’ + *(H Ay)) = / d*z\/gtr(a(D;D'c +*(H A da0))
M M
(D)’ +*(H A ) — Tl 4p'])  (2.35)

The equation of motion for 7 gives the desired condition (2.34). But the equation of motion

for @ also changes and is now

Wo = [y, (2.36)
where the operator W is defined by
Wo = D;D'o 4+ «(H Adao). (2.37)

The formula (2.33) is still valid, except that B(x,y) is now the Green’s function of'® W,
obeying
W, B(z,y) = 6 (,y)1d, (2.38)

16We show in section 4 that W has no kernel or cokernel, so this Green’s function exists.
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where W, is the operator W acting on the variable x. An important detail, though, is that
as W is not self-adjoint, its Green’s function B(z,y) is not symmetric in = and y, and the
equation that it obeys in the y variable is actually

Wi B(z,y) = 6*(z, y)Id, (2.39)
where W1 is the adjoint operator
Wio = D,D"o — x(H A dao). (2.40)

One way to prove eqn. (2.39) is to observe that eqn. (2.38) implies that

/M d4y\/@B(x, y)WyB(y, z) = B(z, z). (2.41)

On the other hand, we can write the left hand side of eqn. (2.41) as

/M d*y\/9, W) B(z,y) - B(y, 2), (2.42)

and eqn. (2.39) follows by comparing this with eqn. (2.41).

Regardless of whether we take B(x,y) to be the Green’s function of the Laplace oper-
ator, the operator W, or some other operator related to another valid condition for ¥, eqn.
(2.33) is an explicit formula for a three-form on M in the appropriate cohomology class.
But as will eventually become clear, the torsion of the generalized hyper-Kahler metric
of M is the representative of this cohomology class that we get if B(z,y) is the Green’s
function of the operator W.

3 Some Background

In this section, we will review relevant background material on three topics: supersymmet-
ric sigma-models with a B-field; the relevant geometry of S? x S'; and the large N' = 4
superconformal algebra in two dimensions. The first two topics were reviewed recently in
[19]; more information can be found there on some aspects, along with further references.

3.1 Supersymmetric Sigma-Models With a B-Field

The most basic type of two-dimensional supersymmetric sigma-model with a B-field is a
model with (0,1) supersymmetry.!” We will briefly review such models following [49]. We
consider a model with a general target space X, which we describe by local coordinates X,
P =1, ---,dimX, and endowed with a metric Gpg and a B-field Bpg, with field strength
Hpgr = 0pBgr + 0gBrp + OrBpg. On a superspace X of dimension 2|1 with even
coordinates z—,z" and one odd coordinate 6, we introduce a supersymmetry generator

"We will treat these models classically, not worrying about sigma-model anomalies [48], as they will
be absent in the N' = 4 models that we consider eventually. Likewise we will not worry about a possible
anomaly in the U(1) chiral symmetry in the (0,2) models that we discuss presently; this is again absent
when the model is extended to A/ = 4 and the global symmetry is extended from U(1) to SU(2).
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QL =i (886 989%)’ satisfying Qi =10, and commuting with D = % + 1989%, which is
used in writing Lagrangians. The sigma-model map ® : 3 — X can be described concretely
in terms of superfields X = X +i6y". The supersymmetry variation of these fields is is
SXP =Q X" or

P—ipl syt =0, X7, (3.1)

A natural supersymmetric action for these fields is

S = —% /dZﬂE d0 (Gpg + Bpq) DXF 85 X, (32)

After integrating over €, the bosonic part of the action is the standard

1
Sy = 5 /de(GPQ + BPQ)(ILXP(?,XQ. (3.3)

The fermion action turns out to be

i 0 OXE

S / A%z Gpoy? (08— = T9) 7, (3.4)
2 ox ox

where fgs is not the usual Riemannian affine connection P%S but has also a torsion term

proportional to H:

I =T% + GQ Hrrs. (3.5)

Using this new affine connection, we define a connection V with torsion that differs from
the Riemannian connection D. The covariant derivative of a vector field V' with respect to
V is 1

VpVE =0pV R+ TR VO = DpVE + 5GRSJLJSPQVQ. (3.6)

This connection has completely antisymmetric torsion H. Accordingly it is metric com-
patible, meaning that the Riemannian metric G pg is covariantly constant.

As an example of the usefulness of this connection, let us ask a question whose impor-
tance in relation to the large N' = 4 algebra was explained in [5]. What condition should a
vector field V on X satisfy so that the sigma-model field A = 3~ ;- V& obeys 9_A = 0 and
thus is a chiral free fermion? Since the equation of motion for v is 0_y* = —0_X Rfﬁsws ,
we have O_A = O_XTopVs S — Vpo_X ngsws . The condition for this to vanish is
OrVs — fgSVp =0, or in other words

VrVs =0, (3.7)

that is, V is covariantly constant for the connection V. If this condition is satisfied, then

in addition to the chiral free fermion A of spin 1/2, we get a free chiral current of spin 1:
J ={Q, A} = V0, X* + 10, V™ ™. (3.8)

Up to this point, Gpg and Bpg were not subject to any particular constraint. That
changes if we ask for the sigma-model to have (0,2) supersymmetry [50, 51]. The N = 2
superconformal algebra has a U(1) R-symmetry under which the two supercharges have
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charge +1. We do not want to restrict the target space X to have a U(1) symmetry, so we
assume the bosons to have R-charge 0 and the fermions to have R-charges +1. Thus we
assume a U(1) symmetry that acts on fermions only, generated by

syl =1V U, (3.9)

with some linear operator Z. In a generic local coordinate system on X, the matrix elements
of 7 are position-dependent, but as the components of ¢ are supposed to have R-charges
+1, we can normalize Z so that 7?2 = —1, making 7 an almost complex structure on
X. This implies in particular that X has even dimension 2p. We denote the +i and —i
eigenmodes of Z as ¢¥® and Q,Z)E, a, =1,---,p. The condition that the fermion action Sy
of eqn. (3.4) actually does have the symmetry of eqn. (3.9) gives two conditions. First,
the metric tensor G must be of type (1,1) with respect to Z, meaning that its nonzero
components are G5 = Gg,. (The metric G is therefore said to be hermitian with respect
to Z.) Second, since Sy is constructed in terms of the covariant derivative of ¢ with respect
to the connection V, invariance of Sy requires that the tensor P @ should be covariantly
constant with respect to this connection:

VI =0. (3.10)

Thus both G and Z are covariantly constant with respect to V, implying that ithe structure
group of V reduces to U(p). The R-symmetry conjugates the original supersymmetry (3.1)
to a second one that acts by

oXP =1Fou@, oyf = —1P50, X9, (3.11)

Requiring that this squares to a translation generator i9y gives a condition that is quadratic
in Z and its first derivative. This condition is precisely the vanishing of the Nijenhuis
tensor. Thus Z is actually an integrable complex structure on X, and one can introduce on
X local holomorphic coordinates x“, EE, a,Bf=1,---,p. In such a coordinate system, the
nonzero components of Z are simply Z% = id%g, IEB = —iéag, and the condition (3.10)
simplifies to fgﬁ = f%ﬁ = 0 (and the complex conjugate of this). From this we learn that
Hopy = Hyg, = 0, saying that H is of type (2,1) @ (1,2) with respect to Z, and that
Hopy = —0.Gpy + 03Gox- (3.12)

For H to be the field strength of some two-form field B, one requires'® dH = 0, which here
tells us that
0? 315
————G 3d2*d2"dz’dz® = 0. (3.13)
dzeoz? 7
So locally
GaE = (%KE + GBKQ, (3.14)

8Here the remark in footnote 17 is relevant. As sigma-model anomalies will eventually be canceled by
adding left-moving fermions, we are not interested in canceling them by a Green-Schwarz mechanism with
dH # 0, as is appropriate in the context of the heterotic string.
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where the one-form K is the closest analog in this context of a Kahler potential. This
observation is natural in a certain superspace construction of this class of models [52].

Associated to this data we can define a hermitian form w by wpr = GPQIQ R, OT
in local holomorphic coordinates Wap = —iG 0 = ~Wia with other components of w
vanishing. In particular w is of type (1, 1); moreover, w is covariantly constant with respect
to V, since G and Z are. Note that the two-form w associated to an antisymmetric tensor
wpp is defined as'?

w = % > dxPdxPwpp. (3.15)
PR

If dw = 0, then X is called a Kahler manifold and eqn. (3.12) implies that H = 0. Indeed,
if as usual we expand the exterior derivative in parts of type (1,0) and (0,1) by writing
d = 0+ 0, then eqn. (3.12) tells us that

H=—i(0 - 0)w. (3.16)

An alternative way to write this formula is the following. One defines an action of Z on
differential forms by Z(f(X)dX") = f(X)Z'odX? and more generally

Z(f(X)dxFr . dx Py = f(X)TPg,dX @ .. TP dX 9, (3.17)

Then, since w is of type (1,1) and H is of type (2,1) & (1,2), the formula (3.16) for H is
equivalent to

H=-T7dw=-7dZw. (3.18)

The formulas (3.16) and (3.18) are useful because they express H just in terms of the
gauge-invariant data w, Z, as opposed to the usual formula H = dB, where B is gauge-
dependent. For completeness, we also include a formula for the Lee form (which appears
in the one-loop beta function of a model of this type [53, 54])

1
O = —izLKHLpQIPQ. (3.19)

The Lee form will be relevant in section 7, though we will not make any use of the formula
(3.19).

Having gotten this far, the further extension to (0,4) supersymmetry is straightforward.
In this case, one wants an SU(2) R-symmetry that acts only on the fermions. This group
has three symmetry generators Z, 7, K, and as the fermions should all transform as spin
1/2 under SU(2), the generators can be normalized so that they obey the quaternion
relations 72 = J2 = K2 = —1,ZJ = —JZ = K. This implies in particular that X must
have dimension D = 4q for some integer ¢q. Using J or K instead of Z in eqn. (3.11)
will give two more supersymmetries, making four supersymmetries in all. The preceding
considerations apply to each of Z, 7, K separately, so in particular each of Z,7,K is an
integrable complex structure. Being endowed with three complex structures that satisfy

Y The factor of % ensures that if A is a one-form and F' = dA, then ' = % ZRR dXTdXEFpgr where the
definition of Fipr is the standard Fpr = 0pAr—0OrAp. Note thatasd =", dXT0p and A = >or dXTAg,
we have dA =, , dX"dX"0pAr = § 3 p , dX"dX " Fpg.
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the quaternion relations, X is called a hypercomplex manifold.?® Moreover, the metric G
is of type (1,1) for each of Z, 7, K, and is therefore said to be hyper-hermitian. Each
of 7,7, and K must be covariantly constant for the connection V constructed as in eqn.
(3.6) in terms of G and H. This implies that the structure group of V reduces to Sp(q).

For each complex structure, we define a corresponding hermitian form wg}% =G pQZQ R

w(g% = GpoJ%g, wg% = GpoKY?R. The derivation of eqn. (3.18) applies equally to any

of 7,7, K, so we must have
H = —Zdw® = —7dw¥) = —Kdw®™). (3.20)

For the same three-form H to satisfy these three different formulas is a very strong con-
straint.

So far we have discussed (0,7n) worldsheet supersymmetry with n = 1,2,4. Now we
discuss the extension to (n,n) supersymmetry. Roughly speaking, one just adds additional
fermions of opposite chirality and one requires two copies of the structure that has just
been described, one copy for positive chirality and one for negative chirality. Since both
chiralities of fermions will be present, we write henceforth Q,Z)JI: for the fermions that we have
been considering so far and ¥ for the fermions of opposite chirality. For n = 1, the main
point to consider is that exchanging the two chiralities involves reversing the worldsheet
orientation, and under this operation H is odd. Therefore, fermions of the two chiralities
will see connections that differ in the sign of the torsion, which is proportional to H and
therefore is odd under exchanging the two chiralities. Since two different connections with
torsion will play a role, we will be more precise in the notation. Previously we defined
a connection V that appears in the kinetic energy of the positive chirality fermions and
is described by the affine connection (3.5). Reversing the sign of H, we get the affine
connection 1

"%y =T% - 5G9 Hrrs (3.21)

associated to the connection V' that appears in the kinetic energy of negative chirality

fermions. The respective definitions of covariant derivatives are
1 1
VPVR = DPVR + iGRSHSPQVQ, VZDVR = DPVR — §GRSHSPQVQ. (3.22)

It will be important that these definitions depend only on the metric G and the torsion H,
not on the complex structure or hermitian form.

To get (2,2) supersymmetry, we want separate U(1) R-symmetries for both positive
chirality and negative chirality fermions. We denote the corresponding symmetry gener-
ators as Z and Z’. An important insight of [51] is that in general no relation between T
and 7’ must be assumed. In particular, in general they need not commute, though models
in which they do commute are simpler in some respects (the models considered in the
present article do not have that property). The derivations that we have explained up to

20 A hypercomplex manifold actually has a family of complex structures parametrized by S?, since if a, b, ¢
are real numbers satisfying a® + b? 4+ ¢ = 1, then the quaternion relations imply that aZ + b7 + ¢K is an
almost complex structure, and it is integrable if Z, 7, and I are integrable.
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this point apply separately for positive chirality fermions and Z and for negative chiral-
ity fermions and Z’. In particular, both Z and Z’ are integrable complex structures; Z is
covariantly constant for the connection V and Z’ is covariantly constant for the connec-
tion V’. So both connections have holonomy in U(p). Defining the two hermitian forms
wpr = GpI9g, whp = GpT'?R, the derivation of eqn. (3.20) applies for each, with a
sign change:

H=-Tdw = +7Z'dw'. (3.23)

The structure just described has been interpreted as generalized Kahler geometry [20]. It
has also been called strong bi-KT geometry (KT refers to Kahler geometry generalized to
allow torsion; the prefix “bi” refers to the presence of separate KT structures for the two
fermion chiralities; and “strong” means that dH = 0).

To get (4, 4) supersymmetry, we need separate hypercomplex structures Z, 7, K for pos-
itive chirality fermions, with closed torsion H, and Z’, 7', K’ for negative chirality fermions,
with torsion —H. Here Z, J, K must be covariantly constant for V, and Z’, 7', K’ must be
covariantly constant for V'. So both connections have holonomy in Sp(g). Defining the
various hermitian forms by wg}% =G pQZQ R, etc., the derivation of the relation between
H and the hermitian forms goes through as before to give formulas for H in terms of any
oneof Z, 7, K or I/, J', K’

H=-Zdw® = —7dw) = —Kdw® = +77dw®) = + 7'dw7") = +K'dw®).  (3.24)

Such geometry has been called generalized hyper-Kahler geometry, or strong bi-HKT ge-
ometry (where HKT refers to hyper-Kahler geometry generalized to allow torsion).

3.2 Large And Small Algebras

A sigma-model with any (complete) generalized hyper-Kahler target M of dimension D =
4q has superconformal symmetry with what is known as the small NV = 4 algebra. Obvious
generators are the stress tensor 7' and the four supercurrents G, associated to the four
supersymmetries that were constructed in section 3.1. The other generators of the chiral
algebra, for generic M, are the currents of an SU(2) current algebra at level ¢ that acts
only on the fermions. These SU(2) current algebras exist, for both left- and right-moving
modes, because the fermion kinetic energy is constructed using connections V or V/ whose
Sp(q) holonomy groups each commute with a corresponding SU(2) action on the tangent
bundle of M. For both left-movers and right-movers of the sigma-model, it is possible to
define fermion bilinears that generate the corresponding SU(2). Along with 7" and the Gy,
these bilinears generate the small N' = 4 superconformal algebra.

In the small NV = 4 algebra, the G, are primaries of the SU(2) current algebra;
they transform in the spin 1/2 representation of SU(2), viewed as a four-dimensional
real representation. There is a natural SO(4) action on the four real fields G,. Here
SO(4) = (SU(2) x SU(2))/Z2, where the SU(2) that is part of the small N' = 4 algebra
is one of the two factors. In particular, this SU(2) action on the G, commutes with a
second SU(2). This second SU(2) is a group of outer automorphisms of the small N' = 4
algebra; it commutes with all the algebra generators except the G,. In many familiar
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models with small N' = 4 superconformal symmetry, the outer automorphism group is
not realized as a symmetry. For example, a sigma-model with target T* or K3 has small
N = 4 superconformal symmetry, and the outer automorphism group is not realized as a
symmetry.

A simple example of a theory with small NV = 4 superconformal symmetry in which
the outer automorphism group is realized is the theory of a single free hypermultiplet, or
in other words a sigma-model with target the flat hyper-Kahler manifold M = R*. There
are four massless free bosons ¢ax, A, X = 1,2 with a reality condition aAX = ABXY gy
(here € is the antisymmetric tensor with €!? = 1); similarly there are four massless free chiral
fermions Yrx, R, X = 1,2, with — in Lorentz signature — a similar reality condition. (For
simplicity we consider fermions of one chirality only.) The four supercurrents are G4 =
0paxrye™Y and the generators of the SU(2) current algebra are Jps = XY Yrxvsy.
Clearly, those currents generate a current algebra that acts on the fermions only, by the
natural SU(2) action on the first index of ¥rx, and just as clearly, the Gar transform
as spin 1/2 under this SU(2). This current algebra is at level 1; the analogous current
algebra in a model with ¢ hypermultiplets is at level q. The outer automorphism group of
the small N' = 4 algebra, in this presentation, is an SU(2) symmetry that acts on the first
index of G4pr. It is realized in this model by a global SU(2) symmetry that acts on the
first index of the scalar field ¢4x, with trivial action on ¥ rx. However, it is not possible
to define a holomorphic current that generates this symmetry, and therefore the currents
that generate it are not part of the superconformal algebra of the theory.

To extend the small N’ = 4 algebra associated to a hypercomplex structure Z, 7, K on
some generalized hyper-Kahler manifold to a large N’ = 4 algebra, this manifold should
have an SU(2) symmetry that rotates Z, 7, and K and that is generated by holomorphic
currents. The simplest example is M = S3 x S!, to which we turn next. One of the main
goals of the present article is to show that the moduli space M of instantons on M is
another example.

3.3 Geometry of $% x S!

To understand the unusual geometry of S® x S!, it is convenient to start with R* minus
the origin with the scale invariant metric

dy’2

ds? = —
V2

: (3.25)

where Y = (Yo, Y1,Y5,Y3), Y2 = Z‘i:o Y)\z. Because the metric is scale-invariant, we can
divide by the equivalence relation Y 2 eTY for any fixed 7' > 0. Setting 7 = log |Y|, the
quotient is S? x S! with metric

ds? =dQ? +dr?, 72747, (3.26)

where dQ? is the metric of a round three-sphere of radius 1. If Yy = yye”, o y?\ =1, then
102 = ¥, dyd.

To see a complex structure on S? x S, let Z; = Yy +1iY1, Z2 = Ys +1Y3. Then we can
parametrize S? x S! by complex variables (Z1, Zy) with (21, Z3) = €T (Z1, Z3), exhibiting
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a complex structure that we will call?! Z;. In this complex structure, the metric of S3 x S!
is hermitian (that is, of type (1,1)) but not Kahler. Indeed S? x S! cannot be Kahler as
its second Betti number vanishes. S? x S! with this complex structure is known as a Hopf
surface, a prototype of a compact manifold that is complex but not Kahler.

Complex structure Z; is not invariant under all of the symmetries of S x S!, so those
symmetries can be used to generate many more complex structures. Parametrize S? =

SU(2) as

21 —Z
g= < ! B 2) , ]21\2 + ]22\2 =1, Z;=ze". (3.27)
zZ9 21

We denote SU(2) acting on itself on the left or right as SU(2), or SU(2),. Clearly, Z is
invariant under SU(2),, which maps z; and z3 to complex linear combinations of themselves,
but not under SU(2),.. Rather, SU(2),, maps Z; to a family of complex structures on S3 x S!
that make up a hypercomplex structure (explicit formulas are given presently). Moreover
the discrete symmetry p that acts by a joint reflection of the two factors of S? x S! exchanges
SU(2); and SU(2),, and so maps this hypercomplex structure to a second one that is
invariant under SU(2), and rotated by SU(2),.

To write explicit formulas, view S* x S! as the group manifold K = SU(2) x U(1). The
metric (3.26) is invariant under the left and right action of K on itself, so it is possible to
choose orthonormal bases consisting of left-invariant or right-invariant one-forms. As U(1)
is abelian, LY = R? = dr is both left-invariant and right-invariant. To find left-invariant
forms on SU(2), we simply note that g~'dg is left-invariant. Expanding this in components,
a basis of left-invariant one-forms is given by

L' = yody; — y1dyo + y2dys — ysdye, (3.28)

and two more forms L? and L? that differ from this by cyclic permutation of indices 1,2, 3.
The L® are an orthonormal basis of the cotangent bundle of S3, since 22:1 Le® L = dO2.
Because of the SU(2) x SU(2) symmetry of S3, to verify this and similar statements later, it
suffices to verify that the statement is true at the point p with (yo,v1,v2,¥3) = (1,0,0,0);
this is immediate. The L% obey

dLt =21 A L3 (3.29)

and cyclic permutations of this statement. Of course, we also have

dL’ =o. (3.30)

Similarly, dgg~!

is right-invariant and can be expanded in terms of the right-invariant
one-form

R' = yody1 — yidyo — yadys + y3dys, (3.31)

and two more right-invariant forms R? and R? differing from this by cyclic permutation
of indices 1,2,3. Another way to see that the L* and R’ are respectively left-invariant

2Tn discussing S* x S*, to take advantage of the symmetries and write some formulas more economically,
we denote a triple of complex structures that obey the quaternion relations as Z;, Zz, Zs rather than Z, 7, K.
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and right-invariant is to observe that they are constructed from 4 x 4 matrices that are
respectively selfdual or anti-selfdual. The R’ satisfy

dR!' = —2R* A R?, (3.32)

and cyclic permutations, again with

dR% = 0. (3.33)

As the L* and R’ for a,b = 1,2,3 are orthonormal bases of the cotangent bundle of S,
L' AN L? A L? and R' A R? A R? are equal up to sign. A short check at the point p shows
that they are equal.

Including L° and R°, we get orthonormal bases L' and R’, i,j = 0,---,3, of the
cotangent bundle of M = S3 x S':

3 3
ds? =) L'eLl'=> ReR. (3.34)
=0 =0

We can define a connection V on the tangent bundle of M by saying that the L’ are
covariantly constant, and another connection V' by saying that the R’/ are covariantly
constant.?? Both of these connections are metric compatible, since the L’ and R’ are
orthonormal bases.

To place V in the sigma-model context of section 3.1, we need to find a three-form H
such that for any one-form V', VpVg = DpVy — %H PQ rVE where D is the Riemannian
connection. It suffices to verify this condition if V' is one of the L’s. In this case VV =0, so
we need DpVg = %H PQ gV . If this equation is symmetrized in P and Q, the right hand
side vanishes because H is totally antisymmetric, and the left hand side also vanishes since
the vector fields dual to the L? are Killing vector fields, implying that DpVgo+ DgVp = 0.
The antisymmetric part of the equation is OpVg — dgVp = Hpg rVE, and this is satisfied
for H = 2L' A L? A L3 by virtue of eqns. (3.29) and (3.30).

To place V' in the sigma-model context, we need the same equation to hold with H
replaced by —H and V replaced by V’. In other words, for every one-form V, we need
ViVo = DpVo+ %H PQ rVE. It suffices to verify this if V is one of the R’s; this verification,
again for H = 2L A L2 A L3 = 2R A R? A R3, can be carried out using eqns. (3.32) and
(3.33).

Since a three-sphere of radius 1 has volume 272, the fact that H = 2L, LyLs is twice
the Riemannian volume form of the sphere implies that fS3 H = 472, This means that to
construct a model in which fS3 H = 27k, we have to multiply the metric of S* by?? k/27.
The line element of S will then be

k

ds? = —
2

dn?. (3.35)

#2Tn [19], these connections are called ¥V and V. A similar remark applies for the complex structures and
hermitian forms introduced below. In the present article, the notation is different, as we reserve the “hat”
(as in @) for a structure on the moduli space M as opposed to the four-manifold M.

#The formula (3.12) shows that rescaling G will rescale H by the same factor. Since the radius of S*
does not affect fsg H, it does not matter whether we rescale it or not. Only the rescaling of S® is relevant.
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This normalization will be important in section 6, but for now we continue with the case
of unit radius.
The complex structure Z; that we defined at the outset acts on the L; by

T(L°) = L', Ty(LY) = —I°, 7,(1?) = I?, T,(L®) = —L~ (3.36)

Because the L; are left-invariant, it suffices to verify this formula at the point p. The group
SU(2), can act, in particular, by a cyclic permutation of Ly, Ly, L3, thus conjugating Z; to
two more complex structures Zo, Z3 that differ by cyclic permutation of indices 1,2,3. A
short calculation at the point p shows that the quaternion relations are obeyed. And since
the 7, act by constant linear transformations on the one-forms L’ which are covariantly
constant with respect to V, they are also covariantly constant.

The corresponding hermitian forms are

w = LOA LY+ L2 A L3, (3.37)

with w®, w® obtained by cyclic permutation of indices 1,2,3. To establish the N = 4
supersymmetric structure for positive chirality modes, it remains only to verify that eqn.
(3.24) is satisfied. We have dw(® = 2L A L? A L, and indeed Z;(2L° A L? A L) =
2LVANL2PANLE =H.

To define a similar structure for negative chirality modes, we need a hypercomplex
structure that is defined by constant linear transformations of the R/ and hence is covari-
antly constant for V’. Here we have a sign choice to make as we can define either

Zi(RO) = R17 I{(Rl) = _R07 Zi(Rz) = R37 Zi(Rg) = _R27 (338)

or

7/(R%) = R', T{(R") = —-R°, I{(R?) = -R?, I{(R®) = R?, (3.39)
with 70, 74 and 7Y, T} obtained by cyclic permutations. The hermitian forms are then
WM = ROA R + R2AR?, (3.40)

or

W' = ROAR?— R A RP, (3.41)

along with cyclic permutations.

The origin of this sign choice is as follows. Starting with one hypercomplex structure
defined by the Z,, to get a second hypercomplex structure with equal and opposite torsion,
one way is to apply a reflection of S?, doing nothing to S', and a second way is to apply
a joint reflection to both S? and S'. Under either operation, the three-form H = 2L' A
L?> A L3 = 2R' A R?> A R? changes sign, so either operation gives a second hypercomplex
structure with opposite torsion. The joint reflection (which is unique only up to a rotation
of $3 x S1) can be chosen to lead to eqn. (3.38) and the reflection of only S® can be chosen
to lead to eqn. (3.39). We have seen in section 2.2 that only the joint reflection of S3 x S!
is natural in our problem, so we will use the hypercomplex structure defined by the Z/, not
the one defined by the Z/.
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In section 4, when we explain how a hypercomplex structure on a four-manifold leads
to a hypercomplex structure on the instanton moduli space, we will see that (assuming
instantons are defined to have anti-selfdual curvature) the construction only works if the
hermitian forms associated to the hypercomplex structure are selfdual. A look back at the
previous formulas shows that, if we orient S3 x S! using the four-form L° A L' A L? A L3,
the w®) and w'®) are selfdual but the w”*) are anti-selfdual. Therefore, the Z; and Z, are
the choices for which the construction will work.

A consequence of asking for the w® and w'(*) to be all selfdual is that the Zj, and 7,
do not commute. Supersymmetric sigma-models with torsion are simpler in some respects
when the left and right complex structures do commute [51], but we will not be in that
situation.

While invariant under SU(2),, the Z; and w®) transform in the adjoint representation
of SU(2),. Conversely, while invariant under SU(2),, the Z/, and «'®) transform in the
adjoint representation of SU(2),.

3.4 The Large N =4 Algebra

The model we have arrived at — a sigma-model with a “round” metric on the target space
S3x 8!, and with H a multiple of the volume form of S* — has a very special structure. First
of all, it is an exactly soluble conformal field theory, since the S* model with H a multiple
of the volume form is simply an SU(2) WZW model, and the S! factor leads to a free
superconformal field theory with abelian symmetry. Beyond that, this particular model is
actually a prototype of a model that exhibits the “large” N = 4 superconformal algebra
[11, 12]. We will follow the presentation of [6]. (We also follow their notation, which differs
slightly from notation used in the rest of the present article, and their conventions. Note
that in those conventions, currents are antiholomorphic, which accounts for some minus
signs in the following formulas.)

The supersymmetric WZW with target SU(2) is actually equivalent to a purely bosonic
SU(2) WZW model with three decoupled free fermions (of each chirality) in the adjoint
representation of SU(2) [55, 56].24 Likewise the supersymmetric model with target S! is
equivalent to a purely bosonic model with target S' with a decoupled free fermion. For
generic radius of the S', the chiral algebra of the S' model is just generated by a single
abelian current OU. (For special radii, that is for particular values of the circumference of
the S', the S! theory has additional chiral fields — exponentials of U. We will not consider
that case.) Thus overall the supersymmetric model with target S® x S! has a chiral algebra
that includes SU(2) currents J%, i = 1,--- ,3 of some integer level?® x > 0 associated with
the bosonic SU(2) WZW model, four free fermions 1% a = 0,---3 (one can consider 9"

#To be more precise, the SU(2) WZW model has SU(2), x SU(2), symmetry, with the two factors
corresponding to the left and right action of SU(2) on itself. With an appropriate choice of orientation, the
SU(2), currents are chiral (holomorphic) and are accompanied by three positive chirality fermions in the
adjoint representation of SU(2),, and similarly the SU(2), currents are antichiral (antiholomorphic) and
are accompanied by three negative chirality chiral fermions in the adjoint representation of SU(2),.

#The case k = 0 is possible [57]. In that case, the bosonic WZW model with target SU(2) becomes
trivial and drops out; the supersymmetric WZW model with target SU(2) is then just equivalent to three
free fermions in the adjoint representation of SU(2).
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to come from the S! model and the others from the SU(2) WZW model), and an abelian
current J? that we can normalize to satisfy JO(z)J%(w) ~ —m. The chiral algebra
generated by these fields is actually the large N’ = 4 algebra.

To describe the realization of this algebra, it is convenient to introduce selfdual and
anti-selfdual 4 x 4 matrices

:t7i J—
Qap =

(£0ia00 F dib0a0 + €iap), T =1,---,3, (3.42)

N |

where €4, is antisymmetric with €193 = 1. These matrices obey

5

[aF?, a™] = —eih otk [ai’i,oﬁ’j] =0, {a®, o™} = 5 (3.43)
The generators of the large N' = 4 algebra in this model are then?®
3 qin 3
L JUT
T:_JOJO_ZZ:1 _ O h®
K+ 2 ag(] vy

4o T 2yt
VK42 3Vk+2

Ga = 2" +

A — a;b,%aw
Ati — i +a;réi¢a¢b
U=—Vk+2J°
Q" = VK + 29" (3.44)

The operators A~" and AT generate SU(2) current algebras respectively at level 1 and
level k4 1. A~ is constructed from fermions only and its existence depends only on the
fact that the relevant connection on the tangent bundle of the sigma-model target space
M = S3 x S! has holonomy SU(2) C SO(4), so in particular A~¢ would have an analog,
also at level 1, in a sigma-model with target a hyper-Kahler four-manifold such as T or
K3. By contrast, AT contains the currents that generate bosonic symmetries of S? x S!
(namely the right action of SU(2) = S3 on itself) and U ~ J° generates a rotation of the
second factor of S? x S!. Those generators, and similarly the Q%, which are multiples of
the free fermions v, have no analog if the target space is K3. (A T* target has translation
symmetries that lead to the existence of holomorphic currents and free fermions in the
chiral algebra of the sigma-model. Relative to S? x S!, the important difference is that

26The discussion in section 3.2 would make one anticipate the presence of generators T, G, and AL ;,
but does not make clear why U or Q“ are needed. In fact [56], it is possible to construct a “smaller” version
of the large N = 4 algebra in which U and Q® are omitted. This algebra is a generalized W-algebra (the
short distance singularity in a product of generators is in general a nonlinear function of the generators,
in contrast to simple chiral algebras like the Virasoro algebra — or the version of the large N' = 4 algebra
with U and Q“ included — that can be presented in such a way that OPE singularities are linear in the
generators). The symmetry of string theory on AdSs x S* x $* x S! is, however [4, 5], the “large” version
of the large N = 4 algebra, with extra generators U and Q and a simpler structure of the OPE’s. So that
is the relevant version for our application. The existence of the extra generators is a consequence of the
symmetries of AdS3 X S% x 8% x St
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the continuous symmetries of T¢ are commutative and do not enhance the small N’ = 4
algebra to a large one.)

In general, a representation of the large N' = 4 algebra is characterized by two integers
kT and k~, which are the levels of the AT and A~ current algebras. The Virasoro central
charge is
6Ktk
okt kT
What we see in eqn. (3.44) is a realization of the algebra with (k*,k7) = (k + 1,1). By
taking the tensor product of several such realizations, possibly with different values of k,

c (3.45)

one can get realizations of the large N' = 4 algebra with any k* > k~. The tensor product
procedure is not straightforward and is described in section 4.7 of [6]. Since the N’ = 4
algebra has an outer automorphism that exchanges A% and A=, and therefore exchanges
kT and k~, there is no essential loss of generality in assuming k¥ > k~. For the record,
though we will not use these formulas in any detail, the singular OPE’s of the large N/ = 4
algebra, apart from standard OPE’s involving the stress tensor T, are as follows, with

V= e

" 2¢6% 87a:’iA+’i(0) +8(1— W)Oz;’iA_vi(O)

GU(2)G(0) = g — o :
Ay TOATI0) + 4(1 — y)ay 9AT(0) N 2607(0) N
z z
; ) kal:(sij 6ijkA:I:,lc 0
A AR (0) =~ : . ..

" by (KT k)6

Q()Q(0) = ——F5 ——
kT + k-
U(2)U(0) = 7
, 2kEa QM (w) o 'GP(0)
A:I:,z a _ ab ab ..
DO =F e Y T
+.5 b
: Qb0
A:I:,ZQa(()) — %be() + ...
207" AT(0) — 2a.,1(0) + 6°°U(0

Q"(2)G(0) = —tab @ j“b @)+ O

U(2)G(0) = Q—2 T (3.46)

In the case of the moduli space M of instantons on S x S!, we will explain enough in
sections 4 and 5 to show that the sigma-model with target M has N’ = 4 supersymmetry
with the small N' = 4 algebra. To extend this result to get a large N' = 4 algebra, we
need to “find” the extra generators U, Q*, AT for both positive and negative chirality.
The strategy for finding them is simple. S® x S has many Killing vector fields, associated
with the rotation symmetries of the two factors, and associated to these are Killing vector
fields on the instanton moduli space M. We will show that these Killing vector fields on
M are covariantly constant for the appropriate connections with torsion, and this, as in
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the analysis of eqn. (3.8), leads to the existence of additional chiral operators in the sigma-
model with target M. In that way we will find the extra generators that are needed to fill
out the large N/ = 4 algebra. This analysis will be the topic of section 6, but first we need
to understand why a sigma-model with target M has at least small N' = 4 supersymmetry.

4 Hypercomplex Structure Of The Instanton Moduli Space

In this section, largely following [13-15], we will show that if the oriented four-manifold M
has a hypercomplex structure, with selfdual hermitian forms and closed torsion, then the
moduli space M of instantons on M also carries a hypercomplex structure (which we will
show in section 5 to have closed torsion). This is true for every simple compact gauge group
G, and every component of instanton moduli space. To be more precise, we define these
structures on the smooth part of M. That means in particular that we always consider
instanton solutions that are irreducible in the sense that the equation

dao =0, (4.1)

where o is a section of ad(F), has no non-zero solutions. Such solutions, which generate
unbroken gauge symmetries (continuous automorphisms of F), arise only at singularities
of M.

If M has two hypercomplex structures compatible with the same metric, both with
selfdual hermitian forms, and with opposite torsion, then we will see that M likewise has
two hypercomplex structures with the same properties. (The proof that the two hyper-
complex structures of M have opposite torsion is given in section 5.) In our application,
we have M = S3 x S! and G = SU(Q5), but presenting the arguments in greater generality
poses no difficulty.?”

To begin with, we assume that the oriented four-manifold M has simply a strong KT
structure, namely a complex structure Z, a metric g that is of type (1,1) and (therefore)
a hermitian form wr;, = grxZ% that is also of type (1,1), and that we assume to be
selfdual,?® and with closed torsion H = i(0 — 0)w. Given this, we will define a similar
hermitian structure on M (the closedness of the torsion will be shown in section 5).

First of all, the space A of all connections on the G-bundle ¥ — M itself has a natural
metric, with the length squared of a variation d A of a connection A being

1 1 ..
|6A2 = ~4= Mtr SANKA =~ y d*z/gg7tr SA;6 A;. (4.2)

The factor 1/472 is arbitrary for now; when we compute the torsion on the moduli space, it
will be convenient. The space A also has a natural complex structure Z, defined by saying

2T Actually, a compact hypercomplex four-manifold that is not hyper-Kahler is locally isomorphic to
S% x 8! [58]. But the following analysis can likely be extended to other examples that are complete but not
compact.

2The definition wrr, = grxZ™ 1 implies that w is selfdual or anti-selfdual, depending on how M is
oriented. Assuming that the instanton equation is going to be F(A) = 0, we require w to be selfdual so
that the (1, 1) part of the instanton equation can be written as in eqn. (4.10) below.
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that the (0,1) part of A is holomorphic and the (1,0) part is antiholomorphic. Thus if §A
is a variation of A, and §A = §AYY 4+ §A%! is its expansion in parts of type (1,0) and (0, 1),
then

Z(5A) =is A0 —i5A10), (4.3)

The reason to define the (0,1) — rather than (1,0) — part of A to be holomorphic is
as follows. First of all, if we decompose the Yang-Mills curvature F'(A) in pieces of type
(p, q) with respect to the complex structure Z of M, then the instanton equation reads

FO2) = p@0) — y, A pOD =, (4.4)

In particular, vanishing of F(®2) means that 94 = 0 + [A®V) ] satisfies 5?4 = 0. This
makes the bundle F — or more precisely its complexification E¢ — a holomorphic bundle
over the complex manifold M. We would like to define the complex structure of A in a
way that ensures that, after eventually reducing to the instanton moduli space M, the
holomorphic bundle E¢ varies holomorphically over M. For this we have to define the
complex structure of A so that 94 = 0 + A®D varies holomorphically with A. This is
true with the sign choice that we made. In fact, a theorem of [29, 30] identifies M as the
moduli space of stable holomorphic structures on E (where here the notion of stability is
a generalization of the usual stability condition for a holomorphic bundle over a Kahler
manifold). We will not need this difficult theorem. For our purposes it will suffice to know
how to define the complex structure of M, which is much easier.

Having a metric and a complex structure, A acquires a hermitian form:?9
N 1
Ww=—-— [ trwAdIANIA. (4.5)
8 M

Viewing A as a 1-form on A (valued in 1-forms on M), we see that @ is a two-form on A,
and it is of type (1,1) because w is of type (1,1).

Within the infinite-dimensional space A, there is an infinite-dimensional submanifold
AASD that parametrizes gauge fields that solve the instanton equation. The instanton mod-
uli space is M = AASP /G, where G is the group of gauge equivalences (if E is trivialized,
then G is the group of maps from M to G). There is no problem to restrict the metric
|6A|? or the two-form & from A to AASP. However, there is no immediate way to extract
from these objects a corresponding metric or two-form on M. The difficulty is as follows.
Let A be an instanton solution describing a point in M, and let ¢ be a tangent vector to
M at that point. Up to gauge transformation, { corresponds to a solution of the linear
equation obtained by linearizing the instanton equation F™(A) = 0. This linear equation
is

(dadA)* =0, (4.6)

where dgy = d + [A, -] is the gauge-covariant extension of the exterior derivative. This

equation possesses a gauge invariance

5A = 6A —dyo, (4.7)

*Here we include a factor of 1/2 that was introduced in eqn. (3.15).
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where o, a section of the adjoint bundle ad(FE), is an arbitrary generator of a gauge trans-
formation. The metric and hermitian forms defined in (4.2) and eqn. (4.5) are not invariant
under such a change®” of §A. Therefore, if we want to use eqns. (4.2) and (4.5) to define
a metric and a hermitian form on the tangent space T4 M to M at A, we need to impose
some sort of gauge condition on dA. We will only consider gauge conditions that are in-
variant under gauge transformations of the background gauge field A (but not under the
transformation (4.7) of 0A). For example, though it is not the gauge condition that we will
ultimately use, an obvious gauge condition that is invariant under gauge transformations
of the background is the Landau gauge condition D;6A? = 0, where D; = 0; + [A;,-].

Once a gauge condition on dA is picked, the tangent space T4M to A in M becomes
a subspace of the tangent space T4A to A in A. If and only if the conditions we impose
on 0A — the equation (4.7) plus the gauge condition that we have not yet chosen — are
invariant under A — ZJ A, it will make sense to restrict the complex structure 7 defined
in (4.3) from T4 A to T4M. This will define an almost complex structure on M, which we
will eventually show to be integrable.

With this aim, let us discuss the Hodge decomposition of the instanton equation
Ft(A) = 0, and its linearization (d4dA)" = 0. The equation F*(A) = 0 has parts of
type (2,0) and (0, 2), which are complex conjugates of each other, and a part of type (1,1).
The (0,2) part of the instanton equation is explicitly

JAOD L AOD A A0 — g (4.8)

and the (2,0) part is just the complex conjugate of this. Similarly the (0,2) part of the
linearized equation is

96A0D L 140D 540D =, (4.9)

Since the complex structure on A is defined by saying that A is holomorphic, the eqn.
(4.8) is holomorphic. Similarly, eqn. (4.9) is linear in § A(®Y) with no dependence on §A(10),
so under §A — Z§A, it is just multiplied by i = v/—1. Hence the equation (dA(SA)(O’Q) =0
is invariant under Z. Its complex conjugate, namely (dA(SA)(Q’O) = 0, is of course also
invariant.

However, the (1,1) part of the instanton equation is not holomorphic or antiholomor-

phic and its linearization is not invariant. That (1,1) part is
WwAF =0. (4.10)

As w is of type (1,1), it is equivalent to write w A FL1D =0, and because w is selfdual, it is
also equivalent to write w A F7(A) = 0. It is to ensure that the (1,1) part of the instanton
equation can be written as in (4.10) that we require w to be selfdual. Eqn. (4.10) is neither
holomorphic nor antiholomorphic, and similarly its linearization, namely

w A du6A =0, (4.11)

30 To be more precise, the metric is not invariant under §A — A — dao. The hermitian form @ is
invariant if and only if dw = 0, that is, if and only if M is Kahler. To prove this, substitute 0A — §A —dao
in eqn. (4.5), integrate by parts, and use F'© = (d4adA)™ = 0, giving a result proportional to dw.
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depends on both 6410 and §AOD and is not invariant under §A — ZJA.

The only hope of getting a set of conditions on §A that is invariant under Z is to
interpret whatever eqn. (4.11) transforms into under 64 — ZJA as the gauge condition
that we are going to impose. In other words (as in section 5.3 of [13]), the gauge condition

will have to be
wAda(ZoA) = 0. (4.12)

If this does make sense as a gauge condition, then this gauge condition plus eqn. (4.11)
is a set of equations that is invariant under 6A — ZJA, since if we substitute 64 — ZJA
in eqn. (4.12), we get back eqn. (4.11). Imposing on dA the linearized instanton equation
together with eqn. (4.12), we can then restrict 7 from A to M to provide an almost
complex structure on M, and eqns. (4.2) and (4.5) define a metric and hermitian form on
M, both of type (1,1).

In general, to show that a proposed gauge condition is valid, we have to demonstrate
two facts: (1) it should be possible to impose this gauge condition, in the sense that by a
suitable gauge transformation, it can always be satisfied; (2) it fully fixes the gauge, in the
sense that the gauge transformation that ensures that the condition is satisfied is unique.
We have to decide whether the gauge condition (4.12) satisfies those two conditions.

As a preliminary, we will put the candidate gauge condition (4.12) in a more convenient
form. More explicitly, the left hand side of eqn. (4.12) is

L iim m Lk o ik m
7€ wijDyp(Z"10A) = 2¢€ wi; L™ D0 Ay, + 2 Wi (DEI™)0 Ay, (4.13)
Being selfdual, w satisfies 1€/*w;; = wk!, so the first term on the right in eqn. (4.13) is
wklZ[”Ddem = G*" D5 A, = DioA*. Using wy, = GpZP,, the last term on the right
can be written %e“klwij (Dywin)0A™. To express this in terms of the torsion, we recall that
w is covariantly constant for the connection V with torsion, Viwy, = 0. Using this and the
definition (3.6) of V, we get
leij/k“‘lcu~(D Win )0A™ = leijklw~ (HpPwpn, — HipPwy) 0A™ (4.14)
2 ij kWin 4 i kl Wpn kn” Wpl . .
The right hand side as written is homogeneous and quadratic in w, but rather surprisingly
it actually turns out to be entirely independent of w. We will see that this surprising
fact is a necessary input in defining a hypercomplex structure on M. To show that the
right hand side of eqn. (4.14) is really independent of w is a matter of doing some group
theory in the tangent space to an arbitrary point p € M at which we want to prove the
statement. The expression in question is a bilinear function of a one-form dA and a three-
form H. This bilinear function depends on the metric tensor g of M at p (used to raise and
lower indices in eqn. (4.14)) and on w, but nothing else (the antisymmetric tensor ¢/* is
determined by the metric and orientation of M ; the orientation is determined by w, which is
assumed to be selfdual). So this expression is invariant under linear transformations of the
tangent space to M at p that preserve g and w. The group of such linear transformations
is U(2). However, the expression that we are trying to analyze is an even function of w,
invariant under w — —w. So this expression is also invariant under linear transformations
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of the tangent space that map w to —w. Including such linear transformations extends
U(2) to a double cover that we will call U*(2) (this group is the group of 2 x 2 unitary
complex matrices extended by the operation of complex conjugation, which reverses the
sign of w). The one-form §A transforms in a four-dimensional representation of U*(2)
that is irreducible even over the complex numbers (this statement would not be true if we
consider U(2) instead of U*(2)). Because the Hodge duality map = from three-forms to
one-forms commutes with U*(2), the three-form H transforms in the same irreducible four-
dimensional representation. Therefore, the right hand side of eqn. (4.14) is an invariant
bilinear form on an irreducible representation of U*(2). Such an invariant bilinear form is
unique up to a constant multiple, so the expression in question must be a multiple of any
conveniently chosen U*(2) invariant that is bilinear in H and JA. A convenient invariant
is (H N0A) = %eijleijkéAl. So the right hand side of eqn. (4.14) must be a multiple of
this. By checking an example,3! one can verify that the coefficient is 1. Putting these facts

together, the candidate gauge condition is3?

DySA™ + %(H A SA) = 0. (4.15)

It is now relatively simple to determine whether this is a satisfactory gauge condition.
Under 04 — §A — dao, the gauge condition transforms by

Dy 0A™ + %(H N SA) — D,,6A™ + (xH A SA) — D;Dio — x(H A d o). (4.16)

Assuming that the right hand side of eqn. (4.16) vanishes for some o, the condition that
this choice of ¢ is unique is that there is no non-zero solution of the equation

—D;D'c — x(H Ado) = 0. (4.17)

This equation can be written

Wao =0, (4.18)

where the linear operator W was introduced in eqn. (2.37). Given any solution of this
equation, we can multiply by o, take a trace, and integrate to get

0= —/ d*z\/gtro(—D;D'o) —/ troH Adgo. (4.19)
M M
Here the second term is
1
—/ H/\trUdAJ:——/ H Adtro? =0, (4.20)
M 2 Jm

where in the last step we integrate by parts and use dH = 0. Integrating by parts in the
first term we then learn that

0= —/ d4x\/§tr DioDjog", (4.21)

M
31Tn local coordinates z!,--- ,z*, one can take the metric of M at the point p to be dij, the hermitian
form to have non-zero coefficients wis = —wo1 = w34 = —wa3 = 1, and H and 0 A to have nonzero elements

Hio3 = 5A4 =1.
#2This assertion is Lemma 8 in [14], where a rather different, proof is given.
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which implies that D;o = 0. As remarked earlier (see eqn. (4.1)), at a smooth point of M,
this implies that ¢ = 0. That establishes the desired uniqueness.

It remains to verify that the right hand side of eqn. (4.16) always does vanish for some
o, which is true if the equation

—D;Dioc —x(H Adao) =w (4.22)

has a solution for every section w of ad(F). If this is not the case, then sections of ad(E)
of the form —D;Dic — x(H A ds0) generate a proper subspace of the Hilbert space H of
all L? sections of ad(E), and there is some section w that is orthogonal to this subspace.
The orthogonality condition is

0=— / d'z\/gtrw (-D;D'c — *(H A da0)) , (4.23)
M
and the condition that this is true for all o is
—D;D'w + x(H A dqw) = 0. (4.24)

This is the same equation (4.17) that we have already analyzed, but with H — —H. The
same argument as before shows that there are no nonzero solutions. Actually, the operator
that appears in eqn. (4.24) is simply the adjoint W of the operator W introduced earlier,
so to prove that the gauge condition is satisfactory, what we have had to prove is that W
and W1 both have trivial kernel. Since W and W are related by H <> —H, this pair of
statements is invariant under reversing the sign of H. Instead of saying that W and WT
have trivial kernel, an equivalent statement is that either one of them has trivial kernel
and cokernel.

At this point, having verified that the gauge condition is a good one, we have defined
an almost complex structure 7 on M. It remains to verify that this structure is integrable.
A simple argument is available. First of all, the equation F%2(A) = 0 is holomorphic in A,
so if we impose only this equation, we get an (infinite-dimensional) complex submanifold
B of A. However, the conditions w AdgdA = wAd4(Z0A) = 0 appear to spoil holomorphy.
To prove that 7is integrable, we will show that imposing these nonholomorphic equations
is equivalent to a certain holomorphic operation.

The idea is to exploit the fact that, given the complex structure of M, the action on A of
the group G of gauge transformations can be analytically continued to a holomorphic action
of the complexification Gc of this group. A generator o of Gc is a section of ad(F)®r C, the
complexification of ad(E). More explicitly, such a generator is o = o1 +1i0 where 01, oy are
sections of ad(FE). We define an action of 0 on A by A - A—ds0; —Zd 0. In particular,
the holomorphic variable A1) tranforms by A®V — AOD _§ 01 —ZD 400 = AOD —§ 40,
where we use the fact that Z acts as i on the (0, 1)-form d09. Since AQD — §y0 is
holomorphic in A and o, this does define a holomorphic action of G¢ on A.

The claim now is that the conditions w A d4dA = w A da(Z6A) = 0 can be viewed
as gauge-fixing conditions that fix the action of G on A, so that M can be interpreted
as B/Gc, making obvious the complex structure of M and thus the integrability of Z.
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We already know that the condition w A d4(Z6A) = 0 can be viewed as a gauge-fixing
condition for the ordinary gauge symmetry A — A — d4o0q; it remains to verify that the
other condition w A d40A = 0 can be viewed as a gauge-fixing condition for the imaginary
gauge symmetry A — A—7Zd05. Following the same logic as before, we have to show that
the operator 0 — —wda(Zdao) has trivial kernel and cokernel. But this is actually up to
sign the same operator that we have already studied so indeed the kernel and cokernel are
trivial.

At this point, then, we know that M is a complex manifold with metric and hermitian
forms given by equations (4.2) and (4.5). Now as in [15], let us assume that M has not
just the single complex structure Z that we have assumed so far, but a hypercomplex
structure, with three complex structures Z, 7, K that satisfy the quaternion relations and
the conditions described in section 3.1. In particular, this means that the metric g of
M is of type (1,1) for each of Z, J, and K, and that Z,J, and K as well as g are all
covariantly constant for the same connection V whose torsion is a closed three-form H.
The three hermitian forms wy = ¢Z, wy = ¢J, and wx = gK are, of course, different.
However, because of the crucial fact that the gauge condition (4.15) depends only on H
but not on w, the construction we have described, whether carried out for Z, for J, or for
KC, leads to the same metric on M and the same description of the tangent space 1), M
for any point p € M in terms of the common gauge condition (4.15). Therefore, for any
q € M, restricting f, J , and K from T A to Ty M, we get almost complex structures f, J ,
K on Ty M. They are all integrable by the argument that was just given, and they obey
the quaternion relations because those were obeyed before restricting to 7,,M. Eqn. (4.2)
gives a metric that is of type (1, 1) for each of 7, j\, K, and eqn. (4.5), with w replaced by
Wz, W7, Or wi, gives three hermitian forms wz, W7, W, each of which is of type (1,1) for
the corresponding complex structure. In section 5, we will show that each of f, J , K is
associated to the same torsion, since —i(0; — 0z )ws = —i(07 — gf)wf = —i(9p — Op)wg-

Now we specialize to the case that33 M = S3xS!, which admits a second hypercomplex
structure Z’, 7', K’ such that the same metric g is of type (1,1) for each of Z’, 7', K’ and the
three hermitian forms w/, w’;, and W are all selfdual, but the torsion is —H, as opposed to
the previously assumed +H. Of course, we can carry out the same construction as before,
endowing M with a new hypercomplex structure 7/, 7', K', and a compatible metric and
hermitian forms. The only problem is that since the torsion is now —H, we have to reverse
the sign of H in the gauge condition, which is now

DA™ — %(H A 6A) = 0. (4.25)

Therefore, it seems that the hyperhermitian metric that we will define on M will be
different. If so, then no one metric on M will be consistent with all of the structures
predicted by the duality conjecture with strings on AdSs x S x S? x S'. One metric on M
will lead to a sigma-model with (0,4) supersymmetry and another metric on M will lead
to a sigma-model with (4,0) supersymmetry. This would disprove the duality conjecture.

331t follows from the classification of compact hypercomplex four-manifolds [58] that S* x S* is the unique
compact four-manifold with the properties specified in this sentence.
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What saves the day is another striking fact (Lemma 9 in [14], where the following proof
can be found): reversing the sign of H in the gauge condition actually does not change the
resulting metric on M. Consider an instanton connection A representing a point ¢ € M,
and consider a tangent vector to ¢ in M that can be represented by a deformation dA of
A that satisfies

D, 0A™ +x(H NJA) =0, (4.26)

and also by another deformation A’ that satisfies a similar condition with H replaced by
—H:
DA™ — x(H NS6A") =0, (4.27)

The statement that A and 6 A’ represent the same tangent vector to ¢ in M means that
they are gauge equivalent,
0A =6A" —dyo (4.28)

for some generator o of a gauge transformation. Based on this information, we want to
show that
10A]2 = |§A"2, (4.29)

where these expressions are defined via eqn. (4.2). This will show that the length of
a tangent vector at any point ¢ € M is the same regardless of which of the two gauge
conditions is used to compute it, or in other words that the two gauge conditions lead to
the same metric on M. The difference between the left and right of eqn. (4.29), in view of
the relation (4.28) between A and 6A’, is

1
~ 13 d*z\/gtr (Do Do + 2D, 00 A™) (4.30)
7I

and we will show that this vanishes. Using eqn. (4.28) to solve for §A’ in eqn. (4.27), we
get
D, 0A™ + D, Do — x(H N0A) — %(H ANdgo) = 0. (4.31)

Adding eqn. (4.26) to this, we find
2D, 6A™ + D, D™o — x(H Nd o) = 0. (4.32)
Multiplying by o, taking a trace, and integrating, we have

0= / d*z/gtr (20D, 6 A™ + 0D, D™ o) + / H Atrodgo. (4.33)
M M

The last term on the right hand side vanishes, as we have already seen in eqn. (4.20).
Dropping this term and integrating by parts in the remaining terms, eqn. (4.33) becomes
equivalent to the desired result (4.30), completing the proof.

The theory of generalized Kahler reduction gives a possibly more conceptual explana-
tion of the success of this calculation [16], at least in the untwisted case (the case that H
is exact). Similarly, a more conceptual explanation of why the relevant gauge condition
turned out to depend only on H and not w might conceivably be found in the theory of

generalized hyper-Kahler reduction.
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5 B-Field On The Instanton Moduli Space

For a complex structure Z on M satisfying certain conditions, we defined in section 4 a
corresponding complex structure Z on M, along with a metric and hermitian form defined
in eqns. (4.2) and (4.5). In particular, the hermitian form is

sz_é Mtrwz/\éA/\éA, (5.1)
where J A satisfies the gauge condition WdA = 0, as in eqn. (4.15).

In the prAesent section, we will compute the corresponding torsion H = —ZA,'dwi. A
formula for H was computed in [13], section 5.3; another useful reference is [14]. The
important properties of H for the strong HKT geometry of M were pointed out in [15].

It turns out that H has several key properties: (i) it depends only on the metric g
and torsion H of M and not on T or wr; (i) it satisfies dH = 0, assuming dH = 0; (iii)
it is homogeneous and linear in H, and therefore changes sign under H — —H. All three
conditions are needed to ensure that for M = S x S', M has the properties that are
predicted by the conjectured duality with Type IIB superstrings. Condition (i) means that
the same torsion form H is compatible with the three complex structures f j K of M,
defined in section 4, that generate the hypercomplex structure of M. Hence one can define
on M a metric compatible connection V with torsion H for which Z j and K are all
covariantly constant. We say that v corresponds to the connection V on M. This gives
M an HKT structure, which according to condition (ii) is strong if the HKT structure of
M is strong. To extend this structure to a (twisted) generalized hyper-Kahler structure
on M, we need to define on M a second HKT structure with equal and opposite torsion.
The ability to do this is what we get from condition (iii), which enables us to define a
metric compatible connection V' on M, with torsion —H, such that Z’, J', and K’ are all
covariantly constant.

Furthermore, we will show that with the normalization that was chosen in eqn. (4 2),
the periods of H are valued in 277, SO H is the curvature of a B-field B on M. B is
uniquely determined up to the possibility of adding to it a flat B-field. Shifting B by a flat
B-field that is not pure gauge is a modulus of the sigma-model with target M; it amounts
to shifting the theta-angle that was introduced in section 2.1.2.

Before getting into too many details, let us note that it may seem surprising that
dwz # 0. Viewed as a differential form on the infinite-dimensional manifold A, wz is
a differential form with constant coefficients on a linear space and it certainly satisfies
dwz = 0. We can in a completely natural way restrict ws from A to AMSD - the subspace
consisting of all connections that satisfy the instanton equation F™(A) = 0, and it remains
closed. However, there is no natural way to push ws down to a two-form on the moduli
space M = AASD /G. The key point is that, assuming® M is not Kahler, wz does not
vanish if we substitute A = —dao. This substitution amounts to contracting ws with a

34 As explained in footnote 30, if dwz = 0, meaning that M is Kahler, then wz is a pullback from M after
all. This can be used to prove that if M is Kahler, then dws = 0 and M is Kahler. The fact that dwz =0
if dwz = 0 will be clear from the formula obtained below.
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vector field tangent to the fibers of A*SP — M, and the fact that it does not vanish means
that wz is not the pullback of a form on M. Because of this, in section 4, to define wz
as a form on M, we had to stipulate that the formula (5.1) should be evaluated only for
variations 0 A that satisfy the gauge condition. In what follows, we will work through in
more detail what is involved in interpreting w= as a form on M with the help of the gauge
condition; this will hopefully make it clearer why dwz # 0 and how to compute dws.

The following considerations are local along M so we can work in a small neighborhood
of a general point r € M. We pick local coordinates m®, o = 1,--- ,dim M on M, with
m®(r) = 0. Let us first formulate a condition that, if it could be satisfied, would suffice
for proving that dws = 0. Then we will describe what happens instead. For any choice
of the m’s, there is a gauge field A(z;m) that, in its dependence on x € M, satisfies the
instanton equation. Up to gauge transformation, A(xz;m) is the solution of the instanton
equation determined by m. Of course, A(z;m) is only uniquely determined up to a gauge
transformation, and this gauge transformation can depend on m. Suppose that we could
make a gauge choice such that, at any point in M and for any choice of 3, the quantity

% obeys the gauge condition that is used in defining the metric of M:
0A(x;m)
W—->—=0. 5.2

If so, then in the definition (5.1) of wz, we could interpret §A as an explicit one-form on
M (valued in one-forms on M), namely 64 = } 4 dm” %. Substituting this in eqn.
(5.1), we would get an explicit formula for w- as a two-form on M, namely

7
2 1 0A(x;m)  O0A(x;m)
P B ) )

Wz =—5 ;;dma dm /M wr A tr T A S (5.3)
Then using d = > dm? 9y, we would get

21 a1 B O?A(xsm)  0A(x;m)

dwz = 2 ;dm dm”dm /M wz Atr - A 5B 0, (5.4)

where the vanishing holds because % is symmetric in o and 7.

However, eqn. (5.2) is unrealistic. It represents dim M gauge conditions, one for each
choice of 3, while in actuality at each point in M x M we are only entitled to impose one
gauge condition. An example of a gauge condition that is not too restrictive is

) )
5 |+ Al 00, Ao 4+ A (Aaim) = A0 =0, (55)
- z
(2
where A(x;0) is simply A(x;m) evaluated at m = 0. The condition (5.5) is trivial at
m = 0, so it places no gauge condition on A(z;0). To first order in m, eqn. (5.5) says that
OA(x;m)

W‘ obeys the gauge condition (4.16) that was used in defining w5 as a differential
m=0

form on M. Therefore, assuming that A(z;m) satisfies eqn. (5.5), eqn. (5.3) is actually
correct at m = 0 (but only at m = 0, as we will see). The analysis in section 4 implies
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that the gauge condition (5.5) is a valid one to first order in m, and this argument can be
slightly extended to show that this gauge condition is a good one to all orders in m (we
will only need the result in second order).

Since it is not possible to satisfy eqn. (5.2) beyond first order in m, for the purpose

of evaluating wz, the vector field % cannot be taken to act on A in the obvious way
0A = %A. We have to accompany this with a gauge transformation chosen to ensure

that 0 A obeys the desired gauge condition. Thus we define

DA 0A
—=———d 5.6
DmP — amB ~ 4P (56)
where €4 is the infinitesimal generator of a gauge transformation chosen to satisfy the gauge

condition W% = 0, that is
m

+mmmnam lﬂA%ﬁ(HA(gi—dM@>:O. (5.7)

Ot "omB omP

% is defined intrinsically as the variation of A under a change in m, accompanied if

necessary by a gauge transformation to ensure that the gauge condition is satisfied.
We can put eqn. (5.7) in a more convenient form by subtracting the condition (5.5)
that we assume is satisfied for all m. The result can be conveniently written:
A

[&@mw—&@wkaﬁ}—sz& (5.8)

Near m = 0, we have

A .
A(x;m) = A(z;0) + Zmo‘ %‘ + O(m?). (5.9)
a m=0
Eqn. (5.8) then tells us that
o[ 04; 0A

We can solve this for eg:

eg(z) = — Zmo‘ /M try B(x,y) [8A(;(Tz;am)7 BA(;(TZ,ﬁm)] d*y /g, + O(m?), (5.11)

where B(z,y), introduced in eqn. (2.38), is the Green’s function of the operator W, M, is

a oopy of M parametrized by y, and tr, represents a trace in the y variable. Here and in

subsequent formulas, g—i is evaluated at m = 0. We will sometimes save space by writing

just A; or A;(y) rather than A;(y;m), and similarly for other quantities.

It is now straightforward to compute dwz. In eqn. (5.3), we just have to replace g—i,

which in general does not satisfy the gauge condition, with g—é, which does. Using equns.
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(5.6) and (5.11), we can make this quite explicit up to O(m?):
0A(x) 0A(x)
8712 de dm” </ wr A tr o A 1P
0A'(y) 0Ai(y)

0A(x)
_2Zm7/ wz(z) A tr @ tr Ima ANdaB(z,y) [ T omP } d y\/g—y>

+ O(m?). (5.12)

Now we can compute de{ _o Just by acting with d = Zy dm79,,» and then setting
=0:

1
dwz |,,—o = ) Z dm®dm”dm? x
By

0A(x) 9Ai(y) 9Ai(y)] .4
/MZXMwa(OC)/\tr®tr S /\dAB(-%'7y)|: 5 o | V9V (513)

m

This can be simplified significantly. First, integrate by parts in the x variable, using the

aA(:v m)

linearized instanton equation wz A dg = 0. This gives

dwz Lo = Z dm®dmPdm” x
a,Byy
1 OA(z) A (y) 9A(Y)] 4
— — B —_— . .14
e o dwz(z) A tr ® tr Sma (, )[ 7" P d*y\/9y (5.14)

At m =0, W coincides with —a, so eqn. (5.14) remains valid at m = 0 if we replace
0A
Ima?

all m, not just at m = 0. To prove the formula at some given value of m, we just do the

everywhere with 7-%. But once we make that replacement, the formula is valid for

same computation as before, expanding about that value of m rather than about m = 0.
Finally, the formula can be written more economically in terms of

DA
@ (5.15)
The final version of the formula is
1 ‘
dws = — dwr A tr @ tr(x) B(z, y)[vi(y), wz(y)]d4y\/g—y. (5.16)
4% Jar, %,
Now it is straightforward to determine the torsion H = —Zdw- 7, where the action of

an almost complex structure on differential forms was defined in eqn. (3.17). To compute
fdwf, we jEst have to substitute ¢ — fl/} for each of the three occurrences of ¥ in eqn.
(5.16). As Z acts by

PO O - gp(10) 5 _jp(10), (5.17)

and [¢;, 1] is of type (1,1), we have [f?/)l,fi/ﬂ] = [1p;, "], so we only need to consider the
action of Z on dwz A 9. As

dwr A g = (dwr)@D A pOD 4 (dewl™?) A0 (5.18)
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we have
dw A T = i(dwr) @D A @D —i(dwl?) A1) = (Tdw) Ay = —H A, (5.19)
So

H = -Tdw; = 4—7172 /MxMH A tr @ tr (@) B(x, y)[Wi(y), &' (y)]d*y /gy (5.20)

Now we can verify the three key points that were mentioned at the outset of this
section. Point (i) is immediate: eqn. (5.20) makes it evident that H depends only on H
and not on wz. Point (ii) is the assertion that if dH = 0, then dH = 0. Indeed, in the
language of section 2.4, and bearing in mind the descent formulas (2.24) and the formula
(2.31) for o, the formula (5.20) can be written

H= / HAPWY. (5.21)
M
So following the logic of section 2.4, we have
dH = / HA6PWY = — / HAdPY =0, (5.22)
M M

where the vanishing in the last step follows by integrating by parts and using dH = 0.
Similarly, the cohomology class of H only depends on the cohomology class of H, since if
we change H by H — H + dB, then the change in H is

Aﬁ:/ dB/\P(l):—/ BAdP(U:a/ BA PP, (5.23)
M M M

and thus is exact. Finally, concerning point (iii), the formula (5.20) shows that reversing
the sign of H reverses the sign of H.

Properties (i) and (ii) show that if M has a (strong) HKT structure than so does
M. The addition of property (iii) tells us that if M has a (strong) bi-HKT structure, or
equivalently a (twisted) generalized hyper-Kahler structure, with all of the hermitian forms
being selfdual, then so does M. The relation of P() to the second Chern class implies
that periods of H are integer multiples of periods of H, and therefore that H obeys Dirac
quantization if H does.

Of course, we are mainly interested in the case that M = S3 x S!, with H the pullback
from S? of a rotationally invariant form with total flux 2rQ%. In other words, H =
2mQLA3Q, where d3Q is a rotationally invariant volume form on S? of total volume 1. In

this case
o Qs / d3Q, A tr @ tr 0A(z)B(z,y)[0A;(y), 6Ai(y)]d4y1 /Gy
27 Jpxm
MxM \%

in agreement with eqn. (2.33).
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Finally, we can describe the usual mathematical setting for these formulas and in the
process explain claims that were made at the end of section 2.4. By definition of the
instanton moduli space M, each point m € M parametrizes a G-bundle E,, — M that
carries an instanton connection A. As m varies in M, the F,, vary as fibers of a G-bundle
E — MxM (sometimes called the universal instanton bundle). E has a natural connection
in the M direction, namely the instanton connection itself, but it does not have a natural
connection in the M direction. To define a connection on £ in the M direction, one has
to make some sort of a choice. We made such a choice by placing the gauge condition
WA = 0 on variations of A. With the aid of this choice, we defined in eqns. (5.6) and
(5.11) a connection DS’LO‘ = =% 4 [es,] on the bundle E in the M direction. Taken

om®
together, the original instanton connection Dl; - = 8?52' + [A;, -] in the M direction and the
connection % = aza + [€q, ] in the M direction give a full-fledged connection A on

E — M x M. This connection has a curvature F' = dA + A A A\, and a second Chern
class, valued in H*(M x M;7Z), that at the level of differential forms is represented by the
four-form #trﬁ A F. The curvature I has components of types ij, ai, and af (w}iere
indices 1,7 are tangent to M and indices «, 8 are tangent to M). The ij part of F is
simply the curvature Fj; = [D;, D;] of the original instanton bundle. The ai part of F is

[Dy, D] = g n‘;‘g — Djeq, a quantity that was introduced in eqn. (5.6). The corresponding
part of the curvature two-form F is ° . dm®dz?[D,, D;]. This is the (1, 1)-form on M x M
(a two-form on M x M with one index tangent to each factor) that was called 1 in section
2.4. Indeed, ¥ was characterized as a general variation of A that obeys the gauge condition
(as well as the linearized instanton equation), or in other words as ", dm®d, 4; dz*, where
the variations 0, A; are constrained to be annihilated by the operator W; these variations
are precisely what we now call [D,, D;]. Finally, the af part of the curvature is [Dq, Dg].
In eqn. (5.11), we determined €, in an expansion around a base-point at m = 0 and in a
gauge with €,],,_, = 0. In that gauge, the a3 part of the curvature reduces at m = 0 to
ﬁag = On€3 — O€q, which is a quantity that we evaluated as a step in the computation of
dwz. The result can be stated

1 ~ 0A,; A
§deadmﬁFa5(ag) == dm®dm’ /M tryB(x,y)[ %fi’), anfg)] d*y /gy (5.25)
aff afs Y

We derived this formula at m = 0, but the formula becomes valid for all m if we re-
place dmaagl#'%/) with ¢; = dm®F,; (which is a gauge-covariant expression that reduces to
dma%(ﬁf) at m = 0). After this replacement, eqn. (5.25) agrees (up to sign) with the
formula for o as a two-form on M that was deduced in eqn. (2.31), confirming the inter-
pretation of o as part of the curvature of a natural connection on the bundle E— MxM.
This also confirms the interpretation that was claimed in section 2.4 of the observables

P™ defined via the descent procedure: they represent various components of #tr FAF.
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6 Large N =4 Algebra

6.1 Overview

By now, we know that if M is a generalized hyper-Kahler four-manifold, then similarly the
moduli space M of instantons on M has a generalized hyper-Kahler structure, leading>?
to N' = 4 superconformal symmetry with the small N' = 4 algebra. Our next task is to
show that, in the specific case of the instanton moduli space on S? x S!, the small N = 4
algebras actually are extended to large ones. For this, we need to find new holomorphic
and antiholomorphic fields in the sigma-model with target M. From the discussion of
eqns. (3.7) and (3.8), we know where to find them: vector fields on M that are covariantly
constant for the connection V or V/ on M will lead to holomorphic or antiholomorphic
currents and free fermions in the sigma-model, such as we need.

Let us discuss what it means for a vector field to be covariantly constant for one of
these connections. In general, on a (strong) HKT manifold with connection V and torsion
H, the condition for a vector field V to satisfy VrVg = 0 amounts to the following. The

part of the equation that is symmetric in R and S is
DrVs+ DsVi =0, (6.1)
saying that V is a Killing vector field. The antisymmetric part of the equation is
OrVs — 0sVr = HrsrV'T. (6.2)

This can equivalently be written

dA = o H (6.3)

where ¢y is the operation of contracting a differential form with the vector field V', and the
left hand side is the exterior derivative of the one-form A = dX'Gr;V7, which we call the
one-form dual to V.

Eqn. (6.3) implies in particular that the Killing vector field V' generates a symmetry
of H. Indeed, the change in a differential form H under an infinitesimal diffeomorphism
generated by V is given by the Lie derivative Ly acting on H. Concretely the definition
of Ly is LyH = 1ydH + dvy H. In the present case, dH = 0 and eqn. (6.3) implies that
deyH =0, so Ly H = 0. (Because A is required to be dual to V', this is not the full content
of eqn. (6.3).)

So to extend the small N' = 4 algebra of the sigma-model with target M to a large
one, we need in particular Killing vector fields on M that are symmetries of the torsion H
of M. This should come as no surprise, since extending the small N' = 4 algebra to a large
one involves finding a holomorphic SU(2) x U(1) current algebra, and the obvious way to
find one is to find Killing vector fields on M generating a suitable SU(2) x U(1) symmetry
of the sigma-model.

S3 x St itself has Killing vector fields generating the group (SU(2), x SU(2),.)/Zo x U(1)
of isometries connected to the identity, where SU(2), and SU(2), act on S* = SU(2) on

35If we assume conformal invariance, which is discussed more critically in section 7.
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the left and right, and U(1) is the group of rotations of S'. Moreover, these symmetries
transform the complex structures of S? x S! in a particular way, described in section 3.3.
The (SU(2), x SU(2),.)/Z2 x U(1) symmetries of S* x S! are all symmetries of the instanton
equation on S? x S', so automatically they are symmetries®® of M. Moreover, because the
complex structures of M are directly inherited from the corresponding complex structures
of $3 x S, (SU(2), x SU(2),.)/Zo x U(1) transforms the complex structures of M the same
way that it transforms the complex structures of S? x S.

So to show that the sigma-model with target M has large N' = 4 symmetry, all we need
to show is that the Killing vector fields on M that generate the SU(2), x U(1) symmetry
are covariantly constant for 6, and those that generate the SU(2), x U(1) symmetry are
covariantly constant for V'. The statements about SU(2), x U(1) and the statements about
SU(2), x U(1) are exchanged by the discrete symmetry p of S® x S! that acts by reflection
on each factor, so it suffices to analyze one of the two cases.

Actually, S* x S! has only one U(1) symmetry, which contributes both a holomorphic
and an antiholomorphic U(1) current algebra. This is possible because the Killing vector
field V' that generates this U(1) is covariantly constant for both V and V', leading to both
holomorphic and antiholomorphic conserved currents. As we will see, something similar
happens on the moduli space M.

In section 6.2, we analyze the Killing vector field V on M that corresponds to the
Killing vector field V on S* x S'. We show that it is covariantly constant for both v
and V' , implying that the sigma-model with target M has the expected holomorphic and
antiholomorphic U(1) current algebras and free fermions. It also follows that this sigma-
model has a scalar field that is free, at least locally. In section 6.3, we show that the
vector fields that generate the SU(2), symmetry of M are covariantly constant for @,
leading to the expected holomorphic SU(2) current algebra that is needed to complete the
holomorphic large ' = 4 algebra. The analogous statement for SU(2), symmetry and v/
is an immediate consequence. In section 6.4 we compute, at least in the semiclassical limit
of large Qf, the levels or central charges of the SU(2) current algebras that are related
to the SU(2), and SU(2), symmetries. We get the expected results Q1Q5 and Q1Q%, as
predicted by the duality conjecture described in the introduction. In section 6.5, we show
that certain symmetry generators have no fixed point on M. This is potentially relevant
to supersymmetric localization of the sigma-model with target M. In section 6.6, we show
that if M is such that a sigma-model with target M has a large N/ = 4 algebra only for
one chirality, then the same is true of M.

6.2 Rotations of S!

In general, a vector field V' on a four-manifold M acts on gauge fields on M by
6A; = VIFj; — Djo, (6.4)

where o is an arbitrary generator of a gauge transformation. If V' is a Killing vector field
on M, then eqn. (6.4) describes in a gauge-invariant sense the corresponding Killing vector

%The group that acts on M may in general be an extension of (SU(2)¢ x SU(2),)/Z2 x U(1) by the center
of the gauge group.
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field V on the instanton moduli space M. However, to use eqn. (6.4) together with the
differential geometric formulas of sections 4 and 5, we must pick o so that §A; satisfies the
gauge condition W0A = 0. Actually, there are two gauge conditions of interest, differing
in the sign of H.

Here we consider the vector field V' = a% that acts on S? x S! by rotating the second
factor. It turns out that in this specific case, the relevant gauge conditions are both satisfied
with ¢ = 0. With o assumed to vanish, eqn. (6.4) becomes

5Ai:F’Ti7 2:1773
5A, =0, (6.5)

The relevant gauge conditions are D;0A" £ x(H A §A) = 0. In the particular case of the
U(1) generator V', we want this equation to be satisfied for each choice of sign, since we
expect to get both a holomorphic and an antiholomorphic U(1) current algebra. Indeed,
H AJA = 0 because H is a pullback from S® and §A, = 0, and D;6A* = 0 because the
instanton equation F* = 0 implies the second order Yang-Mills equation D; F% = 0, which
for j = 7 gives D;F'™ = 0.

We expect to show that V is covariantly constant for both connections V and V/ on
M. This means that eqn. (6.2) or (6.3) must hold with either sign of the torsion H, so we
really need to establish two conditions

dA =0=-H, (6.6)

v
where A is the one-form dual to V.

The first of the two desired relations is almost immediate. From the definition (4.2) of
the metric of M and the formula (6.5) for 0A (which we are entitled to use since we have
verified that § A as defined in this formula satisfies the gauge condition that was assumed
in defining the metric), it follows that the one-dual dual to V is

1

A=——g | d'ayg) trF0Al = -

1
87'('2 M

872

/ tr F A GAAdr, (6.7)
M

where the instanton equation was used in the last step. Up to a constant multiple, A is the
basic example discussed in eqn. (2.11) of a one-form on M that is closed but not exact.
In particular, A is closed, as desired.

To verify the second relation Lﬁﬁ = 0 requires a more detailed analysis. We use the

formula (5.24) for H. We note that in this formula, d>Qy = d3Q§A can be replaced by
d3Q §A.dr, since the part of §A tangent to the first factor of S? x S! does not contribute
when multiplied by the volume form d3Q of S3. So as tpdA; = 0 according to eqn. (6.5),
we have L‘/}(dBQ 0A) = 0. Hence in computing L‘A/I:'\I , we only have to contract V with
[0A4;,0A"], giving

/ .
o FT = % / B drtr ® tr0A, (2)Ble,y)5A (v), Pl dy gy, (6.8)
MxM
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To proceed farther, we need to study the second order differential equation obeyed by dA.
This equation can be efficiently found by first observing that an instanton solution certainly
obeys the Yang-Mills equation DiFij = 0. The variation of this equation is

DY(D;5A; — DjSA;) + [0A", Fy;] = 0. (6.9)
To simplify this, we use
D;iD;6A" = D;D;6 A" + Dy, D;]6A" = [Fyj, 6A" + RjxdAF — D« (H ASA),  (6.10)

where Rjj, is the Ricci tensor of S* x S! and we used the gauge condition (4.15) satisfied
by §A. Setting j = 7, we have R, = 0 for S? x S, so the term involving the Ricci
tensor drops out. Since 0A, is the only component of §A that contributes to H A §A,
and D, commutes with H, for j = 7 we have D; x (H AN 0A) = x(H N dadA;) and (6.10)
becomes D;D,0A" = [F;;,§A%] — «[H A dadA,]. Substituting this in eqn. (6.9), we get
D'D;0A, + 2[0A%, F;;) +%[H A D;6A;] = 0 or in other words

AP, ] = %W&AT, (6.11)

where W is the operator
W¢ = D;D'¢+ «[H A d ) (6.12)

whose Green’s function B(x,y) appears in the formula (6.8). So eqn. (6.8) can be written
L‘A/fl =3 / d3Q, d7tr @ tr 6 A, (z) B(x, y)Wy5AT(y)d4y\/g_y. (6.13)
MxM
Integrating by parts and using eqn. (2.39) for WJB(CC, y), this simplifies to

/
o H = % /M B30, dr tr 0 AL (2)0 A (z) = 0. (6.14)
The vanishing in the last step holds by fermi statistics, since dA,(x) = 1. (x) is a fermionic
object — a scalar function on M valued in one-forms on M — while trdA,(z)dA,(x) is
symmetric in the two factors of J A, (x).

This completes the proof that the vector field Vis covariantly constant for both con-
nections V and V’. Therefore, the holomorphic and antiholomorphic chiral algebras of
the sigma-model with target M will contain, at a minimum, a U(1) current algebra and
a free fermion, beyond the small NV = 4 algebra that is guaranteed by the generalized
hyper—Kahler structure.

Since V is a Killing vector field, it satisfies D; V + D; V = 0, and since the dual one-
form is closed, we have also D; V D; V =0. So D; V =0and V is covariantly constant
for the Riemannian metric of M. In Riemannian geometry, if a compact Riemannian M
has a nonzero vector field V that is covariantly constant, then locally M = M’ x S! where
the two factors are orthogonal and V acts by rotating the S'. In general this may be true
only locally and globally one may have M = (M’ x S!)/Z, for some n > 2, where Z,, acts
by a 27 /n rotation of S' and by some symmetry of order n of M’. In the present context,
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we also have a torsion field H on M; since L‘/}ﬁ = 5‘7?[ =0, His a pullback from M’.
This means that if ¢ is an angle-valued field that parametrizes the S!, then ¢ is decoupled
from the B-field of M (in some gauge, at least locally, the B-field is independent of ¢
and has no component in the ¢ direction). So ¢ is a free field, and the holomorphic and
antiholomorphic current algebras whose existence we have deduced are generated by the
holomorphic and antiholomorphic conserved currents dp and de.

Since V is covariantly constant, its length squared HA/\Q is constant. We can now easily
determine the constant value. In this calculation, we use the definition (4.2) of the metric
of M. If we take the metric of S® x S! to be the usual dQ? + dr2, then with V as described
in eqn. (6.5), we get

V2 = " e Al /g tr F FIT = —8—; o tr FAF = Qy, (6.15)
where we used the instanton equation and (); is the instanton number.

The reason for the subscript in \17]3 in eqn. (6.15) is that we actually want to use a
different normalization for this calculation. In sections 6.3 and 6.4, we will use the value
of [V[2 as an ingredient in determining one of the central charges of the large N = 4
algebra. For this purpose, bearing in mind the brane construction described in section
1.2 that motivates the duality, it is important to normalize the metric of S? x S! so that
fsg H = 271Q%. According to eqn. (3.35), we can ensure this by taking the metric of S3 xSt

to be ?—7% (d§22 + d7'2). This rescaling of the metric of S x S! does not affect the instanton

equation, but according to eqn. (4.2), it does multiply the metric of M by g—;f Therefore
with this normalization, we have

Q1Q'5.

V|2 =
Vi 5

(6.16)

6.3 Rotations of S°

Now we consider the case of a vector field that is a generator of, say, the right action
SU(2), of S* = SU(2) on itself. SU(2), leaves fixed the right-invariant one-forms R’ that
were introduced in section 3.3. On the other hand, the left-invariant one-forms L* transform
in the adjoint representation of SU(2),.

It is convenient to introduce a basis T1, - - - , T3 of the Lie algebra of SU(2),., normalized
so that the Lie algebra takes the canonical form

[Taa Tb] - 6a,bcT’w a, b7 Cc= 17 T 73' (617)

In the notation of section 3.3, we can take

1 0 0 0 0
T = —— — Yy — +YP=— —y3— |, 6.18
1 <y0 ) Y1 s Y2 e Y3 6y2> ( )

with 75 and T35 obtained by cyclic permutations of indices 1,2,3. The one-form dual to the
vector field T, is a multiple of L,:

. . 1
TéGiijC] == —iLa. (619)
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We recall that the metric G and the one-forms L, are covariantly constant for the connec-
tion V on M. From eqn. (6.19), it follows that also the T}, are covariantly constant for
this connection.

Since T}, generates a symmetry of the instanton equation on S? x S!, it corresponds to
a Killing vector field 7, on M. The 7, generate an SU(2) symmetry of M since the T,
generate an SU(2) symmetry of S? x S'. The complex structures Z of M transform in the
adjoint representation of this SU(2) since the complex structures Z, of S3 x S!, from which
the Z are deduced by restriction from T'A to T'M, transform in this representatlon

In a moment, we will show that T is covariantly constant for the conection V on M
that corresponds to the connection V on M. As explained in eqns. (3.7) and (3.8), this
implies that associated to the T\a are holomorphic currents with associated free fermions.
Being holomorphic, the T\a will generate not just a global action of SU(2),. but a holomorphic
SU(2), current algebra. Together with the free fermions and U(1) modes discussed in
section 6.2, these holomorphic fields will extend the holomorphic chiral algebra of the
o-model with target M from a small N = 4 algebra to a large one.

Actually, there is a trivial way to find vector fields on M that are covariantly constant
for the connection V and that, like the fa, transform in the adjoint representation of
SU(2),. The complex structures fa, a =1,2,3, are covariantly constant with respect to @
and we showed in 6.2 that the U(1) generator Vis covariantly constant with respect to V
(as well as v/ ). So the vector fields 1,V are covariantly constant with respect to V. We
claim that R 1o -

T, = —§IaV, (6.20)
SO Ta is likewise covariantly constant. This will complete the proof that the currents
associated to the T\a are holomorphic on the sigma-model worldsheet and generate an
SU(2), current algebra.3”
First, let us verify the statement on S? x S! that is analogous to (6.20), namely

1
T,=—3T.V. (6.21)

From the deﬁnition (3.36) of the Z,, we have Z,Lo = L,. V is the vector field dual to Lo
and T, is —3 times the vector field dual to L, so eqn. (6 21) is valid.

The correspondmg statement on M, namely T = — Z V is actually an immediate
consequence. First of all, from the statement T, = — 2Z'aV on S3x St it immediately follows
that the corresponding statement Ta = —%faf/ is valid on the space A of all connections.
To deduce from that a statement on the moduli space M, we have to take into account
that in general the action of a vector field or a complex structure on a tangent vector to
M cannot be trivially deduced from the action on A; the natural formula in general must
be accompanied by a gauge transformation. However, the gauge condition that we used
in embedding the tangent space to M in that to A was chosen to be invariant under the

3TWithout knowing eqn. (6.20), we would still know that, as the vector fields 7.V are covariantly constant
with respect to V, they are associated to holomorphic currents that transform in the adjoint representation
of an SU(2) symmetry group. We would not know that they are actually the SU(2) generators.
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action of the fa, so the natural action of fa does not need to be accompanied by a gauge
transformation. And we showed in section 6.2 that the same is true for V. So the formula
T\a = —%faf} can be just restricted from the tangent space to A to the tangent space to M.
As a bonus, this argument also shows that the naive action of fa by 6A4; = T F;; satisfies
the gauge condition, with no accompanying gauge transformation needed.

In section 6.4, to compute the level of the SU(2), current algebra, we will need to know
the length squared ]TGP = ngUfg of the vector fields Ta. The relation fa = —%fa? gives

an easy way to do this. As a complex structure, Z, is in particular a length-preserving

linear transformation of the tangent bundle of M. So the relation T, = —%fa‘/} implies
that |T,|2 = %]‘7]2 In eqn. (6.16), we showed that |V|? = Qéfg, SO
/
T, = L9 (6.22)
8T

By now, we have shown that the sigma-model with target M has a holomorphic SU(2) x
U(1) current algebra, extending the small N/ = 4 holomorphic superconformal algebra
to a large one. A similar analysis shows a similar enhancement of the antiholomorphic
chiral algebra of the sigma-model. Indeed, the two analyses are exchanged by the discrete
symmetry of S3 x S! that acts as a joint reflection on each factor.

6.4 The Central Charges

Finally, we will analyze the central charges of the SU(2) current algebras in the large N' = 4
holomorphic (or antiholomorphic) chiral algebra.

One SU(2) is contained in the small ' = 4 algebra. This is the SU(2) symmetry of the
worldsheet fermions that exists because the connection V has symplectic holonomy. The
worldsheet fermions all transform as spin 1/2 under this SU(2). A single set of four real
fermions in the spin 1/2 representation contributes 1 to the SU(2) current algebra level.
The number of such multiplets in the sigma-model is the quaternionic dimension of M, or
equivalently one fourth of its real dimension. By an index theorem, the real dimension of
M is 4Q1Q)s, so the level of the current algebra in the small NV = 4 algebra is Q1Qs, in
accord with expectations from supergravity and the duality conjecture [6]. This formula
for the current algebra level is exact, by the usual nonrenormalization theorem for fermion
anomalies.

The second SU(2) is the one that we analyzed in section 6.3, which acts by isometries of
M. As remarked in section 6.3, the semiclassical limit of the sigma-model with target M is
the limit that Qf is large, keeping Q1 and Q5 fixed (or at least sufficiently small compared
to QF). In general, in a sigma-model with a B-field, anomalies in target space symmetries
receive classical contributions that are large in the semiclassical regime. The WZW model
is an example of this. (The semiclassical regime of the WZW model is the regime that the
anomaly coefficient k is large, and in this regime, k can be computed classically from the
WZW action.) In a sigma-model with fermions as well as a B-field, in addition to a large
classical contribution, the anomaly can receive an O(1) contribution due to the fermions.
In the present context, since we are studying a supersymmetric sigma-model with fermions,
such an O(1) contribution to the anomaly is possible, and it would be desirable to know how
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to compute it. But here we will only evaluate the classical contribution. In an expansion in
powers of 1/Q%, there can be no further correction beyond the O(1) contribution, because
the anomaly coefficient is always an integer.

For a vector field 7 on M that generates part of a holomorphic chiral algebra, the
semiclassical limit of the anomaly coefficient is easy to evaluate, because it depends only
on the length squared of the vector field. In the present context, we will take T to be one
of the Ta. Its length squared is known from eqn. (6.22), and we know that it corresponds
to a holomorphic current in the sigma-model.

For large Qf, the metric of the sigma-model target space M is scaled up, and in the
vicinity of any assumed classical ground state, local coordinates ¢!,--- ,¢3™M can be
chosen such that the metric becomes the flat metric G,3 = d,3 plus a correction of order
1/Q%. This means that the classical contribution to the anomaly can be computed in a
theory of free scalar fields with the action

dim M

Izé/ﬁxZ:E:@@%%w (6.23)

pn=12 a=1

For large Q%, the vector field T becomes a vector field with constant coefficients, generating
a symmetry 0¢% = Te. In the free field theory, this symmetry can be generated by the
canonical current?® Ju = 277?0‘8“(%. However, if (as in our present application) we know
that in the full sigma-model, the current generating the symmetry is holomorphic, then
in the free field approximation that we are analyzing, the current will have an extra term
ensuring this holomorphy and will be

Iy = 20 T8y b + 160" P (6.24)

This extra term, which concretely will originate from the B-field coupling of the sigma-
model,* does not affect the conservation of J, or the fact that it acts on ¢ by d¢® = Te.
If 2 is a local complex coordinate on the worldsheet such that d%z = |dz|?, then eqn. (6.24)
is equivalent to

J, = 47T, ¢4, J==0. (6.25)

The two-point function of the free scalar field ¢ is (¢pa(2)P(0)) = —dags 105712‘, which leads
to ~
47T

(J2(2)L:(0)) = ——5~. (6.26)

The level k of an SU(2) current algebra is characterized by the statement that if sym-
metry generators are canonically normalized to satisfy (6.17), then the two-point functions

%8The canonical current is defined by J* = 2m > 5(1)0‘56‘,5#, where here §¢p* = T°. In two-dimensional
conformal field theory, the factor of 27 in the canonical current, and a similar factor in the definition of the
stress tensor, is conventionally included to avoid factors of 27 in operator product coefficients.

39The reason that we do not write any explicit formula for this coupling is that there is no canonical local
formula; any local formula involves the local form of H= d§7 which does not actually affect the coefficient
that we are evaluating. Any choice of B and H that is consistent with the assertion that the current Jy, is
holomorphic will lead to the result analyzed in the text.
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of the corresponding currents have short distance behavior

k

() 1-(0)) = — 5. (6.27)
z
In the present context, that means that k = 87|T|2. From eqn. (6.22), we see that if T is

any of the T}, then |T|? = Qé—gg. So the level of the SU(2) current algebra for large Q% is

k= Q1Q5, (6.28)

as predicted by the duality conjecture.

As already explained, this formula is conceivably subject to a correction that is O(1),
that is, independent of Q5. To compute this correction actually requires among other
things a more precise definition of Q§ than we have given, because a fermion anomaly can
affect the B-field flux by an O(1) amount.

6.5 Vector Fields on M And Their Fixed Points

In section 2.2, we proved that the U(1) generator V has no fixed points on M — something

we now understand more deeply, having proved that V' actually has constant length. We
can also now justify certain analogous assertions that were made in section 2.2.

Consider a linear combination 1" = Z cala of the SU( )r generators. The correspond-

. ~

ing symmetry generator of M is T = Za 1 Ty = -3 Za 1 caZaV. Since O Y aCala

is a complex structure and acts on the tangent bundle of M as an orthogonal transfor-
mation, preserving lengths, it follows that T has constant length %\/m |\7| In other
words, any SU(2),. generator has a (nonzero) constant length and hence acts on M without
fixed points.

Now consider an SU(2 )g generator T = > ¢, T.. The corresponding vector field on
Mis T = Sl I T = —1 :_ &\ T'V. Reasoning as before, its length is V>, 22|V
and it acts on ./\/l without ﬁxed points.

What about a sum 7 + 7" of generators of SU(2), and SU(2),? This vector field does
not have constant length, as in general the angle between the two vector fields T and T’
is variable. However, the triangle inequality gives a lower bound on the length of T+T
which shows that 7'+ 7" acts without fixed points as long as || # |T”|, in other words, as
long as the original vector fields 7" and 7" on S? x S! have unequal length. If for example
S, 2> 2, then IT| > |T"| and the triangle inequality gives

T+T'| > |T| - |T'| > 0. (6.29)

So a vector field T + 7" can only have fixed points on M if the underlying vector fields
T and 7" on S? x S! have equal length. In that case, there actually are fixed points, as
analyzed in [36] and discussed in section 2.3.
Finally, consider a linear combination U = uT + vI’ + wV. The formulas T =
-5 D caI Vand T/ = -1 - ¢/ Z!V show that T and 7" are both everywhere or-
thogonal to V. Therefore the inner product of U with V is the constant w|V|2 If w # 0,
the nonzero constant value of that inner product implies that U has no zeroes.
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6.6 Large N =4 Algebra for One Chirality Only

M = S3 x S! is the unique compact four-manifold such that a sigma-model with target
M has two copies of the large N' = 4 algebra (for left- and right-movers, respectively).
For this choice of M, we have shown that a sigma-model with target the corresponding
instanton moduli space M likewise has two copies of the large N' = 4 algebra.

What if M is such that the sigma-model with target M has just one copy of the large
N = 4 algebra, say for right-movers only? What choices of M are possible? M should have
a single hypercomplex structure, with an SU(2) symmetry that rotates the three complex
structures, and an additional U(1) symmetry. As shown in [58], a compact hypercomplex
manifold of dimension four, if not Kahler, is a Hopf surface, which means in particular
that it is locally isomorphic to S? x S!. A convenient way to exploit this fact is to observe
that such an M has the same universal cover as that of S? x S!, namely S? x R. So we can
return to the starting point of section 3.3. S? x R with the familiar metric dQ? 4+ dr? is

equivalent to R* minus the origin with the metric

dy’2

d52 = —=
Y2

) (6.30)
as in eqn. (3.25). The orientation-preserving isometry group of S? x R is H = (SU(2), x
SU(2),)/Zy x R* where R* acts by ¥ — AY, A > 0. Any orientable manifold locally
isomorphic to S? x S! is the quotient of S? x R by a discrete subgroup I' C H. However,
since we want to preserve one SU(2) symmetry, say SU(2),., we should pick I" to commute
with SU(2),., which means that we want I' C SU(2), x R*. The quotient M = (S3 x R)/T is
a manifold if T" is a discrete subgroup of SU(2), x R*, and is compact as long as I" ¢ SU(2),.
Moreover, as long as I' ¢ R*, a sigma-model with target M will support precisely one copy
of the large N' = 4 algebra.

It is then true that if M is the instanton moduli space on M, a sigma-model with
target M also supports precisely one copy of the large ' = 4 algebra. We do not need any
essentially new calculation to show this. The following structures on S? x R are I'-invariant,
and therefore descend to M: the SU(2)s-invariant hypercomplex structure studied in this
paper and its associated connection V, and the symmetry group?*® SU(2), x R*, where
SU(2), rotates the complex structures that make up the hypercomplex structure. Since
the local geometry is the same as it is for S? x S!, the computations that we have done
apply without change to show that the vector fields generating the SU(2), x R* action are
covariantly constant for the connection V on M that corresponds to V. This extends the
small N = 4 algebra that we would expect based on the analysis in section 5 to a large
one.

The example studied in section 8 with M = S3/Z,, x S! corresponds to I' = Z,, x Z,
with Z,, C SU(2); and Z C R*. Another simple example, with I' = Z, can be obtained if we
describe M by complex variables Z1, Zo with an equivalence relation (71, Zo) = e’ (Zy, Z5)
for some constant 7" with ReT > 0. If Im7T = 0, this gives back the original example
M = 83 x S' with a metric of the standard form, leading to two copies of the large N' = 4

40The group that acts faithfully on M may be a quotient of SU(2), x R*, depending on T'.

,60,



algebra. But taking Im T # 0 gives a deformation that allows only one copy of the large
N = 4 algebra.

7 Conformal Invariance

There is one more issue to consider. It has long been understood that for two-dimensional
sigma-models with A/ = 4 supersymmetry, there is a potential gap between scale invariance
and conformal invariance [17]. In general, the condition for scale invariance is weaker than
the condition for conformal invariance. Scale invariance says that the trace of the stress
tensor is the divergence of a current, and conformal invariance says that the trace of the
stress tensor vanishes [18].

In a sigma-model with torsion, the one-loop beta functions for the metric and the B-
field are conveniently combined together to make ]?EK L, the Ricci tensor of the connection
V with torsion. Strong HKT geometry then leads to?!

Ry, = Vibr, (7.1)
where @ is a 1-form called the Lee form. For conformal invariance, one wants instead
EKL = —2§K§L‘1>, (7.2)

where @ is a scalar field (the dilaton) on the sigma-model target space M. Unless g is such
that eqn. (7.1) can actually be put in the form (7.2), the model is only scale-invariant and
not conformally-invariant.

There are several ways to argue that the sigma-model with target the instanton moduli
space M is actually conformally-invariant. However, some of the following arguments have
technical gaps or are limited, in the form presented here, to lowest order in sigma-model
perturbation theory.

First of all, we can simply invoke the general result [18] that a scale-invariant quantum
field theory in two dimensions with a discrete spectrum of operator dimensions is always
conformally invariant. A sigma-model with smooth compact target space will have a dis-
crete spectrum of operator dimensions. The instanton moduli space M is not smooth and
compact, because of singularities arising from small instantons and un-Higgsing. However,
when the theta-angle is non-zero (see section 2.1.2), the model is expected to have a dis-
crete spectrum of operator dimensions (if the charges are relatively prime), and therefore
the general theorem applies.

Even without invoking the theta-angle, we can note that the general argument for
conformal invariance [18] only requires that the theory have a discrete spectrum of operator
dimensions near dimension zero. The small instanton and un-Higgsing singularities do

4If the same metric and B-field on the o-model target space are compatible with more than one strong
HKT structure — as happens in the case of the instanton moduli space on S* x S — then a formula like
this holds for each of them. In what follows, we will not need an explicit formula for the Lee form 0. It
is difficult to get a useful explicit expression for 0 in the case of instanton moduli space M, because the
definition (3.19) of the Lee form involves the inverse of the metric on M, and although there is a simple
formula for this metric, it is difficult to give a useful description of its inverse.
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produce a continuous spectrum of operator dimensions, but only above a positive threshold
(which moreover is large if Q1 and Q5 are large). So one would not expect these singularities
to cause difficulty in the proof of conformal invariance.

A number of more explicit alternative arguments are available, though in the form
that will be presented here these arguments have technical gaps or are limited to lowest
order of sigma-model perturbation theory (that is, lowest order in an expansion in powers
of 1/Q%). Hopefully these arguments can be sharpened and extended.

One approach is a Perelman-style argument, using an auxiliary Schrédinger equation.
This approach was explained in [19], following [59, 60]. See also [61], Corollary 6.11, or
[62], Proposition 2.6, where the same result is proved in essentially the same way. For this
argument, one considers on M the Schrédinger operator —4A% + R — %H 2. The proof
of conformal invariance requires that this operator should have a unique, positive ground
state. For example, this is true if M is compact and smooth except for conical singularities
which are at finite distance and at which the potential R — %H 2 is bounded below. (It is
also true under some hypotheses if M has ends at infinite distance. In the related context
of the c-theorem, this case was studied in [63].) In the case of the instanton moduli space,
the small instanton and un-Higgsing singularities are indeed conical singularities at finite
distance. Generically these singularities are hyper-Kahler singularities at which R and
H? remain bounded. However, there are a few exceptional cases. For example, consider
the small instanton singularity on a moduli space of instantons with instanton number
@1 > 1. When a single instanton bubbles or in other words becomes small and shrinks
to a point, M acquires the same universal small instanton singularity as in the case of
instantons on any other four-manifold. This universal singularity is a conical hyper-Kahler
singularity, and is harmless for our present purposes, since both R and H vanish near
such a singularity. This is true as long as the remaining instanton solution after instanton
bubbling remains irreducible: the details of the manifold in which the small instanton is
embedded do not matter. However, if all 1 instantons become small, so that the remaining
instanton solution is simply a flat connection on S? x S!, we get a singularity at which the
global structure is relevant. This case needs more study before claiming to prove conformal
invariance based on a Perelman-style argument.

Another approach to proving conformal invariance uses more detailed facts about the
instanton moduli space M as well as results of [19]. However, this argument, in the form
we will present, is only valid to lowest order in sigma-model perturbation theory. We
have constructed on the instanton moduli space M a hypercomplex structure ZA,', j ,IE,
covariantly constant with respect to a connection @, and a second hypercomplex structure
7 , J’ , K’ , covariantly constant with respect to a second connection V'. Associated to the
first hypercomplex structure is a Lee form 0 (though this is not obvious from the definition
in eqn. (3.19), the Lee form depends only on the hypercomplex structure and not on
the specific choice of Z, 7, or K in writing the formula). Similarly there is a Lee form
9’ associated to the second hypercomplex structure. The potential obstruction to scale
invariance can be expressed in terms of the tensor v K§L, which is also equal to %’Lé\’K
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The equality V0, = §’L§’K gives (as in eqn. (3.16) of [19])
DK(/@\—(/Q\/)L—FDL(/@\—(/Q\/)K:O, (d/@\—i- d(/g\/)KL:fIPKL((/g\—(/g\/)P, (7.3)

where D is the Riemannian connection. The obstruction to conformal invariance vanishes
if and only if there is a function ® on M (the dilaton) such that

Vil = -2V 0, ®. (7.4)

Let us see why such a ® exists in the case of the instanton moduli space M.

Isometries of S3 x S' that preserve the orientation of each factor rotate f, J , and
K among themselves. Since 9 is determined by any of these (or any linear combination
aZ+bT +cK with a2+b%4c2 = 1), it is invariant under such isometries. The same argument
applies for 9. However, as discussed in section 2.2, we can also define an isometry p that
acts as a reflection on each factor of S? x S!, reversing the orientation of each factor and
preserving the overall orientation. Such an isometry exchanges the two hypercomplex
structures, so it exchanges 6 and 6. So 6+ is even under p, and 6 —6 is odd. Eqn. (7.3)
tells us that §—@’ is the one-form dual to a Killing vector field. This Killing vector field must
be invariant under rotations of either factor of S? x S, but odd under the joint reflection p.
The only Killing vector field on M with this property is the Killing vector field V associated
with the Killing vector field V on S? x S! that generates a rotation of S'. So 0—0 = U,
where ) is the 1-form dual to V and u € R. In section 6, we have proved that H PK LYA/L =0.
Consequently, the second equation in (7.3) reduces to d(@\ +0 ) = 0. Thus 0+ is a closed
1-form on M, defining an element of H'(M;R). However, 0 + @ is even under the joint
reflection p, and we have seen in section 2.4 that (assuming something along the lines of the
Atiyah-Jones conjecture) H!(M;R) is one-dimensional, generated by the dual of ‘7, which
is odd under p. Hence the closed form 0+0 is actually exact: 0+ = 4d® for some function
®. Putting these statements together, we have § = i <(§—|— é\’) + (é\— 5’)) = 2d® + 1ul.

Inserting this in v Ké\L, the term proportional to A does not contribute, since VA =0. So
V0 = 2Vd® and the condition for conformal invariance holds with dilaton ®.

A noteworthy fact is that each of these arguments for conformal invariance of the sigma-
model with target M makes use of some global information (compactness, relevant for
Polchinski’s argument, some knowledge of the possible singularities, relevant for analyzing
the effective Schrodinger equation, or some more detailed information that entered in the
discussion of the Lee forms). Local considerations alone do not suffice.

8 Searching for Interesting Geometries

8.1 Preliminaries

The moduli space M of instantons on S? x S' has an interesting differential geometric
structure that, as we have seen, leads to (4,4) supersymmetry in two dimensions (with
large superconformal symmetry) despite the presence on M of a topologically non-trivial
B-field. However, M is not a smooth compact manifold; it has small instanton singularities
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and also un-Higgsing singularities — singularities that arise at points in M corresponding
to instantons with a non-trivial automorphism group.

In the case of instantons on T or K3, the instanton moduli spaces are hyper-Kahler,
again with singularities associated to small instantons and un-Higgsing. In this case, how-
ever, as also discussed in section 2.1.2, it is possible to resolve the singularities by turning
on a Neveu-Schwarz B-field on T% or K3. This leads to a noncommutative deformation
of the instanton equation [35], and resolves all of the singularities, provided that @; and
Qs are relatively prime. (If Q1 and Q5 are not relatively prime, certain un-Higgsing sin-
gularities are unavoidable.) In this way one can construct smooth, compact hyper-Kahler
manifolds that are genuinely new — they cannot be constructed by taking products of tori
and K3 surfaces. In fact, these are the main known examples of compact hyper-Kahler
manifolds.

No comparable examples are known of strong HKT manifolds, even if one only asks
for a single strong HKT structure, rather than a pair of strong HKT structures, as the
instanton moduli space on S? x S! possesses. If one asks for a strong HKT manifold that is
compact (and smooth), the known examples are compact hyper-Kahler manifolds (in which
the torsion H vanishes) and homogeneous spaces (which can have strong HKT structures
with H # 0; there are many examples [31, 32], of which the simplest is S? x S!). It would
be interesting to find genuinely new examples of compact strong HKT manifolds. The
instanton moduli spaces on S? x S! do not qualify, since they have unavoidable singularities
associated to small instantons and to unbroken gauge symmetries. The NS B-field modes
that can resolve these singularities in the case of K3 or T have no analog here, as H?(S3 x
S R) = 0. It is true that there is a theta-angle that, as discussed in section 2.1.2, resolves
the singularities in a quantum mechanical sense (if )1 and Q5 are relatively prime), but
this does not give a classical deformation or resolution of the singularities of the instanton
moduli space.

Aiming to find a classical example of a compact (smooth) manifold with the geometry
that leads to large N/ = 4 symmetry — at least for one chirality in the sigma-model — we will
replace S? x S! with M = S3/Z,, x S! for some integer n > 2. Here we pick Z,, to act on,
say, the left on S3 22 SU(2), thus breaking the rotation group SU(2), to U(1), and leaving
SU(2), unbroken. Instanton moduli space on M, which we will again denote as M, now
carries just a single strong HKT structure, which will lead to a large N/ = 4 superconformal
algebra for right-moving modes of the sigma-model. Left-moving modes will see a single
KT structure (Kahler with torsion), leading to an ordinary N' = 2 algebra for left-movers.

To take advantage of the torsion in the cohomology of M, we will take the gauge group
to be PU(n) = SU(n)/Z,, the quotient of U(n) or SU(n) by its center, rather than SU(n)
as we have assumed up to this point.*?> In fact, replacing SU(n) with SU(n)/Z, would
have little effect®® on the differential geometry of the instanton moduli space on S? x S.

“*More generally, we could consider PU(n) bundles over S*/Z,, x S* with m # n. The ideas would be
similar but some statements would become slightly more complicated as we would have to consider the
cohomology of $*/Z,, with Z, coefficients.

“3The instanton moduli space on S* x S for SU(n)/Z, is obtained by dividing the SU(n) moduli space
by a Z, symmetry that multiples the holonomy around the second factor of S* x S* by an element of the
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The reason that S3/7Z, x S! is different is that the there is torsion in the cohomology of
S3/Z, x S' and as a result there are more choices in the topology of a PU(n) bundle.

An SU(n) bundle over a four-manifold F is classified topologically by its second Chern
class co(FE), which we usually think of as the second Chern class of the vector bundle
associated to E in the fundamental representation. SU(n) also has, of course, an adjoint
representation. We will denote the associated vector bundle in the adjoint representation
as ad(E). As a real vector bundle, it has a first Pontryagin class p;(ad(E)). The relation
between the two invariants is

p1(ad(E)) = 2nca(E). (8.1)

Thus, for an SU(n) bundle, p;(ad(E)) is always an integer multiple of 2n.

The classification of a PU(n) bundle E — M is not quite so simple. As PU(n) has no
analog of the n-dimensional fundamental representation of SU(n), there is no rank n vector
bundle associated to E. But PU(n) does, of course, have an adjoint representation, and we
can again consider the adjoint bundle ad(E) associated to F. It has an invariant p;(ad(E))
which is still an integer-valued invariant, in the sense that it is valued in H*(M;Z) and
gives an integer upon integration over M. However, in general it is no longer divisible by
2n.

However, this is not the whole story. A PU(n) bundle has an additional invariant {(E)
taking values in H%(M;Z,). For n = 2, PU(2) is the same as SO(3), and ( is the same as
the second Stieffel-Whitney class wy(F). As in that example, ¢ is the obstruction to lifting
a PU(n) bundle to a bundle with structure group SU(n), the universal cover of PU(n).

A PU(n) bundle E over a four-manifold M is determined topologically by p;(ad(E))
and ((F), but these cannot be specified independently. They are subject to one relation,

which was determined in [64]:

(n+1)C(¢) mod 2n  n even

n+1 (8'2)
= C(¢) mod 2n n odd.

p1(ad(E)) = {

Here C' is a cohomology operation that generalizes the Pontryagin square (which was first
considered in the physics of gauge theory in [65]). For n = 2, with { = ws(FE), C actually
is the Pontyagin square and the formula is

pi(ad(F)) = C(¢) mod 4. (8.3)
For odd n, C(¢) = 2¢? according to [64] so in that case
p1(ad(E)) = (n + 1)¢(F)? mod 2n. (8.4)

The details for even n > 2 are slightly more complicated and we omit them.

One has** HY(S®/Z,;7Z,) = Z, for i = 1,2,3, with generators * € H'(S*/Z,), y €
H?(S3/Z,;Zy,), vy € H3(S?/Zpn;Zy,). One also has H'(S';7Z,,) = Z,, say with generator
z. The cohomology ring of S3/Z, x S' with Z, coefficients is generated by z,y, z with the

center of SU(n).
#1See for example [66] or Prop 3.8 in [67].
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following relations: y? = 22 = 0 for dimensional reasons; moreover, for odd n, 2> = 0 and

2 _n
In particular, since H?(S3/Z, x S';Z,) = 7y, x Z,, with generators y and zz, we have

for even n, x

in general ¢ = ay + bzxz, with a,b € Z,,. We can then make eqn. (8.4) explicit for odd n:
p1(ad(FE)) = 2ab mod 2n. (8.5)

Thus in general, for odd n, pi(ad(F)) can take any even value mod 2n.

We will also make eqn. (8.2) explicit for n = 2, PU(2) = SO(3). First of all, for n = 2,
the cohomology of S3/Z, simplifies slightly as y = 22, and accordingly z3z generates
H*(S3/7o x SY;Zs) = Zy. The group H?(S3/Zy x S';7Zy) = 7o x 7y has three nonzero
elements, namely 22, zz, and 22 + zz. Two of these possible nonzero values of ¢ can be
realized by flat SO(3) bundles. Indeed, since a real line bundle ¢ — M is classified by
wi(e) € HY(M,Zs), over M = S3/Zs x S!, there exists a real line bundle ¢ — M with
w1 () = z, and another real line bundle ¢’ — M with w;(¢') = z. Then with O representing
a trivial real line bundle, there is a flat SO(3) bundle over M with ad(E) = O © e ® e and
hence wo(E) = 22, and another flat SO(3) bundle over M with ad(E') = e @ ©e® €’
and wy(E) = 2® + zz. As these bundles are flat, we have pi(ad(E)) = pi(ad(E’)) = 0.
Therefore, by virtue of eqn. (8.4), in general an SO(3) bundle E — S3/Zy x S! with ¢ = 22
or 22+ has p1(ad(E)) divisible by 4, implying via eqn. (8.3) that C'(2?) = C(2%+xz) = 0.
To see what happens for ( = xz, we use the general relation for the Pontryagin square:
C(u+v) = C(u) + C(v) + 2uv mod 4. In the present case, taking u = 2%, v = xz, this
tells us that C(zz) = 2232 mod 4 = 2 mod 4. Hence eqn. (8.2) tells us that in general an
SO(3) bundle with ¢ = zz will have py(ad(E)) = 2 mod 4.

We can see this more explicitly by constructing an elementary example. We begin with
a simple construction of an SU(2) bundle of instanton number 1 over S3 x S!. We start
with a trivial SU(2) bundle over the cylinder S x I, where I is an interval. To build an
SU(2) bundle £ — S3 x S', we glue the top of the cylinder to the bottom after making a
gauge transformation by a map ® : S> — SU(2). To get a bundle of instanton number 1,
we can take ® to be the identity map from S? = SU(2) to itself. This gives a bundle with
c2(E) = 1 and hence p;(ad(E)) = 4. To get an SO(3) bundle over S3/Zs x S!, we make
the same construction starting with a trivial bundle over the cylinder S®/Zs x I. Then we
make an SO(3) bundle over S?/Zs x S! by gluing the top of the cylinder to the bottom
after making a gauge transformation ® : S3/Zs — SO(3). For ® we choose the identity
map from S3/Zy = SO(3) to itself. This gives an SO(3) bundle E — S3/Zs x S1. A double
cover of this construction gives the previous one, so the curvature integral is half of what
it was before and pj(ad(E)) = 2. As for the invariant ((F), since the bundle E is trivial
when restricted to S?/Zs x p for a point p € S!, there is no 22 contribution in ¢(E). On the
other hand, ((F) must be nonzero since p;(ad(E)) is not a multiple of 4. So ((F) = xz.

8.2 Instanton Moduli Spaces

Now we will begin a more detailed discussion of instanton moduli spaces on M = S3/Z,, xS*.
The first question to ask is whether these moduli spaces are nonempty. The usual existence
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theorem for instantons [68] applies for any simple and simply-connected gauge group G and
any compact oriented smooth four-manifold M. The theorem shows that the moduli space
is non-empty if the instanton number is large enough; if M is simply-connected, it must be
at least b3 (M) — by + 1 (b is the dimension of the space of selfdual harmonic two-forms
on M and by is the first Betti number). The proof is made by starting with a trivial flat
G-bundle over M. Then, after picking a suitable embedding of SU(2) in G, one glues in
some number k of small SU(2) instantons to get an approximate instanton solution over
M, and one proves that if & > b; (M) — by + 1, the approximate solution can be corrected
to get an exact solution.

This proof is not sufficient for our purposes. We want to consider instantons with
structure group the non-simply-connected group PU(n) and with ((F) # 0. This means
that E' cannot be a trivial flat bundle. Actually, the proof in [68] can easily be modified to
start with any flat bundle, not necessarily trivial. But for generic (, eqn. (8.2) shows that
p1(ad(E)) cannot vanish and therefore E cannot be flat.

Luckily, there is another existence theorem for instantons that applies for arbitrary ¢
[41]. This theorem says that for any compact simple G and any ¢, the instanton mod-
uli space is non-empty if the instanton number is sufficiently large. In our context, this
means that for any ((E) the instanton moduli space is nonempty for any sufficiently large
pi(ad(E)) that is consistent with eqn. (8.2). (Actually this statement is a special case
of a more general theorem that was already cited in section 2.4.) The proof proceeds
roughly as follows. Starting with any G-bundle £ — M with the desired value of {(FE),
and any connection on this bundle, one glues in many small instantons. One shows that
the gluing parameters can be chosen so as to reduce the L? norm of the selfdual part of the
Yang-Mills field strength, making the field strength more nearly anti-selfdual. Once one
gets close enough to anti-selfduality, one then shows (as in the original proof [68]) that the
connection can be modified to achieve full anti-selfduality.

A drawback of this proof is that it does not tell us what is, for given ((E), the smallest
value of p;(ad(FE)) at which the instanton equation can be solved. We only learn that the
moduli spaces are non-empty for all sufficiently large values of p;(ad(E)). (In fact, there
are no “gaps”: if the moduli space is non-empty for one value of p;(ad(F)), it remains
non-empty at larger values consistent with eqn. (8.2).)

In short, for all ¢ and all sufficiently large pi(ad(E)), we do get an instanton moduli
space M that will have the differential geometric properties that lead to a single copy of
large N' = 4 superconformal symmetry. Our goal now is to argue that with some further
choices, M will be smooth and compact. If so, these moduli spaces are candidates as
the first examples of smooth, compact strong HKT manifolds that are not products of
hyper-Kahler manifolds and homogeneous spaces.

For M to be smooth and compact, we have to avoid singularities associated to bubbling
of small instantons, and also un-Higgsing singularities associated to instanton solutions with
non-trivial automorphism groups. First let us discuss how to eliminate the small instanton
singularity. There is a natural way to do this. Pick a value of ¢ such that for a PU(n)
bundle £ — M with the given (, eqn. (8.2) implies that p;(ad(E)) is not a multiple of
2n. If p1(ad(E)) is negative, then the instanton moduli space is empty. But if p;(ad(FE)) is
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sufficiently positive, then the instanton moduli space is non-empty according to the proof
that we just sketched. Therefore, there is a smallest value of p;(ad(E)) with the given (
such that the instanton moduli space M is nonempty. Since pj(ad(F)) is not an integer
multiple of 2n, it does not vanish at the minimum. So the component M with the minimum
value of pj(ad(E)) parametrizes instanton solutions that are not merely flat bundles. Let
us call this the minimal component of instanton moduli space for the given {. This minimal
component has no small instanton singularity, since such a singularity would connect M
to another component with a smaller value of p;(ad(E)) and the same (.

The question now arises of whether it is also true, perhaps after putting a further
restriction on (, that the minimal component of instanton moduli space has no un-Higgsing
singularity. Such a singularity occurs at a point p € M that corresponds to an instanton
solution whose structure group is a proper subgroup of PU(n) — and more specifically, a
proper subgroup that has a nontrivial commutant in PU(n). For n = 2, it is clear that the
minimal component can have no such singularity. A proper subgroup of PU(2) = SO(3)
is a either a finite group or is isomorphic to SO(2) or to O(2), and no such group is the
structure group of a non-flat instanton solution on S3/Zy x S'. Tt is not clear what is the
dimension of the minimal component for PU(2), and it is not clear whether the minimal
component might be the product of a hyper-Kahler manifold and a homogeneous strong
HKT manifold. However, the minimal component for PU(2) is a candidate as a genuinely
new strong HKT manifold that is compact and smooth.

To make a similar argument for n = 3, we observe that a connected proper subgroup
of PU(3) that is the structure group of a non-flat instanton bundle on S?/Z3 x S! is either
U(2) or its subgroup SU(2) or else SO(3) (here U(2) is embedded in U(3) so that the
fundamental representation of U(3) transforms as 2 @ 1, and is then projected to PU(3),
and similarly SO(3) is embedded in U(3) so that the fundamental representation remains
irreducible and is then projected to PU(3)). A routine check shows that any PU(3) bundle
E whose structure group reduces to U(2) or SO(3) has p;(ad(F)) a multiple of 6, and
therefore such reductions are not possible for any ¢ such that p;(ad(E)) is not such a
multiple. (In any event, a reduction of structure group to SO(3) would not produce a
singularity of the moduli space, since the stabilizer of SO(3) in PU(3) is trivial.)

For general n, consider a component of the moduli space M characterized by some
given values of py(ad(E)) and ((F) at a point in M at which the structure group F reduces
from PU(n) to a proper subgroup K. K is not necessarily connected, and it may contain
U(1) factors. Gauge fields of a finite group or an abelian group or a product or extension
of these can contribute to ((E) or p;(ad(E)) (for a group containing factors of U(1), this
statement depends upon the fact that ba(M) = 0). So pi(ad(E)) is unchanged if we
simply replace E by another instanton bundle whose structure group reduces to a maximal
connected semi-simple subgroup H C K. What are the possible values of p;(ad(E)) for
a bundle with such a reduction? The embedding H C PU(n) gives a homomorphism
¢ :m(H) — 7 (PU(n)) = Z,. Suppose first for simplicity that n is prime. In that case,
the only subgroups of Z,, are 7Z,, itself and the trivial group containing only the identity.
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For H a proper subgroup of PU(n) and n prime, 71 (H) does not have an element of order*>
n and therefore the image of ¢ is trivial. This means that, after restricting the structure
group of E — M from PU(n) to H, it can be lifted to a bundle with structure group SU(n).
Hence py(ad(E)) is divisible by 2n. Therefore, for n prime, if ((E) is such that p;(ad(E))
is not a multiple of 2n, the instanton moduli space has no un-Higgsing singularity related
to reduction of structure group. Hence the minimal component of instanton moduli space
for the given value of ((FE) is compact and smooth.

If n is not prime, it is possible to find a proper subgroup H C PU(n) such that the
homomorphism ¢ is surjective (for example, take n = pg with relatively prime p, ¢, and
choose H = P(U(p) x U(q)), with U(p) x U(q) embedded in U(n) such that the fundamental
representation of U(n) is the tensor product of the fundamental representations of U(p)
and U(q); this can be generalized if n is the product of any number of relatively prime
factors). In this case, however, the commutant of H in PU(n) is trivial, so reduction of
structure group to H produces no singularity in M. If the image of ¢ is a proper subgroup
Zy. C 7y, with k < n, then a PU(n) bundle over M whose structure group restricts to H
can be lifted to an SU(n)/Z; bundle, which implies that p;(ad(E)) is an integer multiple
of 2n/k. If ((E) is chosen so that this is not the case for any proper divisor k of n, then
there is no un-Higgsing singularity and the minimal component of instanton moduli space is
compact and smooth. For example, if n is odd, then according to eqn. (8.5), for a = b =1,
pi1(ad(E)) = 2 mod 2n, and is therefore not a multiple of 2n/k for any k < n. A similar
choice is possible for even n.

8.3 String Theory Interpretation

The construction that we have described actually has a string theory interpretation.

Assuming that the underlying branes considered are D-branes, the two-form field B
and three-form curvature H = dB in the AdS3 x S x S3 x S! or AdS3 x S? x §3/Z,, x St
geometry are of Ramond-Ramond type. However, we can also turn on the Neveu-Schwarz
two-form field Byng. Topologically, a two-form field Byg on a spacetime Y is classified by a
characteristic class € valued in H3(Y;Z). At the level of differential forms, ¢ is represented
by g—ljrs, but here it will be important to consider £ as an integral cohomology class.

For our present purposes, the interesting case is that £ is a torsion class, which can be
represented by a topologically non-trivial Byg field with Hyg = 0. The reason that this
is the interesting case is that if we assume that Hyg is nonzero, and impose the global
symmetries and supersymmetries of the AdSz x S? x S3 x S! or AdS3 x S? x S3/Z, x S!
geometry, we will just end up with the same spacetime geometry that we have already
studied, up to an S-duality rotation that replaces Hrr with a linear combination of Hgrr
and Hys.

But we get something essentially new if Byg is flat but topologically nontrivial. The
reason that this is possible is that there is torsion in the three-dimensional cohomology of
AdS3 x S? x S3/Z, x S'. This torsion is pulled back from H3(S?/Z, x SY;Z) = 7. @ Z,,.

“SIndeed, PU(n) itself is the only semisimple Lie group of rank < n— 1 whose fundamental group contains
an element of order n. This follows from the classification of simply-connected simple Lie groups and the
explicit description of their centers.
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We have encountered in the preceding analysis PU(n) bundles over S®/Z,, x S! that
have non-integer values of the instanton number and therefore cannot be lifted to SU(n)
or U(n) bundles over S3/Z,, x S'. In general, a PU(n) bundle E over any space Y can be
lifted to a U(n) bundle E/ — Y if and only if the characteristic class ((E) € H(Y;Zy,)
that has been important in our analysis can be lifted to a class ¢’ € H*(Y;Z) (which will
then be the first Chern class ¢1(E’)). The obstruction to this lifting can be understood
by considering the long exact cohomology sequence associated to the short exact sequence
072375 7Z, — 0, where the first map is multiplication by n and the second is
reduction mod n. The associated long exact cohomology sequence reads in part

C H2(S3)Z, x SLZ) D HA(S3 /2 x SV Z0) B H3(S3 /20 x S Z) - - -, (8.6)

where 3 is called the Bockstein map. Thus ¢ € H?(S3/Z, x S';7Z,) is not the mod n
reduction of an integer class ¢/ — and so is not in the image of r — if and only if 5(¢) is a
nonzero element of H*(S3/Z,, x S';7Z,,).

If B(¢) # 0, it is not possible to lift the PU(n) bundle E — S3/Z, x S! to a U(n)
bundle or in other words to a rank n vector bundle. But it can be lifted to what is called
a twisted vector bundle, twisted by the class 5(¢). Such a twisted vector bundle, rather
than an ordinary one, is precisely what one gets in D-brane physics in the presence of a
background field Bys whose characteristic class £ is a torsion class. Indeed, a system of
n D-branes interacting with a background Byg field such that £ = () supports not an
ordinary vector bundle but a twisted vector bundle associated to a PU(n) bundle with
characteristic class ¢ [69]. Thus in the presence of a suitable Byg field, the slightly exotic
instanton moduli spaces studied in this section do actually appear in D-brane physics.
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