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Abstract

Despite almost a century of research on energetics in biological systems, we still cannot
explain energy regulation in social groups, like ant colonies. How do individuals regulate
their collective activity without a centralized control system? What is the role of social
interactions in distributing the workload amongst group members? And how does the
group save energy by avoiding being constantly active? We offer new insight into these
questions by studying an intuitive compartmental model, calibrated with and compared to
data on ant colonies. The model describes a previously unexplored balance between
positive and negative social feedback driven by individual activity: when activity levels
are low, the presence of active individuals stimulates inactive individuals to start

working; when activity levels are high, however, active individuals inhibit each other,
effectively capping the proportion of active individuals at any one time. Through the anal-
ysis of the system’s stability, we demonstrate that this balance results in energetic spend-
ing at the group level growing proportionally slower than the group size. Our finding is
reminiscent of Kleiber’'s law of metabolic scaling in unitary organisms and highlights the
critical role of social interactions in driving the collective energetic efficiency of group-liv-
ing organisms.

Author summary

Similarly to how larger organisms use less energy per unit mass than smaller ones,
eusocial insects like ant colonies become more energy efficient as colony size increases.
The mechanism underneath this efficiency remains a mystery. Here, we seek to
uncover its origin in socially contagious “deactivation”, which runs counter to more
conventional ideas of excitatory social interactions. Beyond providing insight into the
collective behavior of highly integrated social groups, our findings on activity regula-
tion open the door to the design of engineered multi-agent systems, like robotic
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swarms or active matter, which may achieve efficient performance in both function
and energy use.

Introduction

As a complex social system—such as an ant colony or a human organization—increases in
size, so does the need to better regulate the activities of its members [1]. Without regulation,
individuals would randomly distribute their effort across time, wasting energy if too many
individuals were active when the global workload does not require it, or wasting opportunities
if too few individuals were to respond to increasing needs in the population. The question of
activity—and hence energy—regulation is not unique to complex social systems; it is also
increasingly studied in the context of artificial distributed systems such as fleets of robotic
devices [2, 3] and Internet-of-Things networks [4], where redundancies are frequent and
energy-wasting.

Both in natural and artificial distributed systems, the control of activities is often fully
decentralized, making it impossible to consider global solutions for optimizing energy con-
sumption. Studies on social insect colonies have shown that living systems can be surprisingly
efficient in managing their collective activities [5]. In particular, their energy use per unit of
mass appears to scale hypometrically with their colony size [6, 7]. In other words, larger colo-
nies are more energy-efficient relative to their size than smaller ones, a phenomenon akin to
Kleiber’s law [8] that states that the rate of energy use by a biological system scales hypometri-
cally with its size. Understanding how ant colonies—a fully decentralized system—regulate
their activities to achieve energy efficiency could, therefore, have important repercussions for
the design of human organizations and artificial distributed systems.

In the literature, activity regulation in social insects is typically divided between activation
mechanisms that boost the number of individuals engaged in work, and inactivation mecha-
nisms that reduce it [9, 10]. On the activation side, two types of mechanisms are usually
invoked. First, individuals may sense workload-associated stimuli and, if their intensity
exceeds a certain value (called the “response threshold”), start performing work to reduce this
stimulation [11]. Such response thresholds have been found in several social insect species, for
instance, for triggering a defense reaction to threats [12] or a foraging response to the presence
of nutrients [13, 14].

Second, individuals already engaged in work can stimulate others to work, for instance,
when the workload has outgrown their capacity [15]. This is frequently observed in social
insects in the context of foraging. For example, ant workers that have found a resource will use
a combination of chemical and tactile signals to stimulate other workers to join them in exploit-
ing it [16]. Likewise, honeybee scouts that have found a new food patch execute a stereotypical
“waggle dance” back at their colony that stimulates other bees to leave the nest and encodes the
direction and distance to the resource [17]. Such recruitment processes are akin to a form of
“social contagion”, whereby the state of being active spreads in the group through local social
interactions. As a result of this positive feedback loop, social organisms can mobilize a large
portion of the available workforce quickly, facilitating rapid monopolization of resources [18]
or overwhelming attackers by swiftly assembling defense forces around them [19].

While activation mechanisms are well studied and supported by documented examples,
inactivation mechanisms are overlooked—especially those mediated by social interactions
[20]. In existing models of activity regulation, inactivation is often treated as an intrinsic prop-
erty of the individual rather than a socially driven one. For instance, inactivation has been
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modeled as a workload-associated threshold [21], a limit on the time an individual can be
active [22, 23], or a constant probability per unit time [9, 11]. In each of these cases, the social
environment does not influence the duration of the activity of an individual, or, at best, does it
very indirectly (for example, through the impact other individuals have on the quantity of
work remaining to be done). Yet, socially driven inactivation mechanisms have been shown to
play an important role in counterbalancing activation mechanisms in social insects. For
instance, honeybees use inhibitory signals to slow down the recruitment of foragers when food
storing at the nest cannot match the influx of new nectar and pollen [24] and to delay the mat-
uration of hive workers into foragers when the forager population is already high [25]. In ants,
crowding along a foraging trail can inhibit the deposition of trail pheromone, reducing the
risk of traffic jam [26]. Repellent pheromone can also be used to discourage foragers from vis-
iting unrewarding routes [27], for instance because the resource they lead to is now depleted
or overcrowded.

In a recent work [28], we investigated the impact of a socially driven inactivation mechanism
on the scaling of energy use in eusocial organisms. We proposed an explanation for Kleiber’s
law [8] in the context of colonies of harvester ants (Pogonomyrmex californicus) using data
from Waters et al. [29]. Our explanation was based on scaling arguments adapted from urban
science [30] and relied on a key biological phenomenon that we called “reverse social conta-
gion”—a mechanism by which an individual engaged in a given behavior becomes more likely
to interrupt this behavior as it interacts with more neighbors also engaged in the same behavior
[31], see Fig 1a. Reverse social contagion can be observed, for instance, in the form of stop-sig-
naling mechanisms [32] and blocking interactions [33], and has been proposed as a factor regu-
lating collective decision-making [34, 35] and energy spending in social systems [28, 36].

In that study, we focused on reverse social contagion in the context of movement, where an
individual would cease to move (inactivate) in response to a social environment where many
neighbors are also moving (being active). Each colony was composed of N individuals, of
which A were active. The individuals in the colony interacted through a network with E oc N*/?
links, as estimated from the data. To explain activity regulation in the form of a reduction in
the fraction of active individuals as the colony grows, we proposed a balance between reverse
social contagion and spontaneous social activation. The former should scale with A>/N",
given that the number of interactions of active individuals with other active individuals is esti-
mated as the product between the total count of interactions in the colony, E, and the probabil-
ity that two individuals are simultaneously active, (A/N)”. The latter, instead, should scale with
N, being an inherent property of the individuals. Balancing reverse social contagion and spon-
taneous social activation, one predicts a hypometric scaling of the colony’s activity with respect
to its size, A oc N*/%, akin to Kleiber’s law [8].

In this article, we draw inspiration from this simple scaling argument to formulate a
dynamic model for activity regulation in eusocial systems. The state-of-the-art modeling of the
dynamics of eusocial systems has, so far, largely focused on socially driven positive feedback
mechanisms to predict rhythmic activation patterns [22, 37, 38], ignoring the impact of social
information on inactivation patterns. Here, instead, we explicitly include socially driven nega-
tive feedback through reverse social contagion. We present a detailed study of the model, in
the form of a system of coupled differential equations and stochastic Monte Carlo simulations.

Results
State transitions

We consider a colony of size N. Each individual in the colony can be in one of three possible
states: active (A), inactive (I), or refractory (R). Individuals in inactive or refractory states are
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Fig 1. (a) Illustration of the concepts of social contagion (top) and reverse social contagion (bottom). (top) An inactive
ant interacts with an ant engaged in a foraging task: through social contagion (for example, caused by active
recruitment), it also begins foraging. (bottom) Two ants engaged in foraging interact: through reverse social contagion
(for example, caused by steric exclusion), one of them ceases their activity to become inactive. Image courtesy of
Isabella Muratore, reprinted from Porfiri et al. [28]. (b) State transition diagram for three classes of individuals (A,
active, I, inactive, and R, refractory). The diagram describes two competing social feedback mechanisms (social
contagion and reverse social contagion), along with a spontaneous transition from refractory to inactive state (that is,
the completion of rest). Social contagion and completion of rest are well established in the literature since the seminal
work by Goss and Deneubourg [9] (therein, inactive ants are called “activable inactives” and refractory ants “inactives”
to specify that only the former ones can be activated). Reverse social contagion has been, instead, overlooked so far,
thereby hindering our understanding of energy regulation in social groups.

https://doi.org/10.1371/journal.pcbi.1012623.g001

practically indistinguishable (that is, they do not display any activity); however, only the inac-
tive ones can be activated by social connections with active ants, whereas the refractory ones
cannot.

We contemplate three coexisting phenomena, as shown in Fig 1b. First, an inactive individ-

g
ual can become active by interacting with an active individual (social contagion): A + 12594,
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where the transition rate §, > 0 is the probability per unit time that an inactive individual
interacting with an active individual becomes active. Social contagion provides positive feed-
back, or autocatalysis, to the system [9]. Second, a refractory individual can spontaneously

become inactive (hence, be ready for activation through social contagion): R 21, where the
transition rate § > 0 is the probability per unit time that a refractory individual spontaneously
becomes inactive. This phenomenon, in probabilistic terms, is similar to a variable rest period
after activity. Third, we hypothesize that an active individual can become refractory upon
interaction with another active individual (reverse social contagion): 2A%R + A, where the
transition rate ¥, > 0 is the probability per unit time that an active individual interacting with
another active ant becomes refractory. This phenomenon creates negative feedback in the sys-
tem, countering autocatalysis.

With respect to the autocatalytic ant colony model by Goss and Deneubourg [9] and the
related mathematical model by da Silveira and Fontanari [38], we include reverse social conta-
gion—an original contribution of this work—while making two simplifications. First, we
neglect spontaneous activation and inactivation I — A and A — R, respectively. Second, we do
not explicitly consider a fixed rest period in which individuals must persist once entering the
refractory state, before being ready to be activated. These simplifications are intended to
reduce the number of model parameters and focus on a minimalistic model that could high-
light the role of reverse social contagion on activity regulation.

Compartmental model

We describe the colony dynamics through a compartmental model of the following form:

A =P8 4y 28 o (12
I(t) = OR(¢) — ﬁ“}f[bA(t)I(t), (1b)
R(t) = —6R(t) +%A2(t). (1)

Here, A(?), I(t), and R(¢) are the number of active, inactive, and refractory individuals at time ¢,
respectively, and (k) is the average degree of the network of interactions of the colony, encap-
sulating the number of interactions of each individual with other individuals at any time.
Equation set (1) is similar to an epidemiological SIRS model, where recovery yields temporary
immunity and recovered individuals return to the susceptible class at a given rate [39]. How-
ever, in contrast with epidemiological compartmental models where nonlinearities are typi-
cally restricted to mixed terms, we include a negative nonlinear quadratic term that captures
reverse social contagion.

We hypothesize that the average degree scales with the network size as (k) = 2E,N*~! where
Ey > 0is some scaling coefficient and a € [1, 2] is the scaling exponent for the number of inter-
actions with the colony size. A value close to 1 represents a network with a constant degree
that does not vary with the colony size, and a value approaching 2 captures all-to-all interac-
tions of a complete graph. Our previous observations on harvester ants yielded a value of o ~
3/2 for physical proximity, as well as antennal contact networks [28]. Interestingly, the same
value is also found in simulations of the classical Vicsek model for self-propelled particles
when examining the dependence between the average degree in a particle cluster and its size
[40]. We note that hypermetric scalings of the number of interactions with the group size have
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been documented for different social interaction types, across several other classes than insects,
including mammals (non-primates, primates, and humans), ray-finned fishes, birds, and rep-
tiles. The lowest values for o have been recorded for online social friendship (humans), and the
largest ones for physical contact (primates, birds, and insects) and grooming (primates) [41].

By construction, the sum of the three populations (A(t), I(t), and R(#)) is equal to the colony
size, N, for all times; in fact, summing Eqs (1a)-(1c), we recover that A (t) + I(t) + R(t) = 0.
Next, we can show that given well-defined initial conditions for the three variables (A, I, and
R, non-negative and summing to N), they all remain non-negative—see Materials and
methods, “Positivity of the compartmental model.”

Solving the system of algebraic equations given by A = I = R = 0, we find two equilibria
for the model, one trivial and one nontrivial—see equation set (4) from Materials and Methods,
“Equilibria of the compartmental model.” Through the study of the Jacobian of equation set (1)
in correspondence of the two equilibria, we show that the trivial equilibrium is unstable and the
other equilibrium is (locally and marginally) stable—see Materials and methods, “Local stability
analysis of the non-trivial equilibrium.” Just like endemic states in epidemic models, we can
prove that the stability of the non-trivial equilibrium is global [42, 43]—see Materials and meth-
ods, “Global stability analysis of the non-trivial equilibrium.” As a result, the model does not
admit limit cycles, and any dynamics will ultimately converge to the non-trivial equilibrium.

The stable equilibrium is energetically favorable, whereby any network of interactions for
which the average degree increases with the colony size (o > 1) supports energetic regulation
in the colony. In fact, the fractions of active and inactive individuals, A*/N and I"/N, become
smaller and smaller as the colony increases. The majority of the colony will be in a refractory
state, which is the least energy-costly state for ants [44] and other social insects [45, 46]. For
example, experiments on freely moving Camponatus ants by Lipp et al. [44] determined that
the metabolic rate of walking ants increases four- to seven-fold over resting rates.

From basic calculus, one can establish that the number of active individuals increases with
¢ and decreases with y,, which indicates that slower rates of spontaneous refractory-to-inactive
transition and faster rates of reverse social contagion facilitate energy savings by the colony.
Likewise, increasing f, reduces the fraction of individuals in the inactive state, and, to a lesser
extent, increases the fraction of active individuals.

Scaling

For a = 1, the average degree is independent of the colony size so that the populations of the
non-trivial equilibrium in equation set (4) from Materials and Methods, “Equilibria of the
compartmental model,” scale isometrically with N, that is, A*, I*, R* o< N. Interesting allome-
tries that are reminiscent of Kleiber’s law emerge for & > 1, whereby taking the limit of equa-
tion set (4) from Materials and Methods, “Equilibria of the compartmental model,” for N >> 1
with (k) = 2E,N*"" yields
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Fig 2. Role of network connectivity on hypometric scaling of the collective activity. (a,b) Sample networks with
different number of nodes (N = 10, 20, and 50), for the same value of E, = 0.0944 from Porfiri et al. [28] and different
values of @ = 1.4 (a) and o = 1.8 (b), respectively. (c) Scaling exponent (3 — a)/2 as a function of g, illustrating activity
regulation with increased connectivity: for & = 1.4, increasing the network size contributes to a modestly sublinear
growth of the number of active ants ((3 — @)/2 = 0.8), while for @ = 1.8, increasing the network size yields dramatic
sublinear growth of the number of active ants ((3 — )/2 = 0.6).

https://doi.org/10.1371/journal.pcbi.1012623.9002

Fig 2 demonstrates how network connectivity impacts the scaling exponent above as net-
work size varies. In the case a = 3/2—corresponding to spatial proximity and physical contact
in harvester ants and other insects [41]—the number of active ants scales hypometrically with
N with an exponent ranging from approximately 1/2 to 3/4. Using the crude approximation
that the energy cost for a colony is proportional to the number of active individuals, the
observed scaling is in agreement with existing experimental observations of hypometric scaling
of whole-colony metabolic rate with colony mass in ants [6, 29, 47, 48] and other group-living
organisms [7, 49]. Since it is impossible to directly observe when an individual is in the refrac-
tory state, it is natural to ask whether this state is required for the model to show the scaling
above. When the refractory state is excluded, hypometric scaling of the number of ants
becomes unfeasible, demonstrating the need to force individuals to rest before being reacti-
vated through a refractory state—see Materials and methods, “Compartmental model without
refractory state.”

In the limit S, — 0, there is no mechanism for individuals to be activated and the non-triv-
ial equilibrium converges to the trivial equilibrium. In this case, activity regulation does not
emerge, pointing to the need for a balance between positive and negative social feedback.
Notably, should one replace reverse social contagion with a spontaneous transition from active
to refractory, any nonlinear allometry would disappear—see Materials and methods, “Com-
partmental model without reverse social contagion.” The possibility of recovering Kleiber’s
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law of metabolic scaling in eusocial organisms relies on the balance between social contagion
and reverse social contagion.

From a practical point of view, for equation set (2) to accurately approximate equation set
(4) from Materials and Methods, “Equilibria of the compartmental model,” one should have

4y, (k ’
that /‘i; ) > (1 + ?) . For colonies of finite size, this requires §, to be sufficiently large
0

compared to 7y, that is, positive feedback (social contagion) not to be dominated by negative
feedback (reverse social contagion); a caveat to this argument would be the case of slow spon-
taneous transition from refractory to inactive, for which & could be very small.

Model predictions for parameters calibrated on ant colonies

Model parameters are chosen as Eo = 0.0944, & = 1.47, 7, = 1.21 s ', and § = 0.63 s, based on
experimental results in Waters et al. [29], which we recently re-analyzed in the context of scal-
ing [28]—see Materials and methods, “Calibration of model parameters on experimental
data.” We explore three different values of f, (namely, ¥,/10, ¥, and 10y,) to detail the inter-
play between the positive and negative feedback mechanisms of social and reverse social conta-
gion, respectively.

We study the time-evolution of model in equation set (1) with initial conditions Ag = N - 1,
Io =1, and R, = 0 to visualize the effect of reverse social contagion in bringing the activity of
the colony towards equilibrium. Numerical results for N = 500 in Fig 3 confirm the global sta-
bility of the non-trivial equilibrium in equation set (4) from Materials and Methods, “Equilib-
ria of the compartmental model,” whereby the variables converge to the equilibrium even
from initial conditions that are far away from the equilibrium. Changing the value of 3, with
respect to the other parameters affects the time scale of the evolution, as well as the organiza-
tion of the colony. Specifically, increasing the value of 5, accelerates convergence towards the
steady state, due to stronger social contagion that facilitates the activation of individuals in the
inactive status. Stronger positive feedback is also responsible for a reduced number of inactive
individuals, as well as an increased number of active and refractory individuals, as one would
predict from equation set (4) from Materials and Methods, “Equilibria of the compartmental
model”.

Asymptotic results in Eqs (2a) and (2b) for the number of active and inactive individuals
at the steady state are close to exact values for the largest value of f,, suggesting that scaling
arguments could be safely used for order-of-magnitude calculations in the case of strong
social contagion, see Fig 4. For smaller values of f, the agreement between asymptotic pre-
dictions and exact values is qualitatively equivalent, albeit asymptotic values should only be
used as an order of magnitude estimation. In fact, predictions of the scaling exponents for all
salient variables, identified from observations over a range of colony sizes from 10 to 1,000,
indicate close agreement between equation set (2) and exact values—see Text A and Fig A in
the S1 File.

Monte Carlo simulations

In agreement with evidence on classical epidemiological models [50], our compartmental
model is a close representation of the macroscopic response of the colony for a homogeneous
network of interactions. We demonstrate this point using Monte Carlo simulations, a typical
modeling strategy to study collective behavior in ants [37].

The compartmental model in equation set (1) could be viewed as a mean-field approxima-
tion of an agent-based model, in which ants interact over a temporal network following the
state transitions in Results, “State transitions.” More specifically, we simulate a network of N
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Fig 3. Numerical predictions from compartmental model in equation set (1) for the time-evolution of the fraction
of active (A, orange solid), inactive (I, green dashed), and refractory (R, black dotted) ants for a colony of N = 500
individuals and model parameters inspired by harvester ants plotted with time on a logarithmic scale. (a) Reverse
social contagion dominating social contagion (fo/yo = 1/10). (b) Reverse social contagion and social contagion at the
same level (8,/y, = 1). (c) Social contagion dominating reverse social contagion (8/y, = 10). Steady-state predictions
in equation set (4) from Materials and Methods, “Equilibria of the compartmental model,” are marked as colored dots
in each panel.

https://doi.org/10.1371/journal.pcbi.1012623.9g003

nodes. Each node can be in state A, I, or R. The system evolves in discrete time according to
the state transitions described in Results, “State transitions,” with a time-step At = 0.0667 s.
The network of interactions switches in time without memory, simulating complete mixing in
the colony where any individual can in principle interact with any other ant. At each time step
the network of interactions is drawn from an Erdés-Rényi network [51] with link probability
p = (k)/N so that its average degree is (k). The model does not consider full motion trajectories,
such as the work by Puckett et al. [52] and Ni et al. [53], and should be viewed as a limit case
for full mixing. Fig 5 illustrates two consecutive time steps in the simulation.

We simulate a colony of N = 500 individuals for T = 150 time steps starting from the
same initial condition, consisting of all individuals being active except for one that is inac-
tive, analogously to the compartmental model. Model parameters are the same as in the
compartmental model (a = 1.47, 7, = 1.21 s ', and § = 0.63 s '). We choose the smallest
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Fig 4. Comparison between asymptotic predictions in equation set (2) (dashed lines) and exact values (solid lines)
in equation set (4) from Materials and Methods, “Equilibria of the compartmental model,” for the steady-state
number of active (A, orange), inactive (I, green), and refractory (R, black) ants as a function of the colony size, N,
for model parameters inspired by harvester ants and f8y/y, = 10. Experimental observations of harvester ants,
presented by Porfiri et al. [28], are included for completeness (orange diamonds).

https://doi.org/10.1371/journal.pcbi.1012623.9004

value of By (Bo = ¥0/10), corresponding to the slowest transient to best visualize the compari-
son between model predictions and agent-based simulations. We run 10 simulations and
compute mean and standard deviations at each time step. As shown in Fig 6a, 6¢ and 6e,
model predictions are in excellent agreement with the Monte Carlo simulations.

» t+At

Fig 5. Illustration of the Monte Carlo simulation, implemented on a switching Erdés-Rényi network. Active,
inactive, and refractory nodes are colored orange, green, and black, respectively. Example of reverse social contagion:
node 1 is active at time ¢ and, through the interaction with another active node, it becomes refractory at ¢ + 6t. Example
of spontaneous transition from refractory to inactive: at f, node 2 is refractory and it spontaneously become inactive at
t + At. Example of social contagion: node 3 is inactive at ¢ and, through the interaction with an active node, it becomes

active at t + At.
https://doi.org/10.1371/journal.pcbi.1012623.g005
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Fig 6. Comparison between the numerical results of the compartmental model in equation set (1) (dashed line) and
simulations of an agent-based model (solid line, mean, and dashed regions, one standard deviation above and below the mean)
for a colony of N = 500 individuals (a,c,e) and N = 10 individuals (b,d,f). (a,b) Fraction of active ants (A, orange). (c,d) Fraction of

inactive ants (I, green). (e,f) Fraction of refractory ants (R, black).

https://doi.org/10.1371/journal.pcbi.1012623.9006

The accuracy of the compartmental model is unaffected by reducing the colony size to
N =10, as shown in Fig 6b, 6d and 6f; therein, the number of realizations was raised to 100.
Obviously, the variation among different realizations increases, but the mean is in excellent
agreement with the compartmental model. Comparing results in the left and right columns of
Fig 6, we confirm the hypometric scaling of the number of active individuals, whereby the frac-
tions of active individuals increase more than twofold when lowering the size of the colony

from 500 to 10.

Discussion

We showed that efficient activity regulation can emerge in highly integrated social groups
from a balance between two socially driven feedback processes. First, an autocatalytic process
of social contagion results in the activation of inactive individuals, after stimulation by already
active individuals. This positive feedback is then counterbalanced by an “autoinhibitory”
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process that we call reverse social contagion where active individuals are increasingly likely to
stop working as they interact with more active individuals. As a consequence, the number of
active individuals in the group will be naturally capped at a proportion of the group size,
whose value depends on the balance between the two aforementioned processes. This is com-
patible with observations of “lazy” individuals with very low levels of activity and commonly
observed in large colonies of eusocial insects [54].

We also demonstrated that, when the number of interactions between the members of the
group grows faster than the size of the group, the proportion of active individuals grows hypo-
metrically with the group size. Hence, the group becomes energetically more efficient as its
size increases. Both network and energy scalings are commonly observed in group-living
organisms [6, 7, 41, 47], supporting the hypothesis that social interactions are critical in
explaining the energetic properties of social groups (including human beings). Notably, this
scaling does not occur when the refractory state is removed from the model, suggesting that
the refractory state serving as a reservoir is critically important to recovering the relationship
between activation and colony size observed in experimental data.

Finally, the reverse social contagion mechanism that we study here is fundamentally differ-
ent from the inactivation mechanisms proposed in existing models of activity dynamics.
Indeed, the latter are typically not socially driven, and they rely on constant duration of activity
[22], constant rate of inactivation [9, 11], or the ability of an individual to estimate the amount
of remaining work [21]. In the first two cases, activity regulation is entirely dependent on the
activation process and the hypometric energy scaling disappears. In the last case, the inactiva-
tion process can depend on the social environment as in our model, albeit indirectly via stig-
mergic communication since the amount of remaining work is impacted by the actions of the
active individuals. This scenario is already included in our model since it does not require
specifying the mode of interaction (direct or indirect) between active individuals but simply its
rate.

In conclusion, our study provides a generalizable explanation for activity regulation in
social groups. Its predictions are in agreement with qualitative and quantitative observations
of general activity patterns and energetic scaling found in highly integrated social species, such
as ant colonies. Our next step is to incorporate multiple activity types and mobility in the
model, towards a framework for the study of more complex and specific patterns of emergent
division of labor and their impact on energy use in animal and human groups.

Methods and materials
Positivity of the compartmental model

To prove that given well-defined initial conditions, all the populations remain non-negative,
we start by bounding from below the right-hand side of Eq (1c) and integrating over time to
establish R(f)>Rgexp(—6t)>0 through the comparison principle [55]. Substituting the above
bound for R(¢) into Eq (1b) and applying the comparison principle again, we can bound the
right-hand side and integrate over time to obtain I(t) > Lexp(— ¥ [* A(7)dr) > 0. Eq (la),
can be written as A (t) = f(t)A(t), where f(t) = & (B,I(t) — 7,A(t)), so that

A(t) = Agexp([; f(r)d) > 0.

Equilibria of the compartmental model

Equation set (1) has two feasible equilibria (denoted with a superscript star), which are deter-
mined by setting to zero the left-hand side of two of the three equations in the set and impos-
ing A* + I" + R = N. The first equilibrium is the trivial one A* = R* = 0 and I" = N, where the
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entire population is inactive. The other equilibrium is the positive root of a quadratic equation,
obtained by solving Eq (1a) for I* and Eq (1¢) for R* (assuming the left-hand sides to be zero
and setting A* # 0). Following these steps, we establish

%(A*f_’_(l_'_z_(;)A*—N_o‘ (3)

By solving for A* and recalling the steps to obtain this equation from Eqgs (1a) and (1c), we
identify the equilibrium:

._ ON [y 4V0<k>>
A 2?0<k>(P<ﬁ07 0 7

. _ N <y_0 4y0<k>>7 (4b)

“ 25,00 "\B,
. ON Ly, 4y (k)
R 4vo<k>¢(ﬁo’ 5 ) (1)

where we introduce the function
o(x,y) = /(1 +2)"+y—(1+x). (5)

Note that, in principle, Eq (3) has two solutions, but the other is negative, since the model
parameters are all positive.

Local stability analysis of the non-trivial equilibrium

We determine the following expression for the Jacobian:

[ (k) (BT —2p,A%)  By{k)A” 0 i
N N
. By (k)" Bo(k)A* ¢
J- = e - 0 (6)
L N _

By replacing the trivial equilibrium (A* = R* = 0 and I* = N), we obtain a block-diagonal
matrix, whose eigenvalues are 0, -6, and S, (k); the latter is positive, hence the instability of the
equilibrium.

To assess the stability of the non-trivial equilibrium in equation set (4), we apply Routh-
Hurwitz criterion [56] to the characteristic polynomial of the Jacobian. Specifically, the charac-
teristic polynomial of the Jacobian in correspondence to the non-trivial equilibrium can be fac-
tored as

p(s) = —s(ays® + a;s + a,) (7)
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where

a, =

a(]:la

\/_ S(By + 1) (ﬁo Yo)
@ = V4B () + (B, +7)" — o (8a)
0 2 2 5\/_ ﬁo + )
28,7, (4ﬁUVU<k> +6(By +70) ) 26,7, \/4ﬁ0 Yolk) + (P, + VU) . (8b)

Coefficients a; and a, are positive, like ao, as one might verify by comparing the squares of

the two summands in each expression. Based on the Routh-Hurwitz stability criterion, the
roots of the second-order polynomial in Eq (7) have strictly negative real parts, which yields
marginal stability of the non-trivial equilibrium. The null eigenvalue is related to the original
constraints that A(t) + I(t) + R(t) = N.

Global stability analysis of the non-trivial equilibrium

To prove global stability of the non-trivial equilibrium, we replace I(t) with N — A(f) — R(t)
into Eqs (1a) and (1c) and study global asymptotic convergence of the A(f) and R(f) towards
A* and R” in Eqs (4a) and (4c). We construct a Lyapunov function for this two-dimensional
system that yields global stability [55]. We take inspiration from Goh-Lotka-Volterra Lyapu-
nov functions to cope with the nonlinearity in the system [43]. Specifically, we propose the fol-
lowing function:

(R— R*)2 Yo 2 2 o A’
V(A,R) = A®— (A7) —
(4.8 + gt 47 (4 - @Y

SN ©)

Such a function is positive definite in [0, NJ?, it is zero at (A*, R*), and all its level sets are
bounded. For V to be a Lyapunov function, we must show that V (A, R) < 0 for any (4, R)€[0,
N2, except for (A%, R*), where V (A*, R*) = 0.

To prove this claim, we compute the time derivative of V(A, R) along the system trajecto-

ries, using equation sets (1) and (4) to obtain

VAR = =R =0 (4 1) 4 - a0 - @y, (10)

By

The first summand is a quadratic function in R that is negative in [0, N], except for R = R",
where it is zero. Likewise, the second summand is a cubic function in A that is negative in [0,
N], except for A = A* where it is zero. As a result, the claim follows.

Compartmental model without refractory state

We study a variation of equation set (1) where the refractory state is removed. Within this vari-
ation, active ants become inactive and inactive ants become active, both through social
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interaction with active individuals. The equation set becomes

A(t) = ﬁ°T<k>A(t)I(t) _ %Am), (11a)
i(t) = —ﬁ°T<k>A(t)I(t) +¥A2(t). (11b)

Analogously to the study of the system without reserve social contagion in equation set
(12), we can find the two equilibria for this system: the trivial equilibrium (A*, I*) = (0, N) and

the endemic equilibrium (A*, I*) = ( b N, N). Hence, without refractory state, the

Bo+ro~ " Botvo

number of active ants will scale isometrically with the colony size.

Compartmental model without reverse social contagion

We study a variation of equation set (1) where reverse social contagion is replaced with a spon-
taneous transition from active to refractory at a constant rate y > 0,

A(t) = ﬂ”T<k>A(t)I(t) — uA(t), (12a)
I(t) = 6R(t) — ﬁ“}fp A(DI(1), (12b)
R(t) = —OR(t) + uA(t). (12¢)

Searching for equilibria of the system, we set the left-hand side of each equation to zero and
solve for A%, I, and R*. In addition to the trivial equilibrium presented in Results, “Compart-
mental model” (A* = R* = 0 and I = N), we determine the following equilibrium for y <

A = N bR e e o N fotkn i ;
Bolk): A* = N, I = g5 N and R = N 2200, Hence, without reverse social

contagion, the number of active ants would scale isometrically with colony size, whereby A* ~

s Nfora=1and N> 1, and simply A* = 0Bk N for g =1,

T 2B0Ey  otu

Calibration of model parameters on experimental data

The experimental dataset consists of 16 manually tracked videos of harvester ant colonies in
248 x 248 mm colony nest enclosures [6]. The length of each video was 30 s and the resolution
was At = 66.7 ms, corresponding to 15 frames per second—note that manual tracking was per-
formed on downsampled videos, retaining one every five frames. The size of the colony was
different in each video, ranging from N = 40 to 360 workers (nominal values).

Network parameters Ey and a were estimated in our prior work [28] by constructing a spa-
tial interaction network as follows. For each colony and each frame, we created an undirected
interaction network, where two ants were connected by an edge if they were within a distance
of 6 mm, corresponding to one body length. Then, we averaged the number of edges, E, in
each video to compute the total number of edges for each colony. Finally, we fitted E against N
in the logarithmic scale.

From our previous research [28], we could also estimate the ratio 8/y. Therein, for each
pair of consecutive frames in a video, we identified active ants as those that would move at
least one pixel. For each video, we computed the total number of active ants, A (also reported
in Fig 4). Then, we fitted the overall extent of the reverse social contagion, 2A”E/N?, against N
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to determine a slope g = 0.519. By comparing against model predictions for A* in Eq (2a), we
estimate 8/, = 0.519—such an estimate relies on the limit N > 1.

To tease out § from ¥, we separately estimated ¥, through an additional analysis of the vid-
eos. Different from the previous analyses, this step required us to score the activity of each ant
in time, rather than once for the entire video. In particular, at each frame, we considered an
ant to be (instantaneously) active if it moved at least a pixel from the previous frame. Any ant
that was not scored as active was deemed to be either inactive or in a refractory state, the two
being indistinguishable from video data. Across videos, we counted: i) the total number of
tracked frames in which two active ants interacted (9861), and ii) the total number of instances
in which two active ants interacted in one of these frames and then one became not active in
the next tracked frame (800). By dividing ii) by i), we estimated the probability of reverse social
contagion (0.0811), which, upon dividing by At yielded our estimation for y, of 1.21 s~*. Based
on the value of g, we then estimated & as 0.63 s

Estimating f, without being able to discern inactive from refractory ants was not feasible.
In fact, an argument equivalent to the one used to estimate ¥, could not be pursued for .
Given that only inactive ants could cause social contagion, the probability of an event like A
+ I or R — 2 A should be interpreted as the probability of social contagion (BpAf) times the
probability that an ant that was not active was actually inactive (I*/(I" + R*) from equation set
(2)). Such a probability is, however, independent of §,. Alternative ways around this issue
would require access to longer time series to study transient phenomena, or a larger set of
experimental trials to retain the full dependence of the population variables on the colony size
in equation set (4).
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