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Abstract: We investigate the differential geometry of the moduli space of instantons on

S3×S1. Extending previous results, we show that a sigma-model with this target space can

be expected to possess a large N = 4 superconformal symmetry, supporting speculations

that this sigma-model may be dual to Type IIB superstring theory on AdS3×S3×S3×S1.

The sigma-model is parametrized by three integers – the rank of the gauge group, the

instanton number, and a “level” (the integer coefficient of a topologically nontrivial B-

field, analogous to a WZW level). These integers are expected to correspond to two five-

brane charges and a one-brane charge. The sigma-model is weakly coupled when the level,

conjecturally corresponding to one of the five-brane changes, becomes very large, keeping

the other parameters fixed. The central charges of the large N = 4 algebra agree, at least

semiclassically, with expectations from the duality.
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1 Introduction

1.1 Overview

Among the original examples of AdS/CFT duality [1] were Type IIB superstring theory

on AdS3 × S3 ×T4 and AdS3 × S3 ×K3, which are believed to be dual to two-dimensional

sigma-models in which the target space is the moduli space of instantons on T4 or K3,

respectively. Some of the arguments were recently assessed and extended in [2], where

one can also find detailed references. These examples have N = 4 supersymmetry, which

greatly facilitates their understanding.

However, the superficially similar example of Type IIB superstring theory on AdS3 ×
S3 × S3 × S1 has been less well understood, despite having an even larger superconformal

symmetry. This model and a related one based on AdS3 × S3 × S3 × R have been studied

extensively [3–10] and in particular it is known that a dual conformal field theory should

possess a “large” N = 4 superconformal algebra (in fact, two copies of this algebra, for

chiral and antichiral modes, respectively), as opposed to the more familiar “small” N = 4

superconformal algebra relevant to strings on AdS3 × S3 × T4 or AdS3 × S3 × K3. The

large N = 4 superconformal algebra is an extension of the small one with an additional

SU(2) R-symmetry and some additional free fields [11, 12]. The simplest indication that

AdS3 × S3 × S3 × S1 leads to a large superconformal algebra is simply that it has many

SU(2) symmetries, acting on the left and right on the two copies of S3 = SU(2) [3]. These

all turn out to be R-symmetries of the left or right superconformal algebra. The detailed

analysis demonstrating the existence of a large N = 4 algebra was made in [4] from a

worldsheet point of view (for the case that the fluxes on AdS3 × S3× S3 × S1 are of Neveu-

Schwarz type) and in [5] in supergravity. A simple example of a two-dimensional conformal

field theory with the “large” N = 4 symmetry is an SU(2)k ×U(1) supersymmetric WZW

model, which is the same thing as a supersymmetric sigma-model with target S3 × S1 and

k units of flux of H = dB (where B is the sigma-model B-field).

The Type IIB supergravity solutions on AdS3×S3×S3×S1, which were analyzed in [4,

5], depend on three parameters, namely the three-form fluxes on AdS3 and on the two S3’s.

Supersymmetry requires that all fluxes are of the same type, Neveu-Schwarz or Ramond-

Ramond or a mixture. The three fluxes can be parametrized by integers Q1, Q5, Q
′
5, where

Q5 and Q′
5 have been interpreted as the numbers of fivebranes wrapped in two different

ways that produce the fluxes on the two S3’s, and Q1 is similarly interpreted1 as the number

of one-branes, related to the flux on AdS3.

Proposals for a dual of superstring theory on AdS3 × S3 × S3 × S1 have been mainly

of two types. One idea is that, at least for some values of Q1, Q5, and Q′
5, the dual might

be a symmetric product of N copies of the SU(2)k × U(1) model, for some N [4, 5]. One

motivation for this proposal is simply that this symmetric product is one of the relatively

few known examples of a model with the large N = 4 superconformal symmetry. Another

motivation is that the duals of AdS3 × S3 ×T4 and AdS3 × S3 ×K3 are related to similar

symmetric products (if the integers Q1 and Q5 that characterize those models are relatively

1The integrality of Q1 is not visible in the supergravity solution.
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prime). An obvious limitation of this proposal is that the symmetric product only depends

on two integers, k and N , while strings on AdS3 × S3 × S3 × S1 depend on three integers

Q1, Q5, Q
′
5. It is believed that strings on AdS3 × S3 × S3 × S1 do not have dualities that

would make one of the three integers irrelevant. However, if Q5 = 1 (or Q′
5 = 1), there

is reasonably strong evidence that strings on AdS3 × S3 × S3 × S1 are indeed dual to a

symmetric product of many copies of the SU(2)k ×U(1) WZW model [9, 10].

A second idea has been that the dual of strings on AdS3 × S3 × S3 × S1 might be a

sigma-model with target the moduli space M of instantons on S3 × S1 [6]. A question

about this idea has been whether it is true that this sigma-model does have the large

superconformal symmetry. There are important partial results in this direction [13–16].

Roughly, by combining previous results, it is known that M is a generalized hyper-Kahler

manifold, also known as a bi-HKT or (4,4) manifold. Assuming conformal invariance,

this is enough to show that the model has N = 4 supersymmetry with the small N = 4

algebra. The main goal of the present article is to complete this story and show that

this sigma-model actually possesses large N = 4 superconformal symmetry. For this, one

must show that Killing vector fields on M that come from the symmetries of S3 × S1 are

covariantly constant for appropriate connections on M with torsion. It is also necessary

to show that the sigma-model with target M is conformally-invariant and not just scale-

invariant, something that is non-trivial for sigma-models with N = 4 supersymmetry [17].

We address this point by applying arguments of [18, 19].

If Q1 and Q5 are relatively prime, the moduli space of instantons on T4 or K3 is a

deformation of a symmetric product of copies of T4 or K3. If a similar statement were

true for S3 × S1, then potentially the two proposals about the dual of string theory on

AdS3 × S3 × S3 × S1 could both be correct. However, generically (except for gauge group

U(1)) it is not true that the moduli space M of instantons on S3 × S1 is deformation

equivalent to a symmetric product. This will be explained in section 2.3.

1.2 Motivation For The Conjecture

The idea that a sigma-model with target M is dual to Type IIB string theory on AdS3 ×
S3 × S3 × S1 can be motivated by a simple brane construction. In describing this, we

slightly amplify the discussion in [6] (see scenario 3 in section 3 of that article) as well as

[9]. We also assume that the fluxes considered are of Ramond-Ramond (RR) type, so the

corresponding branes are D-branes. We denote the RR two-form field as C2 and its three-

form field strength as G3 = dC2. For the starting point, we consider Type IIB superstring

theory on X = R
2 × S1 × T∗S3 × R, where T∗S3 is a noncompact Calabi-Yau manifold

(the deformed conifold) with Q′
5 units of RR flux on S3 ⊂ T∗S3. The deformed conifold

with this flux is a supersymmetric configuration, studied originally in [21, 22]. Then we

wrap Q5 D5-branes on R
2 × S1 × S3 × p ⊂ X, where p is a point in the last factor of

X = R
2 × S1 × T∗S3 × R. These D5-branes support a U(Q5) gauge theory, with gauge

connection A and field strength F = dA + A ∧ A. Because of the assumed G3 flux, the
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effective action of the gauge theory (in Euclidean signature) contains a coupling2

−i

∫

R2×S1×S3
CS(A) ∧ G3

2π
(1.1)

involving the Chern-Simons three-form CS(A) = 1
4π tr

(
AdA+ 2

3A
2
)
. This configuration,

in which Q1 has not yet been introduced, has actually been discussed previously [23]. (For

related examples, see for instance [24–26].) In everything that we have said up to this

point, R2 × S1 could be replaced with any three-manifold W , or simply with W = R
3.

As explained in [23], the low energy physics on W is a three-dimensional topological field

theory, a U(Q5) Chern-Simons theory at level Q′
5 (where the Chern-Simons coupling comes

from (1.1)). We will return to this Chern-Simons theory momentarily.

We can now add Q1 D1-branes wrapped on R
2×pi ⊂ R

2×S3×S1, where pi are points in

S1×S3. However, we assume that these D1-branes “dissolve” into instantons in the U(Q5)

gauge theory. Generically, a U(Q5) instanton on S3×S1 completely breaks the U(Q5) gauge

symmetry down to the center U(1). (This is true for all positive values of the instanton

number.) The U(1) gauge field becomes massive because of the coupling (1.1), and is

described at low energies by a U(1) BF theory at level Q′
5 (which can be understood as

the reduction to R
2 of a U(1)Q′

5
Chern-Simons theory on W = R

2×S1). Being a topological

field theory, this level Q1 BF theory plays no role in the analysis of the large N = 4 algebra,

though it is undoubtedly important in some subtle aspects of the story.3 The rest of the

low energy physics is described, by standard arguments, by a supersymmetric sigma-model

with target the moduli space M of instantons on S3× S1, except that we must understand

the role of the interaction (1.1). As this interaction depends on an integer Q1, is odd under

reflection of R2, and cannot be written as the integral of a gauge-invariant local density, it

should come as no surprise that in the sigma-model this interaction becomes the coupling

to a topologically non-trivial B-field, that is, a B-field whose field strength H = dB has

nonzero periods that must satisfy a Dirac quantization condition. This will be explained

in section 2.

So far we have arrived at a sigma-model with target space the moduli space M of

instantons on S3 × S1. But what does this have to do with string theory on AdS3 × S3 ×
S3×S1? To answer this question, we just follow the original analysis of holographic duality

of the D1-D5 system [1]. If the flux Q′
5 is small compared to Q1 and Q5, so that its local

effects are small, then we can simply borrow the original analysis. The normal bundle to

R
2 × S1 × S3 × p ⊂ R

2 × S1 × T∗S3 × R is, of course, locally a copy of R4. When we take

the near horizon geometry, the zero-section of the normal bundle (that is, the origin in this

R
4) is omitted, the radial direction in the normal bundle combines with the first factor of

R
2 × S1 × T∗S3 × R to make a copy of AdS3, and the angular directions in the normal

bundle simply survive in the near horizon geometry as a factor of S3. In general, this S3

2With G3 = dC2, integration by parts puts this in the form i

8π2

∫
C2 ∧ trF ∧ F , which may be more

familiar.
3Since U(Q5) = (U(1) × SU(Q5))/ZQ5

is only locally a product group, there will be a subtle coupling

between the U(1) BF theory and the sigma model associated to SU(Q5) instantons, which we concentrate

on in this article.
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would be fibered over the worldvolume of the D5-branes, which in our present discussion

is R2×S1×S3. But as S3 is parallelizable, the fibration is trivial and the angular variables

just give another factor of S3. Thus the near horizon geometry is AdS3 × S3 × S3 × S1.

Particularly if Q′
5 is not assumed to be small compared to Q1 and Q5, it is not entirely

clear from this analysis that the near horizon geometry will be the standard maximally

symmetric AdS3 × S3 × S3 × S1 geometry. If, however, this is the case (which is plausible

but will not be proved here), then we get a reasonable basis for expecting that Type IIB

superstring theory on AdS3×S3×S3×S1 is dual to a sigma-model with target the instanton

moduli space M. We also learn the dictionary in this relationship: Q5 maps to the rank

of a U(Q5) gauge group; Q1 is the instanton number; and Q′
5 is the “level,” that is, the

coefficient of a topologically non-trivial B-field in the sigma-model.

A puzzle here is that the AdS3 × S3 × S3 × S1 geometry, with Q5 and Q′
5 understood

as the flux of G3/2π over the two S3’s, has a manifest symmetry between Q5 and Q′
5.

It is not at all clear why the low energy limit of the D-brane system would have that

property. However, an encouraging observation was made in [23]. As remarked earlier, for

Q1 = 0, the low energy limit is a U(Q5) Chern-Simons theory at level Q′
5, which has a

symmetry Q5 ↔ Q′
5, usually called level-rank duality [27]. If it is true that string theory

on AdS3 × S3 × S3 × S1 is dual to the sigma-model, then for any value of Q1, the low

energy limit must have the same Q5 ↔ Q′
5 symmetry. The symmetry is only predicted

in the low energy limit because on the gravity side, it only emerges in the near horizon

limit of the geometry. Since level-rank duality is rather subtle, this example suggests that

understanding the Q5 ↔ Q′
5 symmetry of the sigma-model may not be easy.

A final remark is that conformal invariance of the sigma-model depends crucially on a

renormalization group flow. The sigma-model whose target is the instanton moduli space

M is somewhat analogous to a sigma-model with target a compact Lie group G: it is

constructed from a target space metric as well as a B-field. Conformal invariance will

hold only if these are properly related. In the case of the group manifold, if the target

space radius is large compared compared to the “level,” then the model is asymptotically

free but flows in the infrared to a conformally invariant fixed point at which the radius is

determined in terms of the level [28]. We anticipate a similar behavior for the sigma-model

with target M. In the preceding discussion, we assumed no relation between the radius of

the S3 ⊂ T∗S3 on which the D5-branes were wrapped and the sigma-model level Q′
5. If the

radius is too large, the sigma-model is definitely not conformally invariant; it has a target

space metric that is large compared to the level. What we will argue in the body of this

article is that with a correctly adjusted radius, the sigma-model has a conformally invariant

fixed point with large N = 4 superconformal symmetry. This will be an infrared stable

fixed point, since a theory with large N = 4 symmetry does not have relevant couplings

[6]. Hopefully, for any (or perhaps any sufficiently large) initially assumed radius, there is

a renormalization group flow to this fixed point.

Just as in the case of the WZW model, the metric of the target space at the critical

point is proportional to the level, which here is Q′
5. Hence at its critical point, the sigma-

model becomes weakly coupled if Q′
5 is taken to be large, for fixed Q1 and Q5. By contrast,

the supergravity description becomes reliable when Q1 ≫ Q5, Q
′
5 ≫ 1.
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By wrapping an orientifold plane on the D5-brane world-volume, one can as usual

replace the U(Q5) gauge group of the D5-branes by an orthogonal or symplectic group.

The duality conjecture considered in this article likely has an analog for those cases, but

we will not discuss this in detail. Most considerations regarding instanton moduli space

in this article are valid for any compact gauge group, although exceptional gauge groups

have no obvious application in AdS3 × S3 × S3 ×U(1) duality.

1.3 Differential Geometry Of A Four-Manifold and Its Instanton Moduli Space

In many cases, if a four-manifold M has a differential geometric structure which ensures

that a sigma-model with target M possesses a certain supersymmetry algebra, then the

moduli space M of instantons on M has the same differential geometric structure, so a

sigma-model with target M possesses the same supersymmetry algebra.

The most familiar results of this kind arise in the absence of a B-field. If M is Kahler,

so that a sigma-model with target M has global (2, 2) supersymmetry, then M is also

Kahler, and a sigma-model with target M also has global (2, 2) supersymmetry. If M is

hyper-Kahler, so that a sigma-model with target M has N = 4 superconformal symmetry

with the small N = 4 algebra for both left- and right-movers, then M is also hyper-Kahler,

again leading to small N = 4 superconformal symmetry for both chiralities.

Some results along these lines that are relevant to sigma-models with a B-field are as

follows:

1. If M satisfies the conditions for (0, 2) supersymmetry – it is a complex manifold with

a hermitian metric whose torsion is closed in a sense reviewed in section 3.1 – then

M is also a complex manifold4 [29, 30], with a natural hermitian metric that also has

closed torsion [13], so the sigma-model with target M also has (0, 2) supersymmetry,

2. If M is a generalized Kahler manifold (the geometry that leads to (2, 2) supersym-

metry with a B-field) then so is M [14, 16].

3. If M is an HKT manifold (the geometry that leads to (0, 4) supersymmetry, with a

small N = 4 algebra), then so is M [15].

4. If M is generalized hyper-Kahler or bi-HKT (leading to (4, 4) supersymmetry with

the small N = 4 algebra), then so is M. This follows on combining results in [14]

and [15]; see section 5.

5. Finally, ifM has the properties that lead to invariance under the large N = 4 algebra,

then so does M. This is shown in section 6.

1.4 Organization Of The Paper

This article is organized as follows.

In section 2, we describe basic aspects of the moduli space M that will be important

in this article. In section 3, we review the geometry required for extended supersymmetry

4The theorem of [29, 30] actually identifies M as a moduli space of stable bundles on M .

– 6 –



in a two-dimensional sigma-model and the relevant geometry of S3 × S1. In section 4,

we explain how to prove that the moduli space M is a hypercomplex manifold, and in

section 5 we extend that and prove that it has the geometry associated with small N = 4

symmetry. These two sections are primarily based on previous results [13–16], with some

details added. In section 6, we show that the sigma-model with target M actually has

the geometry associated to the large N = 4 algebra, not just the small one. For this, one

has to show that the Killing vector fields on M associated to the symmetries of S3 × S1

are covariantly constant for appropriate connections with torsion. We also determine the

central charges of the N = 4 algebra. In section 7, we complete the story by arguing

that the sigma-model with target M, with appropriate metric and B-field, is conformally-

invariant and not just scale-invariant. This is argued in several ways, using considerations

in [18, 19]. Putting all this together, it follows that the sigma-model with target M is a

conformal field theory with large N = 4 superconformal symmetry for both chiralities.

In section 1.2, in the starting point, we could have replaced T∗S3 with T∗(S3/Zn) for

some integer n ≥ 2, where Zn acts on S3 = SU(2) on, say, the left. Then the same logic as

before would motivate the idea that Type IIB superstring theory on AdS3×S3×S3/Zn×S1

is dual to instantons on S3/Zn × S1. Most of our considerations carry over directly to that

case, but there is an interesting novelty, discussed in section 8, and related to the possibility

of turning on a discrete NS B-field (assuming the background is of Ramond type). A gauge

bundle on S3/Zn×S1 has a Zn-valued discrete topological invariant that is absent for S3×S1,

and this makes it possible to construct examples that may be interesting purely from a

geometrical point of view. Hyper-Kahler manifolds can be generalized to include a non-flat

B-field, leading to the concept of a strong HKT manifold, a notion that we will review in

section 3. In general, a σ-model with target a compact strong HKT manifold will have

a large N = 4 superconformal algebra for one chirality. (To get large N = 4 algebras

for both chiralities, one needs a pair of strong HKT structures with equal and opposite

torsion.) However, known examples of manifolds of this type are very limited; apart from

hyper-Kahler manifolds, one has only homogeneous examples [31, 32], of which the simplest

is S3 × S1, and products of hyper-Kahler and homogeneous manifolds. As we explain in

section 8, for certain values of the instanton number and the discrete topological invariant,

the instanton moduli spaces on S3/Zn×S1 are smooth and compact. These may potentially

give the first examples of compact strong HKT manifolds that are not merely products of

hyper-Kahler manifolds and homogeneous spaces.

We conclude this introduction with a note on notation and terminology. Concerning

notation, we generally denote a four-manifold on which we study the instanton equation as

M and the corresponding instanton moduli space as M. The metric on M is denoted as g

and tangent space indices to M are denoted i, j, k or k, l,m; the metric on M is denoted

G and tangent space indices to M are denoted α, β, γ. Given a geometric structure on M ,

a corresponding structure on M is denoted with a hat. For example, if I is a complex

structure and V is a vector field on M , then the corresponding complex structure and

vector field on M are denoted as Î and V̂ . The target space of a general sigma-model is

denoted X; the metric on X is denoted as G and tangent space indices are denoted I, J,K.

Lie algebra indices of SU(2) and (related to this) tangent space indices of S3 are denoted
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a, b, c. At some points, it is hard to be completely consistent with these conventions; for

example, although we usually consider S3 × S1 as a four-manifold on which we study the

instanton equation, it is also considered in section 3.4 as the target space of a sigma-model.

Concerning terminology, the geometry that leads to a small N = 4 algebra (for both

left-movers and right-movers) has been called twisted generalized hyper-Kahler geometry,

where “twisting” means that the three-form H is topologically nontrivial (closed but not

exact). Similarly, the analog with N = 2 supersymmetry has been called twisted general-

ized Kahler geometry [20]. The generalized hyper-Kahler manifolds of primary interest in

the present article are twisted in that sense5 and we will take the liberty of sometimes omit-

ting the word “twisted.” Somewhat similarly, the geometry that leads to a small N = 4

algebra for, say, right-movers only (or left- and right-movers both) has been called strong

HKT geometry (or strong bi-HKT geometry), where HKT stands for a generalization of

hyper-Kahler geometry to allow torsion, “strong” means that dH = 0, and “bi” means

that there are two separate HKT structures with opposite torsion. Likewise, the analogs

for (0, 2) (or (2, 2)) have been called strong KT (or strong bi-KT) geometry. In this article,

we only consider geometries with dH = 0, appropriate to Type II superstrings, and we

sometimes omit the word “strong.”

2 Some Properties of the Instanton Moduli Space

In discussing general properties of the moduli spaces described in the introduction, we will

take the gauge group to be SU(Q5), since the center of U(Q5) leads to a BF topological

field theory that generally decouples. We view the Lie algebra of SU(n) as the algebra of

traceless antihermitian n× n matrices and we define the invariant quadratic form

(a, b) = −tr ab, (2.1)

where the minus sign is needed for positivity.

Most of what we will say will apply with minor modifications for other compact semi-

simple gauge groups, such as orthogonal and symplectic groups that one would encounter

in an orientifold construction. Sometimes we consider a general compact simple Lie group

G.

2.1 Cohomology: Some Simple Observations

Some low-dimensional cohomology classes of the instanton moduli space M will be impor-

tant. One thing that will emerge in the following analysis is that some statements are only

true, or are only known to be true, if Q1 and/or Q5 is sufficiently large. For small values

of the charges, there may be exceptional behavior not seen in supergravity.

2.1.1 More on the B-Field

First let us explain in more detail the statement that the interaction

−i

∫

R2×S3×S1
CS(A) ∧ G3

2π
(2.2)

5There are, however, interesting complete but not compact examples in which H is non-zero but exact.

See [14] for examples. The analysis in this article should apply to those examples, with minor changes.
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can be interpreted at low energies in terms of a B-field on M. The fact that the model

is at low energies a sigma-model with target M means that, if mα, α = 1, · · · ,dimM
are local coordinates on M, then at low energies the model can be expressed in terms of

fields mα(x), x ∈ R
2, along with their supersymmetric partners. This implies in particular

that after integrating out massive fields, the gauge field A – both its components Aµ,

µ = 1, 2 along R
2 and its components along S3 × S1– can be expressed in terms of the

mα. The Aµ vanish if the m’s are constant along R
2 (a constant set of mα’s simply

describes an instanton on S3 × S1 with no dependence on R
2). So the Aµ are proportional

to the derivatives of the m’s. The general form, modulo irrelevant terms of higher order, is

Aµ(x, y) =
∑

α fα(m(x), y) ∂
∂xµmα, where y ∈ S3 × S1 and fα(m, y) are Lie algebra valued

functions of m and y. So we have ∂µAν − ∂νAµ =
∑

α,β(∂αfβ − ∂βfα)∂µm
α∂νm

β, and

[Aµ, Aν ] =
∑

α,β[fα, fβ]∂µm
α∂νm

β. Since CS(A) depends on Aµ through ∂µAν − ∂νAµ

and [Aµ, Aν ], the form of these expressions shows that the interaction (2.2) reduces at low

energies, after integrating over S3 × S1, to something of the general form

i

∫

R2

d2x ǫµν Bαβ(m)∂µm
α∂νm

β, (2.3)

with Bαβ = −Bβα. This is the standard form of the contribution of a B-field to the

sigma-model action.

If themα are constant at infinity along R2, so that Aµ vanishes there, then in evaluating

the expression (2.2) we can compactify R
2 to S2. If we then view S2 as the boundary of a

ball U and extend the gauge field from S2 × S3 × S1 over U × S3 × S1, then we can replace

eqn. (2.2) with

−i

∫

U×S3×S1

trF ∧ F

4π
∧ G3

2π
. (2.4)

This is an improved formula because the integrand is gauge-invariant, but it does potentially

depend on the choice of U and of the extension of the gauge field over U . To compare two

different choices with different extensions over possibly different manifolds U and U ′, we

glue together U and U ′ along their boundaries to make a closed oriented manifold W and

learn that the difference in the two evaluations of the action is

−i

∫

W×S3×S1

trF ∧ F

4π
∧ G3

2π
. (2.5)

We can explicitly do the integral over S3, using the fact that in the setup described in

section (1.2), G3 is a pullback from S3 and
∫
S3

G3

2π = Q′
5. So the coupling turns out to be

−iQ′
5

∫

W×S1

trF ∧ F

4π
. (2.6)

The integral is 2πI, where I is the instanton number of the gauge field on W × S1. Thus

the action is

−2πiIQ′
5. (2.7)

As I is in general an arbitrary integer, this formula explains the interpretation of Q′
5 as

the sigma-model “level.” In other words, the formula shows that the effective B-field is Q′
5

times a minimal B-field that would satisfy the appropriate Dirac quantization.
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This characterizes the sigma-model B-field topologically, but the reader may wonder

if it is possible to write an explicit formula for the gauge-invariant field strength H = dB

as a three-form on M. Indeed, to understand the supersymmetry of the sigma-model, we

will need to understand explicit formulas. We explain some necessary tools in section 2.4

and eventually arrive at the final formula in section 5.

2.1.2 Theta-Angles And The Second Betti Number

Another important question is whether the σ-model admits a theta-angle. In general, a

(continuous) theta-angle is associated to a term in the Euclidean action of the form −iθΓ,

where Γ is an integer-valued topological invariant and therefore θ is an angular variable,

θ ∼= θ + 2π. In the present context, there is exactly one suitable invariant, namely the

integral of the third Chern class,6

Γ =
1

24π3

∫

R2×S1×S3
trF ∧ F ∧ F. (2.8)

Thus a single theta-angle will appear as a modulus of the sigma-model with target M. Pre-

cisely the same coupling appears in the gauge theory description of Type IIB superstrings

on T4 or K3. In that context, this coupling is interpreted as the dual to a Ramond-Ramond

parameter that appears in the supergravity solution [33]. We expect that this coupling has

the same interpretation in the case of Type IIB on AdS3 × S3 × S3 × S1. Indeed, in that

case the supergravity solution has precisely one Ramond-Ramond modulus [6].

It is straightforward to compare the moduli space of sigma-model parameters to super-

gravity. Since Γ is odd under a charge conjugation symmetry of SU(Q5) that exchanges the

fundamental and anti-fundamental representations, the angle θ contributes a factor S1/Z2

to the moduli space. In this article, we will always assume that the metric on S3 × S1 is a

product of standard round metrics on the two factors, in general with arbitrary radii r, r′.

Since the instanton equation is conformally invariant, only the ratio r′/r is relevant. It is a

positive number, taking values in the positive half-line R+. Including also the theta-angle,

the sigma-model moduli space is R+ × S1/Z2. This is precisely the moduli space of Type

IIB supergravity on AdS3×S3×S3×S1, as determined in [6]. That gives some preliminary

support to the duality conjecture relating the the sigma-model with target M to string

theory on AdS3 × S3 × S3 × S1. We have assumed that no unknown dualities are present;

this was argued in [6] based on an examination of the ends of the moduli space.

The parameter θ has a qualitative effect on the sigma-model spectrum. For any oriented

four-manifold M , the moduli space M of instanton solutions on M is compact and smooth

except for the small instanton singularity as well as singularities associated with “un-

Higgsing” – that is, singularities associated with reducible instanton solutions that do not

6For Q5 = 2, the third Chern class vanishes and the sigma-model with target the SU(2) moduli space

does not have a continuous theta-angle. (It does have a discrete one because π5(SU(2)) = Z2.) For Q5 = 2,

possibly the parity-odd supergravity modulus found in [6] decouples from the low energy physics. We note

that the gauge group of the brane system is really not SU(Q5) but U(Q5), or U(2) for Q5 = 2. The third

Chern class is nonzero for U(2), but at least for most purposes, the center U(1) ⊂ U(2) decouples at low

energies because of a Chern-Simons coupling, as reviewed in the introduction. For Q5 = 2, perhaps some

subtle effects depend on the coupling to the third Chern class.
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completely break the gauge symmetry. These singularities are “universal” – the small

instanton singularity does not depend on the four-manifold in which the small instanton is

embedded, and the un-Higgsing singularity depends only on the unbroken gauge group and

the spectrum of massless charged hypermultiplets, not on details of the four-manifold.7 In

the case of T4 or K3, there are four parameters, related to each other by supersymmetry,

that control the singularities. Three of these are parameters associated to Neveu-Schwarz

(NS) B-field modes, which resolve the small instanton singularity via a noncommutative

deformation of the instanton equation [35]. The same parameters also resolve the un-

Higgsing singularities as long as Q1 and Q5 are relatively prime. (If Q1 and Q5 are not

relatively prime, the model has unavoidable un-Higgsing singularities.) The fourth is a

Ramond-Ramond mode, which in the sigma-model becomes the theta-angle associated to

the third Chern class [33]. It resolves the same singularities that the NS parameters resolve

in the abstract sense of giving the sigma-model a discrete spectrum (not in the sense of

classically resolving the singularities of M). In the case of S3 × S1, the B-field modes that

could resolve the singularity in a classical sense are absent globally, sinceH2(S3×S1;R) = 0.

However, the theta-angle is still present. One expects the small instanton singularity to

be resolved as long as θ 6= 0, and (though this point deserves a more careful study) one

expects the un-Higgsing singularities to be resolved as long as the triple Q1, Q5, Q
′
5 has no

common divisor.

The reader might notice the following gap in our reasoning. In the sigma-model with

target M, we are not interested in arbitrary gauge fields on R
2 × S3 × S1 but only in

those that can be interpreted in terms of maps of R2 to M. Concretely, these are gauge

fields on R
2 × S1 × S3 that when restricted to p× S1 × S3, for any point p ∈ R

2, satisfy the

instanton equation on S1×S3. With this restriction, is it still true that Γ can take arbitrary

integer values? General results that will be described in section 2.4 imply that, for any Q5,

this is true for sufficiently large Q1. This allows the possibility that, for example, when

we approximate the six-dimensional gauge theory by a two-dimensional sigma-model, Γ

might vanish identically for some small values of Q1. If this happens (and the duality

conjecture that we are discussing is correct), it would mean that the modulus that is seen

in supergravity and is related to the theta-angle of the sigma-model decouples from the

low energy physics for those particular values of Q1.

A similar question concerns the coupling (2.2) that we interpret in terms of a two-

form field B̂ on M. If A is a completely general gauge field on W × S1 × S3, then the

expression in eqn. (2.4) can equal an arbitrary integer multiple of 2πQ′
5, and therefore the

coupling (2.2) is well-defined precisely mod 2πQ′
5. That is the basis for interpreting Q′

5 as

the sigma-model “level.” However, if we constrain A so that its restriction to p × S1 × S3

satisfies the instanton equation for every p, then is it still true that eqn. (2.4) can equal

an arbitrary integer multiple of 2πQ′
5? Again, for sufficiently large Q1, this is true by the

general results that will be explained in section 2.4.

One can also consider the possibility of discrete theta angles associated to torsion

in H2(M; U(1)). There is no evidence in supergravity that any such discrete parame-

7These statements fail in some exceptional cases described in section 7.
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ters should exist. It seems quite likely that for gauge group U(Q5), there is no torsion

in H2(M; U(1)). This would follow from results in [42] together with the Atiyah-Jones

conjecture described in section 2.4.

2.1.3 First Betti Number

We will also need to understand H1(M;R) and its dimension, which is the first Betti

number b1(M). In general, a generator of H1(M;R) is a closed 1-form λ that is not exact.

A closed 1-form λ can always be written locally as λ = dϕ with some function ϕ, but ϕ

may not be single-valued; it may be well-defined only modulo a constant. Conversely, if

ϕ is a function on M that is well-defined modulo a constant, then λ = dϕ is a nonzero

element of H1(M;R).

For the case that M is the instanton moduli space on S3 × S1, a real-valued function

that is only well-defined modulo a constant is

ϕ =
1

2π

∫

S3×S1
CS(A) ∧ dφ

2π
, (2.9)

with φ an angular variable on S1. Here we have chosen to integrate over φ, but for the

purpose of finding a generator of H1(M;R), it would not matter if we instead set φ to a

specific value. The function ϕ defined in eqn. (2.9) is multi-valued because of the usual

multi-valuedness of the Chern-Simons form.

Therefore, the exterior derivative of ϕ is a generator of H1(M,R). Let A be the space

of all gauge connections on S3 × S1 (not just the ones that satisfy the instanton equation),

and let G be the group of gauge equivalences (locally, this is simply the group of maps

of M to the gauge group SU(Q5)). We can view ϕ as a multi-valued function defined on

the space A/G of gauge fields modulo gauge equivalences, and likewise we can define the

exterior derivative of ϕ as a 1-form on A/G. We will reserve the symbol d for the exterior

derivative on a finite-dimensional manifold such S3× S1 or M, and write δ for the exterior

derivative on the infinite-dimensional manifold A or its quotient A/G. We also define

ψ(y) = δA(y), y ∈ S3 × S1. (2.10)

We can compute an explicit formula for λ = δϕ:

λ =
1

(2π)2

∫

S3×S1
trF ∧ δA ∧ dφ

2π
=

1

(2π)2

∫

S3×S1
trF ∧ ψ ∧ dφ

2π
(2.11)

One might wonder how to explicitly describe a loop in M on which λ has a nonzero

integral. This can be done as follows. Let u denote a point in S3 and let A(u, φ) be any

instanton solution on S3×S1 of instanton number Q1, representing a point in M. Introduce

a second circle S̃1 parametrized by another angular variable φ̃. Then A(u, φ + φ̃) is, for

each fixed φ̃, an instanton solution describing a point in M; as φ̃ varies over S̃1, A(u, φ+ φ̃)

varies over a loop γ ∈ M. It is also true that for fixed φ, A(u, φ+ φ̃) can be viewed as an

instanton solution, again of instanton number Q1, on S3 × S̃1. Using this, we can evaluate

the integral that defines
∮
γ
λ: ∮

γ

λ = Q1. (2.12)
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Here, since
∫
S1

dφ
2π = 1, we have to evaluate

1

(2p)2

∫

S3×S̃1

trF ∧ ψ. (2.13)

Here we can view ψ as a two-form with one index along S3 and one along S̃1 (the reader

might want to return to this point after reading section (2.4)), so we can replace trF ∧ ψ

by 1
2 trF ∧F . (There is a factor of 1

2 here because either factor of F in trF ∧F might have

an index along S̃1.) So we arrive at the integral that computes the instanton number on

S3 × S̃1.

2.1.4 Zeroth Betti Number

Though this will play less of a role in the present article, one may also ask whether M
is connected, that is, whether its zeroth Betti number vanishes. It appears that the fact

that S3 × S1 is elliptically fibered can be used to prove that M is connected. To see that

S3 × S1 is elliptically fibered, one can use the Hopf fibration S3 → S2 with fibers S1,

implying a fibration S3 × S1 → S2 with fibers S1 × S1. Since S2 ∼= CP
1 and since S1 × S1

can be regarded as an elliptic curve, the fiber and base of this fibration are both complex

manifolds. The description of S3 × S1 in section 3.3 shows that the total space of the

fibration is also a complex manifold. So S3 × S1 is a complex (but not Kahler) elliptic

fibration. The use of the elliptic fibration to prove that M is connected would follow ideas

explained in [36], generalized to higher instanton number and gauge groups of higher rank.

The generalization to S3×S1 of the Atiyah-Jones conjecture, described in section 2.4,

would also imply that M is connected.

These two remarks may be related as it may be possible8 to use the elliptic fibration

to prove the Atiyah-Jones conjecture for S3 × S1.

2.2 Symmetries Of M
Here we will discuss properties of the instanton moduli space M that are associated to

symmetries of S3 × S1.

First of all, S3 × S1 has discrete symmetries that act by a reflection of S3 and/or S1.

But separate reflections of the two factors reverse the orientation of S3 × S1, so they are

not symmetries of the instanton equation and do not lead to symmetries of M. Only a

combined reflection of S3 and S1 leads to a symmetry of M. We will denote such a joint

reflection of the two factors as ρ. This only characterizes ρ up to a rotation of the two

factors, but the precise choice of ρ will never be important.

The restriction to a joint reflection of the two factors agrees with what one would

expect based on a presumed duality with Type IIB superstrings on AdS3 × S3 × S3 × S1.

As analyzed originally in [4], the superstring solution on AdS3×S3×S3×S1 has a nonzero

three-form field on each of the first three factors, AdS3 and the two S3’s. This three-

form is invariant under all continuous symmetries of AdS3 × S3 × S3 × S1 and is of the

8E. Gasparim, private communication.
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same type (Neveu-Schwarz, Ramond-Ramond, or a combination) on all three factors. S-

duality implies that the type of three-form does not affect the following remarks, and for

definiteness we will assume a Neveu-Schwarz three-form H. A reflection of one of the S3’s

will reverse the sign of H. To get a symmetry, we can compensate for this by reversing the

worldsheet orientation, which also reverses the sign of H. But as there is H flux on each

of the first three factors of AdS3 × S3 × S3 × S1, to get a symmetry that involves reversing

the world-sheet orientation, we must make a simultaneous reflection of all three of those

factors. Finally, as Type IIB superstring theory does not have a symmetry that reverses

the spacetime orientation, to get a symmetry we must also simultaneously reflect the S1.

This explains that in a dual description involving gauge fields on the product S3 × S1 of

the last two factors, we should only expect to see a joint reflection of the two factors as a

symmetry, not a reflection of just one factor. But we also see that this discrete symmetry

of S3×S1 is accompanied in the full string theory by a reflection of AdS3, which will reverse

the boundary orientation. So therefore the joint reflection ρ of the two factors of S3 × S1

will be a parity symmetry of the dual CFT – a symmetry reverses the orientation and

exchanges left- and right-moving modes.

Now we move on to discuss continuous symmetries of S3 × S1 and their action on M.

For a convenient model of S3×S1, describe S3 with real variables yλ, λ = 0, · · · , 3 satisfying∑3
λ=0 y

2
λ = 1, and parametrize S1 by a periodic variable τ with τ ∼= τ + T for some T .

Choose a metric g on S3 × S1 that is described by the line element

ds2 =

3∑

λ=0

dy2λ + dτ2. (2.14)

In what follows, indices i, j, k are tangent to S3 × S1, while indices a, b, c = 1, · · · , 3 are

tangent to S3, and an index τ is tangent to S1. We denote the orientation of S3 via the

antisymmetric Levi-Civita tensor ǫabc and orient S3 × S1 so that the instanton equation

reads

Fab + ǫabcg
cc′Fc′τ = 0. (2.15)

Let us look at the vector field V = ∂
∂τ

that generates a rotation of S1, and the corre-

sponding vector field V̂ on M. In general, the action of a vector field V on a gauge field

A, with field strength F = dA+A ∧A, is only uniquely determined up to an infinitesimal

gauge transformation and takes the form

δAi = V jFji −Diσ, (2.16)

where σ is the generator of a gauge transformation. Let us prove that the particular vector

field V = ∂
∂τ

acts without fixed points on the instanton moduli space M (assuming that

the instanton number is nonzero). A zero or fixed point of the vector field V̂ on M that

corresponds to the vector field V on S3 × S1 would be an instanton solution such that, for

some σ, eqn. (2.16) reduces to

0 = Fτi −Diσ. (2.17)

– 14 –



Squaring, taking a trace, and integrating, we get

0 = −
∫

S3×S1
d4x

√
g
∑

i

tr (Fτi −Diσ)
2. (2.18)

The term linear in σ vanishes after integrating by parts, since an instanton connection

satisfies the second order Yang-Mills equation DiFji = 0. Hence

0 = −
∫

S3×S1
d4x

√
g
∑

i

tr
(
F 2
τi + (Diσ)

2
)
. (2.19)

In particular, a fixed point satisfies Fτi = 0. Since the instanton equation (2.15) then

implies that Fij = 0 for all i, j, it follows that a fixed point is actually a flat connection

and can only exist if the instanton number is zero.

Note that V has constant length as a vector field on S3 × S1. In section 6, after

defining the metric of M, we will show that the vector field V̂ on M that is associated

to V also has a constant length, which will determine one of the central charges in the

large N = 4 algebra. Of course, the assertion that V̂ has (nonzero) constant length is

much more precise than the statement that we just proved showing that V̂ has no zeroes

or fixed points. Similarly, writing SU(2)ℓ and SU(2)r for the left and right actions of SU(2)

on S3 = SU(2), a generator Tℓ or Tr of SU(2)ℓ or SU(2)r is a vector field on S3 × S1 of

constant length. In section 6, we will learn that the corresponding vector fields T̂ℓ and T̂r

on M likewise have (nonzero) constant length, and hence act without fixed points. More

generally, if Tℓ and Tr have unequal lengths (as vector fields on S3), then T̂ℓ+ T̂r acts on M
without fixed points. It will turn out as well that any linear combination uT̂ℓ + vT̂r +wV̂

with w 6= 0 has no fixed point. The fact that M has many symmetry generators that act

without fixed points is likely to mean that some attempts at supersymmetric localization

will give a trivial result.

However, if Tℓ and Tr have equal length, then T̂ℓ + T̂r does have fixed points in M, as

analyzed in [36]. We discuss some consequences in section 2.3. For now, we just note that

an example of a vector field T = Tℓ + Tr on S3 such that Tℓ and Tr have equal length is

T = y2
∂

∂y3
− y3

∂

∂y2
. (2.20)

The corresponding vector field T̂ = T̂ℓ + T̂r on M does have fixed points.

2.3 Is The Moduli Space A Symmetric Product?

As explained in the introduction, in the literature there are primarily two proposals for

the dual of Type IIB superstring theory on AdS3 × S3 × S3 × S1: the dual might be a

symmetric product of n copies of S3 × S1 for some n, denoted Symn(S3 × S1), or it might

be a sigma-model with target the instanton moduli space M on S3 × S1.

One can also ask – and this question has been raised as well – whether the two con-

jectures are different. Or is M, which according to an index theorem has real dimension

4Q1Q5, the same as, or possibly deformation equivalent to, SymQ1Q5(S3 × S1)? A moti-

vation for this question is that the instanton moduli spaces on T4 or K3 are indeed such

symmetric products. Is the same true for S3 × S1, at least for some values of the charges?
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The answer to this question is that in fact (for Q5 6= 1) the instanton moduli spaces

on S3 × S1 are not symmetric products of copies of S3 × S1 or deformation equivalent to

such products. One can show this by considering the fixed points of the U(1) symmetry

of S3 × S1 that is generated by the vector field T of eqn. (2.20). It is shown in [36] that

instantons on S3 × S1 that are invariant under this U(1) are equivalent to BPS monopoles

on a hyperbolic three-manifold H3/Z, where H3 is hyperbolic three-space (the Euclidean

version of AdS3), and a generator of Z acts by a hyperbolic element of the symmetry group

of H3; thus H3/Z is simply the Euclidean version of a BTZ black hole. For G = SU(2),

the magnetic charge is a single integer q, which as shown in [36] must be a divisor of

the instanton number Q1. For every divisor q, the monopole moduli space is non-empty

according to Corollary 5.3 in [37]. For any9 Q1 ≥ 2, there are at least two divisors, namely

1 and Q1. Thus the fixed point set always has at least two topological components. For

Q5 > 2, the magnetic charge of a monopole is classified by Q5−1 integers, and the number

of topological components of the fixed point set grows rapidly.

By contrast, the zeroes of the vector field T on S3 comprise the circle y2 = y3 = 0, so

its zeroes on S3×S1 make up the connected manifold S1×S1, a two-torus. The zeroes of T

on SymQ1Q5(S3 × S1) make up SymQ1Q5(S1 × S1). This is still a connected manifold, and

will remain connected after any deformation or resolution. So the instanton moduli space

on S3 × S1 is not deformation equivalent to SymQ1Q5(S3 × S1).

We should remark that for Q5 = 1, there is reasonable evidence that the dual of string

theory on AdS3 × S3 × S3 × S1 is a sigma-model with target SymQ1(S3 × S1), with each

factor taken at level Q′
5 [7]. Of course, for Q5 = 1, the gauge group is U(1) and instantons

only exist after a noncommutative deformation [35]. In the case of T4 or K3, there are

four parameters associated to such a deformation. Three of these parameters arise from

Neveu-Schwarz B-field modes and are studied in [35] and the fourth, related to these by

supersymmetry, is the expectation value of a certain Ramond-Ramond field. The NS B-

field modes have no analog for S3×S1, because H2(S3×S1;R) = 0. But the RR mode does

have an analog [6], and it is plausible that with this mode turned on, the instanton moduli

space on S3 × S1 for Q5 = 1 is a symmetric product, potentially providing a framework for

the results of [7].

2.4 Cohomology: Systematic Approach

At the end of section 2.1.2, we asked whether certain topological statements about gauge

fields on R
2 × S1 × S3 (with prescribed behavior at infinity along R

2) are modified if one

requires that the restriction of the gauge field to p×S1×S3, for any p ∈ R
2, is an instanton

solution. These are questions about the relationship between the topology of the space

A/G of gauge fields modulo gauge transformations on a given G-bundle E → S3 × S1, and

the topology of the moduli space M of instanton connections on E. Here A is the space of

all connections on E and G is the group of gauge equivalences, so M is a subspace of A/G,
namely the subspace that parametrizes gauge equivalence classes of instanton solutions.

9For SU(2) gauge theory with instanton number 1, the instanton modulli space is described explicitly

in [36] and does not appear to be a symmetric product.

– 16 –



The original mathematical statement about questions of this nature was the Atiyah-

Jones conjecture [34] about SU(2) gauge fields on S4. It asserts, roughly speaking, that in

the limit that the instanton number is large, M and A/G are topologically equivalent. This

equivalence means, for instance, that for any d ≥ 0, the restriction map j∗ : Hd(A/G;Z) →
Hd(M;Z) associated to the embedding j : M → A/G is an isomorphism. The original

Atiyah-Jones conjecture was proved in [38] and its generalization to SU(n) bundles on S4

was proved in [39]. For a short survey of related results and questions, see [40].

In this article, we are primarily interested in instantons on S3 × S1, rather than S4.

Hence a generalization of the Atiyah-Jones conjecture is relevant. A plausible generalization

would say that for any compact gauge group G and any oriented compact four-manifold

M , M and A/G are topologically equivalent in the limit of large instanton number. What

has actually been proved for general G and M is a somewhat weaker statement (Theorem

2∗ in [41]), which says in particular that for any M and G, the map on homology j∗ :

Hd(M;Z) → Hd(A/G;Z) is a surjection if the instanton number is large enough compared

to d. This implies that for any manifold N , constraining a gauge field on N × S1 × S3

to satisfy the instanton equation when restricted to p × S1 × S3 for any p ∈ N places

no topological restriction if the instanton number is sufficiently large. So it answers the

questions raised at the end of section 2.1.2, which involved the case that N is of dimension

2 or 3.

However, several issues that arise in the present article require further information

concerning the relation between the topology of M and of A/G. In particular, it would

be nice to know that the restriction maps j∗ : H i(A/G;Z) → H i(M;Z) are isomorphisms,

at least for i = 1, 2 and suitable Q1, Q5. The relevance to arguments in this paper is as

follows. In general, the number of continuous theta-angles in a sigma-model with target

M is the dimension of H2(M;R). The invariant defined in eqn. (2.8) can be viewed as a

generator of H2(A/G;Z) and therefore (forgetting its integrality) of H2(A/G;R). As we

explain shortly, this invariant generates H2(A/G;R). It can be restricted to M and this

restriction is nonzero according to [41]. In comparing the sigma-model moduli space to the

supergravity moduli space, we assumed that this restriction generates H2(M;R), leading

to a unique theta-angle. This is true if the map j∗ is an isomorphism on the degree two

cohomology. Somewhat similarly, in eqn. (2.11), we defined a closed one-form λ that is a

generator of H1(A/G;R). As we explain shortly, λ generates H1(A/G;R). We proved that

the restriction of λ to M is nonzero by exhibiting a curve in M on which λ has a nonzero

integral. In section 7, in one approach to proving conformal invariance of the sigma-model

with target M, we will want to know that λ actually generates H1(M;R). This is true if

the map j∗ is an isomorphism on the degree one cohomology. In the present article, we will

assume that some sort of analog of the Atiyah-Jones conjecture is true and justifies these

statements, at least for suitable Q1, Q5. Hopefully, such a statement holds at least in the

regime in which supergravity is valid, namely Q1 ≫ Q5 ≫ 1.

The context for some statements in the last paragraph is the following. In [42], Atiyah

and Bott explicitly described a set of generators of the real cohomology ring of A/G, along
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lines that we will explain shortly.10 For the case of M = S3 × S1, in degree 1 and degree 2,

the generators that they describe are precisely the ones that we considered in eqns. (2.8)

and (2.11).

We will need some knowledge of the explicit generators of the real cohomology of A/G
constructed by Atiyah and Bott, mainly because we will in section 5 need to recognize a

certain explicit three-form on M that represents the three-dimensional cohomology class

that was described somewhat implicitly in section 2.1.1. The following discussion is in

the spirit of [42], as later refined and extended for applications to four-manifolds [47] and

interpreted more physically [44]. Recall that we denote the exterior derivative on A as δ

and we also define ψ = δA. The components Aa
µ(x) (x is a point in M and µ and a are

tangent space and Lie algebra indices, respectively) are understood as functions on A, while

ψa
µ(x) is a one-form on A. A general function F (A,ψ) that is homogeneous of degree k in

ψ represents a k-form on A. We will extend the definition of δ with other fields included so

that δ2 will generate a gauge transformation and therefore will vanish on gauge-invariant

functions.

If we were interested in differential forms on A, we would simply define δψ = 0 and

then δ would represent the exterior derivative acting on functions of A and ψ. But in order

to construct differential forms on A/G, it is necessary to take into account the gauge group.

For this purpose, we introduce a Lie algebra valued scalar field σ on M . The action of δ

on the three fields A,ψ, σ is defined by

δA = ψ

δψ = −dAσ

δσ = 0. (2.21)

Here dA = d + [A, ·] is the gauge-covariant extension of the exterior derivative. These

formulas imply that δ2 is equivalent to a gauge transformation generated by σ; for example,

δ2A = δψ = −dAσ is the infinitesimal transformation of A under a gauge transformation

generated by σ, and similarly δ2ψ = [σ, ψ], δ2σ = [σ, σ] = 0. Since we want δ to increase

the degree of a differential form by 1, and we have assigned degree 0 to A and degree 1 to

ψ, we have to assign degree 2 to σ. We will call this degree the δ-degree; it has also been

called ghost number. In keeping with the fact that σ has δ-degree 2, we will eventually

learn that it can be converted for many purposes to a two-form on A/G.
Since in general δ2 is the generator of a gauge transformation, it follows that acting on

gauge-invariant functions F (A,ψ, σ), δ2 = 0. We will explain explicitly how to convert a

gauge-invariant function F (A,ψ, σ) that is homogeneous of degree k to a k-form on A/G. A
function F that is δ-closed, that is, one that satisfies δF = 0, will map to a closed form on

10Atiyah and Bott were studying the case that M is a two-manifold. However, as long as one considers

only the real cohomology of A/G, not the integer cohomology, their considerations carry over to the case

that M is of any dimension. For the group U(n), they described the classifying space. The upshot was to

show that on any manifold M , the cohomology of A/G is generated by certain classes associated to Chern

classes. For the real cohomology, one can use differential forms and this leads to the generators that they

described and that are introduced presently. Since U(n) = (SU(n) × U(1))/Zn, the same result applies to

the real cohomology of A/G for gauge group SU(n).
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A/G. What we have described is in fact the Cartan model of the equivariant cohomology

of G acting on A. Because G acts freely11 on A, this equivariant cohomology is the same

as the cohomology of A/G.
Before explaining12 how to map functions F (A,ψ, σ) to differential forms on A/G,

we will describe the important gauge-invariant and δ-invariant functions on A. The most

obvious possibility is to pick a point x ∈ M and a homogeneous polynomial P of degree s

on the Lie algebra g of G, and consider the function P (σ(x)). This is gauge-invariant and

δ-invariant and is of δ-degree 2s, so it will map to a closed 2s-form on A/G. This form is

not δ-exact, since P (σ(x)) is not δO for any O, so it will potentially lead to a nontrivial

cohomology class on A/G.
To minimize the notation that is required in the following discussion, let us assume

that G = SU(Q5), in which case the ring of invariant polynomials on g has a simple set

of generators that we will denote P
(0)
s (σ) = trσ(x)s, s = 2, · · · , Q5. Now with d as the

exterior derivative on M , we compute dP
(0)
s = s trσs−1dAσ. This does not vanish, but we

find s trσs−1dAσ = −δP
(1)
s with P

(1)
s = strσs−1ψ:

δP (1)
s = −dP (0)

s . (2.22)

In this formula, P
(0)
s is a scalar function on M , which can be defined at any point x ∈ M ,

and has δ-degree 2s; on the other hand P
(1)
s is a one-form on M of δ-degree 2s− 1.

The formula (2.22) can be read in two ways. First of all, reading the formula from

right to left, it says that although P
(0)
s is not δ-exact, its derivative along M is δ-exact.

Hence, once we learn how to interpret trσ(x)s as a 2s-form on A/G, this 2s-form will be

independent of x, up to an exact form.

On the other hand, reading the formula from left to right, it says that although the

1-form P
(1)
s on M is not δ-closed, its variation under δ is d-exact. Hence if γ ⊂ M is a

closed loop, then
∮
γ
P

(1)
s is δ-closed, since

δ

∮

γ

P (1)
s = −

∮

γ

dP (0)
s = 0. (2.23)

Hence, once we learn to convert functions F (A,ψ, σ) that are gauge-invariant and δ-

invariant to closed differential forms on A/G, the function
∮
γ
P

(1)
S of δ-degree 2s − 1 will

correspond to a closed differential form of degree 2s− 1 on A/G.
What we have described so far is the first step in a “descent” procedure. For m ≥ 0,

one finds inductively gauge-invariant polynomials P
(m)
s (A,ψ, σ) such that P

(0)
s = trσs(x)

and dP
(m)
s = −δP

(m+1)
s . These relations imply that if Σ ⊂ M is any m-cycle, then

∫
Σ P

(m)
s

is δ-closed (indeed, δ
∫
Σ P

(m)
s = −

∫
Σ dP

(m−1)
s = 0). So

∫
Σ P

(m)
s , which has δ-degree 2s−m,

will correspond to a closed form on A/G of degree 2s −m. The cohomology class of this

11Except for the center of G and except for subtleties involving gauge connections on M that are reducible,

that is, those that do not completely break the gauge symmetry down to the center of G. For our purposes,

these subtleties are unimportant, because reducible instantons on S3×S1 arise only in very high codimension,

and the center of G acts trivially on gauge fields. However, a more careful treatment of the cohomology

might be important for more delicate questions beyond the scope of the present article.
12The reader might prefer to return to the following discussion after reading section 5.
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form on A/G only depends on the homology class of Σ, since if Σ = ∂B is a boundary,

then
∫
Σ P

(m)
s =

∫
B
dP

(m)
s = −δ

∫
B
P

(m+1)
s is δ-exact.

The construction just sketched has been important in the theory of smooth four-

manifolds [47]. As follows from the arguments in [42], the cohomology classes corresponding

to
∫
Σ P

(m)
s for various Σ and m generate the (real) cohomology ring of A/G. All these

classes can be restricted from A/G to M. An analog of the Atiyah-Jones conjecture would

potentially say that these restrictions generate the real cohomology of M, but at any rate,

the cohomology classes of M that will be important in this article can be obtained as such

restrictions.

For the particular case M = S3 × S1, we can only make one generator of H1(M;R)

this way, namely
∫
S3×q

P
(3)
2 for an arbitrary point q ∈ S1, and one generator of H2(M ;R),

namely
∫
S1×S3 P

(4)
3 . These correspond to the generators described in more direct terms in

sections 2.1.2 and 2.1.3. In degree 3, there are two possible generators, namely
∫
p×S1 P

(1)
2 ,

with p ∈ S3, and
∫
S3×q

P
(3)
3 , q ∈ S1. The first of these corresponds as we will see to the

field strength of the B-field on M, and the second will not play an important role in the

present article.

Before explaining how to concretely interpret
∫
Σ P

(m)
s as a closed differential form on

M, we will make the descent procedure more explicit in the case that is actually important

for understanding the B-field on M. Setting s = 2 and changing the normalization, we set

P (0) = 1
8π2 trσ

2. Inductively solving dP (m) = −δP (m+1), we find

P (0) =
1

8π2
trσ2

P (1) =
1

4π2
trσψ

P (2) =
1

4π2
tr

(
1

2
ψ ∧ ψ − σF

)

P (3) = − 1

4π2
trψ ∧ F

P (4) =
1

8π2
trF ∧ F. (2.24)

So P (4) is the four-form whose integral over M is the instanton number
∫
Σ c2(E), where c2

is the second Chern class of the gauge bundle E → M . This statement can be generalized

as follows. Consider a family of gauge connections on E → M , parametrized by some

parameter space S. These will fit together13 into a gauge connection in the M direction

on a bundle Ê → M × S (for a point s ∈ S, Ê restricts on s×M to the original E → M ,

up to isomorphism). In section 2.1.1, in discussing the B-field on M, with M = S3 × S1,

we made this construction for S = R
2, and subsequently for S a three-manifold W . The

universal choice of S is simply A/G, which parametrizes all possible gauge fields on M , up

13For a more complete description, see section 5. We disregard a potential obstruction involving the

center of the gauge group, which can be circumvented by considering the bundle ad(E) associated to E in

the adjoint representation of G and is inessential for our purposes. Note that rather than a single G-bundle

E → M , we really should begin this construction with a family of G bundles E → M , parametrized by S.
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to gauge transformation. Any other S is obtained by mapping some other space into this

one.

The bundle Ê → M ×A/G has a second Chern class of degree 4. We will consider this

second Chern class as a real cohomology class, valued inH4(M×A/G;R). This cohomology

group has a decomposition H4(M × A/G;R) = ⊕4
m=0H

m(M ;R) ⊗ H4−m(A/G;R). The

geometrical interpretation of the descent procedure [45, 46] is that P (m) corresponds to

the part of c2(Ê) that is valued in Hm(M ;R) ⊗H4−m(A/G;R). Then if we are given an

m-cycle Σ ⊂ M , we can integrate14 P (m) over Σ to get a δ-closed function of δ-degree

4 −m, namely
∫
Σ P (m), representing an element of H4−m(A/G;R). This element can be

restricted from A/G to M ⊂ A/G to get a δ-closed function on M, which will correspond

to a closed form of degree 4−m.

To get a three-dimensional cohomology class on A/G, we have to implement this pro-

cedure with m = 1. So we pick a point p ∈ S3 and integrate P (1) over p × S1 to get
1

4π2

∮
p×S1 trσψ. Once we learn how to interpret σ as a two-form on A/G, this will indeed

become a closed three-form on A/G, normalized so that its periods (its integrals over closed

three-cycles in A/G) are integers. That integrality will follow from the integrality of the

second Chern class. The cohomology class of 1
4π2

∮
p×S1 trσψ does not depend on p, as

explained in the discussion of eqn. (2.23). Any choice of p will give a representative of

the same cohomology class, but we can get a particularly nice representative by averaging

over p. If d3Ω is a “round” volume form on S3 normalized so that the total volume is 1,

then the average is just
∫
S3×S1 d

3ΩP (1). After converting σ to a two-form, this will become

a three-form on A/G – and therefore, by restriction, on M – with integer periods. Since

the field strength of the B-field is supposed to have periods that are 2π times integers, a

minimal three-form that satisfies Dirac quantization will be 2π times this or

H0 = 2π

∫

S3×S1
d3ΩP (1). (2.25)

In a moment, we will explain how to turn the expression (2.25) into a concrete three-

form on A/G, by eliminating σ in favor of A and ψ. But for now, let us compare the

expression (2.25) to eqn. (2.5). Since eqn. (2.5) is a formula for
∫
W

H (rather than a

description of a three-form H), to make this comparison we will integrate eqn. (2.25) over

a three-cycle W ⊂ A/G, corresponding to a family of gauge connections on S3 × S1. We

get ∫

W

H0 = 2π

∫

W×S3×S1
d3ΩP (1). (2.26)

Since
∫
S3 d

3Ω = 1, we can do the integral over S3, giving
∫
W

H0 = 2π
∫
W×S1 P

(1). But since

P (1) just represents the part of 1
8π2 trF ∧ F ∼ c2(Ê) that is of degree 1 on S3 × S1 and

degree 3 on A/G, we have
∫
W

H0 = 2π
∫
W×S1

trF∧F
8π2 . Comparing this to eqn. (2.6), we see

that the relation between H0 and the field strength H = dB of the sigma-model is

H = Q′
5H0 + d(· · · ). (2.27)

14This procedure, which was introduced in [42], was used to great effect by Donaldson [47] in studying

four-manifolds.
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The derivation of this statement involved integrating over an arbitrary cycle W , so the

statement only holds modulo an unknown exact form, denoted here as d(· · · ).
The reader who has gotten this far may well feel that we have not learned much, since

we already asserted at the end of section 2.1.1 that the B-field of the sigma-model is Q′
5

times a minimal B-field that obeys Dirac quantization. However, by turning σ into an

explicit differential form, we can now do what was not available previously and describe

explicit three-form representatives of H0.

Actually, though the formula for H0 that we will get makes sense and is correct as a

three-form on A/G, it is possibly easier to get some intuition if we restrict to M, which is

in any event what we want to do for our application. In this analysis, we make use of the

way this construction fits into an actual quantum field theory, as explained in [44].

When we restrict to M, the gauge field A on S3 × S1 satisfies the instanton equa-

tion15 F+ = 0. (In the construction in [44], the restriction to M is made in the sense of

supersymmetric localization.) Therefore ψ = δA satisfies the linearization of the instan-

ton equation, namely (dAψ)
+ = 0. However, being a one-form in four-dimensions, ψ has

four components, and (since the bundle of selfdual two-forms has rank three) the equation

(dAψ)
+ = 0 is only three equations. Therefore in any physical model in which this con-

struction is embedded, ψ will obey a fourth equation. That equation is model-dependent,

and different choices will actually lead to different three-forms all representing the same

cohomology class on M.

In [44], the theory considered was a twisted version of N = 2 super Yang-Mills theory.

In that theory, in addition to A,ψ, σ, the important fields for our present purposes are a

pair σ, η. These are spin zero fields in the adjoint representation; σ is a boson of δ-degree

−2 and η is a fermion of δ-degree −1. They transform under δ as

δσ = η

δη = [σ, σ]. (2.28)

We note that these formulas are consistent with δ having δ-degree 1, and with δ2 being a

gauge transformation generated by σ (thus, δ2σ = [σ, σ], and similarly for η).

The action of the theory is δ-invariant, and the part of the action that is relevant for

our purposes is δ-exact. There is much arbitrariness in the δ-exact part of the action. The

minimal choice made in [44] amounted to

−δ

∫

M

d4x
√
g tr σDiψ

i =

∫

M

d4x
√
g tr

(
σDiD

iσ − σ[ψi, ψ
i]− ηDiψ

i
)
. (2.29)

Assuming that these are the only terms by which σ and η appear in the action (or the only

terms that are relevant in lowest order, which is good enough in the localization argument),

we can read off the equations of motion:

Diψ
i = 0

DiD
iσ = [ψi, ψ

i]. (2.30)

15We denote the selfdual and anti-selfdual parts of a two-form b as b+ and b−.
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We have simultaneously accomplished two things. First, we have found the desired extra

equation of motion for ψ, namely Diψ
i = 0. And second, we have learned how to express

σ in terms of ψ, namely by solving the equation DiD
iσ = [ψi, ψ

i], implying that

σ(x) =

∫

S3×S1
B(x, y)[ψi, ψ

i](y)d4y
√
gy, (2.31)

where B(x, y) is the Green’s function of the Laplace operator:

D

Dxi
D

Dxi
B(x, y) = δ4(x, y)Id. (2.32)

Here
√
gy is just

√
g regarded as a function of y, and Id is the identity operator acting on

the fiber of the adjoint bundle ad(E).

Using in eqn (2.25) the explicit formula for P (1) from eqn. (2.24) and using eqn. (2.31)

to eliminate σ, we get an explicit formula for H0 as a three-form on M:

H0 =
1

2π

∫

S3×S1×S3×S1
d3Ωxdτxd

4y
√
gytr⊗ trψτ (x)B(x, y)[ψµ, ψ

µ](y). (2.33)

Here the two copies of S3×S1 are parametrized respectively by x and y. We have used the

fact that the only part of ψ(x) that contributes in the evaluation of eqn. (2.25) is ψτ (x)dτ .

The preceding derivation can be generalized by replacing Diψ
i on the left hand side of

eqn. (2.29) with another expression. Then the auxiliary condition Diψ
i = 0 in eqn. (2.30)

will be replaced by another condition. As we will learn in section 5, to understand the

moduli space M of instantons on S3 × S1, a different auxiliary condition is more useful,

namely

Diψ
i + ⋆(H ∧ ψ) = 0 (2.34)

(where ⋆ is the Hodge star). To modify the preceding derivation to incorporate this condi-

tion, we merely add another δ-trivial term to the action, taking it to be

−δ

∫

M

d4x
√
g trσ

(
Diψ

i + ⋆(H ∧ ψ)
)
=

∫

M

d4x
√
g tr

(
σ(DiD

iσ + ⋆(H ∧ dAσ))

−η(Diψ
i + ⋆(H ∧ ψ))− σ[ψi, ψ

i]
)

(2.35)

The equation of motion for η gives the desired condition (2.34). But the equation of motion

for σ also changes and is now

Wσ = [ψi, ψ
i], (2.36)

where the operator W is defined by

Wσ = DiD
iσ + ⋆(H ∧ dAσ). (2.37)

The formula (2.33) is still valid, except that B(x, y) is now the Green’s function of16 W ,

obeying

WxB(x, y) = δ4(x, y)Id, (2.38)

16We show in section 4 that W has no kernel or cokernel, so this Green’s function exists.
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where Wx is the operator W acting on the variable x. An important detail, though, is that

as W is not self-adjoint, its Green’s function B(x, y) is not symmetric in x and y, and the

equation that it obeys in the y variable is actually

W †
yB(x, y) = δ4(x, y)Id, (2.39)

where W † is the adjoint operator

W †σ = DµD
µσ − ⋆(H ∧ dAσ). (2.40)

One way to prove eqn. (2.39) is to observe that eqn. (2.38) implies that

∫

M

d4y
√
gy B(x, y)WyB(y, z) = B(x, z). (2.41)

On the other hand, we can write the left hand side of eqn. (2.41) as

∫

M

d4y
√
gy W

†
yB(x, y) ·B(y, z), (2.42)

and eqn. (2.39) follows by comparing this with eqn. (2.41).

Regardless of whether we take B(x, y) to be the Green’s function of the Laplace oper-

ator, the operator W , or some other operator related to another valid condition for ψ, eqn.

(2.33) is an explicit formula for a three-form on M in the appropriate cohomology class.

But as will eventually become clear, the torsion of the generalized hyper-Kahler metric

of M is the representative of this cohomology class that we get if B(x, y) is the Green’s

function of the operator W .

3 Some Background

In this section, we will review relevant background material on three topics: supersymmet-

ric sigma-models with a B-field; the relevant geometry of S3 × S1; and the large N = 4

superconformal algebra in two dimensions. The first two topics were reviewed recently in

[19]; more information can be found there on some aspects, along with further references.

3.1 Supersymmetric Sigma-Models With a B-Field

The most basic type of two-dimensional supersymmetric sigma-model with a B-field is a

model with (0, 1) supersymmetry.17 We will briefly review such models following [49]. We

consider a model with a general target space X, which we describe by local coordinates XP ,

P = 1, · · · ,dimX, and endowed with a metric GPQ and a B-field BPQ, with field strength

HPQR = ∂PBQR + ∂QBRP + ∂RBPQ. On a superspace Σ of dimension 2|1 with even

coordinates x−, x+ and one odd coordinate θ, we introduce a supersymmetry generator

17We will treat these models classically, not worrying about sigma-model anomalies [48], as they will

be absent in the N = 4 models that we consider eventually. Likewise we will not worry about a possible

anomaly in the U(1) chiral symmetry in the (0, 2) models that we discuss presently; this is again absent

when the model is extended to N = 4 and the global symmetry is extended from U(1) to SU(2).
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Q+ = i
(

∂
∂θ

− iθ ∂
∂x+

)
, satisfying Q2

+ = i∂+ and commuting with D = ∂
∂θ

+ iθ ∂
∂x+ , which is

used in writing Lagrangians. The sigma-model map Φ : Σ → X can be described concretely

in terms of superfields XP = XP + iθψP . The supersymmetry variation of these fields is is

δXP = Q+XP or

δXP = iψP , δψP = ∂+X
P . (3.1)

A natural supersymmetric action for these fields is

S = − i

2

∫
d2xdθ (GPQ +BPQ)DXP ∂

∂x−
XQ. (3.2)

After integrating over θ, the bosonic part of the action is the standard

Sb =
1

2

∫
d2x(GPQ +BPQ)∂+X

P∂−X
Q. (3.3)

The fermion action turns out to be

Sf =
i

2

∫
d2xGPQψ

P

(
δQS

∂

∂x−
+

∂XR

∂x−
Γ̃Q
RS

)
ψS , (3.4)

where Γ̃Q
RS is not the usual Riemannian affine connection ΓQ

RS but has also a torsion term

proportional to H:

Γ̃Q
RS = ΓQ

RS +
1

2
GQTHTRS . (3.5)

Using this new affine connection, we define a connection ∇ with torsion that differs from

the Riemannian connection D. The covariant derivative of a vector field V with respect to

∇ is

∇PV
R = ∂PV

R + Γ̃R
PQV

Q = DPV
R +

1

2
GRSHSPQV

Q. (3.6)

This connection has completely antisymmetric torsion H. Accordingly it is metric com-

patible, meaning that the Riemannian metric GPQ is covariantly constant.

As an example of the usefulness of this connection, let us ask a question whose impor-

tance in relation to the large N = 4 algebra was explained in [5]. What condition should a

vector field V on X satisfy so that the sigma-model field Λ =
∑

K VKψK obeys ∂−Λ = 0 and

thus is a chiral free fermion? Since the equation of motion for ψ is ∂−ψ
P = −∂−X

RΓ̃P
RSψ

S ,

we have ∂−Λ = ∂−X
R∂RVS ψS − VP∂−X

RΓ̃P
RSψ

S . The condition for this to vanish is

∂RVS − Γ̃P
RSVP = 0, or in other words

∇RVS = 0, (3.7)

that is, V is covariantly constant for the connection ∇. If this condition is satisfied, then

in addition to the chiral free fermion Λ of spin 1/2, we get a free chiral current of spin 1:

J = {Q,Λ} = VK∂+X
K + i∂LVKψLψK . (3.8)

Up to this point, GPQ and BPQ were not subject to any particular constraint. That

changes if we ask for the sigma-model to have (0, 2) supersymmetry [50, 51]. The N = 2

superconformal algebra has a U(1) R-symmetry under which the two supercharges have
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charge ±1. We do not want to restrict the target space X to have a U(1) symmetry, so we

assume the bosons to have R-charge 0 and the fermions to have R-charges ±1. Thus we

assume a U(1) symmetry that acts on fermions only, generated by

δψP = IP
Qψ

Q, (3.9)

with some linear operator I. In a generic local coordinate system on X, the matrix elements

of I are position-dependent, but as the components of ψ are supposed to have R-charges

±1, we can normalize I so that I2 = −1, making I an almost complex structure on

X. This implies in particular that X has even dimension 2p. We denote the +i and −i

eigenmodes of I as ψα and ψβ, α, β = 1, · · · , p. The condition that the fermion action Sf

of eqn. (3.4) actually does have the symmetry of eqn. (3.9) gives two conditions. First,

the metric tensor G must be of type (1, 1) with respect to I, meaning that its nonzero

components are Gαβ = Gβα. (The metric G is therefore said to be hermitian with respect

to I.) Second, since Sf is constructed in terms of the covariant derivative of ψ with respect

to the connection ∇, invariance of Sf requires that the tensor IP
Q should be covariantly

constant with respect to this connection:

∇I = 0. (3.10)

Thus both G and I are covariantly constant with respect to ∇, implying that ithe structure

group of ∇ reduces to U(p). The R-symmetry conjugates the original supersymmetry (3.1)

to a second one that acts by

δXP = IP
Qψ

Q, δψP = −IP
Q∂+X

Q. (3.11)

Requiring that this squares to a translation generator i∂+ gives a condition that is quadratic

in I and its first derivative. This condition is precisely the vanishing of the Nijenhuis

tensor. Thus I is actually an integrable complex structure on X, and one can introduce on

X local holomorphic coordinates xα, xβ, α, β = 1, · · · , p. In such a coordinate system, the

nonzero components of I are simply Iα
β = iδαβ, Iα

β = −iδαβ, and the condition (3.10)

simplifies to Γ̃α
βγ = Γ̃α

βγ
= 0 (and the complex conjugate of this). From this we learn that

Hαβγ = Hαβγ = 0, saying that H is of type (2, 1) ⊕ (1, 2) with respect to I, and that

Hαβγ = −∂αGβγ + ∂βGαγ . (3.12)

For H to be the field strength of some two-form field B, one requires18 dH = 0, which here

tells us that
∂2

∂xα∂xβ
Gγδdx

αdxγdxβdxδ = 0. (3.13)

So locally

Gαβ = ∂αKβ + ∂βKα, (3.14)

18Here the remark in footnote 17 is relevant. As sigma-model anomalies will eventually be canceled by

adding left-moving fermions, we are not interested in canceling them by a Green-Schwarz mechanism with

dH 6= 0, as is appropriate in the context of the heterotic string.
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where the one-form K is the closest analog in this context of a Kahler potential. This

observation is natural in a certain superspace construction of this class of models [52].

Associated to this data we can define a hermitian form ω by ωPR = GPQIQ
R, or

in local holomorphic coordinates ωαβ = −iGαβ = −ωβα, with other components of ω

vanishing. In particular ω is of type (1, 1); moreover, ω is covariantly constant with respect

to ∇, since G and I are. Note that the two-form ω associated to an antisymmetric tensor

ωPR is defined as19

ω =
1

2

∑

P,R

dXPdXRωPR. (3.15)

If dω = 0, then X is called a Kahler manifold and eqn. (3.12) implies that H = 0. Indeed,

if as usual we expand the exterior derivative in parts of type (1, 0) and (0, 1) by writing

d = ∂ + ∂, then eqn. (3.12) tells us that

H = −i(∂ − ∂)ω. (3.16)

An alternative way to write this formula is the following. One defines an action of I on

differential forms by I(f(X)dXP ) = f(X)IP
QdX

Q and more generally

I(f(X)dXP1 · · · dXPs) = f(X)IP1
Q1

dXQ1 · · · IPs
QsdX

Qs . (3.17)

Then, since ω is of type (1, 1) and H is of type (2, 1) ⊕ (1, 2), the formula (3.16) for H is

equivalent to

H = −Idω = −IdIω. (3.18)

The formulas (3.16) and (3.18) are useful because they express H just in terms of the

gauge-invariant data ω, I, as opposed to the usual formula H = dB, where B is gauge-

dependent. For completeness, we also include a formula for the Lee form (which appears

in the one-loop beta function of a model of this type [53, 54])

θK = −1

2
IL

KHLPQIPQ. (3.19)

The Lee form will be relevant in section 7, though we will not make any use of the formula

(3.19).

Having gotten this far, the further extension to (0, 4) supersymmetry is straightforward.

In this case, one wants an SU(2) R-symmetry that acts only on the fermions. This group

has three symmetry generators I,J ,K, and as the fermions should all transform as spin

1/2 under SU(2), the generators can be normalized so that they obey the quaternion

relations I2 = J 2 = K2 = −1, IJ = −JI = K. This implies in particular that X must

have dimension D = 4q for some integer q. Using J or K instead of I in eqn. (3.11)

will give two more supersymmetries, making four supersymmetries in all. The preceding

considerations apply to each of I,J ,K separately, so in particular each of I,J ,K is an

integrable complex structure. Being endowed with three complex structures that satisfy

19The factor of 1

2
ensures that if A is a one-form and F = dA, then F = 1

2

∑
P,R dXPdXRFPR where the

definition of FPR is the standard FPR = ∂PAR−∂RAP . Note that as d =
∑

P dXP ∂P and A =
∑

R dXRAR,

we have dA =
∑

P,R dXPdXR∂PAR = 1

2

∑
P,R dXPdXRFPR.
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the quaternion relations, X is called a hypercomplex manifold.20 Moreover, the metric G

is of type (1, 1) for each of I,J ,K, and is therefore said to be hyper-hermitian. Each

of I,J , and K must be covariantly constant for the connection ∇ constructed as in eqn.

(3.6) in terms of G and H. This implies that the structure group of ∇ reduces to Sp(q).

For each complex structure, we define a corresponding hermitian form ω
(I)
PR = GPQIQ

R,

ω
(J )
PR = GPQJ Q

R, ω
(K)
PR = GPQKQ

R. The derivation of eqn. (3.18) applies equally to any

of I,J ,K, so we must have

H = −Idω(I) = −J dω(J ) = −Kdω(K). (3.20)

For the same three-form H to satisfy these three different formulas is a very strong con-

straint.

So far we have discussed (0, n) worldsheet supersymmetry with n = 1, 2, 4. Now we

discuss the extension to (n, n) supersymmetry. Roughly speaking, one just adds additional

fermions of opposite chirality and one requires two copies of the structure that has just

been described, one copy for positive chirality and one for negative chirality. Since both

chiralities of fermions will be present, we write henceforth ψP
+ for the fermions that we have

been considering so far and ψP
− for the fermions of opposite chirality. For n = 1, the main

point to consider is that exchanging the two chiralities involves reversing the worldsheet

orientation, and under this operation H is odd. Therefore, fermions of the two chiralities

will see connections that differ in the sign of the torsion, which is proportional to H and

therefore is odd under exchanging the two chiralities. Since two different connections with

torsion will play a role, we will be more precise in the notation. Previously we defined

a connection ∇ that appears in the kinetic energy of the positive chirality fermions and

is described by the affine connection (3.5). Reversing the sign of H, we get the affine

connection

Γ̃′Q
RS = ΓQ

RS − 1

2
GQTHTRS (3.21)

associated to the connection ∇′ that appears in the kinetic energy of negative chirality

fermions. The respective definitions of covariant derivatives are

∇PV
R = DPV

R +
1

2
GRSHSPQV

Q, ∇′
PV

R = DPV
R − 1

2
GRSHSPQV

Q. (3.22)

It will be important that these definitions depend only on the metric G and the torsion H,

not on the complex structure or hermitian form.

To get (2, 2) supersymmetry, we want separate U(1) R-symmetries for both positive

chirality and negative chirality fermions. We denote the corresponding symmetry gener-

ators as I and I ′. An important insight of [51] is that in general no relation between I
and I ′ must be assumed. In particular, in general they need not commute, though models

in which they do commute are simpler in some respects (the models considered in the

present article do not have that property). The derivations that we have explained up to

20A hypercomplex manifold actually has a family of complex structures parametrized by S2, since if a, b, c

are real numbers satisfying a2 + b2 + c2 = 1, then the quaternion relations imply that aI + bJ + cK is an

almost complex structure, and it is integrable if I, J , and K are integrable.
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this point apply separately for positive chirality fermions and I and for negative chiral-

ity fermions and I ′. In particular, both I and I ′ are integrable complex structures; I is

covariantly constant for the connection ∇ and I ′ is covariantly constant for the connec-

tion ∇′. So both connections have holonomy in U(p). Defining the two hermitian forms

ωPR = GPQIQ
R, ω′

PR = GPQI ′Q
R, the derivation of eqn. (3.20) applies for each, with a

sign change:

H = −Idω = +I ′dω′. (3.23)

The structure just described has been interpreted as generalized Kahler geometry [20]. It

has also been called strong bi-KT geometry (KT refers to Kahler geometry generalized to

allow torsion; the prefix “bi” refers to the presence of separate KT structures for the two

fermion chiralities; and “strong” means that dH = 0).

To get (4, 4) supersymmetry, we need separate hypercomplex structures I,J ,K for pos-

itive chirality fermions, with closed torsion H, and I ′,J ′,K′ for negative chirality fermions,

with torsion −H. Here I,J ,K must be covariantly constant for ∇, and I ′,J ′,K′ must be

covariantly constant for ∇′. So both connections have holonomy in Sp(q). Defining the

various hermitian forms by ω
(I)
PR = GPQIQ

R, etc., the derivation of the relation between

H and the hermitian forms goes through as before to give formulas for H in terms of any

one of I, J , K or I ′, J ′,K′:

H = −Idω(I) = −J dω(J) = −Kdω(K) = +I ′dω(I′) = +J ′dω(J ′) = +K′dω(K′). (3.24)

Such geometry has been called generalized hyper-Kahler geometry, or strong bi-HKT ge-

ometry (where HKT refers to hyper-Kahler geometry generalized to allow torsion).

3.2 Large And Small Algebras

A sigma-model with any (complete) generalized hyper-Kahler target M of dimension D =

4q has superconformal symmetry with what is known as the small N = 4 algebra. Obvious

generators are the stress tensor T and the four supercurrents Ga associated to the four

supersymmetries that were constructed in section 3.1. The other generators of the chiral

algebra, for generic M , are the currents of an SU(2) current algebra at level q that acts

only on the fermions. These SU(2) current algebras exist, for both left- and right-moving

modes, because the fermion kinetic energy is constructed using connections ∇ or ∇′ whose

Sp(q) holonomy groups each commute with a corresponding SU(2) action on the tangent

bundle of M . For both left-movers and right-movers of the sigma-model, it is possible to

define fermion bilinears that generate the corresponding SU(2). Along with T and the Ga,

these bilinears generate the small N = 4 superconformal algebra.

In the small N = 4 algebra, the Ga are primaries of the SU(2) current algebra;

they transform in the spin 1/2 representation of SU(2), viewed as a four-dimensional

real representation. There is a natural SO(4) action on the four real fields Ga. Here

SO(4) = (SU(2) × SU(2))/Z2, where the SU(2) that is part of the small N = 4 algebra

is one of the two factors. In particular, this SU(2) action on the Ga commutes with a

second SU(2). This second SU(2) is a group of outer automorphisms of the small N = 4

algebra; it commutes with all the algebra generators except the Ga. In many familiar
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models with small N = 4 superconformal symmetry, the outer automorphism group is

not realized as a symmetry. For example, a sigma-model with target T4 or K3 has small

N = 4 superconformal symmetry, and the outer automorphism group is not realized as a

symmetry.

A simple example of a theory with small N = 4 superconformal symmetry in which

the outer automorphism group is realized is the theory of a single free hypermultiplet, or

in other words a sigma-model with target the flat hyper-Kahler manifold M = R
4. There

are four massless free bosons φAX , A,X = 1, 2 with a reality condition φ
AX

= ǫABǫXY φBY

(here ǫ is the antisymmetric tensor with ǫ12 = 1); similarly there are four massless free chiral

fermions ψRX , R,X = 1, 2, with – in Lorentz signature – a similar reality condition. (For

simplicity we consider fermions of one chirality only.) The four supercurrents are GAR =

∂φAXψRY ǫ
XY and the generators of the SU(2) current algebra are JRS = ǫXY ψRXψSY .

Clearly, those currents generate a current algebra that acts on the fermions only, by the

natural SU(2) action on the first index of ψRX , and just as clearly, the GAR transform

as spin 1/2 under this SU(2). This current algebra is at level 1; the analogous current

algebra in a model with q hypermultiplets is at level q. The outer automorphism group of

the small N = 4 algebra, in this presentation, is an SU(2) symmetry that acts on the first

index of GAR. It is realized in this model by a global SU(2) symmetry that acts on the

first index of the scalar field φAX , with trivial action on ψRX . However, it is not possible

to define a holomorphic current that generates this symmetry, and therefore the currents

that generate it are not part of the superconformal algebra of the theory.

To extend the small N = 4 algebra associated to a hypercomplex structure I,J ,K on

some generalized hyper-Kahler manifold to a large N = 4 algebra, this manifold should

have an SU(2) symmetry that rotates I, J , and K and that is generated by holomorphic

currents. The simplest example is M = S3 × S1, to which we turn next. One of the main

goals of the present article is to show that the moduli space M of instantons on M is

another example.

3.3 Geometry of S3 × S1

To understand the unusual geometry of S3 × S1, it is convenient to start with R
4 minus

the origin with the scale invariant metric

ds2 =
d~Y 2

~Y 2
, (3.25)

where ~Y = (Y0, Y1, Y2, Y3), ~Y
2 =

∑3
λ=0 Y

2
λ . Because the metric is scale-invariant, we can

divide by the equivalence relation ~Y ∼= eT ~Y for any fixed T > 0. Setting τ = log |~Y |, the
quotient is S3 × S1 with metric

ds2 = dΩ2 + dτ2, τ ∼= τ + T, (3.26)

where dΩ2 is the metric of a round three-sphere of radius 1. If Yλ = yλe
τ ,

∑
λ y

2
λ = 1, then

dΩ2 =
∑

λ dy
2
λ.

To see a complex structure on S3 × S1, let Z1 = Y0 + iY1, Z2 = Y2 + iY3. Then we can

parametrize S3 × S1 by complex variables (Z1, Z2) with (Z1, Z2) ∼= eT (Z1, Z2), exhibiting
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a complex structure that we will call21 I1. In this complex structure, the metric of S3× S1

is hermitian (that is, of type (1, 1)) but not Kahler. Indeed S3 × S1 cannot be Kahler as

its second Betti number vanishes. S3 × S1 with this complex structure is known as a Hopf

surface, a prototype of a compact manifold that is complex but not Kahler.

Complex structure I1 is not invariant under all of the symmetries of S3 × S1, so those

symmetries can be used to generate many more complex structures. Parametrize S3 =

SU(2) as

g =

(
z1 −z2
z2 z1

)
, |z1|2 + |z2|2 = 1, Zi = zie

τ . (3.27)

We denote SU(2) acting on itself on the left or right as SU(2)ℓ or SU(2)r . Clearly, I is

invariant under SU(2)ℓ, which maps z1 and z2 to complex linear combinations of themselves,

but not under SU(2)r. Rather, SU(2)r maps I1 to a family of complex structures on S3×S1

that make up a hypercomplex structure (explicit formulas are given presently). Moreover

the discrete symmetry ρ that acts by a joint reflection of the two factors of S3×S1 exchanges

SU(2)ℓ and SU(2)r, and so maps this hypercomplex structure to a second one that is

invariant under SU(2)r and rotated by SU(2)ℓ.

To write explicit formulas, view S3×S1 as the group manifold K = SU(2)×U(1). The

metric (3.26) is invariant under the left and right action of K on itself, so it is possible to

choose orthonormal bases consisting of left-invariant or right-invariant one-forms. As U(1)

is abelian, L0 = R0 = dτ is both left-invariant and right-invariant. To find left-invariant

forms on SU(2), we simply note that g−1dg is left-invariant. Expanding this in components,

a basis of left-invariant one-forms is given by

L1 = y0dy1 − y1dy0 + y2dy3 − y3dy2, (3.28)

and two more forms L2 and L3 that differ from this by cyclic permutation of indices 1, 2, 3.

The La are an orthonormal basis of the cotangent bundle of S3, since
∑3

a=1 L
a⊗La = dΩ2.

Because of the SU(2)×SU(2) symmetry of S3, to verify this and similar statements later, it

suffices to verify that the statement is true at the point p with (y0, y1, y2, y3) = (1, 0, 0, 0);

this is immediate. The La obey

dL1 = 2L2 ∧ L3 (3.29)

and cyclic permutations of this statement. Of course, we also have

dL0 = 0. (3.30)

Similarly, dgg−1 is right-invariant and can be expanded in terms of the right-invariant

one-form

R1 = y0dy1 − y1dy0 − y2dy3 + y3dy2, (3.31)

and two more right-invariant forms R2 and R3 differing from this by cyclic permutation

of indices 1, 2, 3. Another way to see that the La and Rb are respectively left-invariant

21In discussing S3×S1, to take advantage of the symmetries and write some formulas more economically,

we denote a triple of complex structures that obey the quaternion relations as I1, I2, I3 rather than I,J ,K.
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and right-invariant is to observe that they are constructed from 4 × 4 matrices that are

respectively selfdual or anti-selfdual. The Rb satisfy

dR1 = −2R2 ∧R3, (3.32)

and cyclic permutations, again with

dR0 = 0. (3.33)

As the La and Rb for a, b = 1, 2, 3 are orthonormal bases of the cotangent bundle of S3,

L1 ∧ L2 ∧ L3 and R1 ∧ R2 ∧ R3 are equal up to sign. A short check at the point p shows

that they are equal.

Including L0 and R0, we get orthonormal bases Li and Rj, i, j = 0, · · · , 3, of the

cotangent bundle of M = S3 × S1:

ds2 =

3∑

i=0

Li ⊗ Li =

3∑

j=0

Rj ⊗Rj. (3.34)

We can define a connection ∇ on the tangent bundle of M by saying that the Li are

covariantly constant, and another connection ∇′ by saying that the Rj are covariantly

constant.22 Both of these connections are metric compatible, since the Li and Rj are

orthonormal bases.

To place ∇ in the sigma-model context of section 3.1, we need to find a three-form H

such that for any one-form V , ∇PVQ = DPVQ − 1
2HPQRV

R, where D is the Riemannian

connection. It suffices to verify this condition if V is one of the L’s. In this case ∇V = 0, so

we need DPVQ = 1
2HPQRV

R. If this equation is symmetrized in P and Q, the right hand

side vanishes because H is totally antisymmetric, and the left hand side also vanishes since

the vector fields dual to the Li are Killing vector fields, implying that DPVQ +DQVP = 0.

The antisymmetric part of the equation is ∂PVQ − ∂QVP = HPQRV
R, and this is satisfied

for H = 2L1 ∧ L2 ∧ L3 by virtue of eqns. (3.29) and (3.30).

To place ∇′ in the sigma-model context, we need the same equation to hold with H

replaced by −H and ∇ replaced by ∇′. In other words, for every one-form V , we need

∇′
PVQ = DPVQ+

1
2HPQRV

R. It suffices to verify this if V is one of the R’s; this verification,

again for H = 2L1 ∧ L2 ∧ L3 = 2R1 ∧ R2 ∧ R3, can be carried out using eqns. (3.32) and

(3.33).

Since a three-sphere of radius 1 has volume 2π2, the fact that H = 2L1L2L3 is twice

the Riemannian volume form of the sphere implies that
∫
S3 H = 4π2. This means that to

construct a model in which
∫
S3 H = 2πk, we have to multiply the metric of S3 by23 k/2π.

The line element of S3 will then be

ds2 =
k

2π
dΩ2. (3.35)

22In [19], these connections are called ∇̂ and ∇̆. A similar remark applies for the complex structures and

hermitian forms introduced below. In the present article, the notation is different, as we reserve the “hat”

(as in ∇̂) for a structure on the moduli space M as opposed to the four-manifold M .
23The formula (3.12) shows that rescaling G will rescale H by the same factor. Since the radius of S1

does not affect
∫
S3 H , it does not matter whether we rescale it or not. Only the rescaling of S3 is relevant.
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This normalization will be important in section 6, but for now we continue with the case

of unit radius.

The complex structure I1 that we defined at the outset acts on the Li by

I1(L0) = L1, I1(L1) = −L0, I1(L2) = L3, I1(L3) = −L2. (3.36)

Because the Li are left-invariant, it suffices to verify this formula at the point p. The group

SU(2)r can act, in particular, by a cyclic permutation of L1, L2, L3, thus conjugating I1 to

two more complex structures I2, I3 that differ by cyclic permutation of indices 1, 2, 3. A

short calculation at the point p shows that the quaternion relations are obeyed. And since

the Ia act by constant linear transformations on the one-forms Li which are covariantly

constant with respect to ∇, they are also covariantly constant.

The corresponding hermitian forms are

ω(1) = L0 ∧ L1 + L2 ∧ L3, (3.37)

with ω(2), ω(3) obtained by cyclic permutation of indices 1, 2, 3. To establish the N = 4

supersymmetric structure for positive chirality modes, it remains only to verify that eqn.

(3.24) is satisfied. We have dω(1) = 2L0 ∧ L2 ∧ L3, and indeed I1(2L0 ∧ L2 ∧ L3) =

2L1 ∧ L2 ∧ L3 = H.

To define a similar structure for negative chirality modes, we need a hypercomplex

structure that is defined by constant linear transformations of the Rj and hence is covari-

antly constant for ∇′. Here we have a sign choice to make as we can define either

I ′
1(R

0) = R1, I ′
1(R

1) = −R0, I ′
1(R

2) = R3, I ′
1(R

3) = −R2, (3.38)

or

I ′′
1 (R

0) = R1, I ′′
1 (R

1) = −R0, I ′′
1 (R

2) = −R3, I ′′
1 (R

3) = R2, (3.39)

with I ′
2,I ′

3 and I ′′
2 , I ′

3 obtained by cyclic permutations. The hermitian forms are then

ω′(1) = R0 ∧R1 +R2 ∧R3, (3.40)

or

ω′′(1) = R0 ∧R2 −R2 ∧R3, (3.41)

along with cyclic permutations.

The origin of this sign choice is as follows. Starting with one hypercomplex structure

defined by the Ia, to get a second hypercomplex structure with equal and opposite torsion,

one way is to apply a reflection of S3, doing nothing to S1, and a second way is to apply

a joint reflection to both S3 and S1. Under either operation, the three-form H = 2L1 ∧
L2 ∧ L3 = 2R1 ∧ R2 ∧ R3 changes sign, so either operation gives a second hypercomplex

structure with opposite torsion. The joint reflection (which is unique only up to a rotation

of S3× S1) can be chosen to lead to eqn. (3.38) and the reflection of only S3 can be chosen

to lead to eqn. (3.39). We have seen in section 2.2 that only the joint reflection of S3 × S1

is natural in our problem, so we will use the hypercomplex structure defined by the I ′
a, not

the one defined by the I ′′
a .
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In section 4, when we explain how a hypercomplex structure on a four-manifold leads

to a hypercomplex structure on the instanton moduli space, we will see that (assuming

instantons are defined to have anti-selfdual curvature) the construction only works if the

hermitian forms associated to the hypercomplex structure are selfdual. A look back at the

previous formulas shows that, if we orient S3 × S1 using the four-form L0 ∧ L1 ∧ L2 ∧ L3,

the ω(k) and ω′(k) are selfdual but the ω′′(k) are anti-selfdual. Therefore, the Ik and I ′
k are

the choices for which the construction will work.

A consequence of asking for the ω(k) and ω′(k) to be all selfdual is that the Ik and I ′
k

do not commute. Supersymmetric sigma-models with torsion are simpler in some respects

when the left and right complex structures do commute [51], but we will not be in that

situation.

While invariant under SU(2)ℓ, the Ik and ω(k) transform in the adjoint representation

of SU(2)r. Conversely, while invariant under SU(2)r, the I ′
k and ω′(k) transform in the

adjoint representation of SU(2)ℓ.

3.4 The Large N = 4 Algebra

The model we have arrived at – a sigma-model with a “round” metric on the target space

S3×S1, and with H a multiple of the volume form of S3 – has a very special structure. First

of all, it is an exactly soluble conformal field theory, since the S3 model with H a multiple

of the volume form is simply an SU(2) WZW model, and the S1 factor leads to a free

superconformal field theory with abelian symmetry. Beyond that, this particular model is

actually a prototype of a model that exhibits the “large” N = 4 superconformal algebra

[11, 12]. We will follow the presentation of [6]. (We also follow their notation, which differs

slightly from notation used in the rest of the present article, and their conventions. Note

that in those conventions, currents are antiholomorphic, which accounts for some minus

signs in the following formulas.)

The supersymmetric WZW with target SU(2) is actually equivalent to a purely bosonic

SU(2) WZW model with three decoupled free fermions (of each chirality) in the adjoint

representation of SU(2) [55, 56].24 Likewise the supersymmetric model with target S1 is

equivalent to a purely bosonic model with target S1 with a decoupled free fermion. For

generic radius of the S1, the chiral algebra of the S1 model is just generated by a single

abelian current ∂U . (For special radii, that is for particular values of the circumference of

the S1, the S1 theory has additional chiral fields – exponentials of U . We will not consider

that case.) Thus overall the supersymmetric model with target S3×S1 has a chiral algebra

that includes SU(2) currents J i, i = 1, · · · , 3 of some integer level25 κ ≥ 0 associated with

the bosonic SU(2) WZW model, four free fermions ψa, a = 0, · · · 3 (one can consider ψ0

24To be more precise, the SU(2) WZW model has SU(2)ℓ × SU(2)r symmetry, with the two factors

corresponding to the left and right action of SU(2) on itself. With an appropriate choice of orientation, the

SU(2)r currents are chiral (holomorphic) and are accompanied by three positive chirality fermions in the

adjoint representation of SU(2)r, and similarly the SU(2)ℓ currents are antichiral (antiholomorphic) and

are accompanied by three negative chirality chiral fermions in the adjoint representation of SU(2)ℓ.
25The case κ = 0 is possible [57]. In that case, the bosonic WZW model with target SU(2) becomes

trivial and drops out; the supersymmetric WZW model with target SU(2) is then just equivalent to three

free fermions in the adjoint representation of SU(2).
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to come from the S1 model and the others from the SU(2) WZW model), and an abelian

current J0 that we can normalize to satisfy J0(z)J0(w) ∼ − 1
2(z−w)2

. The chiral algebra

generated by these fields is actually the large N = 4 algebra.

To describe the realization of this algebra, it is convenient to introduce selfdual and

anti-selfdual 4× 4 matrices

α±,i
ab =

1

2
(±δiaδb0 ∓ δibδa0 + ǫiab) , i = 1, · · · , 3, (3.42)

where ǫiab is antisymmetric with ǫ123 = 1. These matrices obey

[α±,i, α±,j ] = −ǫijkα±k, [α±,i, α∓,j ] = 0, {α±i, α±j} = −δij

2
. (3.43)

The generators of the large N = 4 algebra in this model are then26

T = −J0J0 −
∑3

i=1 J
iJ i

κ+ 2
−

3∑

a=0

∂ψaψa

Ga = 2J0ψa +
4α+,i

ab J iψb

√
κ+ 2

− 2ǫabcdψ
bψcψd

3
√
κ+ 2

A−,i = α−,i
ab ψaψb

A+,i = J i + α+,i
ab ψaψb

U = −
√
κ+ 2J0

Qa =
√
κ+ 2ψa. (3.44)

The operators A−,i and A+,i generate SU(2) current algebras respectively at level 1 and

level κ + 1. A−,i is constructed from fermions only and its existence depends only on the

fact that the relevant connection on the tangent bundle of the sigma-model target space

M = S3 × S1 has holonomy SU(2) ⊂ SO(4), so in particular A−,i would have an analog,

also at level 1, in a sigma-model with target a hyper-Kahler four-manifold such as T4 or

K3. By contrast, A+,i contains the currents that generate bosonic symmetries of S3 × S1

(namely the right action of SU(2) = S3 on itself) and U ∼ J0 generates a rotation of the

second factor of S3 × S1. Those generators, and similarly the Qa, which are multiples of

the free fermions ψa, have no analog if the target space is K3. (A T4 target has translation

symmetries that lead to the existence of holomorphic currents and free fermions in the

chiral algebra of the sigma-model. Relative to S3 × S1, the important difference is that

26The discussion in section 3.2 would make one anticipate the presence of generators T , Ga, and A±,i,

but does not make clear why U or Qa are needed. In fact [56], it is possible to construct a “smaller” version

of the large N = 4 algebra in which U and Qa are omitted. This algebra is a generalized W -algebra (the

short distance singularity in a product of generators is in general a nonlinear function of the generators,

in contrast to simple chiral algebras like the Virasoro algebra – or the version of the large N = 4 algebra

with U and Qa included – that can be presented in such a way that OPE singularities are linear in the

generators). The symmetry of string theory on AdS3 × S3 × S3 × S1 is, however [4, 5], the “large” version

of the large N = 4 algebra, with extra generators U and Qa and a simpler structure of the OPE’s. So that

is the relevant version for our application. The existence of the extra generators is a consequence of the

symmetries of AdS3 × S3 × S3 × S1.
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the continuous symmetries of T4 are commutative and do not enhance the small N = 4

algebra to a large one.)

In general, a representation of the large N = 4 algebra is characterized by two integers

k+ and k−, which are the levels of the A+,i and A−,i current algebras. The Virasoro central

charge is

c =
6k+k−

k+ + k−
. (3.45)

What we see in eqn. (3.44) is a realization of the algebra with (k+, k−) = (κ + 1, 1). By

taking the tensor product of several such realizations, possibly with different values of κ,

one can get realizations of the large N = 4 algebra with any k+ ≥ k−. The tensor product

procedure is not straightforward and is described in section 4.7 of [6]. Since the N = 4

algebra has an outer automorphism that exchanges A+,i and A−,i, and therefore exchanges

k+ and k−, there is no essential loss of generality in assuming k+ ≥ k−. For the record,

though we will not use these formulas in any detail, the singular OPE’s of the large N = 4

algebra, apart from standard OPE’s involving the stress tensor T , are as follows, with

γ = k−

k++k−
:

Ga(z)Gb(0) =
2cδab

3z3
− 8γα+,i

ab A+,i(0) + 8(1− γ)α−,i
ab A−,i(0)

z2

− 4γα+,i
ab ∂A+,i(0) + 4(1 − γ)α−,i

ab ∂A−.i(0)

z
+

2δabT (0)

z
+ · · ·

A±,i(z)A±,j(0) = −k±δij

2z2
+

ǫijkA±,k(0)

z
+ · · ·

Qa(z)Qb(0) = −(k+ + k−)δab

2z
+ · · ·

U(z)U(0) = −k+ + k−

z2
+ · · ·

A±,i(z)Ga(0) = ∓2k±α±,i
ab Qb(w)

(k+ + k−)z2
+

α±,i
ab Gb(0)

z
+ · · ·

A±,iQa(0) =
α±,i
ab Qb(0)

z
+ . . .

Qa(z)Gb(0) =
2α+,i

ab A+,i(0)− 2α−,i
ab (0) + δabU(0)

z

U(z)Ga(0) =
Qa

z2
+ · · · . (3.46)

In the case of the moduli space M of instantons on S3 × S1, we will explain enough in

sections 4 and 5 to show that the sigma-model with target M has N = 4 supersymmetry

with the small N = 4 algebra. To extend this result to get a large N = 4 algebra, we

need to “find” the extra generators U, Qa, A+,i for both positive and negative chirality.

The strategy for finding them is simple. S3 × S1 has many Killing vector fields, associated

with the rotation symmetries of the two factors, and associated to these are Killing vector

fields on the instanton moduli space M. We will show that these Killing vector fields on

M are covariantly constant for the appropriate connections with torsion, and this, as in
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the analysis of eqn. (3.8), leads to the existence of additional chiral operators in the sigma-

model with target M. In that way we will find the extra generators that are needed to fill

out the large N = 4 algebra. This analysis will be the topic of section 6, but first we need

to understand why a sigma-model with target M has at least small N = 4 supersymmetry.

4 Hypercomplex Structure Of The Instanton Moduli Space

In this section, largely following [13–15], we will show that if the oriented four-manifold M

has a hypercomplex structure, with selfdual hermitian forms and closed torsion, then the

moduli space M of instantons on M also carries a hypercomplex structure (which we will

show in section 5 to have closed torsion). This is true for every simple compact gauge group

G, and every component of instanton moduli space. To be more precise, we define these

structures on the smooth part of M. That means in particular that we always consider

instanton solutions that are irreducible in the sense that the equation

dAσ = 0, (4.1)

where σ is a section of ad(E), has no non-zero solutions. Such solutions, which generate

unbroken gauge symmetries (continuous automorphisms of E), arise only at singularities

of M.

If M has two hypercomplex structures compatible with the same metric, both with

selfdual hermitian forms, and with opposite torsion, then we will see that M likewise has

two hypercomplex structures with the same properties. (The proof that the two hyper-

complex structures of M have opposite torsion is given in section 5.) In our application,

we have M = S3×S1 and G = SU(Q5), but presenting the arguments in greater generality

poses no difficulty.27

To begin with, we assume that the oriented four-manifold M has simply a strong KT

structure, namely a complex structure I, a metric g that is of type (1, 1) and (therefore)

a hermitian form ωIL = gIKIK
L that is also of type (1, 1), and that we assume to be

selfdual,28 and with closed torsion H = i(∂ − ∂)ω. Given this, we will define a similar

hermitian structure on M (the closedness of the torsion will be shown in section 5).

First of all, the space A of all connections on the G-bundle E → M itself has a natural

metric, with the length squared of a variation δA of a connection A being

|δA|2 = − 1

4π2

∫

M

tr δA ∧ ⋆δA = − 1

4π2

∫

M

d4x
√
ggijtr δAiδAj . (4.2)

The factor 1/4π2 is arbitrary for now; when we compute the torsion on the moduli space, it

will be convenient. The space A also has a natural complex structure Î, defined by saying

27Actually, a compact hypercomplex four-manifold that is not hyper-Kahler is locally isomorphic to

S3 × S1 [58]. But the following analysis can likely be extended to other examples that are complete but not

compact.
28The definition ωIL = gIKIK

L implies that ω is selfdual or anti-selfdual, depending on how M is

oriented. Assuming that the instanton equation is going to be F+(A) = 0, we require ω to be selfdual so

that the (1, 1) part of the instanton equation can be written as in eqn. (4.10) below.
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that the (0, 1) part of A is holomorphic and the (1, 0) part is antiholomorphic. Thus if δA

is a variation of A, and δA = δA1,0+δA0,1 is its expansion in parts of type (1, 0) and (0, 1),

then

Î(δA) = iδA(0,1) − iδA(1,0). (4.3)

The reason to define the (0, 1) – rather than (1, 0) – part of A to be holomorphic is

as follows. First of all, if we decompose the Yang-Mills curvature F (A) in pieces of type

(p, q) with respect to the complex structure I of M , then the instanton equation reads

F (0,2) = F (2,0) = ω ∧ F (1,1) = 0. (4.4)

In particular, vanishing of F (0,2) means that ∂A = ∂ + [A(0,1), · ] satisfies ∂
2
A = 0. This

makes the bundle E – or more precisely its complexification EC – a holomorphic bundle

over the complex manifold M . We would like to define the complex structure of A in a

way that ensures that, after eventually reducing to the instanton moduli space M, the

holomorphic bundle EC varies holomorphically over M. For this we have to define the

complex structure of A so that ∂A = ∂ + A(0,1) varies holomorphically with A. This is

true with the sign choice that we made. In fact, a theorem of [29, 30] identifies M as the

moduli space of stable holomorphic structures on E (where here the notion of stability is

a generalization of the usual stability condition for a holomorphic bundle over a Kahler

manifold). We will not need this difficult theorem. For our purposes it will suffice to know

how to define the complex structure of M, which is much easier.

Having a metric and a complex structure, A acquires a hermitian form:29

ω̂ = − 1

8π2

∫

M

trω ∧ δA ∧ δA. (4.5)

Viewing δA as a 1-form on A (valued in 1-forms on M), we see that ω̂ is a two-form on A,

and it is of type (1, 1) because ω is of type (1, 1).

Within the infinite-dimensional space A, there is an infinite-dimensional submanifold

AASD that parametrizes gauge fields that solve the instanton equation. The instanton mod-

uli space is M = AASD/G, where G is the group of gauge equivalences (if E is trivialized,

then G is the group of maps from M to G). There is no problem to restrict the metric

|δA|2 or the two-form ω̂ from A to AASD. However, there is no immediate way to extract

from these objects a corresponding metric or two-form on M. The difficulty is as follows.

Let A be an instanton solution describing a point in M, and let ζ be a tangent vector to

M at that point. Up to gauge transformation, ζ corresponds to a solution of the linear

equation obtained by linearizing the instanton equation F+(A) = 0. This linear equation

is

(dAδA)
+ = 0, (4.6)

where dA = d + [A, · ] is the gauge-covariant extension of the exterior derivative. This

equation possesses a gauge invariance

δA → δA− dAσ, (4.7)

29Here we include a factor of 1/2 that was introduced in eqn. (3.15).
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where σ, a section of the adjoint bundle ad(E), is an arbitrary generator of a gauge trans-

formation. The metric and hermitian forms defined in (4.2) and eqn. (4.5) are not invariant

under such a change30 of δA. Therefore, if we want to use eqns. (4.2) and (4.5) to define

a metric and a hermitian form on the tangent space TAM to M at A, we need to impose

some sort of gauge condition on δA. We will only consider gauge conditions that are in-

variant under gauge transformations of the background gauge field A (but not under the

transformation (4.7) of δA). For example, though it is not the gauge condition that we will

ultimately use, an obvious gauge condition that is invariant under gauge transformations

of the background is the Landau gauge condition DiδA
i = 0, where Di = ∂i + [Ai, · ].

Once a gauge condition on δA is picked, the tangent space TAM to A in M becomes

a subspace of the tangent space TAA to A in A. If and only if the conditions we impose

on δA – the equation (4.7) plus the gauge condition that we have not yet chosen – are

invariant under δA → IδA, it will make sense to restrict the complex structure Î defined

in (4.3) from TAA to TAM. This will define an almost complex structure on M, which we

will eventually show to be integrable.

With this aim, let us discuss the Hodge decomposition of the instanton equation

F+(A) = 0, and its linearization (dAδA)
+ = 0. The equation F+(A) = 0 has parts of

type (2, 0) and (0, 2), which are complex conjugates of each other, and a part of type (1, 1).

The (0, 2) part of the instanton equation is explicitly

∂A(0,1) +A(0,1) ∧A(0,1) = 0 (4.8)

and the (2, 0) part is just the complex conjugate of this. Similarly the (0, 2) part of the

linearized equation is

∂δA(0,1) + [A(0,1), δA(0,1)] = 0. (4.9)

Since the complex structure on A is defined by saying that A(0,1) is holomorphic, the eqn.

(4.8) is holomorphic. Similarly, eqn. (4.9) is linear in δA(0,1) with no dependence on δA(1,0),

so under δA → IδA, it is just multiplied by i =
√
−1. Hence the equation (dAδA)

(0,2) = 0

is invariant under Î. Its complex conjugate, namely (dAδA)
(2,0) = 0, is of course also

invariant.

However, the (1, 1) part of the instanton equation is not holomorphic or antiholomor-

phic and its linearization is not invariant. That (1, 1) part is

ω ∧ F = 0. (4.10)

As ω is of type (1, 1), it is equivalent to write ω∧F (1,1) = 0, and because ω is selfdual, it is

also equivalent to write ω ∧F+(A) = 0. It is to ensure that the (1, 1) part of the instanton

equation can be written as in (4.10) that we require ω to be selfdual. Eqn. (4.10) is neither

holomorphic nor antiholomorphic, and similarly its linearization, namely

ω ∧ dAδA = 0, (4.11)

30 To be more precise, the metric is not invariant under δA → δA − dAσ. The hermitian form ω̂ is

invariant if and only if dω = 0, that is, if and only if M is Kahler. To prove this, substitute δA → δA−dAσ

in eqn. (4.5), integrate by parts, and use F+ = (dAδA)+ = 0, giving a result proportional to dω.
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depends on both δA(1,0) and δA(0,1) and is not invariant under δA → IδA.
The only hope of getting a set of conditions on δA that is invariant under I is to

interpret whatever eqn. (4.11) transforms into under δA → IδA as the gauge condition

that we are going to impose. In other words (as in section 5.3 of [13]), the gauge condition

will have to be

ω ∧ dA(IδA) = 0. (4.12)

If this does make sense as a gauge condition, then this gauge condition plus eqn. (4.11)

is a set of equations that is invariant under δA → IδA, since if we substitute δA → IδA
in eqn. (4.12), we get back eqn. (4.11). Imposing on δA the linearized instanton equation

together with eqn. (4.12), we can then restrict Î from A to M to provide an almost

complex structure on M, and eqns. (4.2) and (4.5) define a metric and hermitian form on

M, both of type (1, 1).

In general, to show that a proposed gauge condition is valid, we have to demonstrate

two facts: (1) it should be possible to impose this gauge condition, in the sense that by a

suitable gauge transformation, it can always be satisfied; (2) it fully fixes the gauge, in the

sense that the gauge transformation that ensures that the condition is satisfied is unique.

We have to decide whether the gauge condition (4.12) satisfies those two conditions.

As a preliminary, we will put the candidate gauge condition (4.12) in a more convenient

form. More explicitly, the left hand side of eqn. (4.12) is

1

2
ǫijklωijDk(Im

lδAm) =
1

2
ǫijklωijIm

lDkδAm +
1

2
ǫijklωij(DkIm

l )δAm. (4.13)

Being selfdual, ω satisfies 1
2ǫ

ijklωij = ωkl, so the first term on the right in eqn. (4.13) is

ωklIm
l DkδAm = GkmDkδAm = DkδA

k. Using ωln = GlpIp
n, the last term on the right

can be written 1
2ǫ

ijklωij(Dkωln)δA
n. To express this in terms of the torsion, we recall that

ω is covariantly constant for the connection ∇ with torsion, ∇kωln = 0. Using this and the

definition (3.6) of ∇, we get

1

2
ǫijklωij(Dkωln)δA

n =
1

4
ǫijklωij (Hkl

pωpn −Hkn
pωpl) δA

n. (4.14)

The right hand side as written is homogeneous and quadratic in ω, but rather surprisingly

it actually turns out to be entirely independent of ω. We will see that this surprising

fact is a necessary input in defining a hypercomplex structure on M. To show that the

right hand side of eqn. (4.14) is really independent of ω is a matter of doing some group

theory in the tangent space to an arbitrary point p ∈ M at which we want to prove the

statement. The expression in question is a bilinear function of a one-form δA and a three-

form H. This bilinear function depends on the metric tensor g of M at p (used to raise and

lower indices in eqn. (4.14)) and on ω, but nothing else (the antisymmetric tensor ǫijkl is

determined by the metric and orientation of M ; the orientation is determined by ω, which is

assumed to be selfdual). So this expression is invariant under linear transformations of the

tangent space to M at p that preserve g and ω. The group of such linear transformations

is U(2). However, the expression that we are trying to analyze is an even function of ω,

invariant under ω → −ω. So this expression is also invariant under linear transformations
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of the tangent space that map ω to −ω. Including such linear transformations extends

U(2) to a double cover that we will call U∗(2) (this group is the group of 2 × 2 unitary

complex matrices extended by the operation of complex conjugation, which reverses the

sign of ω). The one-form δA transforms in a four-dimensional representation of U∗(2)

that is irreducible even over the complex numbers (this statement would not be true if we

consider U(2) instead of U∗(2)). Because the Hodge duality map ⋆ from three-forms to

one-forms commutes with U∗(2), the three-form H transforms in the same irreducible four-

dimensional representation. Therefore, the right hand side of eqn. (4.14) is an invariant

bilinear form on an irreducible representation of U∗(2). Such an invariant bilinear form is

unique up to a constant multiple, so the expression in question must be a multiple of any

conveniently chosen U∗(2) invariant that is bilinear in H and δA. A convenient invariant

is ⋆(H ∧ δA) = 1
6ǫ

ijklHijkδAl. So the right hand side of eqn. (4.14) must be a multiple of

this. By checking an example,31 one can verify that the coefficient is 1. Putting these facts

together, the candidate gauge condition is32

DmδAm + ⋆(H ∧ δA) = 0. (4.15)

It is now relatively simple to determine whether this is a satisfactory gauge condition.

Under δA → δA − dAσ, the gauge condition transforms by

DmδAm + ⋆(H ∧ δA) → DmδAm + (⋆H ∧ δA)−DiD
iσ − ⋆(H ∧ dAσ). (4.16)

Assuming that the right hand side of eqn. (4.16) vanishes for some σ, the condition that

this choice of σ is unique is that there is no non-zero solution of the equation

−DiD
iσ − ⋆(H ∧ dAσ) = 0. (4.17)

This equation can be written

Wσ = 0, (4.18)

where the linear operator W was introduced in eqn. (2.37). Given any solution of this

equation, we can multiply by σ, take a trace, and integrate to get

0 = −
∫

M

d4x
√
g trσ(−DiD

iσ)−
∫

M

trσH ∧ dAσ. (4.19)

Here the second term is

−
∫

M

H ∧ trσdAσ = −1

2

∫

M

H ∧ d trσ2 = 0, (4.20)

where in the last step we integrate by parts and use dH = 0. Integrating by parts in the

first term we then learn that

0 = −
∫

M

d4x
√
gtrDiσDjσg

ij , (4.21)

31In local coordinates x1, · · · , x4, one can take the metric of M at the point p to be δij , the hermitian

form to have non-zero coefficients ω12 = −ω21 = ω34 = −ω43 = 1, and H and δA to have nonzero elements

H123 = δA4 = 1.
32This assertion is Lemma 8 in [14], where a rather different proof is given.
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which implies that Diσ = 0. As remarked earlier (see eqn. (4.1)), at a smooth point of M,

this implies that σ = 0. That establishes the desired uniqueness.

It remains to verify that the right hand side of eqn. (4.16) always does vanish for some

σ, which is true if the equation

−DiD
iσ − ⋆(H ∧ dAσ) = w (4.22)

has a solution for every section w of ad(E). If this is not the case, then sections of ad(E)

of the form −DiD
iσ − ⋆(H ∧ dAσ) generate a proper subspace of the Hilbert space H of

all L2 sections of ad(E), and there is some section w that is orthogonal to this subspace.

The orthogonality condition is

0 = −
∫

M

d4x
√
gtrw

(
−DiD

iσ − ⋆(H ∧ dAσ)
)
, (4.23)

and the condition that this is true for all σ is

−DiD
iw + ⋆(H ∧ dAw) = 0. (4.24)

This is the same equation (4.17) that we have already analyzed, but with H → −H. The

same argument as before shows that there are no nonzero solutions. Actually, the operator

that appears in eqn. (4.24) is simply the adjoint W † of the operator W introduced earlier,

so to prove that the gauge condition is satisfactory, what we have had to prove is that W

and W † both have trivial kernel. Since W and W † are related by H ↔ −H, this pair of

statements is invariant under reversing the sign of H. Instead of saying that W and W †

have trivial kernel, an equivalent statement is that either one of them has trivial kernel

and cokernel.

At this point, having verified that the gauge condition is a good one, we have defined

an almost complex structure Î on M. It remains to verify that this structure is integrable.

A simple argument is available. First of all, the equation F 0,2(A) = 0 is holomorphic in A,

so if we impose only this equation, we get an (infinite-dimensional) complex submanifold

B of A. However, the conditions ω∧dAδA = ω∧dA(IδA) = 0 appear to spoil holomorphy.

To prove that Î is integrable, we will show that imposing these nonholomorphic equations

is equivalent to a certain holomorphic operation.

The idea is to exploit the fact that, given the complex structure ofM , the action onA of

the group G of gauge transformations can be analytically continued to a holomorphic action

of the complexification GC of this group. A generator σ of GC is a section of ad(E)⊗RC, the

complexification of ad(E). More explicitly, such a generator is σ = σ1+iσ2 where σ1, σ2 are

sections of ad(E). We define an action of σ on A by A → A−dAσ1−IdAσ2. In particular,

the holomorphic variable A(0,1) tranforms by A(0,1) → A(0,1)−∂Aσ1−I∂Aσ2 = A(0,1)−∂Aσ,

where we use the fact that I acts as i on the (0, 1)-form ∂Aσ2. Since A(0,1) − ∂Aσ is

holomorphic in A and σ, this does define a holomorphic action of GC on A.

The claim now is that the conditions ω ∧ dAδA = ω ∧ dA(IδA) = 0 can be viewed

as gauge-fixing conditions that fix the action of GC on A, so that M can be interpreted

as B/GC, making obvious the complex structure of M and thus the integrability of I.
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We already know that the condition ω ∧ dA(IδA) = 0 can be viewed as a gauge-fixing

condition for the ordinary gauge symmetry A → A − dAσ1; it remains to verify that the

other condition ω ∧ dAδA = 0 can be viewed as a gauge-fixing condition for the imaginary

gauge symmetry A → A−IdAσ2. Following the same logic as before, we have to show that

the operator σ → −ωdA(IdAσ) has trivial kernel and cokernel. But this is actually up to

sign the same operator that we have already studied so indeed the kernel and cokernel are

trivial.

At this point, then, we know that M is a complex manifold with metric and hermitian

forms given by equations (4.2) and (4.5). Now as in [15], let us assume that M has not

just the single complex structure I that we have assumed so far, but a hypercomplex

structure, with three complex structures I,J ,K that satisfy the quaternion relations and

the conditions described in section 3.1. In particular, this means that the metric g of

M is of type (1, 1) for each of I, J , and K, and that I,J , and K as well as g are all

covariantly constant for the same connection ∇ whose torsion is a closed three-form H.

The three hermitian forms ωI = gI, ωJ = gJ , and ωK = gK are, of course, different.

However, because of the crucial fact that the gauge condition (4.15) depends only on H

but not on ω, the construction we have described, whether carried out for I, for J , or for

K, leads to the same metric on M and the same description of the tangent space TpM
for any point p ∈ M in terms of the common gauge condition (4.15). Therefore, for any

q ∈ M, restricting Î, Ĵ , and K̂ from TA to TqM, we get almost complex structures Î, Ĵ ,

K̂ on TqM. They are all integrable by the argument that was just given, and they obey

the quaternion relations because those were obeyed before restricting to TqM. Eqn. (4.2)

gives a metric that is of type (1, 1) for each of Î, Ĵ , K̂, and eqn. (4.5), with ω replaced by

ωI , ωJ , or ωK, gives three hermitian forms ωÎ , ωĴ , ωK̂, each of which is of type (1, 1) for

the corresponding complex structure. In section 5, we will show that each of Î, Ĵ , K̂ is

associated to the same torsion, since −i(∂Î − ∂Î)ωÎ = −i(∂Ĵ − ∂Ĵ )ωĴ = −i(∂K̂ − ∂K̂)ωK̂.

Now we specialize to the case that33 M = S3×S1, which admits a second hypercomplex

structure I ′,J ′,K′ such that the same metric g is of type (1, 1) for each of I ′,J ′,K′, and the

three hermitian forms ω′
I , ω

′
J , and ω′

K are all selfdual, but the torsion is −H, as opposed to

the previously assumed +H. Of course, we can carry out the same construction as before,

endowing M with a new hypercomplex structure Î ′, Ĵ ′, K̂′, and a compatible metric and

hermitian forms. The only problem is that since the torsion is now −H, we have to reverse

the sign of H in the gauge condition, which is now

DmδAm − ⋆(H ∧ δA) = 0. (4.25)

Therefore, it seems that the hyperhermitian metric that we will define on M will be

different. If so, then no one metric on M will be consistent with all of the structures

predicted by the duality conjecture with strings on AdS3×S3×S3×S1. One metric on M
will lead to a sigma-model with (0, 4) supersymmetry and another metric on M will lead

to a sigma-model with (4, 0) supersymmetry. This would disprove the duality conjecture.

33It follows from the classification of compact hypercomplex four-manifolds [58] that S3×S1 is the unique

compact four-manifold with the properties specified in this sentence.
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What saves the day is another striking fact (Lemma 9 in [14], where the following proof

can be found): reversing the sign of H in the gauge condition actually does not change the

resulting metric on M. Consider an instanton connection A representing a point q ∈ M ,

and consider a tangent vector to q in M that can be represented by a deformation δA of

A that satisfies

DmδAm + ⋆(H ∧ δA) = 0, (4.26)

and also by another deformation δA′ that satisfies a similar condition with H replaced by

−H:

DmδA′m − ⋆(H ∧ δA′) = 0, (4.27)

The statement that δA and δA′ represent the same tangent vector to q in M means that

they are gauge equivalent,

δA = δA′ − dAσ (4.28)

for some generator σ of a gauge transformation. Based on this information, we want to

show that

|δA|2 = |δA′|2, (4.29)

where these expressions are defined via eqn. (4.2). This will show that the length of

a tangent vector at any point q ∈ M is the same regardless of which of the two gauge

conditions is used to compute it, or in other words that the two gauge conditions lead to

the same metric on M. The difference between the left and right of eqn. (4.29), in view of

the relation (4.28) between δA and δA′, is

− 1

4π2

∫
d4x

√
g tr (DmσDmσ + 2DmσδAm) , (4.30)

and we will show that this vanishes. Using eqn. (4.28) to solve for δA′ in eqn. (4.27), we

get

DmδAm +DmDmσ − ⋆(H ∧ δA) − ⋆(H ∧ dAσ) = 0. (4.31)

Adding eqn. (4.26) to this, we find

2DmδAm +DmDmσ − ⋆(H ∧ dAσ) = 0. (4.32)

Multiplying by σ, taking a trace, and integrating, we have

0 =

∫

M

d4x
√
gtr (2σDmδAm + σDmDmσ) +

∫

M

H ∧ trσdAσ. (4.33)

The last term on the right hand side vanishes, as we have already seen in eqn. (4.20).

Dropping this term and integrating by parts in the remaining terms, eqn. (4.33) becomes

equivalent to the desired result (4.30), completing the proof.

The theory of generalized Kahler reduction gives a possibly more conceptual explana-

tion of the success of this calculation [16], at least in the untwisted case (the case that H

is exact). Similarly, a more conceptual explanation of why the relevant gauge condition

turned out to depend only on H and not ω might conceivably be found in the theory of

generalized hyper-Kahler reduction.
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5 B-Field On The Instanton Moduli Space

For a complex structure I on M satisfying certain conditions, we defined in section 4 a

corresponding complex structure Î on M, along with a metric and hermitian form defined

in eqns. (4.2) and (4.5). In particular, the hermitian form is

ωÎ = − 1

8π2

∫

M

trωI ∧ δA ∧ δA, (5.1)

where δA satisfies the gauge condition WδA = 0, as in eqn. (4.15).

In the present section, we will compute the corresponding torsion Ĥ = −Îdω
Î
. A

formula for Ĥ was computed in [13], section 5.3; another useful reference is [14]. The

important properties of Ĥ for the strong HKT geometry of M were pointed out in [15].

It turns out that Ĥ has several key properties: (i) it depends only on the metric g

and torsion H of M and not on I or ωI ; (ii) it satisfies dĤ = 0, assuming dH = 0; (iii)

it is homogeneous and linear in H, and therefore changes sign under H → −H. All three

conditions are needed to ensure that for M = S3 × S1, M has the properties that are

predicted by the conjectured duality with Type IIB superstrings. Condition (i) means that

the same torsion form Ĥ is compatible with the three complex structures Î, Ĵ , K̂ of M,

defined in section 4, that generate the hypercomplex structure of M. Hence one can define

on M a metric compatible connection ∇̂, with torsion Ĥ, for which Î, Ĵ , and K̂ are all

covariantly constant. We say that ∇̂ corresponds to the connection ∇ on M . This gives

M an HKT structure, which according to condition (ii) is strong if the HKT structure of

M is strong. To extend this structure to a (twisted) generalized hyper-Kahler structure

on M, we need to define on M a second HKT structure with equal and opposite torsion.

The ability to do this is what we get from condition (iii), which enables us to define a

metric compatible connection ∇̂′ on M, with torsion −Ĥ, such that Î ′, Ĵ ′, and K̂′ are all

covariantly constant.

Furthermore, we will show that with the normalization that was chosen in eqn. (4.2),

the periods of Ĥ are valued in 2πZ, so Ĥ is the curvature of a B-field B̂ on M. B̂ is

uniquely determined up to the possibility of adding to it a flat B-field. Shifting B̂ by a flat

B-field that is not pure gauge is a modulus of the sigma-model with target M; it amounts

to shifting the theta-angle that was introduced in section 2.1.2.

Before getting into too many details, let us note that it may seem surprising that

dωÎ 6= 0. Viewed as a differential form on the infinite-dimensional manifold A, ωÎ is

a differential form with constant coefficients on a linear space and it certainly satisfies

dω
Î
= 0. We can in a completely natural way restrict ω

Î
from A to AASD, the subspace

consisting of all connections that satisfy the instanton equation F+(A) = 0, and it remains

closed. However, there is no natural way to push ωÎ down to a two-form on the moduli

space M = AASD/G. The key point is that, assuming34 M is not Kahler, ωÎ does not

vanish if we substitute δA = −dAσ. This substitution amounts to contracting ω
Î
with a

34As explained in footnote 30, if dωI = 0, meaning that M is Kahler, then ω
Î
is a pullback from M after

all. This can be used to prove that if M is Kahler, then dω
Î
= 0 and M is Kahler. The fact that dω

Î
= 0

if dωI = 0 will be clear from the formula obtained below.
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vector field tangent to the fibers of AASD → M, and the fact that it does not vanish means

that ω
Î
is not the pullback of a form on M. Because of this, in section 4, to define ω

Î

as a form on M, we had to stipulate that the formula (5.1) should be evaluated only for

variations δA that satisfy the gauge condition. In what follows, we will work through in

more detail what is involved in interpreting ωÎ as a form on M with the help of the gauge

condition; this will hopefully make it clearer why dωÎ 6= 0 and how to compute dωÎ .

The following considerations are local along M so we can work in a small neighborhood

of a general point r ∈ M. We pick local coordinates mα, α = 1, · · · ,dimM on M, with

mα(r) = 0. Let us first formulate a condition that, if it could be satisfied, would suffice

for proving that dωÎ = 0. Then we will describe what happens instead. For any choice

of the m’s, there is a gauge field A(x;m) that, in its dependence on x ∈ M , satisfies the

instanton equation. Up to gauge transformation, A(x;m) is the solution of the instanton

equation determined by m. Of course, A(x;m) is only uniquely determined up to a gauge

transformation, and this gauge transformation can depend on m. Suppose that we could

make a gauge choice such that, at any point in M and for any choice of β, the quantity
∂A(x;m)
∂mβ obeys the gauge condition that is used in defining the metric of M:

W
∂A(x;m)

∂mβ
= 0. (5.2)

If so, then in the definition (5.1) of ωÎ , we could interpret δA as an explicit one-form on

M (valued in one-forms on M), namely δA =
∑

β dm
β ∂A(x;m)

∂mβ . Substituting this in eqn.

(5.1), we would get an explicit formula for ω
Î
as a two-form on M, namely

ωÎ

?
= − 1

8π2

∑

α,β

dmα dmβ

∫

M

ωI ∧ tr
∂A(x;m)

∂mα
∧ ∂A(x;m)

∂mβ
. (5.3)

Then using d =
∑

γ dm
γ∂mγ , we would get

dωÎ

?
= − 1

4π2

∑

α,β

dmα dmβdmγ

∫

M

ωI ∧ tr
∂2A(x;m)

∂mα∂mγ
∧ ∂A(x;m)

∂mβ
= 0, (5.4)

where the vanishing holds because ∂2A(x;m)
∂mα∂mγ is symmetric in α and γ.

However, eqn. (5.2) is unrealistic. It represents dimM gauge conditions, one for each

choice of β, while in actuality at each point in M ×M we are only entitled to impose one

gauge condition. An example of a gauge condition that is not too restrictive is

∑

i

[
∂

∂xi
+Ai(x; 0), A

i(x;m)

]
+ ⋆(H ∧ (A(x;m)−A(x; 0))) = 0, (5.5)

where A(x; 0) is simply A(x;m) evaluated at m = 0. The condition (5.5) is trivial at

m = 0, so it places no gauge condition on A(x; 0). To first order in m, eqn. (5.5) says that
∂A(x;m)
∂mα

∣∣∣
m=0

obeys the gauge condition (4.16) that was used in defining ω
Î
as a differential

form on M. Therefore, assuming that A(x;m) satisfies eqn. (5.5), eqn. (5.3) is actually

correct at m = 0 (but only at m = 0, as we will see). The analysis in section 4 implies
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that the gauge condition (5.5) is a valid one to first order in m, and this argument can be

slightly extended to show that this gauge condition is a good one to all orders in m (we

will only need the result in second order).

Since it is not possible to satisfy eqn. (5.2) beyond first order in m, for the purpose

of evaluating ωÎ , the vector field ∂
∂mβ cannot be taken to act on A in the obvious way

δA = ∂
∂mβA. We have to accompany this with a gauge transformation chosen to ensure

that δA obeys the desired gauge condition. Thus we define

DA

Dmβ
=

∂A

∂mβ
− dAεβ , (5.6)

where εβ is the infinitesimal generator of a gauge transformation chosen to satisfy the gauge

condition W DA
Dmβ = 0, that is

[
∂

∂xi
+Ai(x;m),

∂Ai

∂mβ
−Diεβ

]
+ ⋆

(
H ∧

(
∂A

∂mβ
− dAεβ

))
= 0. (5.7)

DA
Dm

is defined intrinsically as the variation of A under a change in m, accompanied if

necessary by a gauge transformation to ensure that the gauge condition is satisfied.

We can put eqn. (5.7) in a more convenient form by subtracting the condition (5.5)

that we assume is satisfied for all m. The result can be conveniently written:

[
Ai(x;m)−Ai(x; 0),

∂Ai

∂mβ

]
−Wεβ = 0. (5.8)

Near m = 0, we have

A(x;m) = A(x; 0) +
∑

α

mα ∂A(x;m)

∂mα

∣∣∣∣
m=0

+O(m2). (5.9)

Eqn. (5.8) then tells us that

Wεβ =
∑

α

mα

[
∂Ai

∂mα
,
∂Ai

∂mβ

]

m=0

+O(m2). (5.10)

We can solve this for εβ:

εβ(x) = −
∑

α

mα

∫

My

try B(x, y)

[
∂Ai(y;m)

∂mα
,
∂Ai(y;m)

∂mβ

]
d4y

√
gy +O(m2), (5.11)

where B(x, y), introduced in eqn. (2.38), is the Green’s function of the operator W , My is

a oopy of M parametrized by y, and try represents a trace in the y variable. Here and in

subsequent formulas, ∂A
∂m

is evaluated at m = 0. We will sometimes save space by writing

just Ai or Ai(y) rather than Ai(y;m), and similarly for other quantities.

It is now straightforward to compute dωÎ. In eqn. (5.3), we just have to replace ∂A
∂m

,

which in general does not satisfy the gauge condition, with DA
Dm

, which does. Using eqns.

– 47 –



(5.6) and (5.11), we can make this quite explicit up to O(m2):

ω
Î
= − 1

8π2

∑

α,β

dmα dmβ

(∫

M

ωI ∧ tr
∂A(x)

∂mα
∧ ∂A(x)

∂mβ

−2
∑

γ

mγ

∫

Mx×My

ωI(x) ∧ tr⊗ tr
∂A(x)

∂mα
∧ dAB(x, y)

[
∂Ai(y)

∂mγ
,
∂Ai(y)

∂mβ

]
d4y

√
gy

)

+O(m2). (5.12)

Now we can compute dω
Î

∣∣
m=0

, just by acting with d =
∑

γ dm
γ∂mγ and then setting

m = 0:

dω
Î
|m=0 = − 1

4π2

∑

α,β,γ

dmαdmβdmγ×

∫

Mx×My

ωI(x) ∧ tr⊗ tr
∂A(x)

∂mα
∧ dAB(x, y)

[
∂Ai(y)

∂mγ
,
∂Ai(y)

∂mβ

]
d4y

√
gy. (5.13)

This can be simplified significantly. First, integrate by parts in the x variable, using the

linearized instanton equation ωI ∧ dA
∂A(x;m)
∂mα = 0. This gives

dωÎ |m=0 =
∑

α,β,γ

dmαdmβdmγ×

1

4π2

∫

Mx×My

dωI(x) ∧ tr⊗ tr
∂A(x)

∂mα
B(x, y)

[
∂Ai(y)

∂mγ
,
∂Ai(y)

∂mβ

]
d4y

√
gy. (5.14)

At m = 0, DA
Dmα coincides with ∂A

∂mα
, so eqn. (5.14) remains valid at m = 0 if we replace

∂A
∂mα

, everywhere with DA
Dmα . But once we make that replacement, the formula is valid for

all m, not just at m = 0. To prove the formula at some given value of m, we just do the

same computation as before, expanding about that value of m rather than about m = 0.

Finally, the formula can be written more economically in terms of

ψ =
∑

α

dmα DA

Dmα
. (5.15)

The final version of the formula is

dω
Î
=

1

4π2

∫

Mx×My

dωI ∧ tr⊗ trψ(x)B(x, y)[ψi(y), ψ
i(y)]d4y

√
gy. (5.16)

Now it is straightforward to determine the torsion Ĥ = −Îdω
Î
, where the action of

an almost complex structure on differential forms was defined in eqn. (3.17). To compute

ÎdωÎ, we just have to substitute ψ → Îψ for each of the three occurrences of ψ in eqn.

(5.16). As Î acts by

ψ(0,1) → iψ(0,1), ψ(1,0) → −iψ(1,0), (5.17)

and [ψi, ψ
i] is of type (1, 1), we have [Îψi, Îψi] = [ψi, ψ

i], so we only need to consider the

action of Î on dωI ∧ ψ. As

dωI ∧ ψ = (dωI)
(2,1) ∧ ψ(0,1) + (dω

(1,2)
I ) ∧ ψ(1,0), (5.18)
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we have

dω ∧ Îψ = i(dωI)
(2,1) ∧ ψ(0,1) − i(dω

(1,2)
I ) ∧ ψ(1,0) = (Idω) ∧ ψ = −H ∧ ψ. (5.19)

So

Ĥ = −Îdω
Î
=

1

4π2

∫

M×M

H ∧ tr⊗ trψ(x)B(x, y)[ψi(y), ψ
i(y)]d4y

√
gy. (5.20)

Now we can verify the three key points that were mentioned at the outset of this

section. Point (i) is immediate: eqn. (5.20) makes it evident that Ĥ depends only on H

and not on ωI . Point (ii) is the assertion that if dH = 0, then dĤ = 0. Indeed, in the

language of section 2.4, and bearing in mind the descent formulas (2.24) and the formula

(2.31) for σ, the formula (5.20) can be written

Ĥ =

∫

M

H ∧ P (1). (5.21)

So following the logic of section 2.4, we have

dĤ =

∫

M

H ∧ δP (1) = −
∫

M

H ∧ dP (0) = 0, (5.22)

where the vanishing in the last step follows by integrating by parts and using dH = 0.

Similarly, the cohomology class of Ĥ only depends on the cohomology class of H, since if

we change H by H → H + dB, then the change in Ĥ is

∆Ĥ =

∫

M

dB ∧ P (1) = −
∫

M

B ∧ dP (1) = δ

∫

M

B ∧ P (2), (5.23)

and thus is exact. Finally, concerning point (iii), the formula (5.20) shows that reversing

the sign of H reverses the sign of Ĥ.

Properties (i) and (ii) show that if M has a (strong) HKT structure than so does

M. The addition of property (iii) tells us that if M has a (strong) bi-HKT structure, or

equivalently a (twisted) generalized hyper-Kahler structure, with all of the hermitian forms

being selfdual, then so does M. The relation of P (1) to the second Chern class implies

that periods of Ĥ are integer multiples of periods of H, and therefore that Ĥ obeys Dirac

quantization if H does.

Of course, we are mainly interested in the case that M = S3×S1, with H the pullback

from S3 of a rotationally invariant form with total flux 2πQ′
5. In other words, H =

2πQ′
5d

3Ω, where d3Ω is a rotationally invariant volume form on S3 of total volume 1. In

this case

Ĥ =
Q′

5

2π

∫

M×M

d3Ωx ∧ tr⊗ tr δA(x)B(x, y)[δAi(y), δA
i(y)]d4y

√
gy

=
Q′

5

2π

∫

M×M

d3Ωx ∧ tr⊗ trψ(x)B(x, y)[ψi(y), ψ
i(y)]d4y

√
gy, (5.24)

in agreement with eqn. (2.33).
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Finally, we can describe the usual mathematical setting for these formulas and in the

process explain claims that were made at the end of section 2.4. By definition of the

instanton moduli space M, each point m ∈ M parametrizes a G-bundle Em → M that

carries an instanton connection A. As m varies in M, the Em vary as fibers of a G-bundle

Ê → M×M (sometimes called the universal instanton bundle). Ê has a natural connection

in the M direction, namely the instanton connection itself, but it does not have a natural

connection in the M direction. To define a connection on Ê in the M direction, one has

to make some sort of a choice. We made such a choice by placing the gauge condition

WδA = 0 on variations of A. With the aid of this choice, we defined in eqns. (5.6) and

(5.11) a connection D
Dmα = ∂

∂mα + [εα, ·] on the bundle Ê in the M direction. Taken

together, the original instanton connection D
Dxi = ∂

∂xi + [Ai, ·] in the M direction and the

connection D
Dmα = ∂

∂mα + [ǫα, ·] in the M direction give a full-fledged connection Â on

Ê → M × M. This connection has a curvature F̂ = dÂ + Â ∧ Â, and a second Chern

class, valued in H4(M ×M;Z), that at the level of differential forms is represented by the

four-form 1
8π2 tr F̂ ∧ F̂ . The curvature F̂ has components of types ij, αi, and αβ (where

indices i, j are tangent to M and indices α, β are tangent to M). The ij part of F̂ is

simply the curvature Fij = [Di,Dj ] of the original instanton bundle. The αi part of F̂ is

[Dα,Di] =
∂Ai

∂mα −Diǫα, a quantity that was introduced in eqn. (5.6). The corresponding

part of the curvature two-form F̂ is
∑

αi dm
αdxi[Dα,Di]. This is the (1, 1)-form on M×M

(a two-form on M ×M with one index tangent to each factor) that was called ψ in section

2.4. Indeed, ψ was characterized as a general variation of A that obeys the gauge condition

(as well as the linearized instanton equation), or in other words as
∑

αi dm
αδαAi dx

i, where

the variations δαAi are constrained to be annihilated by the operator W ; these variations

are precisely what we now call [Dα,Di]. Finally, the αβ part of the curvature is [Dα,Dβ ].

In eqn. (5.11), we determined ǫα in an expansion around a base-point at m = 0 and in a

gauge with ǫα|m=0 = 0. In that gauge, the αβ part of the curvature reduces at m = 0 to

F̂αβ = ∂αǫβ − ∂βǫα, which is a quantity that we evaluated as a step in the computation of

dω
Î
. The result can be stated

1

2

∑

αβ

dmαdmβF̂αβ(x) = −
∑

αβ

dmαdmβ

∫

My

try B(x, y)

[
∂Ai(y)

∂mα
,
∂Ai(y)

∂mβ

]
d4y

√
gy. (5.25)

We derived this formula at m = 0, but the formula becomes valid for all m if we re-

place dmα ∂Ai(y)
∂mα with ψi = dmαFαi (which is a gauge-covariant expression that reduces to

dmα ∂Ai(y)
∂mα at m = 0). After this replacement, eqn. (5.25) agrees (up to sign) with the

formula for σ as a two-form on M that was deduced in eqn. (2.31), confirming the inter-

pretation of σ as part of the curvature of a natural connection on the bundle Ê → M ×M.

This also confirms the interpretation that was claimed in section 2.4 of the observables

P (n) defined via the descent procedure: they represent various components of 1
8π2 tr F̂ ∧ F̂ .
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6 Large N = 4 Algebra

6.1 Overview

By now, we know that if M is a generalized hyper-Kahler four-manifold, then similarly the

moduli space M of instantons on M has a generalized hyper-Kahler structure, leading35

to N = 4 superconformal symmetry with the small N = 4 algebra. Our next task is to

show that, in the specific case of the instanton moduli space on S3 × S1, the small N = 4

algebras actually are extended to large ones. For this, we need to find new holomorphic

and antiholomorphic fields in the sigma-model with target M. From the discussion of

eqns. (3.7) and (3.8), we know where to find them: vector fields on M that are covariantly

constant for the connection ∇̂ or ∇̂′ on M will lead to holomorphic or antiholomorphic

currents and free fermions in the sigma-model, such as we need.

Let us discuss what it means for a vector field to be covariantly constant for one of

these connections. In general, on a (strong) HKT manifold with connection ∇ and torsion

H, the condition for a vector field V to satisfy ∇RVS = 0 amounts to the following. The

part of the equation that is symmetric in R and S is

DRVS +DSVR = 0, (6.1)

saying that V is a Killing vector field. The antisymmetric part of the equation is

∂RVS − ∂SVR = HRSTV
T . (6.2)

This can equivalently be written

dΛ = ιV H (6.3)

where ιV is the operation of contracting a differential form with the vector field V , and the

left hand side is the exterior derivative of the one-form Λ = dXIGIJV
J , which we call the

one-form dual to V .

Eqn. (6.3) implies in particular that the Killing vector field V generates a symmetry

of H. Indeed, the change in a differential form H under an infinitesimal diffeomorphism

generated by V is given by the Lie derivative LV acting on H. Concretely the definition

of LV is LV H = ιV dH + dιV H. In the present case, dH = 0 and eqn. (6.3) implies that

dιV H = 0, so LV H = 0. (Because Λ is required to be dual to V , this is not the full content

of eqn. (6.3).)

So to extend the small N = 4 algebra of the sigma-model with target M to a large

one, we need in particular Killing vector fields on M that are symmetries of the torsion Ĥ

of M. This should come as no surprise, since extending the small N = 4 algebra to a large

one involves finding a holomorphic SU(2) × U(1) current algebra, and the obvious way to

find one is to find Killing vector fields on M generating a suitable SU(2)×U(1) symmetry

of the sigma-model.

S3×S1 itself has Killing vector fields generating the group (SU(2)ℓ×SU(2)r)/Z2×U(1)

of isometries connected to the identity, where SU(2)ℓ and SU(2)r act on S3 = SU(2) on

35If we assume conformal invariance, which is discussed more critically in section 7.

– 51 –



the left and right, and U(1) is the group of rotations of S1. Moreover, these symmetries

transform the complex structures of S3 × S1 in a particular way, described in section 3.3.

The (SU(2)ℓ×SU(2)r)/Z2×U(1) symmetries of S3×S1 are all symmetries of the instanton

equation on S3× S1, so automatically they are symmetries36 of M. Moreover, because the

complex structures of M are directly inherited from the corresponding complex structures

of S3× S1, (SU(2)ℓ × SU(2)r)/Z2 ×U(1) transforms the complex structures of M the same

way that it transforms the complex structures of S3 × S1.

So to show that the sigma-model with target M has large N = 4 symmetry, all we need

to show is that the Killing vector fields on M that generate the SU(2)ℓ × U(1) symmetry

are covariantly constant for ∇̂, and those that generate the SU(2)r × U(1) symmetry are

covariantly constant for ∇̂′. The statements about SU(2)ℓ×U(1) and the statements about

SU(2)r ×U(1) are exchanged by the discrete symmetry ρ of S3 × S1 that acts by reflection

on each factor, so it suffices to analyze one of the two cases.

Actually, S3 × S1 has only one U(1) symmetry, which contributes both a holomorphic

and an antiholomorphic U(1) current algebra. This is possible because the Killing vector

field V that generates this U(1) is covariantly constant for both ∇ and ∇′, leading to both

holomorphic and antiholomorphic conserved currents. As we will see, something similar

happens on the moduli space M.

In section 6.2, we analyze the Killing vector field V̂ on M that corresponds to the

Killing vector field V on S3 × S1. We show that it is covariantly constant for both ∇̂
and ∇̂′, implying that the sigma-model with target M has the expected holomorphic and

antiholomorphic U(1) current algebras and free fermions. It also follows that this sigma-

model has a scalar field that is free, at least locally. In section 6.3, we show that the

vector fields that generate the SU(2)ℓ symmetry of M are covariantly constant for ∇̂,

leading to the expected holomorphic SU(2) current algebra that is needed to complete the

holomorphic large N = 4 algebra. The analogous statement for SU(2)r symmetry and ∇̂′

is an immediate consequence. In section 6.4 we compute, at least in the semiclassical limit

of large Q′
5, the levels or central charges of the SU(2) current algebras that are related

to the SU(2)ℓ and SU(2)r symmetries. We get the expected results Q1Q5 and Q1Q
′
5, as

predicted by the duality conjecture described in the introduction. In section 6.5, we show

that certain symmetry generators have no fixed point on M. This is potentially relevant

to supersymmetric localization of the sigma-model with target M. In section 6.6, we show

that if M is such that a sigma-model with target M has a large N = 4 algebra only for

one chirality, then the same is true of M.

6.2 Rotations of S1

In general, a vector field V on a four-manifold M acts on gauge fields on M by

δAi = V jFji −Diσ, (6.4)

where σ is an arbitrary generator of a gauge transformation. If V is a Killing vector field

on M , then eqn. (6.4) describes in a gauge-invariant sense the corresponding Killing vector

36The group that acts on M may in general be an extension of (SU(2)ℓ×SU(2)r)/Z2×U(1) by the center

of the gauge group.
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field V̂ on the instanton moduli space M. However, to use eqn. (6.4) together with the

differential geometric formulas of sections 4 and 5, we must pick σ so that δAi satisfies the

gauge condition WδA = 0. Actually, there are two gauge conditions of interest, differing

in the sign of H.

Here we consider the vector field V = ∂
∂τ

that acts on S3 × S1 by rotating the second

factor. It turns out that in this specific case, the relevant gauge conditions are both satisfied

with σ = 0. With σ assumed to vanish, eqn. (6.4) becomes

δAi = Fτi, i = 1, · · · , 3
δAτ = 0. (6.5)

The relevant gauge conditions are DiδA
i ± ⋆(H ∧ δA) = 0. In the particular case of the

U(1) generator V , we want this equation to be satisfied for each choice of sign, since we

expect to get both a holomorphic and an antiholomorphic U(1) current algebra. Indeed,

H ∧ δA = 0 because H is a pullback from S3 and δAτ = 0, and DiδA
i = 0 because the

instanton equation F+ = 0 implies the second order Yang-Mills equation DiF
ij = 0, which

for j = τ gives DiF
iτ = 0.

We expect to show that V̂ is covariantly constant for both connections ∇̂ and ∇̂′ on

M. This means that eqn. (6.2) or (6.3) must hold with either sign of the torsion Ĥ, so we

really need to establish two conditions

dΛ̂ = 0 = ι
V̂
Ĥ, (6.6)

where Λ̂ is the one-form dual to V̂ .

The first of the two desired relations is almost immediate. From the definition (4.2) of

the metric of M and the formula (6.5) for δA (which we are entitled to use since we have

verified that δA as defined in this formula satisfies the gauge condition that was assumed

in defining the metric), it follows that the one-dual dual to V̂ is

Λ̂ = − 1

8π2

∫

M

d4x
√
g
∑

i

trFτiδA
i = − 1

8π2

∫

M

trF ∧ δA ∧ dτ, (6.7)

where the instanton equation was used in the last step. Up to a constant multiple, Λ̂ is the

basic example discussed in eqn. (2.11) of a one-form on M that is closed but not exact.

In particular, Λ̂ is closed, as desired.

To verify the second relation ι
V̂
Ĥ = 0 requires a more detailed analysis. We use the

formula (5.24) for Ĥ. We note that in this formula, d3Ωψ = d3Ω δA can be replaced by

d3Ω δAτdτ , since the part of δA tangent to the first factor of S3 × S1 does not contribute

when multiplied by the volume form d3Ω of S3. So as ι
V̂
δAτ = 0 according to eqn. (6.5),

we have ι
V̂
(d3Ω δA) = 0. Hence in computing ι

V̂
Ĥ, we only have to contract V̂ with

[δAi, δA
i], giving

ι
V̂
Ĥ =

Q′
5

π

∫

M×M

d3Ωx dτ tr⊗ tr δAτ (x)B(x, y)[δAi(y), Fτi] d
4y
√
gy. (6.8)
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To proceed farther, we need to study the second order differential equation obeyed by δA.

This equation can be efficiently found by first observing that an instanton solution certainly

obeys the Yang-Mills equation DiFij = 0. The variation of this equation is

Di(DiδAj −DjδAi) + [δAi, Fij ] = 0. (6.9)

To simplify this, we use

DiDjδA
i = DjDiδA

i + [Di,Dj ]δA
i = [Fij , δA

i] +RjkδA
k −Dj ⋆ (H ∧ δA), (6.10)

where Rjk is the Ricci tensor of S3 × S1 and we used the gauge condition (4.15) satisfied

by δA. Setting j = τ , we have Rτk = 0 for S3 × S1, so the term involving the Ricci

tensor drops out. Since δAτ is the only component of δA that contributes to H ∧ δA,

and Dτ commutes with H, for j = τ we have Dj ⋆ (H ∧ δA) = ⋆(H ∧ dAδAτ ) and (6.10)

becomes DiDτ δA
i = [Fiτ , δA

i] − ⋆[H ∧ dAδAτ ]. Substituting this in eqn. (6.9), we get

DiDiδAτ + 2[δAi, Fiτ ] + ⋆[H ∧Dτ δAτ ] = 0 or in other words

[δAi, Fτi] =
1

2
WδAτ , (6.11)

where W is the operator

Wφ = DiD
iφ+ ⋆[H ∧ dAφ] (6.12)

whose Green’s function B(x, y) appears in the formula (6.8). So eqn. (6.8) can be written

ι
V̂
Ĥ =

Q′
5

2π

∫

M×M

d3Ωx dτ tr⊗ tr δAτ (x)B(x, y)WyδAτ (y)d
4y
√
gy. (6.13)

Integrating by parts and using eqn. (2.39) for W †
yB(x, y), this simplifies to

ι
V̂
Ĥ =

Q′
5

2π

∫

M

d3Ωx dτ tr δAτ (x)δAτ (x) = 0. (6.14)

The vanishing in the last step holds by fermi statistics, since δAτ (x) = ψτ (x) is a fermionic

object – a scalar function on M valued in one-forms on M – while tr δAτ (x)δAτ (x) is

symmetric in the two factors of δAτ (x).

This completes the proof that the vector field V̂ is covariantly constant for both con-

nections ∇ and ∇′. Therefore, the holomorphic and antiholomorphic chiral algebras of

the sigma-model with target M will contain, at a minimum, a U(1) current algebra and

a free fermion, beyond the small N = 4 algebra that is guaranteed by the generalized

hyper-Kahler structure.

Since V̂ is a Killing vector field, it satisfies DiV̂j +Dj V̂i = 0, and since the dual one-

form is closed, we have also DiV̂j −Dj V̂i = 0. So DiV̂j = 0 and V̂ is covariantly constant

for the Riemannian metric of M. In Riemannian geometry, if a compact Riemannian M
has a nonzero vector field V̂ that is covariantly constant, then locally M = M′ × S1 where

the two factors are orthogonal and V̂ acts by rotating the S1. In general this may be true

only locally and globally one may have M = (M′ × S1)/Zn for some n ≥ 2, where Zn acts

by a 2π/n rotation of S1 and by some symmetry of order n of M′. In the present context,
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we also have a torsion field Ĥ on M; since ι
V̂
Ĥ = L

V̂
Ĥ = 0, Ĥ is a pullback from M′.

This means that if ϕ is an angle-valued field that parametrizes the S1, then ϕ is decoupled

from the B-field of M (in some gauge, at least locally, the B-field is independent of ϕ

and has no component in the ϕ direction). So ϕ is a free field, and the holomorphic and

antiholomorphic current algebras whose existence we have deduced are generated by the

holomorphic and antiholomorphic conserved currents ∂ϕ and ∂ϕ.

Since V̂ is covariantly constant, its length squared |V̂ |2 is constant. We can now easily

determine the constant value. In this calculation, we use the definition (4.2) of the metric

of M. If we take the metric of S3×S1 to be the usual dΩ2+dτ2, then with V̂ as described

in eqn. (6.5), we get

|V̂ |20 = − 1

4π2

∫

S3×S1
d4x

√
g trFiτF

iτ = − 1

8π2

∫

S3×S1
trF ∧ F = Q1, (6.15)

where we used the instanton equation and Q1 is the instanton number.

The reason for the subscript in |V̂ |20 in eqn. (6.15) is that we actually want to use a

different normalization for this calculation. In sections 6.3 and 6.4, we will use the value

of |V̂ |2 as an ingredient in determining one of the central charges of the large N = 4

algebra. For this purpose, bearing in mind the brane construction described in section

1.2 that motivates the duality, it is important to normalize the metric of S3 × S1 so that∫
S3 H = 2πQ′

5. According to eqn. (3.35), we can ensure this by taking the metric of S3×S1

to be
Q′

5

2π

(
dΩ2 + dτ2

)
. This rescaling of the metric of S3 × S1 does not affect the instanton

equation, but according to eqn. (4.2), it does multiply the metric of M by
Q′

5

2π . Therefore

with this normalization, we have

|V̂ |2 = Q1Q
′
5

2π
. (6.16)

6.3 Rotations of S3

Now we consider the case of a vector field that is a generator of, say, the right action

SU(2)r of S3 = SU(2) on itself. SU(2)r leaves fixed the right-invariant one-forms Ri that

were introduced in section 3.3. On the other hand, the left-invariant one-forms Li transform

in the adjoint representation of SU(2)r.

It is convenient to introduce a basis T1, · · · , T3 of the Lie algebra of SU(2)r, normalized

so that the Lie algebra takes the canonical form

[Ta, Tb] = ǫabcTc, a, b, c = 1, · · · , 3. (6.17)

In the notation of section 3.3, we can take

T1 = −1

2

(
y0

∂

∂y1
− y1

∂

∂y0
+ y2

∂

∂y3
− y3

∂

∂y2

)
, (6.18)

with T2 and T3 obtained by cyclic permutations of indices 1, 2, 3. The one-form dual to the

vector field Ta is a multiple of La:

T i
aGijdx

j = −1

2
La. (6.19)
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We recall that the metric G and the one-forms La are covariantly constant for the connec-

tion ∇ on M . From eqn. (6.19), it follows that also the Ta are covariantly constant for

this connection.

Since Ta generates a symmetry of the instanton equation on S3 × S1, it corresponds to

a Killing vector field T̂a on M. The T̂a generate an SU(2) symmetry of M since the Ta

generate an SU(2) symmetry of S3×S1. The complex structures Îa of M transform in the

adjoint representation of this SU(2) since the complex structures Ia of S3×S1, from which

the Îa are deduced by restriction from TA to TM, transform in this representation.

In a moment, we will show that T̂a is covariantly constant for the conection ∇̂ on M
that corresponds to the connection ∇ on M . As explained in eqns. (3.7) and (3.8), this

implies that associated to the T̂a are holomorphic currents with associated free fermions.

Being holomorphic, the T̂a will generate not just a global action of SU(2)r but a holomorphic

SU(2)r current algebra. Together with the free fermions and U(1) modes discussed in

section 6.2, these holomorphic fields will extend the holomorphic chiral algebra of the

σ-model with target M from a small N = 4 algebra to a large one.

Actually, there is a trivial way to find vector fields on M that are covariantly constant

for the connection ∇̂ and that, like the T̂a, transform in the adjoint representation of

SU(2)r. The complex structures Îa, a = 1, 2, 3, are covariantly constant with respect to ∇̂,

and we showed in 6.2 that the U(1) generator V̂ is covariantly constant with respect to ∇̂
(as well as ∇̂′). So the vector fields ÎaV̂ are covariantly constant with respect to ∇̂. We

claim that

T̂a = −1

2
ÎaV̂ , (6.20)

so T̂a is likewise covariantly constant. This will complete the proof that the currents

associated to the T̂a are holomorphic on the sigma-model worldsheet and generate an

SU(2)r current algebra.37

First, let us verify the statement on S3 × S1 that is analogous to (6.20), namely

Ta = −1

2
IaV. (6.21)

From the definition (3.36) of the Ia, we have IaL0 = La. V is the vector field dual to L0

and Ta is −1
2 times the vector field dual to La, so eqn. (6.21) is valid.

The corresponding statement on M, namely T̂a = −1
2 ÎaV̂ , is actually an immediate

consequence. First of all, from the statement Ta = −1
2IaV on S3×S1, it immediately follows

that the corresponding statement T̂a = −1
2 ÎaV̂ is valid on the space A of all connections.

To deduce from that a statement on the moduli space M, we have to take into account

that in general the action of a vector field or a complex structure on a tangent vector to

M cannot be trivially deduced from the action on A; the natural formula in general must

be accompanied by a gauge transformation. However, the gauge condition that we used

in embedding the tangent space to M in that to A was chosen to be invariant under the

37Without knowing eqn. (6.20), we would still know that, as the vector fields ÎaV̂ are covariantly constant

with respect to ∇̂, they are associated to holomorphic currents that transform in the adjoint representation

of an SU(2) symmetry group. We would not know that they are actually the SU(2) generators.

– 56 –



action of the Îa, so the natural action of Îa does not need to be accompanied by a gauge

transformation. And we showed in section 6.2 that the same is true for V̂ . So the formula

T̂a = −1
2 ÎaV̂ can be just restricted from the tangent space to A to the tangent space to M.

As a bonus, this argument also shows that the naive action of T̂a by δAj = T i
aFij satisfies

the gauge condition, with no accompanying gauge transformation needed.

In section 6.4, to compute the level of the SU(2)r current algebra, we will need to know

the length squared |T̂a|2 = T̂ i
aGij T̂

j
a of the vector fields T̂a. The relation T̂a = −1

2 ÎaV̂ gives

an easy way to do this. As a complex structure, Îa is in particular a length-preserving

linear transformation of the tangent bundle of M. So the relation T̂a = −1
2 ÎaV̂ implies

that |T̂a|2 = 1
4 |V̂ |2. In eqn. (6.16), we showed that |V̂ |2 = Q1Q

′
5

2π , so

|T̂a|2 =
Q1Q

′
5

8π
. (6.22)

By now, we have shown that the sigma-model with targetM has a holomorphic SU(2)×
U(1) current algebra, extending the small N = 4 holomorphic superconformal algebra

to a large one. A similar analysis shows a similar enhancement of the antiholomorphic

chiral algebra of the sigma-model. Indeed, the two analyses are exchanged by the discrete

symmetry of S3 × S1 that acts as a joint reflection on each factor.

6.4 The Central Charges

Finally, we will analyze the central charges of the SU(2) current algebras in the large N = 4

holomorphic (or antiholomorphic) chiral algebra.

One SU(2) is contained in the small N = 4 algebra. This is the SU(2) symmetry of the

worldsheet fermions that exists because the connection ∇̂ has symplectic holonomy. The

worldsheet fermions all transform as spin 1/2 under this SU(2). A single set of four real

fermions in the spin 1/2 representation contributes 1 to the SU(2) current algebra level.

The number of such multiplets in the sigma-model is the quaternionic dimension of M, or

equivalently one fourth of its real dimension. By an index theorem, the real dimension of

M is 4Q1Q5, so the level of the current algebra in the small N = 4 algebra is Q1Q5, in

accord with expectations from supergravity and the duality conjecture [6]. This formula

for the current algebra level is exact, by the usual nonrenormalization theorem for fermion

anomalies.

The second SU(2) is the one that we analyzed in section 6.3, which acts by isometries of

M. As remarked in section 6.3, the semiclassical limit of the sigma-model with target M is

the limit that Q′
5 is large, keeping Q1 and Q5 fixed (or at least sufficiently small compared

to Q′
5). In general, in a sigma-model with a B-field, anomalies in target space symmetries

receive classical contributions that are large in the semiclassical regime. The WZW model

is an example of this. (The semiclassical regime of the WZW model is the regime that the

anomaly coefficient k is large, and in this regime, k can be computed classically from the

WZW action.) In a sigma-model with fermions as well as a B-field, in addition to a large

classical contribution, the anomaly can receive an O(1) contribution due to the fermions.

In the present context, since we are studying a supersymmetric sigma-model with fermions,

such an O(1) contribution to the anomaly is possible, and it would be desirable to know how
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to compute it. But here we will only evaluate the classical contribution. In an expansion in

powers of 1/Q′
5, there can be no further correction beyond the O(1) contribution, because

the anomaly coefficient is always an integer.

For a vector field T̂ on M that generates part of a holomorphic chiral algebra, the

semiclassical limit of the anomaly coefficient is easy to evaluate, because it depends only

on the length squared of the vector field. In the present context, we will take T̂ to be one

of the T̂a. Its length squared is known from eqn. (6.22), and we know that it corresponds

to a holomorphic current in the sigma-model.

For large Q′
5, the metric of the sigma-model target space M is scaled up, and in the

vicinity of any assumed classical ground state, local coordinates φ1, · · · , φdimM can be

chosen such that the metric becomes the flat metric Gαβ = δαβ plus a correction of order

1/Q′
5. This means that the classical contribution to the anomaly can be computed in a

theory of free scalar fields with the action

I =
1

2

∫
d2x

∑

µ=1,2

dimM∑

α=1

∂µφ
α∂µφα. (6.23)

For large Q′
5, the vector field T̂ becomes a vector field with constant coefficients, generating

a symmetry δφα = T̂α. In the free field theory, this symmetry can be generated by the

canonical current38 Jµ = 2πT̂α∂µφα. However, if (as in our present application) we know

that in the full sigma-model, the current generating the symmetry is holomorphic, then

in the free field approximation that we are analyzing, the current will have an extra term

ensuring this holomorphy and will be

Jµ = 2πT̂α(∂µφα + iǫµν∂
νφα). (6.24)

This extra term, which concretely will originate from the B-field coupling of the sigma-

model,39 does not affect the conservation of Jµ or the fact that it acts on φ by δφα = T̂α.

If z is a local complex coordinate on the worldsheet such that d2x = |dz|2, then eqn. (6.24)

is equivalent to

Jz = 4πT̂α∂zφα, Jz = 0. (6.25)

The two-point function of the free scalar field φα is 〈φα(z)φβ(0)〉 = −δαβ
log |z|
2π , which leads

to

〈Jz(z)Jz(0)〉 = −4πT̂ 2

z2
. (6.26)

The level k of an SU(2) current algebra is characterized by the statement that if sym-

metry generators are canonically normalized to satisfy (6.17), then the two-point functions

38The canonical current is defined by Jµ = 2π
∑

α δφα δI
δ∂µφα , where here δφα = T̂α. In two-dimensional

conformal field theory, the factor of 2π in the canonical current, and a similar factor in the definition of the

stress tensor, is conventionally included to avoid factors of 2π in operator product coefficients.
39The reason that we do not write any explicit formula for this coupling is that there is no canonical local

formula; any local formula involves the local form of Ĥ = dB̂, which does not actually affect the coefficient

that we are evaluating. Any choice of B̂ and Ĥ that is consistent with the assertion that the current Jµ is

holomorphic will lead to the result analyzed in the text.
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of the corresponding currents have short distance behavior

〈Jz(z)Jz(0)〉 = − k

2z2
. (6.27)

In the present context, that means that k = 8π|T̂ |2. From eqn. (6.22), we see that if T̂ is

any of the T̂a, then |T̂ |2 = Q1Q
′
5

8π . So the level of the SU(2) current algebra for large Q′
5 is

k = Q1Q
′
5, (6.28)

as predicted by the duality conjecture.

As already explained, this formula is conceivably subject to a correction that is O(1),

that is, independent of Q′
5. To compute this correction actually requires among other

things a more precise definition of Q′
5 than we have given, because a fermion anomaly can

affect the B-field flux by an O(1) amount.

6.5 Vector Fields on M And Their Fixed Points

In section 2.2, we proved that the U(1) generator V̂ has no fixed points on M – something

we now understand more deeply, having proved that V̂ actually has constant length. We

can also now justify certain analogous assertions that were made in section 2.2.

Consider a linear combination T =
∑

a caTa of the SU(2)r generators. The correspond-

ing symmetry generator of M is T̂ =
∑3

a=1 caT̂a = −1
2

∑3
a=1 caÎaV̂ . Since 1√∑

b c
2
b

∑
a caÎa

is a complex structure and acts on the tangent bundle of M as an orthogonal transfor-

mation, preserving lengths, it follows that T̂ has constant length 1
2

√∑
a c

2
a|V̂ |. In other

words, any SU(2)r generator has a (nonzero) constant length and hence acts on M without

fixed points.

Now consider an SU(2)ℓ generator T =
∑

a c
′
aT

′
a. The corresponding vector field on

M is T̂ ′ =
∑3

a=1 c
′
aT̂

′
a = −1

2

∑3
a=1 c

′
aÎ ′

aV̂. Reasoning as before, its length is 1
2

√∑
a c

′
a
2|V̂ |

and it acts on M without fixed points.

What about a sum T̂ + T̂ ′ of generators of SU(2)r and SU(2)ℓ? This vector field does

not have constant length, as in general the angle between the two vector fields T̂ and T̂ ′

is variable. However, the triangle inequality gives a lower bound on the length of T̂ + T̂ ′

which shows that T̂ + T̂ ′ acts without fixed points as long as |T̂ | 6= |T̂ ′|, in other words, as

long as the original vector fields T and T ′ on S3 × S1 have unequal length. If for example∑
a c

2
a >

∑
a c

′
a
2, then |T̂ | > |T̂ ′| and the triangle inequality gives

|T̂ + T̂ ′| ≥ |T̂ | − |T̂ ′| > 0. (6.29)

So a vector field T̂ + T̂ ′ can only have fixed points on M if the underlying vector fields

T and T ′ on S3 × S1 have equal length. In that case, there actually are fixed points, as

analyzed in [36] and discussed in section 2.3.

Finally, consider a linear combination Û = uT̂ + vT̂ ′ + wV̂ . The formulas T̂ =

−1
2

∑3
a=1 caÎaV̂ and T̂ ′ = −1

2

∑3
a=1 c

′
aÎ ′

aV̂ show that T̂ and T̂ ′ are both everywhere or-

thogonal to V̂ . Therefore the inner product of Û with V̂ is the constant w|V̂ |2. If w 6= 0,

the nonzero constant value of that inner product implies that Û has no zeroes.
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6.6 Large N = 4 Algebra for One Chirality Only

M = S3 × S1 is the unique compact four-manifold such that a sigma-model with target

M has two copies of the large N = 4 algebra (for left- and right-movers, respectively).

For this choice of M , we have shown that a sigma-model with target the corresponding

instanton moduli space M likewise has two copies of the large N = 4 algebra.

What if M is such that the sigma-model with target M has just one copy of the large

N = 4 algebra, say for right-movers only? What choices of M are possible? M should have

a single hypercomplex structure, with an SU(2) symmetry that rotates the three complex

structures, and an additional U(1) symmetry. As shown in [58], a compact hypercomplex

manifold of dimension four, if not Kahler, is a Hopf surface, which means in particular

that it is locally isomorphic to S3 × S1. A convenient way to exploit this fact is to observe

that such an M has the same universal cover as that of S3 × S1, namely S3×R. So we can

return to the starting point of section 3.3. S3 × R with the familiar metric dΩ2 + dτ2 is

equivalent to R
4 minus the origin with the metric

ds2 =
d~Y 2

~Y 2
, (6.30)

as in eqn. (3.25). The orientation-preserving isometry group of S3 × R is H = (SU(2)ℓ ×
SU(2)r)/Z2 × R

∗ where R
∗ acts by ~Y → λ~Y , λ > 0. Any orientable manifold locally

isomorphic to S3 × S1 is the quotient of S3 × R by a discrete subgroup Γ ⊂ H. However,

since we want to preserve one SU(2) symmetry, say SU(2)r , we should pick Γ to commute

with SU(2)r, which means that we want Γ ⊂ SU(2)ℓ×R
∗. The quotient M = (S3×R)/Γ is

a manifold if Γ is a discrete subgroup of SU(2)ℓ×R
∗, and is compact as long as Γ 6⊂ SU(2)ℓ.

Moreover, as long as Γ 6⊂ R
∗, a sigma-model with target M will support precisely one copy

of the large N = 4 algebra.

It is then true that if M is the instanton moduli space on M , a sigma-model with

target M also supports precisely one copy of the large N = 4 algebra. We do not need any

essentially new calculation to show this. The following structures on S3×R are Γ-invariant,

and therefore descend to M : the SU(2)ℓ-invariant hypercomplex structure studied in this

paper and its associated connection ∇, and the symmetry group40 SU(2)r × R
∗, where

SU(2)r rotates the complex structures that make up the hypercomplex structure. Since

the local geometry is the same as it is for S3 × S1, the computations that we have done

apply without change to show that the vector fields generating the SU(2)r ×R
∗ action are

covariantly constant for the connection ∇̂ on M that corresponds to ∇. This extends the

small N = 4 algebra that we would expect based on the analysis in section 5 to a large

one.

The example studied in section 8 with M = S3/Zn × S1 corresponds to Γ = Zn × Z,

with Zn ⊂ SU(2)ℓ and Z ⊂ R
∗. Another simple example, with Γ = Z, can be obtained if we

describe M by complex variables Z1, Z2 with an equivalence relation (Z1, Z2) ∼= eT (Z1, Z2)

for some constant T with ReT > 0. If ImT = 0, this gives back the original example

M = S3 × S1 with a metric of the standard form, leading to two copies of the large N = 4

40The group that acts faithfully on M may be a quotient of SU(2)r × R
∗, depending on Γ.
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algebra. But taking ImT 6= 0 gives a deformation that allows only one copy of the large

N = 4 algebra.

7 Conformal Invariance

There is one more issue to consider. It has long been understood that for two-dimensional

sigma-models with N = 4 supersymmetry, there is a potential gap between scale invariance

and conformal invariance [17]. In general, the condition for scale invariance is weaker than

the condition for conformal invariance. Scale invariance says that the trace of the stress

tensor is the divergence of a current, and conformal invariance says that the trace of the

stress tensor vanishes [18].

In a sigma-model with torsion, the one-loop beta functions for the metric and the B-

field are conveniently combined together to make R̂KL, the Ricci tensor of the connection

∇̂ with torsion. Strong HKT geometry then leads to41

R̂KL = ∇̂K θ̂L, (7.1)

where θ̂ is a 1-form called the Lee form. For conformal invariance, one wants instead

R̂KL = −2∇̂K∇̂LΦ, (7.2)

where Φ is a scalar field (the dilaton) on the sigma-model target space M. Unless θ̂ is such

that eqn. (7.1) can actually be put in the form (7.2), the model is only scale-invariant and

not conformally-invariant.

There are several ways to argue that the sigma-model with target the instanton moduli

space M is actually conformally-invariant. However, some of the following arguments have

technical gaps or are limited, in the form presented here, to lowest order in sigma-model

perturbation theory.

First of all, we can simply invoke the general result [18] that a scale-invariant quantum

field theory in two dimensions with a discrete spectrum of operator dimensions is always

conformally invariant. A sigma-model with smooth compact target space will have a dis-

crete spectrum of operator dimensions. The instanton moduli space M is not smooth and

compact, because of singularities arising from small instantons and un-Higgsing. However,

when the theta-angle is non-zero (see section 2.1.2), the model is expected to have a dis-

crete spectrum of operator dimensions (if the charges are relatively prime), and therefore

the general theorem applies.

Even without invoking the theta-angle, we can note that the general argument for

conformal invariance [18] only requires that the theory have a discrete spectrum of operator

dimensions near dimension zero. The small instanton and un-Higgsing singularities do

41If the same metric and B-field on the σ-model target space are compatible with more than one strong

HKT structure – as happens in the case of the instanton moduli space on S3 × S1 – then a formula like

this holds for each of them. In what follows, we will not need an explicit formula for the Lee form θ̂. It

is difficult to get a useful explicit expression for θ̂ in the case of instanton moduli space M, because the

definition (3.19) of the Lee form involves the inverse of the metric on M, and although there is a simple

formula for this metric, it is difficult to give a useful description of its inverse.
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produce a continuous spectrum of operator dimensions, but only above a positive threshold

(which moreover is large ifQ1 and Q5 are large). So one would not expect these singularities

to cause difficulty in the proof of conformal invariance.

A number of more explicit alternative arguments are available, though in the form

that will be presented here these arguments have technical gaps or are limited to lowest

order of sigma-model perturbation theory (that is, lowest order in an expansion in powers

of 1/Q′
5). Hopefully these arguments can be sharpened and extended.

One approach is a Perelman-style argument, using an auxiliary Schrödinger equation.

This approach was explained in [19], following [59, 60]. See also [61], Corollary 6.11, or

[62], Proposition 2.6, where the same result is proved in essentially the same way. For this

argument, one considers on M the Schrödinger operator −4∆2 + R − 1
12H

2. The proof

of conformal invariance requires that this operator should have a unique, positive ground

state. For example, this is true if M is compact and smooth except for conical singularities

which are at finite distance and at which the potential R− 1
12H

2 is bounded below. (It is

also true under some hypotheses if M has ends at infinite distance. In the related context

of the c-theorem, this case was studied in [63].) In the case of the instanton moduli space,

the small instanton and un-Higgsing singularities are indeed conical singularities at finite

distance. Generically these singularities are hyper-Kahler singularities at which R and

H2 remain bounded. However, there are a few exceptional cases. For example, consider

the small instanton singularity on a moduli space of instantons with instanton number

Q1 > 1. When a single instanton bubbles or in other words becomes small and shrinks

to a point, M acquires the same universal small instanton singularity as in the case of

instantons on any other four-manifold. This universal singularity is a conical hyper-Kahler

singularity, and is harmless for our present purposes, since both R and H vanish near

such a singularity. This is true as long as the remaining instanton solution after instanton

bubbling remains irreducible: the details of the manifold in which the small instanton is

embedded do not matter. However, if all Q1 instantons become small, so that the remaining

instanton solution is simply a flat connection on S3 × S1, we get a singularity at which the

global structure is relevant. This case needs more study before claiming to prove conformal

invariance based on a Perelman-style argument.

Another approach to proving conformal invariance uses more detailed facts about the

instanton moduli space M as well as results of [19]. However, this argument, in the form

we will present, is only valid to lowest order in sigma-model perturbation theory. We

have constructed on the instanton moduli space M a hypercomplex structure Î, Ĵ , K̂,

covariantly constant with respect to a connection ∇̂, and a second hypercomplex structure

Î ′, Ĵ ′, K̂′, covariantly constant with respect to a second connection ∇̂′. Associated to the

first hypercomplex structure is a Lee form θ̂ (though this is not obvious from the definition

in eqn. (3.19), the Lee form depends only on the hypercomplex structure and not on

the specific choice of I, J , or K in writing the formula). Similarly there is a Lee form

θ̂′ associated to the second hypercomplex structure. The potential obstruction to scale

invariance can be expressed in terms of the tensor ∇̂K θ̂L, which is also equal to ∇̂′
Lθ̂

′
K .
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The equality ∇̂K θ̂L = ∇̂′
Lθ̂

′
K gives (as in eqn. (3.16) of [19])

DK(θ̂ − θ̂′)L +DL(θ̂ − θ̂′)K = 0, (dθ̂ + dθ̂′)KL = ĤP
KL(θ̂ − θ̂′)P , (7.3)

where D is the Riemannian connection. The obstruction to conformal invariance vanishes

if and only if there is a function Φ on M (the dilaton) such that

∇̂KθL = −2∇̂K∂LΦ. (7.4)

Let us see why such a Φ exists in the case of the instanton moduli space M.

Isometries of S3 × S1 that preserve the orientation of each factor rotate Î, Ĵ , and

K̂ among themselves. Since θ̂ is determined by any of these (or any linear combination

aÎ+bĴ+cK̂ with a2+b2+c2 = 1), it is invariant under such isometries. The same argument

applies for θ̂′. However, as discussed in section 2.2, we can also define an isometry ρ that

acts as a reflection on each factor of S3 × S1, reversing the orientation of each factor and

preserving the overall orientation. Such an isometry exchanges the two hypercomplex

structures, so it exchanges θ̂ and θ̂′. So θ̂+ θ̂′ is even under ρ, and θ̂− θ̂′ is odd. Eqn. (7.3)

tells us that θ̂−θ̂′ is the one-form dual to a Killing vector field. This Killing vector field must

be invariant under rotations of either factor of S3×S1, but odd under the joint reflection ρ.

The only Killing vector field on M with this property is the Killing vector field V̂ associated

with the Killing vector field V on S3 × S1 that generates a rotation of S1. So θ̂ − θ̂′ = uλ,

where λ is the 1-form dual to V̂ and u ∈ R. In section 6, we have proved that ĤPKLV̂
L = 0.

Consequently, the second equation in (7.3) reduces to d(θ̂+ θ̂′) = 0. Thus θ̂+ θ̂′ is a closed

1-form on M, defining an element of H1(M;R). However, θ̂ + θ̂′ is even under the joint

reflection ρ, and we have seen in section 2.4 that (assuming something along the lines of the

Atiyah-Jones conjecture) H1(M;R) is one-dimensional, generated by the dual of V̂ , which

is odd under ρ. Hence the closed form θ̂+θ̂′ is actually exact: θ̂+θ̂′ = 4dΦ for some function

Φ. Putting these statements together, we have θ̂ = 1
2

(
(θ̂ + θ̂′) + (θ̂ − θ̂′)

)
= 2dΦ + 1

2uλ.

Inserting this in ∇̂K θ̂L, the term proportional to λ does not contribute, since ∇̂λ = 0. So

∇̂θ̂ = 2∇̂dΦ and the condition for conformal invariance holds with dilaton Φ.

A noteworthy fact is that each of these arguments for conformal invariance of the sigma-

model with target M makes use of some global information (compactness, relevant for

Polchinski’s argument, some knowledge of the possible singularities, relevant for analyzing

the effective Schrödinger equation, or some more detailed information that entered in the

discussion of the Lee forms). Local considerations alone do not suffice.

8 Searching for Interesting Geometries

8.1 Preliminaries

The moduli space M of instantons on S3 × S1 has an interesting differential geometric

structure that, as we have seen, leads to (4, 4) supersymmetry in two dimensions (with

large superconformal symmetry) despite the presence on M of a topologically non-trivial

B-field. However, M is not a smooth compact manifold; it has small instanton singularities
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and also un-Higgsing singularities – singularities that arise at points in M corresponding

to instantons with a non-trivial automorphism group.

In the case of instantons on T4 or K3, the instanton moduli spaces are hyper-Kahler,

again with singularities associated to small instantons and un-Higgsing. In this case, how-

ever, as also discussed in section 2.1.2, it is possible to resolve the singularities by turning

on a Neveu-Schwarz B-field on T4 or K3. This leads to a noncommutative deformation

of the instanton equation [35], and resolves all of the singularities, provided that Q1 and

Q5 are relatively prime. (If Q1 and Q5 are not relatively prime, certain un-Higgsing sin-

gularities are unavoidable.) In this way one can construct smooth, compact hyper-Kahler

manifolds that are genuinely new – they cannot be constructed by taking products of tori

and K3 surfaces. In fact, these are the main known examples of compact hyper-Kahler

manifolds.

No comparable examples are known of strong HKT manifolds, even if one only asks

for a single strong HKT structure, rather than a pair of strong HKT structures, as the

instanton moduli space on S3×S1 possesses. If one asks for a strong HKT manifold that is

compact (and smooth), the known examples are compact hyper-Kahler manifolds (in which

the torsion H vanishes) and homogeneous spaces (which can have strong HKT structures

with H 6= 0; there are many examples [31, 32], of which the simplest is S3 × S1). It would

be interesting to find genuinely new examples of compact strong HKT manifolds. The

instanton moduli spaces on S3×S1 do not qualify, since they have unavoidable singularities

associated to small instantons and to unbroken gauge symmetries. The NS B-field modes

that can resolve these singularities in the case of K3 or T4 have no analog here, as H2(S3×
S1;R) = 0. It is true that there is a theta-angle that, as discussed in section 2.1.2, resolves

the singularities in a quantum mechanical sense (if Q1 and Q5 are relatively prime), but

this does not give a classical deformation or resolution of the singularities of the instanton

moduli space.

Aiming to find a classical example of a compact (smooth) manifold with the geometry

that leads to large N = 4 symmetry – at least for one chirality in the sigma-model – we will

replace S3 × S1 with M = S3/Zn × S1 for some integer n ≥ 2. Here we pick Zn to act on,

say, the left on S3 ∼= SU(2), thus breaking the rotation group SU(2)ℓ to U(1)ℓ and leaving

SU(2)r unbroken. Instanton moduli space on M , which we will again denote as M, now

carries just a single strong HKT structure, which will lead to a large N = 4 superconformal

algebra for right-moving modes of the sigma-model. Left-moving modes will see a single

KT structure (Kahler with torsion), leading to an ordinary N = 2 algebra for left-movers.

To take advantage of the torsion in the cohomology of M , we will take the gauge group

to be PU(n) = SU(n)/Zn, the quotient of U(n) or SU(n) by its center, rather than SU(n)

as we have assumed up to this point.42 In fact, replacing SU(n) with SU(n)/Zn would

have little effect43 on the differential geometry of the instanton moduli space on S3 × S1.

42More generally, we could consider PU(n) bundles over S3/Zm × S1 with m 6= n. The ideas would be

similar but some statements would become slightly more complicated as we would have to consider the

cohomology of S3/Zm with Zn coefficients.
43The instanton moduli space on S3 × S1 for SU(n)/Zn is obtained by dividing the SU(n) moduli space

by a Zn symmetry that multiples the holonomy around the second factor of S3 × S1 by an element of the
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The reason that S3/Zn × S1 is different is that the there is torsion in the cohomology of

S3/Zn × S1 and as a result there are more choices in the topology of a PU(n) bundle.

An SU(n) bundle over a four-manifold E is classified topologically by its second Chern

class c2(E), which we usually think of as the second Chern class of the vector bundle

associated to E in the fundamental representation. SU(n) also has, of course, an adjoint

representation. We will denote the associated vector bundle in the adjoint representation

as ad(E). As a real vector bundle, it has a first Pontryagin class p1(ad(E)). The relation

between the two invariants is

p1(ad(E)) = 2nc2(E). (8.1)

Thus, for an SU(n) bundle, p1(ad(E)) is always an integer multiple of 2n.

The classification of a PU(n) bundle E → M is not quite so simple. As PU(n) has no

analog of the n-dimensional fundamental representation of SU(n), there is no rank n vector

bundle associated to E. But PU(n) does, of course, have an adjoint representation, and we

can again consider the adjoint bundle ad(E) associated to E. It has an invariant p1(ad(E))

which is still an integer-valued invariant, in the sense that it is valued in H4(M ;Z) and

gives an integer upon integration over M . However, in general it is no longer divisible by

2n.

However, this is not the whole story. A PU(n) bundle has an additional invariant ζ(E)

taking values in H2(M ;Zn). For n = 2, PU(2) is the same as SO(3), and ζ is the same as

the second Stieffel-Whitney class w2(E). As in that example, ζ is the obstruction to lifting

a PU(n) bundle to a bundle with structure group SU(n), the universal cover of PU(n).

A PU(n) bundle E over a four-manifold M is determined topologically by p1(ad(E))

and ζ(E), but these cannot be specified independently. They are subject to one relation,

which was determined in [64]:

p1(ad(E)) =

{
(n+ 1)C(ζ) mod 2n n even
n+1
2 C(ζ) mod 2n n odd.

(8.2)

Here C is a cohomology operation that generalizes the Pontryagin square (which was first

considered in the physics of gauge theory in [65]). For n = 2, with ζ = w2(E), C actually

is the Pontyagin square and the formula is

p1(ad(E)) = C(ζ) mod 4. (8.3)

For odd n, C(ζ) = 2ζ2 according to [64] so in that case

p1(ad(E)) = (n+ 1)ζ(E)2 mod 2n. (8.4)

The details for even n > 2 are slightly more complicated and we omit them.

One has44 H i(S3/Zn;Zn) = Zn for i = 1, 2, 3, with generators x ∈ H1(S3/Zn), y ∈
H2(S3/Zn;Zn), xy ∈ H3(S3/Zn;Zn). One also has H1(S1;Zn) ∼= Zn, say with generator

z. The cohomology ring of S3/Zn × S1 with Zn coefficients is generated by x, y, z with the

center of SU(n).
44See for example [66] or Prop 3.8 in [67].
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following relations: y2 = z2 = 0 for dimensional reasons; moreover, for odd n, x2 = 0 and

for even n, x2 = n
2 y.

In particular, since H2(S3/Zn × S1;Zn) = Zn × Zn with generators y and xz, we have

in general ζ = ay + bxz, with a, b ∈ Zn. We can then make eqn. (8.4) explicit for odd n:

p1(ad(E)) = 2ab mod 2n. (8.5)

Thus in general, for odd n, p1(ad(E)) can take any even value mod 2n.

We will also make eqn. (8.2) explicit for n = 2, PU(2) = SO(3). First of all, for n = 2,

the cohomology of S3/Zn simplifies slightly as y = x2, and accordingly x3z generates

H4(S3/Z2 × S1;Z2) = Z2. The group H2(S3/Z2 × S1;Z2) = Z2 × Z2 has three nonzero

elements, namely x2, xz, and x2 + xz. Two of these possible nonzero values of ζ can be

realized by flat SO(3) bundles. Indeed, since a real line bundle ε → M is classified by

w1(ε) ∈ H1(M,Z2), over M = S3/Z2 × S1, there exists a real line bundle ε → M with

w1(ε) = x, and another real line bundle ε′ → M with w1(ε
′) = z. Then with O representing

a trivial real line bundle, there is a flat SO(3) bundle over M with ad(E) = O ⊕ ε⊕ ε and

hence w2(E) = x2, and another flat SO(3) bundle over M with ad(E′) = ε ⊕ ε′ ⊕ ε ⊗ ε′

and w2(E) = x2 + xz. As these bundles are flat, we have p1(ad(E)) = p1(ad(E
′)) = 0.

Therefore, by virtue of eqn. (8.4), in general an SO(3) bundle E → S3/Z2×S1 with ζ = x2

or x2+xz has p1(ad(E)) divisible by 4, implying via eqn. (8.3) that C(x2) = C(x2+xz) = 0.

To see what happens for ζ = xz, we use the general relation for the Pontryagin square:

C(u + v) = C(u) + C(v) + 2uv mod 4. In the present case, taking u = x2, v = xz, this

tells us that C(xz) = 2x3z mod 4 = 2 mod 4. Hence eqn. (8.2) tells us that in general an

SO(3) bundle with ζ = xz will have p1(ad(E)) = 2 mod 4.

We can see this more explicitly by constructing an elementary example. We begin with

a simple construction of an SU(2) bundle of instanton number 1 over S3 × S1. We start

with a trivial SU(2) bundle over the cylinder S3 × I, where I is an interval. To build an

SU(2) bundle E → S3 × S1, we glue the top of the cylinder to the bottom after making a

gauge transformation by a map Φ : S3 → SU(2). To get a bundle of instanton number 1,

we can take Φ to be the identity map from S3 = SU(2) to itself. This gives a bundle with

c2(E) = 1 and hence p1(ad(E)) = 4. To get an SO(3) bundle over S3/Z2 × S1, we make

the same construction starting with a trivial bundle over the cylinder S3/Z2 × I. Then we

make an SO(3) bundle over S3/Z2 × S1 by gluing the top of the cylinder to the bottom

after making a gauge transformation Φ : S3/Z2 → SO(3). For Φ we choose the identity

map from S3/Z2 = SO(3) to itself. This gives an SO(3) bundle E → S3/Z2 × S1. A double

cover of this construction gives the previous one, so the curvature integral is half of what

it was before and p1(ad(E)) = 2. As for the invariant ζ(E), since the bundle E is trivial

when restricted to S3/Z2×p for a point p ∈ S1, there is no x2 contribution in ζ(E). On the

other hand, ζ(E) must be nonzero since p1(ad(E)) is not a multiple of 4. So ζ(E) = xz.

8.2 Instanton Moduli Spaces

Now we will begin a more detailed discussion of instanton moduli spaces onM = S3/Zn×S1.

The first question to ask is whether these moduli spaces are nonempty. The usual existence
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theorem for instantons [68] applies for any simple and simply-connected gauge group G and

any compact oriented smooth four-manifold M . The theorem shows that the moduli space

is non-empty if the instanton number is large enough; if M is simply-connected, it must be

at least b+2 (M) − b1 + 1 (b+2 is the dimension of the space of selfdual harmonic two-forms

on M and b1 is the first Betti number). The proof is made by starting with a trivial flat

G-bundle over M . Then, after picking a suitable embedding of SU(2) in G, one glues in

some number k of small SU(2) instantons to get an approximate instanton solution over

M , and one proves that if k ≥ b+2 (M)− b1 + 1, the approximate solution can be corrected

to get an exact solution.

This proof is not sufficient for our purposes. We want to consider instantons with

structure group the non-simply-connected group PU(n) and with ζ(E) 6= 0. This means

that E cannot be a trivial flat bundle. Actually, the proof in [68] can easily be modified to

start with any flat bundle, not necessarily trivial. But for generic ζ, eqn. (8.2) shows that

p1(ad(E)) cannot vanish and therefore E cannot be flat.

Luckily, there is another existence theorem for instantons that applies for arbitrary ζ

[41]. This theorem says that for any compact simple G and any ζ, the instanton mod-

uli space is non-empty if the instanton number is sufficiently large. In our context, this

means that for any ζ(E) the instanton moduli space is nonempty for any sufficiently large

p1(ad(E)) that is consistent with eqn. (8.2). (Actually this statement is a special case

of a more general theorem that was already cited in section 2.4.) The proof proceeds

roughly as follows. Starting with any G-bundle E → M with the desired value of ζ(E),

and any connection on this bundle, one glues in many small instantons. One shows that

the gluing parameters can be chosen so as to reduce the L2 norm of the selfdual part of the

Yang-Mills field strength, making the field strength more nearly anti-selfdual. Once one

gets close enough to anti-selfduality, one then shows (as in the original proof [68]) that the

connection can be modified to achieve full anti-selfduality.

A drawback of this proof is that it does not tell us what is, for given ζ(E), the smallest

value of p1(ad(E)) at which the instanton equation can be solved. We only learn that the

moduli spaces are non-empty for all sufficiently large values of p1(ad(E)). (In fact, there

are no “gaps”: if the moduli space is non-empty for one value of p1(ad(E)), it remains

non-empty at larger values consistent with eqn. (8.2).)

In short, for all ζ and all sufficiently large p1(ad(E)), we do get an instanton moduli

space M that will have the differential geometric properties that lead to a single copy of

large N = 4 superconformal symmetry. Our goal now is to argue that with some further

choices, M will be smooth and compact. If so, these moduli spaces are candidates as

the first examples of smooth, compact strong HKT manifolds that are not products of

hyper-Kahler manifolds and homogeneous spaces.

For M to be smooth and compact, we have to avoid singularities associated to bubbling

of small instantons, and also un-Higgsing singularities associated to instanton solutions with

non-trivial automorphism groups. First let us discuss how to eliminate the small instanton

singularity. There is a natural way to do this. Pick a value of ζ such that for a PU(n)

bundle E → M with the given ζ, eqn. (8.2) implies that p1(ad(E)) is not a multiple of

2n. If p1(ad(E)) is negative, then the instanton moduli space is empty. But if p1(ad(E)) is
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sufficiently positive, then the instanton moduli space is non-empty according to the proof

that we just sketched. Therefore, there is a smallest value of p1(ad(E)) with the given ζ

such that the instanton moduli space M is nonempty. Since p1(ad(E)) is not an integer

multiple of 2n, it does not vanish at the minimum. So the component M with the minimum

value of p1(ad(E)) parametrizes instanton solutions that are not merely flat bundles. Let

us call this the minimal component of instanton moduli space for the given ζ. This minimal

component has no small instanton singularity, since such a singularity would connect M
to another component with a smaller value of p1(ad(E)) and the same ζ.

The question now arises of whether it is also true, perhaps after putting a further

restriction on ζ, that the minimal component of instanton moduli space has no un-Higgsing

singularity. Such a singularity occurs at a point p ∈ M that corresponds to an instanton

solution whose structure group is a proper subgroup of PU(n) – and more specifically, a

proper subgroup that has a nontrivial commutant in PU(n). For n = 2, it is clear that the

minimal component can have no such singularity. A proper subgroup of PU(2) = SO(3)

is a either a finite group or is isomorphic to SO(2) or to O(2), and no such group is the

structure group of a non-flat instanton solution on S3/Z2 × S1. It is not clear what is the

dimension of the minimal component for PU(2), and it is not clear whether the minimal

component might be the product of a hyper-Kahler manifold and a homogeneous strong

HKT manifold. However, the minimal component for PU(2) is a candidate as a genuinely

new strong HKT manifold that is compact and smooth.

To make a similar argument for n = 3, we observe that a connected proper subgroup

of PU(3) that is the structure group of a non-flat instanton bundle on S3/Z3 × S1 is either

U(2) or its subgroup SU(2) or else SO(3) (here U(2) is embedded in U(3) so that the

fundamental representation of U(3) transforms as 2 ⊕ 1, and is then projected to PU(3),

and similarly SO(3) is embedded in U(3) so that the fundamental representation remains

irreducible and is then projected to PU(3)). A routine check shows that any PU(3) bundle

E whose structure group reduces to U(2) or SO(3) has p1(ad(E)) a multiple of 6, and

therefore such reductions are not possible for any ζ such that p1(ad(E)) is not such a

multiple. (In any event, a reduction of structure group to SO(3) would not produce a

singularity of the moduli space, since the stabilizer of SO(3) in PU(3) is trivial.)

For general n, consider a component of the moduli space M characterized by some

given values of p1(ad(E)) and ζ(E) at a point in M at which the structure group E reduces

from PU(n) to a proper subgroup K. K is not necessarily connected, and it may contain

U(1) factors. Gauge fields of a finite group or an abelian group or a product or extension

of these can contribute to ζ(E) or p1(ad(E)) (for a group containing factors of U(1), this

statement depends upon the fact that b2(M) = 0). So p1(ad(E)) is unchanged if we

simply replace E by another instanton bundle whose structure group reduces to a maximal

connected semi-simple subgroup H ⊂ K. What are the possible values of p1(ad(E)) for

a bundle with such a reduction? The embedding H ⊂ PU(n) gives a homomorphism

ϕ : π1(H) → π1(PU(n)) = Zn. Suppose first for simplicity that n is prime. In that case,

the only subgroups of Zn are Zn itself and the trivial group containing only the identity.
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For H a proper subgroup of PU(n) and n prime, π1(H) does not have an element of order45

n and therefore the image of ϕ is trivial. This means that, after restricting the structure

group of E → M from PU(n) to H, it can be lifted to a bundle with structure group SU(n).

Hence p1(ad(E)) is divisible by 2n. Therefore, for n prime, if ζ(E) is such that p1(ad(E))

is not a multiple of 2n, the instanton moduli space has no un-Higgsing singularity related

to reduction of structure group. Hence the minimal component of instanton moduli space

for the given value of ζ(E) is compact and smooth.

If n is not prime, it is possible to find a proper subgroup H ⊂ PU(n) such that the

homomorphism ϕ is surjective (for example, take n = pq with relatively prime p, q, and

choose H = P(U(p)×U(q)), with U(p)×U(q) embedded in U(n) such that the fundamental

representation of U(n) is the tensor product of the fundamental representations of U(p)

and U(q); this can be generalized if n is the product of any number of relatively prime

factors). In this case, however, the commutant of H in PU(n) is trivial, so reduction of

structure group to H produces no singularity in M. If the image of ϕ is a proper subgroup

Zk ⊂ Zn with k < n, then a PU(n) bundle over M whose structure group restricts to H

can be lifted to an SU(n)/Zk bundle, which implies that p1(ad(E)) is an integer multiple

of 2n/k. If ζ(E) is chosen so that this is not the case for any proper divisor k of n, then

there is no un-Higgsing singularity and the minimal component of instanton moduli space is

compact and smooth. For example, if n is odd, then according to eqn. (8.5), for a = b = 1,

p1(ad(E)) = 2 mod 2n, and is therefore not a multiple of 2n/k for any k < n. A similar

choice is possible for even n.

8.3 String Theory Interpretation

The construction that we have described actually has a string theory interpretation.

Assuming that the underlying branes considered are D-branes, the two-form field B

and three-form curvature H = dB in the AdS3 × S3 × S3 × S1 or AdS3 × S3 × S3/Zn × S1

geometry are of Ramond-Ramond type. However, we can also turn on the Neveu-Schwarz

two-form field BNS. Topologically, a two-form field BNS on a spacetime Y is classified by a

characteristic class ξ valued in H3(Y ;Z). At the level of differential forms, ξ is represented

by HNS

2π , but here it will be important to consider ξ as an integral cohomology class.

For our present purposes, the interesting case is that ξ is a torsion class, which can be

represented by a topologically non-trivial BNS field with HNS = 0. The reason that this

is the interesting case is that if we assume that HNS is nonzero, and impose the global

symmetries and supersymmetries of the AdS3 × S3 × S3 × S1 or AdS3 × S3 × S3/Zn × S1

geometry, we will just end up with the same spacetime geometry that we have already

studied, up to an S-duality rotation that replaces HRR with a linear combination of HRR

and HNS.

But we get something essentially new if BNS is flat but topologically nontrivial. The

reason that this is possible is that there is torsion in the three-dimensional cohomology of

AdS3 × S3 × S3/Zn × S1. This torsion is pulled back from H3(S3/Zn × S1;Z) = Z⊕ Zn.

45Indeed, PU(n) itself is the only semisimple Lie group of rank ≤ n−1 whose fundamental group contains

an element of order n. This follows from the classification of simply-connected simple Lie groups and the

explicit description of their centers.
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We have encountered in the preceding analysis PU(n) bundles over S3/Zn × S1 that

have non-integer values of the instanton number and therefore cannot be lifted to SU(n)

or U(n) bundles over S3/Zn × S1. In general, a PU(n) bundle E over any space Y can be

lifted to a U(n) bundle E′ → Y if and only if the characteristic class ζ(E) ∈ H2(Y ;Zn)

that has been important in our analysis can be lifted to a class ζ ′ ∈ H2(Y ;Z) (which will

then be the first Chern class c1(E
′)). The obstruction to this lifting can be understood

by considering the long exact cohomology sequence associated to the short exact sequence

0 → Z
n→ Z

r→ Zn → 0, where the first map is multiplication by n and the second is

reduction mod n. The associated long exact cohomology sequence reads in part

· · ·H2(S3/Zn × S1;Z)
r→ H2(S3/Zn × S1;Zn)

β→ H3(S3/Zn × S1;Z) · · · , (8.6)

where β is called the Bockstein map. Thus ζ ∈ H2(S3/Zn × S1;Zn) is not the mod n

reduction of an integer class ζ ′ – and so is not in the image of r – if and only if β(ζ) is a

nonzero element of H3(S3/Zn × S1;Zn).

If β(ζ) 6= 0, it is not possible to lift the PU(n) bundle E → S3/Zn × S1 to a U(n)

bundle or in other words to a rank n vector bundle. But it can be lifted to what is called

a twisted vector bundle, twisted by the class β(ζ). Such a twisted vector bundle, rather

than an ordinary one, is precisely what one gets in D-brane physics in the presence of a

background field BNS whose characteristic class ξ is a torsion class. Indeed, a system of

n D-branes interacting with a background BNS field such that ξ = β(ζ) supports not an

ordinary vector bundle but a twisted vector bundle associated to a PU(n) bundle with

characteristic class ζ [69]. Thus in the presence of a suitable BNS field, the slightly exotic

instanton moduli spaces studied in this section do actually appear in D-brane physics.
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