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Abstract: The overlapping molecular pathophysiology of Alzheimer’s Disease (AD), Amyotrophic
Lateral Sclerosis (ALS), and Frontotemporal Dementia (FTD) was analyzed using relationships from
a knowledge graph of 33+ million biomedical journal articles. The unsupervised learning rank
aggregation algorithm from SemNet 2.0 compared the most important amino acid, peptide, and
protein (AAPP) nodes connected to AD, ALS, or FTD. FTD shared 99.9% of its nodes with ALS and
AD; AD shared 64.2% of its nodes with FTD and ALS; and ALS shared 68.3% of its nodes with AD
and FTD. The results were validated and mapped to functional biological processes using supervised
human supervision and an external large language model. The overall percentages of mapped inter-
secting biological processes were as follows: inflammation and immune response, 19%; synapse and
neurotransmission, 19%; cell cycle, 15%; protein aggregation, 12%; membrane regulation, 11%; stress
response and regulation, 9%; and gene regulation, 4%. Once normalized for node count, biological
mappings for cell cycle regulation and stress response were more prominent in the intersection of AD
and FTD. Protein aggregation, gene regulation, and energetics were more prominent in the intersec-
tion of ALS and FTD. Synapse and neurotransmission, membrane regulation, and inflammation and
immune response were greater at the intersection of AD and ALS. Given the extensive molecular
pathophysiology overlap, small differences in regulation, genetic, or environmental factors likely
shape the underlying expressed disease phenotype. The results help prioritize testable hypotheses
for future clinical or experimental research.

Keywords: Alzheimer’s disease (AD); amyotrophic lateral sclerosis (ALS); frontotemporal dementia (FTD);
neuropathology; machine learning; network regulation; literature-based discovery; knowledge graph;
neurophysiology; pathology dynamics

1. Introduction

Amyotrophic Lateral Sclerosis (ALS), Alzheimer’s Disease (AD), and Frontotemporal
Dementia (FTD) are typically described as distinct neurodegenerative diseases with overlap-
ping molecular features and, in some cases, co-occurrence. Each disease has characteristic
clinical manifestations: ALS primarily affects motor neurons, leading to muscle weakness
and paralysis; AD causes memory loss and cognitive decline due to degeneration in the
hippocampus and cerebral cortex; and FTD results in personality, behavior, and language
changes due to frontal and temporal lobe degeneration [1]. Despite these differences, ALS,
AD, and FTD share common molecular pathophysiologies that contribute to overlapping
and occasionally concurrent disease presentations [1–3].

One major link among these diseases is protein aggregation, a common feature across
neurodegenerative disorders. ALS is marked by aggregates of proteins like TDP-43, SOD1,
and FUS in motor neurons, which disrupt cellular function [4]. Similarly, in AD, amyloid-
beta plaques and tau tangles accumulate in the brain, particularly in memory-related
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regions. FTD can involve tau or TDP-43 protein pathology, depending on the subtype,
leading to degeneration in the frontal and temporal regions. TDP-43 proteinopathy is
particularly significant as it serves as a common denominator in ALS, many FTD cases, and
some AD cases, promoting neuronal loss and linking ALS-FTD as a combined disorder [5].

Genetic mutations also connect these diseases [6], particularly the C9orf72 gene, which
is associated with both ALS and FTD. Expansions in C9orf72 lead to RNA toxicity and
dipeptide repeat proteins that disrupt cellular processes, explaining why patients with
this mutation may exhibit symptoms of both ALS and FTD [7]. Mutations in other genes,
such as TARDBP (encoding TDP-43) and MAPT (encoding tau), further illustrate genetic
overlap [8]. For example, tau mutations are common in FTD and may also contribute to
AD pathology.

Mitochondrial dysfunction and oxidative stress are additional overlapping mecha-
nisms. ALS motor neurons are particularly vulnerable to mitochondrial stress, leading
to energy deficits and cell death [9]. In AD, oxidative stress exacerbates amyloid-beta
toxicity and tau pathology, impairing energy production in neurons [10]. FTD also displays
mitochondrial impairment, especially in TDP-43 or tau-based forms, [11] linking these
energy-related deficits across the diseases.

Neuroinflammation is another shared pathway. Microglial and astrocytic activation
occurs in response to protein aggregates and neuronal damage, releasing inflammatory
cytokines that further promote neurodegeneration. In AD, amyloid plaques trigger chronic
neuroinflammation, damaging surrounding neurons [12]. Similarly, ALS involves inflam-
matory responses around degenerating motor neurons, and FTD exhibits inflammation in
affected cortical areas [13]. This neuroinflammatory environment, common to ALS, AD,
and FTD, accelerates disease progression.

Co-occurrences such as ALS-FTD, AD-FTD, and ALS-AD, though rare, exemplify
the spectrum of neurodegeneration, where shared pathophysiological pathways lead to
overlapping clinical and molecular characteristics. ALS-FTD is the most common overlap
or co-diagnosis; it is often linked to TDP-43 pathology and C9orf72 gene mutations [7,14].
Up to 15% of ALS patients develop clinical signs of FTD, while about 50% show some
degree of cognitive or behavioral impairment associated with FTD [14,15]. Conversely,
a smaller subset of FTD patients may develop motor neuron symptoms characteristic of
ALS. AD-FTD co-diagnosis, often referred to as “mixed dementia” due to the presence
of cognitive and behavior symptomatology, is less frequent [16]; it involves the presence
of both tau and amyloid-beta pathology associated with AD, along with TDP-43 or tau
pathologies characteristic of FTD. ALS-AD, which is the most rare combination [17], may
occur due to shared vulnerabilities in mitochondrial and inflammatory pathways that
increase neurodegenerative susceptibility.

The overlapping clinical manifestations and molecular pathophysiologies suggest that
ALS, AD, and FTD may not be entirely separate diseases. Rather, they may be part of a
neurodegenerative continuum [18] or a neurodegenerative spectrum. Understanding the
shared molecular mechanisms underlying neurodegeneration provides valuable insights
into the spectrum of these disorders and may facilitate the development of therapies
targeting common pathological pathways.

To this end, the present study employed artificial intelligence-driven methodologies
to explore, prioritize, and quantify the degree of overlapping molecular pathophysiology
between AD, ALS, and FTD. Artificial intelligence facilitates the synthesis of knowledge
with a depth and breadth of comprehensive data sources not possible as part of a traditional
manual systematic review. Moreover, AI algorithms can alleviate bias caused by siloed
information in specialized domains [19]. Specifically, AI can analyze multi-factorial and
multi-scalar relationships from millions of journal articles, facilitating the synthesis of knowl-
edge in a comprehensive and less biased manner [20,21]. In contrast, traditional systematic
reviews typically encompass only a small fraction of narrowly defined articles, which typically
range from 100 to 200 articles [8] and often overlook cross-domain connections.
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The present study leveraged 33+ million journal articles to construct and query a
semantic knowledge graph, SemNet 2.0 [21], to examine the literature-defined overlapping
molecular concepts (nodes) and relationships (edges) between AD, ALS, and FTD. Metap-
aths define the arrangement of relationships between user-defined biomedical concepts
of interest, termed as target nodes, and related biomedical concepts within the graph,
known as source nodes. An unsupervised ranking algorithm was employed to deter-
mine the most important intersecting molecular pathophysiology concepts (source nodes),
using a relevance-based metric called a HeteSim score [21]. Finally, human-in-the-loop
supervision [22,23] and supervised large language model evaluation provided a means of
external validation [19].

2. Results and Discussion

The presented results of this study quantify the degree of molecular pathophysiology
overlap between AD, ALS, and FTD using data from 33+ million journal articles and a
combination of unsupervised and supervised artificial intelligence-assisted approaches.
First, metadata from the list of SemNet 2.0 simulations is examined to explore the number
of intersecting source nodes returned that are shared by disease pairs. Second, the Unified
Medical Language System (UMLS) node type of amino acids, peptides, proteins (AAPP)
—which represents sub-molecular and molecular pathophysiology—was analyzed to rank
the most important nodes to AD, ALS, or FTD. Source nodes shared between or “inter-
secting” disease pairs were examined to better elucidate molecular pathophysiological
overlap. Finally, biological processes were mapped to enable a more comprehensive com-
parison of their relative contributions to the shared molecular pathophysiology underlying
overlapping neurodegenerative disease mechanisms.

2.1. Analysis of Metadata

Table 1 summarizes the source node count output from SemNet 2.0 simulations for
each disease (AD, FTD, ALS) for the AAPP node type. Overall, AD had the most returned
related source nodes, while FTD had the least number of returned related source nodes.
The number of identified source nodes is a function of the SemNet 2.0 search parameters
as well as the number of literature sources for each target disease (AD, ALS, FTD). In the
present study, the SemNet 2.0 search parameters were the same for each disease. Thus, any
differences in the number of returned related source nodes was a function of the number of
literature data sources attributed to the specified target disease.

Table 1. Summary counts of returned source nodes from each SemNet 2.0 simulation. Target nodes
are the diseases of interest: AD, ALS, and FTD. Source node type was limited to the Unified Medical
Language System (UMLS) node type of amino acid, peptide, and proteins (AAPP). The number of
returned source nodes from each SemNet 2.0 simulation [21] is recorded.

Disease AAPP

AD 67,213
FTD 43,643
ALS 63,179

Table 2 summarizes the numbers of intersections of every two diseases and the union
of all three diseases. The counts of source nodes shared by each disease pair provide
an estimate of the degree of shared physiology between the diseases based on extracted
literature relationships. The number of shared nodes provides evidence to support the
possible presence of a pathophysiological disease spectrum.
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Table 2. Summary of the number of AAAP source nodes shared by AD, ALS, and FTD as determined
by SemNet 2.0 [21]. The intersection is shown for each of the three disease pairs and for all
three diseases.

Disease AAPP

AD∩FTD 43,418
AD∩ALS 62,335
ALS∩FTD 43,368

ALL 43,176

2.2. Analysis of AAPP Overlap in AD, ALS, and FTD

Venn diagrams were used to compare and contrast overlapping nodes between disease
pairs as a percentage. In Figure 1A, 98.9% of all AAPP source nodes in FTD are in the union
of all three diseases. 0.4% of these nodes in FTD are shared with ALS, and 0.6% are shared
with AD. Only 0.1% of these nodes are exclusively related to FTD. In Figure 1B, 64.2% of
all AAPP source nodes in AD are in the union of all three diseases. Additionally, 28.5% of
these nodes in AD are shared with ALS, and 0.4% are shared with FTD. A toal of 6.9% of
nodes are exclusively related to AD. In Figure 1C, 68.3% of all AAPP source nodes in ALS
are in the union of all three diseases. Further, 0.3% of these nodes in ALS are shared with
FTD, and 30.3% are shared with AD. In total, 1.1% of nodes are exclusively related to ALS.

Figure 1. A Venn diagram of three diseases (AD, ALS, and FTD) illustrating intersections and unions
for AAPP (amino acid, peptide, proteins) node type. FTD is represented by the light yellow circles;
AD is represented by the aqua blue circles; ALS is represented by the light red circles. Intersections
are shown in percentages for each disease. (A) FTD; (B) AD; (C) ALS.

The UMLS AAPP node type has a large volume of source nodes, and its inherent
diversity makes it a complex node type. Figure 2 shows the overall view produced by
CompositeView to visualize the connections of the top 1% of AAPP source nodes between
the target diseases of AD (left), ALS (top), and FTD (right). CompositeView is a visualization
tool for SemNet 2.0 that allows the aggregation and visualization of multiple simulation
outputs in a compressed form [24]. The nodes that project to the triangular center represent
the AAPP nodes shared by all three diseases.

2.3. Mapping Biological Processes to Holistically Examine Disease Spectrum Overlap

Every top-ranked AAPP node was assigned to one or more of predefined biological
processes to better understand the differences in functional etiology between diseases. Each
node was assigned to one or more of eight biological processes. The occurrence of prede-
fined biological processes was counted to understand their relative contribution for each
intersecting disease pair. The predefined biological processes are shown in different colors
in the inner ring of Figure 3: synapse and neurotransmission; inflammation and immune
response; cell cycle regulation; protein aggregation; membrane regulation; energetics and
metabolism; stress response regulation; and gene regulation and expression.
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Figure 2. CompositeView of top 1% AAPP (amino acid peptide protein) nodes from AD, ALS, and
FTD. CompositeView is a visualization tool for SemNet 2.0 that allows for the aggregation and
visualization of multiple simulation outputs into a compressed form [24]. The source nodes are
colored in green, while the target nodes are colored in blue with names next to them. There are large
amounts of source nodes shared only between AD and ALS; meanwhile, the AD and FTD and ALS
and FTD disease pairs (circled in orange) fewer nodes. The majority of nodes are shared by all three
diseases. Nodes exclusive to only one disease are labeled outside the apex: AD has many exclusive
nodes; ALS has a few exclusive nodes; and FTD had no exclusive nodes.

Figure 3. Sunburst diagram of high-ranking AAPP nodes for each disease intersection mapped to
their biological processes. The width of each segment represents the number of source nodes. The
inner ring shows the relative counts of high-ranking intersecting nodes belonging to each biological
process. Clockwise from the top of the inner circle: synapse and neurotransmission (dark green);
inflammation and immune response (navy); cell cycle regulation (dark purple); protein aggregation
(green); membrane regulation (turquoise); energetics and metabolism (dark orange); stress response
regulation (brown); gene regulation and expression (obsidian). The outer ring shows the relative
counts of the mapped biological processes for each disease intersection: AD ∩ ALS, AD ∩ FTD,
ALS ∩ FTD.
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The inner ring (Figure 3) is a visual examination of the relative weight of each biological
process based solely on the top 1% of high-ranking nodes. The outer ring segments of
Figure 3 examined how much the intersection of each pair of diseases contributed to
each biological process. However, this figure depicted total counts that had not yet been
normalized by the number of nodes for each disease intersection. The AD and ALS
simulations and the corresponding intersection contain the most nodes. Thus, the outer
ring segments were typically largest for AD ∩ ALS.

Figure 4 shows the percentage of mapped biological processes for the top 1% of
intersecting nodes for AD, ALS, and FTD: inflammation and immune response, 19%;
synapses and neurotransmission, 19%; cell cycle, 15%; protein aggregation, 12%; membrane
regulation, 11%; stress response and regulation, 9%; gene regulation, 4%. Note that these
percentages align with the relative weights of the inner ring of Figure 3.

The hierarchical sunburst diagram in Figure 3 shows the relevance between each
disease pair and the overall weight of the biological processes. Comparison of the biological
processes between intersecting diseases yields some interesting findings. Inflammation and
immune response was more represented in the intersection of AD with ALS but was less
represented in the intersection of AD and FTD. High-ranking AAPP nodes representing brain
and neuronal development were more prevalent in the intersection of AD and FTD than the
intersection of AD and ALS. Energy metabolism, namely lipid metabolism, was more relevant
to the intersection of AD and FTD. Synaptic transmission and signaling was important to both
the intersection of AD and ALS and the intersection of AD and FTD.

Figure 4. Bar chart quantitatively illustrating the biological mapping of the top 1% of high-ranking
AAPP nodes based on all disease intersections: AD ∩ ALS, AD ∩ FTD, and ALS ∩ FTD.

Next, the biological mapping classifications obtained from the top-ranking intersecting
disease nodes were normalized for differences in overall node count for each disease pair
intersection. The normalized percentage of top-ranked nodes for each mapped biological
process is shown for each of the three disease intersections in Figure 5. The normalization
allows the percentage contributions of each category of biological processes to be equiva-
lently compared for each disease intersection. The percentages range from 2% to 20% across
the eight biological processes. The intersection of ALS and FTD was predominated by
inflammation and immune response, energetics, and protein aggregation. The intersections
of AD with FTD and AD with ALS were predominated by synapse and neurotransmission
and inflammation and immune response. Notably, inflammation and immune response
was the primary biological process that all disease intersections shared.

Finally, the Z-scores are calculated in Figure 6 to examine standardized differences in
the biological process mappings of disease intersections compared to the overall average
for each biological process. A Z-score is interpreted based on its sign and magnitude: a
positive Z-score indicates the data point is above the mean for that biological process, and
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a negative Z-score indicates it is below the mean for that biological process. The absolute
value of the Z-score indicates the number of standard deviations it is away from the overall
mean for that biological process. A larger absolute value of the Z-score means it is further
from the mean.

Figure 5. Bar chart illustrating the normalized biological mapping of the top 1% of high-ranking
AAPP nodes adjusted for differences in node count between intersecting diseases: AD ∩ ALS,
AD ∩ FTD, and ALS ∩ FTD.

Based on the positive Z-scores in Figure 6, the intersection of AD and FTD was
substantially higher than the mean for cell cycle regulation and stress response. The
intersection of ALS and FTD was substantially higher than the mean for protein aggregation,
gene regulation, and energetics. The intersection of AD and ALS was substantially higher
than the mean for synapse and neurotransmission, membrane regulation, and inflammation
and immune response.

Figure 6. Z-scores to examine standardized differences in the biological process mappings of disease
intersections compared to the overall average for each biological process: AD ∩ ALS , ALS ∩ FTD,
and AD ∩ FTD.
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2.4. Examination of Overlapping Genetics

Genetic overlap between AD, ALS, FTD, and co-occurring ALS-FTD, AD-FTD, and
ALS-AD has suggested the possibility of a disease spectrum. Minimally, it indicates the
presence of shared genetic susceptibility to neurodegeneration. Table 3 lists the genes and
proteins that overlap in AD, ALS and FTD with the corresponding HeteSim scores for
each disease. The HeteSim score is a relevance score that indicates the listed gene’s overall
relevance or importance to the target node (the specified disease) as determined by the
SemNet 2.0 unsupervised learning ranking algorithm [21]. Scores closer to 1 represent
higher relevance to the target disease.

The hexanucleotide repeat expansion C9orf72 has been detected in a portion of cases
presenting with ALS, FTD, the combined ALS-FTD condition [25], AD, and the combined
AD-FTD condition, among others [26]. Additionally, a wide spectrum of proteins and genes
have been found to be associated with FTD, ALS, and FTD-ALS, including microtubule
associate protein TAU gene (MAPT) [27], progranulin (GRN) [28], Valosin-containing
protein gene (VCP) [29], charged multivesicular body protein 2B gene (CHMP2B) [30],
superoxide dismutase 1 gene (SOD1) [31], TAR DNA binding protein gene (TARDBP or
TDP-43) [32], and fused in sarcoma gene (FUS) [33]. However, these genes were also
found to be related to AD. For example, C9orf72 repeat expansions have been detected
in several cases of familial AD [34]. MAPT and GRN have also been reported in clinical
AD cases [35,36].

Table 3. A list of some common genes and proteins shared by AD, ALS, and/or FTD. Each gene or
protein has its HeteSim score shown for each disease. The exception is superoxide dismutase 1 protein
(SOD1), which is only shared by ALS and FTD.

Names AD ALS FTD

C9orf72 protein|C9orf72 0.794 0.783 0.548
C9orf72 gene|C9orf72 0.826 0.823 0.577
MAPT protein, human|MAPT 0.808 0.601 0.407
MAPT gene|MAPT 0.846 0.76 0.673
GRN protein, human|GRN 0.888 0.934 0.988
GRN gene|GRN 0.75 0.757 0.655
TDP-43 protein, human|TARDBP 0.943 0.887 0.65
TARDBP gene|TARDBP 0.803 0.716 0.552
RNA-binding protein FUS 0.933 0.936 0.956
FUS gene|FUS 0.768 0.609 0.59
superoxide dismutase 1|SOD1 0.831 0.639
SOD1 gene|SOD1 0.672 0.701 0.725
VCP protein, human|VCP 0.91 0.969 0.942
VCP gene|VCP 0.695 0.865 0.713
CHMP2B gene|CHMP2B 0.625 0.912 0.827

2.5. Top-Ranked Overlapping AAPP Nodes in AD, ALS, and FTD

Table 4 lists the names of the source nodes and the composite scores shared between
two diseases. The composite score is determined in CompositeView [24] by computing
the arithmetic mean of the HeteSim scores for all outgoing edges linked to each source
node. Any two diseases formed by a combination of AD, ALS, and FTD are called
disease pairs. Thus, there are three distinct disease pairs: AD ∩ FTD, AD ∩ ALS, and
ALS ∩ FTD.
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Table 4. A list of some nodes shared by different disease pairs for AAPP node type. Node names are
exactly returned from the SemNet simulations and composite scores are calculated in Composite-
View by computing the arithmetic mean of two HeteSim scores from the disease pair [24]. All the
intersecting nodes with FTD are listed. However, due to space limitations, only the top 20 nodes
(based on composite score) are shown for the intersection of AD and ALS.

Node Names Composite Scores Intersections

Phosphatidylserine decarboxylase 2 0.87 AD ∩ FTD
Homer 1a 0.513 AD ∩ FTD
Syntaxin 3B 0.476 AD ∩ FTD
EphA3 receptor 0.141 AD ∩ FTD
CDK11B 0.704 AD ∩ FTD
Phospholipid serine base exchange enzyme 0.461 AD ∩ FTD
HOXC@ gene cluster 0.935 AD ∩ FTD
TCF4|TCF7L2 0.911 AD ∩ FTD
Thyroid hormone receptor alpha-1 0.753 AD ∩ FTD
MIR150 0.947 ALS ∩ FTD
SUGT1 0.986 ALS ∩ FTD
AL1 protein, tomato golden mosaic virus 0.998 AD ∩ ALS
Bradykinin B2 receptor|KNG1 0.998 AD ∩ ALS
TLR5 protein, human|TLR5 0.998 AD ∩ ALS
Nuclear matrix binding proteins 0.998 AD ∩ ALS
TBP-associated factor 15
kDa|IGFBP7|TAF8

0.985 AD ∩ ALS

Xylanase X22 0.998 AD ∩ ALS
Polyketide synthase WA 0.998 AD ∩ ALS
Fibrosin 0.996 AD ∩ ALS
Omega-conotoxin RVIA, conus radiatus 0.998 AD ∩ ALS
Cytosolic thyroid hormone-binding protein,
Xenopus

0.998 AD ∩ ALS

Type I interferon receptor|AVP|PPOX 0.998 AD ∩ ALS
Cobatoxin 1 0.998 AD ∩ ALS
Alpha-conotoxin PnIB 0.998 AD ∩ ALS
N-(4-isothiocyano-2-nitrophenyl)-2-
aminoethanesulfonate

0.998 AD ∩ ALS

Glycoproteins|SLC6A7 0.998 AD ∩ ALS
Cobatoxin 2 0.998 AD ∩ ALS
Carassin 0.998 AD ∩ ALS
Mesenchyme fork head 1 protein|FOXP1 0.998 AD ∩ ALS
Substance P|CHN1|NEK9 0.998 AD ∩ ALS
ATP synthetase complexes|ATP8A2 0.998 AD ∩ ALS

2.5.1. Top-Ranked Nodes at the Intersection of AD and FTD

Among the 1% of top-ranked AAPP nodes for the intersection of AD and FTD are the
following from Table 4:

• Phosphatidylserine (PS) is a membrane phospholipid essential for signaling, apoptosis,
and membrane fluidity, particularly in neurons. Dysregulated PS metabolism impairs
mitochondrial integrity, energy production, and immune clearance, exacerbating
neurodegeneration [37]. PS also interacts with misfolded proteins, such as amyloid-
beta and TDP-43, affecting their aggregation and toxicity.

• Homer 1a, a neuronal synaptic protein, modulates mGluR signaling, calcium home-
ostasis, and synaptic plasticity. Its reduction contributes to cognitive decline and mem-
ory loss by disrupting synaptic protein balance and impacting synpatic plasiticy [38].
Homer 1a dynamically responds to cellular stress and influences protein aggregation
pathways involving amyloid-beta and TDP-43.

• Syntaxin 3B, a SNARE protein, facilitates vesicle docking, fusion, and neurotransmitter
release. Its dysfunction in AD, ALS, and FTD disrupts synaptic signaling, leading
to cognitive and behavioral symptoms [38]. Syntaxin 3B also supports vesicle traf-
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ficking, and its impairment under cellular stress promotes protein aggregation and
defective homeostasis.

• The EphA3 receptor governs neuronal development, axonal guidance, and synap-
tic plasticity. Dysregulated EphA3 signaling contributes to synaptic loss, chronic
neuroinflammation, and impaired connectivity that is modulated via the interaction
of nicotinic receptors in areas like the hippocampus [39]. EphA3 also likely influ-
ences cell survival and apoptosis pathways and interacts with protein aggregates like
amyloid-beta and TDP-43.

• CDK11B (Cyclin-Dependent Kinase 11B) regulates the cell cycle, transcription, and
apoptosis. Aberrant CDK11B activity in neurodegeneration drives inappropriate
cell cycle re-entry, neuronal apoptosis, and stress responses, increasing neuronal
vulnerability and promoting protein aggregation, especially in AD [40].

• Phospholipid serine base exchange enzyme controls PS metabolism, a key regulator of
apoptosis, mitochondrial integrity, and immune activation. Dysregulated PS synthesis
triggers neuroinflammation, oxidative stress, and excessive neuronal clearance by
immune cells [37].

• The HOXC gene cluster, part of the homeobox family, is critical for neuronal differenti-
ation and maintenance [41]. Dysregulated HOXC expression in neurodegenerative
diseases disrupts neuronal survival and may exacerbate inflammation.

• TCF4 and TCF7L2, transcription factors in the Wnt signaling pathway, modulate
synaptic plasticity, immune responses, and inflammation. Genetic variants increase
susceptibility to neurodegeneration, cognitive decline, and metabolic disorders.

• Thyroid hormone receptor alpha-1 (THRA1) regulates neuronal energy metabolism,
synaptic plasticity, and antioxidant defenses [42]. Thyroid dysfunction leads to energy
deficits, oxidative stress, and impaired synaptic function, contributing to neurodegen-
eration, and has been shown to be a risk factor for AD [43].

2.5.2. Top-Ranked Nodes at the Intersection of AD and FTD

Interestingly, the CompositeView in Figure 2 shows only a few top-ranking nodes at
the intersection of ALS and FTD. This finding was unexpected given that the combined ALS-
FTD clinical presentation is the most discussed and frequent co-occurring clinical diagnosis
among AD-FTD, AD-ALS, and ALS-FTD. Similarly, Table 4 shows that the intersection of
ALS and FTD had 43,368 nodes. However, the CompositeView filters to create a subset of
the most important nodes and aggregates their HeteSim scores into a composite score. Once
this process was completed, a tractable number of important intersecting nodes remained.
Among the top 1% of AAPP nodes for the intersection of AD and FTD are the following
from Table 4:

• MicroRNA-150 (miR-150) regulates gene expression in neuronal survival, influencing
neuroinflammation and neurodegenerative processes. Upregulated blood miR-150-
5p in Alzheimer’s Disease has been associated with cognition, cerebrospinal fluid
amyloid-β, and cerebral atrophy [44]. Other similar microRNA biomarkers have been
proposed to distinguish AD and ALS [45].

• SUGT1 (Suppressor of G2 allele of Skp1 homolog 1) is a protein involved in cell cycle
regulation, autophagy, and proteasome function, which protects neurons from oxidative
stress [46]. Its dysfunction in ALS and FTD promotes protein aggregation and accelerates
neuronal death, which is likely enhanced through an association with C9orf7 [46].

2.5.3. Top-Ranked Nodes at the Intersection of AD and ALS

Among the 1% of top-ranked AAPP nodes for the intersection of AD and FTD with
direct evidence are the following from Table 4:

• Bradykinin B2 receptor (B2R) mediates inflammation, vascular permeability, and
amyloid-beta metabolism. Dysregulated B2R activity in AD and FTD worsens neu-
roinflammation, blood–brain barrier dysfunction, and amyloid pathology [47].



Int. J. Mol. Sci. 2024, 25, 13450 11 of 22

• Toll-like receptor 5 (TLR5) links gut microbiome dysbiosis to neuroinflammation in
AD and FTD. It interacts with amyloid-beta and tau aggregates, amplifying innate
immune responses and contributing to disease progression [48].

• Nuclear matrix binding proteins (NMBPs) maintain a nuclear structure and RNA trans-
port. Dysregulated NMBP function in AD impairs transcriptional regulation, RNA-binding
protein dynamics, and tau or TDP-43 metabolism, driving neurodegeneration [49].

• TBP-associated factor 15 kDa (TAF8), also known as IGFBP7, regulates apoptosis,
mitochondrial function, and inflammation [50]. Dysregulation of TAF8 contributes to
oxidative stress, immune activation, and neuronal loss.

• ATP8A2, a P-type ATPase, maintains lipid homeostasis, mitochondrial function, and
calcium dynamics. Dysfunction in ATP8A2 disrupts neuronal energy production and
promotes oxidative stress, contributing to the pathogenesis of ALS, AD, and FTD.
Prior work has shown its direct ties to axonal degeneration [51].

• Fibrosin relationships are mostly in the context of wound healing, as it regulates
extracellular matrix remodeling [52] and is thought to play a role in glial scar formation.
Dysregulated fibrosin in AD and ALS could increase inflammation and oxidative stress,
contributing to neuronal damage.

• Cytosolic thyroid hormone-binding delivers thyroid hormones, T3 and T4, to the nuclear
thyroid hormone receptors. It is hypothesized that disturbances in thyroid hormone levels,
particularly reduced levels of T3, may contribute to the cognitive impairments seen in AD.
Reduced thyroid hormone activity could also contribute to motor neuron vulnerability,
as these neurons rely on appropriate thyroid hormone signaling for survival [42].

• Type I interferon receptor|AVP|PPOX—The Type I interferon receptor is a critical
component of the immune response, inflammation, and cellular responses in the
central nervous system. Interferons increase pro-inflammatory cytokines in astrocytes
and microglia [53]. The related protoporphyrinogen oxidase (PPOX) is an enzyme
involved in heme biosynthesis. Disturbances in heme biosynthesis likely contribute to
oxidative stress or cellular dysfunction in neurodegenerative diseases.

• SLC6A7 uptakes proline from the extracellular space into neurons and other cells, which
plays a critical role in protein synthesis, cellular metabolism, and neurotransmission.
Proline is also key to glutamate synthesis [54]. Glutamate is the main excitatory neurotrans-
mitter in the brain, and its dysfunction can lead to excitotoxicity, a process that contributes
to neuronal damage and degeneration seen especially in ALS but also in AD and FTD.

• Substance P|CHN1|NEK9—the combination of Substance P, CHN1 (also known as
Chimerin 1), and NEK9 (NIMA-related kinase 9) involves a complex interplay of
proteins that have distinct roles in neurotransmission, cell signaling, and neuroinflam-
mation. The NK1 receptor has been identified as a potential target for managing inflam-
mation and excitotoxicity in ALS. NEK9 is tied to microtubule stability dynamics [55],
potentially impacting tau in AD, FTD, and axonal transport deficiencies in ALS.

• ATP synthetase complexes—specifically ATP8A2, which is a P-type ATPase, is crit-
ical for the function of mitochondria, the energy-producing organelles within cells.
ATP8A2, in particular, is involved in maintaining the lipid composition of cell mem-
branes, especially in neurons [56]. ATP8A2 is tied to mitochondrial energy production,
membrane lipid homeostasis, and calcium homeostasis, which are all known to con-
tribute to the AD, ALS, and FTD etiologies.

2.5.4. Determination of Indirect Nodes

The top 1% of SemNet 2.0 nodes contained some nodes for which there was only
indirect evidence for their involvement in the molecular pathophysiology for the disease in-
tersection of interest. This was expected given that the SemNet 2.0 parameters intentionally
allowed the inclusion of longer metapaths to better incorporate cross-domain knowledge
into the relevance rankings. The type of evidence, direct or indirect, was evaluated using
SemNet 2.0, LLM (GPT-4o), and human evaluators as shown in Table 5. Full-text evaluation
of data sources by human evaluators served as the ground truth.
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Table 5. Classification of direct versus indirect evidence for the top-ranked 1% of SemNet 2.0 source
nodes. Evidence classification was performed by SemNet 2.0, GPT-4o LLM, and humans. Classifica-
tion of direct or indirect by SemNet was based on the shortest metapath link to the target node(s).
Classification by GTP-4o LLM used a binary classification prompt. Classification by humans was
based on full-text evaluation of articles from SemNet 2.0 using PMIDs derived from the knowledge
graph. Classification by humans was considered the ground truth, which by definition, resulted in
perfect precision, recall, F-measure, and accuracy.

Evaluator Precision Recall F-Measure Accuracy

SemNet 2.0 0.94 0.71 0.81 0.74
GPT-4o LLM 0.80 0.83 0.82 0.71

Humans 1.0 1.0 1.0 1.0

Recall AD and ALS had the most intersecting nodes, as shown in the CompositeView
layout in Figure 2. Such nodes often were tied to the importance of the gut microbiome,
namely its role in neuroinflammation, specific ion channels, and synaptic transmission.
Examples of nodes with indirect evidence are detailed below:

• The AL1 protein, tomato golden mosaic virus is a plant virus protein involved in plant
cell replication and apoptosis [57]. While viral proteins in general can affect cellular
pathways involved in neurodegeneration, inflammation, and protein aggregation, the
AL1 protein from TGMV has not yet been directly linked in humans. Study results
contend that this node provides indirect evidence for a tie-in to neuorinflammation
via the gut microbiome.

• Xylanase X22 is a plant cell wall-degrading enzyme. Indirect mechanisms involving
the gut–brain axis, microbial metabolism, and neuroinflammation could suggest po-
tential roles for microbial enzymes like Xylanase X22 in modulating disease processes,
likely via dietary fiber breakdown and immune system modulation [58].

• Polyketide Synthase WA produces microbial-derived compounds. Polyketides can
be produced by bacteria, fungi, and plants and have diverse biological activities that
range from antimicrobial and anticancer effects to immune modulating responses,
inflammation, and oxidative stress [59]. Dysregulated polyketides could potentially
influence neuroinflammation via the gut–brain axis.

• N-(4-isothiocyano-2-nitrophenyl)-2-aminoethanesulfonate is a chemical compound
used in biochemical research to investigate various aspects of cellular function, partic-
ularly in the context of membrane transport and ion channel activity.

• Cobatoxin2, cobatoxin 1, and the related protein carassin, are toxins derived from
the venom of the Conus genus, particularly marine cone snails. Cobatoxin, like other
conotoxins, has potential neurotoxic effects by interacting with voltage-gated ion
channels, specifically sodium (Na+) channels [60], and potentially other receptors
involved in neurotransmission. Sodium channels have been particuarly documented
as important in ALS’s pathophysiology [61].

• Omega-conotoxin RVIA, conus radiatus Omega-conotoxin RVIA (also known as ω-
conotoxin RVIA) is a potent peptide toxin derived from the venom of the marine
cone snail species conus radiatus. This toxin selectively targets N-type voltage-gated
calcium channels (Cav2.2), which are primarily involved in the release of neurotrans-
mitters at synapses [62]. Its high ranking is an indirect link magnifying the importance
of calcium signaling in neurotransmission and homeostasis.

• Menchyme Forkhead 1 (FOXP1) is a member of the forkhead box (FOX) family of
transcription factors, which play a crucial role in regulating the expression of genes
involved in various cellular processes, including cell development, differentiation,
and function. They are also implicated in cancers [63]. Multiple cancer-related genes
have been previously associated in omics research examining AD [9] .
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2.6. High-Ranking Nodes Exclusive to a Single Disease

Table 6 lists some of the nodes which only belong to one disease within the 99%
percentile (e.g., top-ranked 1% of AAPP source nodes). Since there is only one edge
connecting source nodes to the target nodes, the composite score is the same as the HeteSim
score. Examples of exclusive high-ranking nodes are detailed below:

• The AKAP10 gene regulates cAMP signaling, and cAMP has been shown to be critical
in neurodegeneration [64].

• The UGA4 protein is a protein in yeast that is involved in the utilization of gamma-
aminobutyrate (GABA) as a nitrogen source. There is no direct evidence for its role in
humans, but its ranking indirectly indicates the role of GABA in AD.

• Thrombin|CALR is involved in inflammation and coagulation and has been impli-
cated in AD [65].

• LCP1 (Lymphocyte Cytosolic Protein 1) is mostly tied to cancers, but its ranking
indirectly indicates a role for inflammation.

• PGEs (Prostaglandins E), a major product of COX-2 activity, have been reported in
patients with probable AD, and are likely tied to inflammation [66].

• Secretory phospholipase A2 is involved in increased inflammatory and decreased
metabolic processes [67], which are both seen in AD.

• Fatty-acid peroxidase imbalances may influence neurodegeneration, which is linked
to ALS and AD.

• MAPs (microtubule-associated proteins), and namely dysregulated MAPs, such as
tau, are hallmarks of AD [68].

• KCNC4 (Potassium Channel Kv3.4) disregulation has been implicated in hyperex-
citability in ALS [69].

• FN1 (Fibronectin 1) is associated with extracellular matrix remodeling [70], which is
known to be a relevant factor in ALS.

• GEMIN8 is part of the survival of motorneuron (SMN) complex [70], which makes it
relevant to ALS.

• FGFBP3 (Fibroblast Growth Factor Binding Protein 3) is involved in growth signaling,
as well as fat and metabolic signaling. The role of metabolism in the molecular
pathophsyiology of AD is well documented [9].

• Cholinergic receptors in ALS are involved in modulating motor neuron activity. Dys-
function of these receptors, particularly nicotinic acetylcholine receptors (nAChRs) at
the neuromuscular junction, contributes to the impaired signal transmission, muscle
weakness, and motor neuron degeneration seen in ALS [71].

Table 6. A list of some AAPP source nodes that only belong to one of the three target diseases of AD,
FTD, or ALS. The composite score in this case is the same as the normalized HeteSim score. Note that
there were no exclusive node(s) for FTD.

Node Names Composite Score Disease

AKAP10 gene 0.991 AD
UGA4 protein, S cerevisiae 0.992 AD
Thrombin|CALR 0.991 AD
LCP1 protein, human 0.991 AD
PGE synthase 1, human 0.991 AD
Secretory phospholipase A2 0.99 AD
Fatty-acid peroxidase 0.997 AD
MAP kinase kinase 1 0.999 AD
KCNC4 0.999 AD
FN1 wt allele|FN1 0.999 ALS
GEMIN8 0.999 ALS
FGFBP3 gene|FGFBP3 0.999 ALS
Cholinergic receptors|MECP2|PITX2|REG1CP|RS1 0.999 ALS
SKAP55-related protein|CTBS|PCYT1B 0.999 ALS
Recombinant interleukin-9|IL9 0.995 ALS
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2.7. Do AD, FTD, and ALS Lie on the Same Spectrum?

AD, FTD, and ALS share a common subset of underlying symptoms, mechanisms, and
risk factors. The overlapping features of these neurodegenerative diseases may indicate a
pathophysiological spectrum. The presence of disease overlap has important implications
for diagnosis, treatment, and prevention strategies. It suggests that proactive interventions
or modalities targeting common underlying factors may be beneficial for multiple condi-
tions. Additionally, it underscores the importance of considering the broader context of
neurological disease processes rather than viewing each as a siloed condition.

The link between ALS and FTD has been widely acknowledged, with recent data-
based evidence revealing what appears to be a spectrum of disease even in brain-MRI
patient sub-typing [72]. A link between AD and FTD has also been suggested but is not
as well established. The diagnosis of a mixed AD-FTD pathology is difficult given both
diseases impact the frontal region on MRI. Unlike AD, FTD symptoms may manifest while
cognition remains spared [73].

An overarching conclusion of the SemNet 2.0 results is that the top-ranked nodes of
FTD tend to have great overlap with both ALS and AD. As such, the results of the present
study suggest FTD to have the least differentiated pathology compared to AD and ALS.
This might explain why mixed FTD etiologies have been cited within ALS [72], AD [73],
and even Parkinson’s Disease [74].

While AD and ALS also had a high degree of overlap in the present study, their
functional overlap in individual clinical studies is not as commonly acknowledged as ALS-
FTD or AD-FTD. It appears that many of the same fundamental AAPPs may be involved
in the underlying etiologies of AD and ALS but with different functional effector cells or
differently impacted functional regulation. Such differences could explain their different
functional phenotypes.

In summary, the pathologies of AD, ALS, and FTD share many of the same nodes and
edges in the investigated network of cross-domain literature relationships from 33+ million
journal articles. Further experimental assessment is necessary to see if the molecular
pathophysiology networks of ALS, FTD, and AD comprise a disease spectrum where
different forms of dysregulation result in different functional phenotypes [75].

2.8. Limitations

The most important limitation is that the SemNet 2.0 algorithm is unsupervised.
Immediate experimental or clinical testing of thousands of top-ranked relationships is not
feasible, although the work presented helps to prioritize such future studies. Notably,
prior work has illustrated that SemNet predictions early in the COVID-19 pandemic [76]
translated well to real-world clinical trials for drug repurposing [77]. Additional works
utilizing SemNet 2.0 to predict long-term chemotherapy adverse events [23] or underlying
mechanisms of disease [78] showed utility for prioritizing drug repurposing and research
or experimental hypotheses, including for neurological diseases [22]. Finally, to minimize
the limitations of SemNet 2.0, this study also uniquely employed large language models
and supervised human evaluation of full-text articles to verify the existence of the SemNet
2.0 knowledge graph relationships and to determine if the evidence provided was a direct
or indirect link to the target disease(s) of AD, ALS, or FTD.

3. Materials and Methods

This study combines both unsupervised and supervised artificial intelligence ap-
proaches to examine the overlapping molecular physiology of AD, ALS, and FTD. SemNet
2.0 [21] was utilized to query a knowledge graph of biomedical concepts related to AD,
FTD, and ALS in different domains to determine high-ranking biomedical concepts. High-
ranking nodes in the Unified Medical Language System (UMLS) node type of amino acids,
peptides, and proteins (AAPPs) were evaluated using CompositeView [24], a special graph-
based visualizer that better enables simultaneous aggregation, analysis, and visualization
of multiple SemNet 2.0 simulations. The highest ranking concepts that were either overlap-
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ping or were specifically distinct to AD, FTD, or ALS are reported, visualized, and analyzed
to better quantify to what extent and to see if the underlying etiologies potentially overlap.
Two different models were used to map individual nodes to broader biological processes:
a standard natural language processing [23] and a large language model (LLM). Finally,
supervised human-in-the-loop validation was performed as part of model evaluation. This
framework is shown in Figure 7.

Figure 7. Overall framework for artificial intelligence-based comparative analysis of the molecular
pathophysiology overlap of AD, ALS, and FTD. Over 33 million journal articles from PubMed
were used to construct the knowlege graph used by SemNet 2.0. The open-source SemNet 2.0
software [21] and its post-visualization software, CompositeView [24], were used to determine which
Unified Medical Lanaguge System (UMLS) amino acid, peptide, and protein (AAPP) nodes are most
important to AD, ALS, FTD, and, namely, their intersections. Next, the top 1% of nodes were mapped
to eight biological processes using cross-domain text mining natural language processing and a large
language model. Finally, three human evaluators provided a check on the top 1% of nodes via full
text article review and on the corresponding biological mappings.

3.1. Overview of SemNet 2.0

SemNet 2.0 is a Python-based open-source software designed to interact with a biomed-
ical knowledge graph (KG) comprising semantic triples extracted from PubMed’s extensive
data-base of over 33 million abstracts [21]. Each semantic triple within this knowledge
graph contains a head, relation, and tail. The head and tail entities serve as nodes, and the
relation is represented as a directed edge. These nodes correspond to biomedical concepts
categorized within the United Medical Language System (UMLS), which has 133 node
types and 54 relations. The directed edges encapsulate relations like ‘treats’, ‘affects’, ‘in-
hibits’, etc. SemNet 2.0 uses an unsupervised ranking algorithm to determine to rank the
most relevant or “important” nodes to a given target node input.

3.1.1. Search Parameters

There are four user-defined inputs: the target nodes, source node types, search depth,
and metapath length. Target nodes are defined as the primary nodes of the interest, which,
in this study, are AD, ALS, and FTD. The search node types are semantic types specified
by the UMLS ontology. Search depth is defined as the number of connections or “hops”
between the target node and the source node. When targeting a specific node T, a search
depth of 1 encompasses all directly connected adjacent nodes. Increasing the search depth
is advantageous for discovering new findings. Connections between neighbors and target
nodes are more readily apparent and widely acknowledged in the scientific literature.
Metapath length, on the other hand, represents the cumulative distance traveled from a
target to a source node. Multiple pathways can be condensed into a single metapath based
on the types of source nodes involved.

Unique UMLS IDs and corresponding concept unique identifiers (CUIs) were assigned
to the three diseases, Alzheimer’s Disease (CUI: C0002395), Amyotrophic Lateral Sclerosis
(CUI: C0002736), and Frontotemporal Dementia (CUI: C0338451). The amino acid peptide
protein (AAPP) was chosen for each disease type as it best represents the sub-molecular
and molecular pathophysiological relationships. The search depth was 2 and the metapath
length was 3 for all SemNet 2.0 simulations. The parameters for this application-based
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molecular relationships study were chosen based on optimizations computed as part of
previous theoretical machine learning research [21].

3.1.2. Definition of HeteSim Score

SemNet 2.0 employs a metric known as HeteSim to evaluate the relatedness or rele-
vance between a source node and a target node [21]. HeteSim is a similarity metric that
compares metapaths that connect to the user-defined target node(s). The comparing of
metapaths via the calculation of a HeteSim score enables the relative importance to the
target node to be quantified. This study utilized the deterministic HeteSim setting and
the exact mean for aggregating HeteSim scores from multiple target nodes to the same
source node.

3.1.3. Normalization of HeteSim Scores

HeteSim scores can vary as a function of simulation parameters and number of re-
turned nodes. Therefore, HeteSim scores are only comparable within individual simu-
lations. Since cross-domain text mining involves multiple simulations, normalization is
necessary to ensure fair comparison across multiple SemNet 2.0 simulations performed for
different disease(s). Consequently, the HeteSim results used for ranking relevant source
nodes were normalized by removing the mean, scaling to unit variance, and percentile
ranking. A percentile ranking ensured equivalency to fairly compare and contrast node
rankings from different simulations.

3.1.4. CompositeView

CompositeView is a visualization tool that was customized to best visualize and
perform post hoc analysis on SemNet 2.0 output [24]. CompositeView visualizes the high-
ranked related source nodes and calculates composite scores. Collectively, CompositeView
enables the resultant graph resolution to be increased or decreased by combining and
averaging HeteSim scores. In the case of SemNet 2.0, the composite score is determined
by computing the arithmetic mean of all outgoing edges linked to each source node. This
composite score combines information into a unified metric that, while less detailed, offers
insights from the data in a manner that justifies the trade-off of minimal information
loss. The composite score associated with each source node reflects its relevance to AD,
ALS and FTD.

3.1.5. Human-in-the-Loop Supervised Validation of High-Ranking Nodes

SemNet 2.0 utilizes an unsupervised learning rank aggregation algorithm to output
which source nodes are most related to the target diseases [21]. The unsupervised al-
gorithm has no ground truth with which to directly compare the output and evaluate
model performance. As such, a supervised human-in-the-loop process was used to manu-
ally check high-ranking source nodes by evaluating the full-text articles from which the
high-ranking source node relationships were extracted. Evaluators examined the full-text
article to determine the presence of either direct or indirect evidence to support node
relevance to AD, FTD, or ALS. Reviewed full-text articles were selected using the PubMed
Unique Identifier (PMID) of articles used to construct the relations in the knowledge graph.
Human evaluation provided both a supervised check on the knowledge graph and the
ranking algorithm.

The evidence for the top-ranked 1% of SemNet nodes was also classified as either
direct or indirect. Classification of direct or indirect by SemNet was based on the shortest
metapath link to the target node(s). Classification by the GPT-4o LLM used a binary
classification prompt using the top-ranked SemNet 2.0 nodes as a .csv input. Classification
by humans (used as ground truth) was based on the full-text evaluation described above.
Human evaluation served as the ground truth for the precision, recall, F-measure, and
accuracy shown in Table 5.
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3.2. Post-Simulation Mapping of Biological Processes

Molecular and proteomic disease research often maps molecules to biological processes
to improve explainability and comprehension [9]. The top 1% of high-ranking AAPP source
nodes were assigned to one or more defined biological processes using post-simulation
SemNet 2.0 output.

3.3. Statistical Analysis of Biological Process Overlap

Z-score analysis for each biological process was performed to examine relative dif-
ferences in the prevalence of biological processes at disease intersections. Z-scores were
calculated and visualized in Microsoft Excel.

3.3.1. Definitions of Mapped Biological Processes

Relevant study-specific definitions of biological processes were honed by combining
the UMLS ontology and natural language processing using supervised domain expertise,
as has been conducted in previous cross-domain text mining works [23,79]:

• Cell cycle regulation: nodes involved in the cell cycle, including mitosis and apoptosis,
as well as tumor factors or erratic signaling typically associated with neoplasms.

• Energy and metabolism: nodes involved in cellular respiration, glucose metabolism,
lipid metabolism, energy conversion, metabolic regulation, redox reactions that con-
tribute to free radicals or oxidative stress, and all other processes encapsulated in the
mitochondria and their regulation.

• Gene regulation and expression: nodes that direct, modify, or otherwise regulate the
expression of one or more genes. Gene expression may include physiological gene
expression, dysfunctional gene expression, non-cancerous mutated gene expression,
DNA repair, DNA replication, and transcriptional regulation.

• Inflammation and immune response: nodes involved that promote, inhibit, or provide
other regulate inflammatory or immune responses. This can include local neuroin-
flammation from the microglia and astrocytes in response to the release of stimulatory
cytokines or neurotransmitters in their microenvironment or it could be systemic
inflammation; autoimmune inflammatory processes; immune responses to external,
infectious, or environmental pathogens; or stimuli.

• Membrane regulation: nodes related to membrane regulation, membrane lipid home-
ostasis, transport of molecules into and out of the cell and/or cell membrane, the
expression of receptors in the membrane, etc.

• Protein aggregation: nodes related to the translation, destruction, and overall regula-
tion of proteins, namely misfolded proteins that lead to plaques, tangles, etc.

• Stress response regulation: nodes that are involved in the regulation of cellular or
systemic stress, including the hypothalamic–adrenal–pituitary axis, thyroid, etc., and
the production, release, modulation, or regulation of stress-reducing or modulating
molecules or hormones and/or their effector cells, tissues, or organs.

• Synapse and neurotransmission: nodes that are involved in excitation, inhibition, or
other regulation of signaling neuron(s), network regulation or synaptic plasticity, or
the development and maintenance of physical neural structures. This also includes
neurotransmitters, neuromodulators, and ion channels (e.g., potassium channels,
calcium channels, etc.).

3.3.2. Model Classification of High-Ranking Nodes to Biological Processes

The text of the .csv SemNet 2.0 output files were processed to assign biological map-
pings. Two existing methods were adapted for this task: standardized post hoc natural
language processing [23] and large language models [19].

First, natural language processing was used to map returned AAPP source nodes to
one or more biological processes using UMLS ontology mapping. This mapping did not
explicitly specify a tie to AD, FTD, or ALS. However, the AD, FTD, and ALS relationships
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were inferred from SemNet metapaths that illustrate relationships between each identified
source node and its target node (i.e., AD, ALS, or FTD).

Second, an external large language model, GPT-4o, was used to map the source nodes
in the .csv file. The prompt specifically asked GPT to return from the list of biological
processes which mappings were most specific to AD, FTD, or ALS. If the LLM did not have
mappings due to a lack of direct connection to AD, FTD, or ALS, it was prompted to state
what the connection of the input nodes may be. This last prompt was primarily used to
help in supervised human validation of the model(s) to better understand discrepancies
in mappings.

3.3.3. Supervised Validation of Biological Mappings

Three trained human evaluators examined the biological mapping classifications
returned by the NLP and LLM algorithms. In particular, human evaluators examined
mappings where model results did not intersect. The NLP and LLM algorithms did agree
on all mappings where there was direct evidence. However, the LLM did not return all
relevant mappings when there was no overt or direct connection between the nodes and
ALS, FTD, or ALS. The separate prompt requesting the LLM to state what the connection
might be provided human evaluators context for possible model error evaluation.

4. Conclusions

This study demonstrated that artificial intelligence models are a comprehensive and
attractive method to identify, compare, and contrast the multi-factorial molecular patho-
physiology of overlapping neurological diseases using data from 33+ million biomedical
journal articles. FTD shared 99.9% of its AAPP nodes with ALS and AD; AD shared 64.2%
of its AAPP nodes with FTD and ALS; and ALS shared 68.3% of its AAPP nodes with AD
and FTD. The overall percentage that each intersecting biological process comprised was
as follows: inflammation and immune response, 19%; synapse and neurotransmission,
19%; cell cycle, 15%; protein aggregation, 12%; membrane regulation, 11%; stress response
and regulation, 9%; gene regulation, 4%. The presented SemNet 2.0 node rankings for AD,
ALS, and FTD provide an objective, evidence-based format to prioritize future research,
drug targets, and diagnostic risk factor identification. The results illustrate that AD, ALS,
and FTD share a large degree of underlying network relationship dynamics and likely
comprise a multi-factorial neuropathological spectrum. Small differences in the patho-
physiological network composition or its regulation likely shape the underlying expressed
disease phenotype.
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