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Automated Flood Depth Estimation on Roadways 
 

Kwame Ampofoa, Megan Witherowa, Alex Glandona, Monibor Rahmana, Ahmed Temtama,  
Mecit Cetinb, Khan M. Iftekharuddin*a 

aVision Lab, Dept. of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, 
USA 23529; bDept. of Civil and Environmental Engineering, Old Dominion University, Norfolk, 

VA, USA 23529 

ABSTRACT   

Recurrent nuisance flooding is common across many parts of the globe and causes extensive challenges for drivers on the 
roadways. The prevailing monitoring methods for roadway flooding are costly and not automated or effective. The ubiquity 
of visual data from cameras and advancements in computing such as deep learning may offer cost-effective methods for 
automated flood depth estimation on roadways based on reference objects such as cars. However, flood depth estimation 
faces challenges due to the limited amount of data annotated with water levels and diverse scenes showing reference objects 
at various scales and perspectives. This study proposes a novel deep learning approach to automated flood depth estimation 
on roadways. Our proposed pipeline addresses variations in object perspective and scale. We have developed an innovative 
approach to generate and annotate flood images by manipulating existing image datasets of cars in various orientations 
and scales to simulate four floodwater levels for augmenting real flood images. Furthermore, we propose object scale 
normalization for our reference objects (cars) to improve water level predictions. The proposed model achieves an accuracy 
of 74.85% and F1 score of 74.32% for four water levels when tested with real flood data. The proposed approach 
substantially reduces the time and labor required for labeling datasets while addressing challenges in perspective/scale, 
offering a promising solution for image-based flood depth estimation.  

Keywords: flood depth estimation, deep learning, data augmentation, object scale normalization, roadway safety 
 

1. INTRODUCTION  
Frequent nuisance flooding has become more prevalent in most parts of the world, posing significant challenges for drivers 
on roadways1. Accurate and timely monitoring of flood depth is crucial for ensuring public safety, managing traffic flow, 
and mitigating the impacts of flooding on transportation infrastructure2. However, traditional flood monitoring methods 
are often costly and not fully automated3,4. 

Recent advancements in deep learning techniques have shown great promise for various computer vision tasks, including 
image segmentation and object detection5, 6. These techniques have the potential to revolutionize flood monitoring by 
enabling automated analysis of visual data from cameras and other imaging devices. Most methods7–9 estimate floodwater 
height relative to segmented reference objects such as cars. However, few incorporate learning into the flood level 
prediction step, instead relying on geometric calculations8, 9 that may fail to generalize to challenging scenes involving 
variations in the segmentation quality, perspective, and scale of reference objects. To address these challenges, this study 
proposes a novel deep learning approach for automated flood depth estimation on roadways. Our specific contributions 
are as follows: 

• We introduce an automatic data generation and annotation pipeline that simulates varying floodwater levels by 
manipulating image datasets of cars shown at various scales and perspectives. This approach alleviates the need 
for extensive manual annotation and facilitates the training of deep neural networks for flood analysis. 

• We propose and systematically investigate the impact of training data augmentation and object scale 
normalization to improve deep learning-based flood depth estimation. To understand the individual contributions 
of data augmentation and object scale normalization, we perform an ablation study. 

• We evaluate the proposed deep learning-based floodwater level prediction approach using a curated data set of 
real annotated flood images and assess its effectiveness in estimating flood depth. 
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This study contributes to the advancement of automated flood monitoring techniques and provides valuable insights for 
flood management and disaster response efforts. The remainder of this paper is organized as follows.: Section 2 provides 
an overview of related work in flood monitoring and deep learning techniques. Section 3 describes the proposed 
methodology, including the data generation pipeline and the deep learning architecture. Section 4 presents the experimental 
results and discussion of the proposed methods. Finally, Section 5 concludes and describes future research directions. 

 

2. RELATED WORK 
Effective flood management and assessment play a vital role in disaster response and public safety. Recent advancements 
in deep learning techniques have paved the way for various methodologies to address the challenges associated with 
estimating flood extent and depth. 

In Ref. 8., Park et al. propose a method that compares flooded cars with a database of synthetic cars in various orientations 
to estimate flood water depth. However, their approach has limitations in terms of prediction time and scalability, as it 
requires finding the most similar car to the flooded car before computation. Moreover, the absence of a learning-based 
component in the water level prediction part of their pipeline may hinder its ability to generalize to challenges such as 
varying segmentation quality of cars from floodwater, which can be affected by occlusions and orientation issues. 
Additionally, the use of synthetic data may lead to domain adaptation problems. 

Similarly, in Ref. 9, Sazara et al. introduce a deep learning method to predict the depth of floodwater on streets based on 
side-view images of vehicles. Their approach involves four main steps: semantic segmentation, object detection, 
segmentation refinement, and water depth calculation. The water depth is estimated relative to the wheel size without 
considering the actual wheel and tire dimensions, which may vary across different vehicles. However, their method is 
constrained by the requirement of specific side-view orientations of vehicles for accurate flood level prediction. The flood 
level prediction part of their pipeline relies on geometric calculations based on the detected wheels and water edges rather 
than a learning-based approach. Consequently, their method may encounter difficulties in generalizing to diverse vehicle 
orientations and challenging scenarios where the segmentation quality of cars and floodwater is compromised. 

Despite the progress made, problems involving scale and perspective issues, including vehicle orientations, persist. These 
challenges hinder the development of accurate and efficient flood depth estimation methods that can handle diverse scenes 
and orientations. Furthermore, the limited availability of annotated data poses a challenge for learning-based flood level 
prediction. To address these limitations, we propose a deep learning pipeline that automatically generates annotated data 
of various scales and perspectives to augment training, incorporates object scaling techniques to normalize the scale of 
reference objects (cars) across different scenes, and introduces a learning-based approach for flood depth estimation. 

Unlike others8, 9, our approach does not rely on specific vehicle orientations or geometric calculations for flood level 
prediction. Instead, we leverage data augmentation and the power of deep learning to learn the relationship between the 
visible portions of scaled cars and the corresponding flood depths, enabling our model to adapt to challenging scenarios 
with limited annotated data and diverse vehicle orientations. 

 

3. METHOLODOGY 
3.1 Data Preparation and Generation  

To train and validate our deep learning models for flood depth estimation, we curate a dataset consisting of real flood 
images collected from various sources. The images are carefully annotated with multiple water levels as shown in Table 
1, providing ground truth labels for training and evaluation purposes.  

One of the primary challenges in applying deep learning to flood depth estimation is limited labeled data to train deep 
networks7. To address this issue, we develop a data generation method for augmenting the annotated real floodwater 
image dataset. Our data generation pipeline leverages the COCO dataset10 which contains a large number of car images 
with diverse orientations. We extract all cars from the COCO images using their masks and place them against a blank 
background. To simulate the appearance of cars at various levels of submersion in floodwater, we horizontally cut 
portions of the cars using their masks. We assume the average height of a car is approximately 150 cm. We randomly 
assign a flood severity level to each car image and segment the car at a heights Level 0 (0-10cm), Level 1 (11-30), Level 
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2 (31-50) and Level 3 (51-70) according to information from the national weather service (NWS)11 as seen in Table 1. In 
this paper, we will refer to this augmented data as the “generated” dataset. We manually review the generated images to 
remove any instances with excessive occlusions or unrealistic water levels, ensuring the quality and consistency of the 
augmented database. 
 
 

Table 1.  Flood severity table.  

Water Level Range (cm) Severity 
Level 0 0-10 no flood 

Level 1 11-30 low water 

Level 2 31-50 medium water 

Level 3 51-70 high water 

 

3.2 Object Scaling  

Due to the inherent variations in image resolutions and car sizes within the generated dataset, we normalize the dimensions 
of every car within each image. We scale all cars to a uniform size of 224x224 pixels. For the scaling process, we identify 
each car using an object detector, draw a bounding box around it, and transform it using the bounding box information as 
follows: Equation (1) computes the scale factor for the height (or width) by dividing the target height (or width) of 224 by 
the original height (or width) of the segmented car. The height or width scale factor is then used to scale the height and 
width of the segmented car in equations (2) and (3), respectively. 

𝑠𝑐𝑎𝑙𝑒 =
𝑇𝑎𝑟𝑔𝑒𝑡 𝑊𝑖𝑑𝑡ℎ 𝑜𝑟 𝐻𝑒𝑖𝑔ℎ𝑡

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑊𝑖𝑑𝑡ℎ 𝑜𝑟 𝐻𝑒𝑖𝑔ℎ𝑡
 

(1) 

𝑁𝑒𝑤 𝑊𝑖𝑑𝑡ℎ = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑊𝑖𝑑𝑡ℎ ×  𝑆𝑐𝑎𝑙𝑒 (2) 

𝑁𝑒𝑤 𝐻𝑒𝑖𝑔ℎ𝑡 = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ℎ𝑒𝑖𝑔ℎ𝑡 ×  𝑆𝑐𝑎𝑙𝑒 (3) 

Applying this scaling process, we ensure that all cars in the generated dataset have consistent dimensions, facilitating the 
training of our deep learning model. 

3.3 Deep Learning Model for Flood Depth Estimation 

Figure 1 illustrates the proposed depth estimation pipeline. For training, the input images are segmented to extract the cars. 
Then, we further segment the upper portion of the cars to simulate different flood levels occluding the lower portion of the 
vehicle. These generated partial cars are scaled to a consistent size and used to train the modified VGG-16 architecture. 
The trained model is then evaluated using a separate testing set of real flood images. For testing, the input image is 
segmented to extract cars using a pre-trained Mask R-CNN5 model. The segmented cars are then scaled and fed into the 
trained CNN model to estimate the flood level. 

For our flood depth estimation model, we employ a modified version of the VGG-16 architecture12  as the backbone. VGG-
16 is a well-established convolutional neural network that has demonstrated excellent performance in various computer 
vision tasks. We make several modifications to the architecture to adapt it to our specific requirements for flood depth 
estimation, including the incorporation of batch normalization layers, dropout layers, and L1 and L2 regularization at 
various points in the network. We replace the last layer of VGG-16 with an output layer of four units for our four-class 
classification task. The model is trained using the Adam optimizer with a learning rate of 0.00001, a batch size of 32, and 
the categorical cross-entropy loss function. We also employ early stopping with a patience of 10 epochs to prevent 
overfitting and restore the best weights. Our model is capable of estimating flood depths and classifying water levels into 
four categories: no water, low water, medium water, and high water. This information is crucial for providing timely and 
reliable flood monitoring and management, ultimately contributing to enhanced public safety and resilience to flood-related 
hazards. 
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Figure 1. Automated flood depth estimation pipeline.  

 

4. RESULTS AND DISCUSSION 
4.1 Model Training and Validation 

To train and validate our flood depth estimation model, we utilize a dataset consisting of 2988 generated flood images and 
447 real flood images. We employ a 10-fold cross-validation approach to assess the model’s performance across different 
data splits and obtain a reliable estimate of its generalization ability. 

During the cross-validation process, our model achieves a mean validation accuracy of 73.31% with a standard deviation 
of 1.8% as shown in Table 2. This indicates that the model consistently performs well across different folds, with minimal 
variation in its predictions. To evaluate the model’s performance on unseen data, we test it on a separate set of 334 real 
flood images. These images are carefully selected to represent diverse flood scenarios and car orientations from various 
locations worldwide. 
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Table 2. 10-fold validation of training on the mixed dataset. 

Fold Loss Validation Accuracy (%) 
1 2.5428 74.13 

2 2.5752 74.42 

3 2.5028 70.64 

4 2.8717 73.26 

5 2.6943 72.67 

6 2.5706 71.51 

7 2.5858 76.38 

8 2.4515 75.51 

9 2.4984 70.85 

10 2.6499 73.76 

Average 2.5943 ± 0.082 73.31 ± 1.82 

 

Our model demonstrates reasonable results on the test set, achieving an accuracy of 74.85% and an F1 score of 74.32% as 
shown in Table 3. These metrics suggest that the model can effectively estimate flood depths and classify water levels in 
real-world scenarios, despite being trained on a combination of generated and real images. 

 

Table 3.  Performance of mixed dataset model.  

 Training Validation Test 
Number of Images 3000 344 334 

Accuracy (%) 85 75.51 74.85 

F1 Score (%) 88 75.49 74.32 

 

4.2 Ablation Study 

To evaluate the impact of training data augmentation and object scaling on flood depth estimation, we conduct an ablation 
study by comparing the performance of our model with and without the scaling pipeline on three different data sets: real 
images, generated images, and the mixed data set of real and generated images (data augmentation). 

In the first setup, we train and test our model exclusively on real flood images. We evaluate the model's performance using 
10-fold cross-validation and report the test F1 score. When object scaling is not applied (Table 4, row 1), the model 
achieves a test F1 score of 54.8% and a validation F1 score of 55.4%. However, by incorporating object scaling into the 
pipeline (Table 4, row 2), the model's performance improves, resulting in a test F1 score of 65.57% and a validation F1 
score of 66.10%. This improvement highlights the importance of normalizing the scale of reference objects (cars) across 
different scenes, as it enables the model to learn more robust and generalizable features for flood depth estimation. 

In the second setup, we explore the impact of object scaling in the context of data augmentation. We train our model on a 
dataset of generated images, which are created by manipulating car images to simulate various flood levels. We then 
evaluate the model's performance on a separate test set of 334 real flood images. When the generated images are used 
without scale normalization (Table 4, row 3), the model achieves a high validation F1 score of 91.2% on the generated 
data. However, when tested on real flood images, the model's performance significantly drops, resulting in a test F1 score 
of only 33.3%. This discrepancy suggests that the model overfits to the generated data and struggles to generalize to real-
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world scenarios when object scales are not normalized. In contrast, when object scaling is applied to the generated images 
during training (Table 4, row 4), the model's performance on the real flood image test set improves substantially. The 
model achieves a validation F1 score of 72.91% on the generated data and a test F1 score of 67.66% on the real flood 
images. This improvement demonstrates the effectiveness of object scaling in bridging the domain gap between generated 
and real data, enabling the model to learn scale-invariant features that generalize well to real-world flood scenes. 

In the third setup, we investigate the impact of object scaling when training on a mixed dataset of real and generated images 
(data augmentation). When object scaling is not applied (Table 4, row 5), the model achieves a validation F1 score of 
82.01% and a test F1 score of 54.69%. However, by incorporating object scaling into the pipeline (Table 4, row 6), the 
model's performance improves significantly, resulting in a validation F1 score of 75.49% and a test F1 score of 74.32%. 
This improvement underscores the effectiveness of object scaling in enhancing estimation. 

 

Table 4.  Performance showing the impact of scaling.  

Row Data Description Validation F1 Score (%) Test F1 Score (%) 
1 Real Images (without scaling) 55.4 54.8 

2 Real Images (with scaling) 66.10 65.57 

3 Generated Images (without scaling) 91.2 33.3 

4 Generated Images (with scaling) 72.91 67.66 

5 Mixed Images (without scaling) 82.01 54.69 

6 Mixed Images (with scaling) 75.49 74.32 

 

These ablation study results highlight the importance of object scaling in enhancing the accuracy and robustness of our 
flood depth estimation model. By normalizing the scale of reference objects across different scenes, our approach mitigates 
the challenges posed by variations in object sizes and orientations, leading to improved performance on real, generated, 
and mixed datasets. The incorporation of object scaling into our deep learning pipeline proves to be a crucial component 
in addressing the limitations of existing methods and enabling accurate flood depth estimation in diverse real-world 
scenarios. 

 

4.3 Qualitative Results 

Figure 2 showcases representative examples that highlight the model’s performance across various scenes. The scaled 
images in the second column illustrate how the object scaling process normalizes the car sizes, enabling the model to focus 
on the relevant features for flood depth estimation. While the model accurately classifies the several scenes (rows 1-4) into 
their correct flood categories, the last scene (bottom row), which has a groundtruth of level 3, is misclassified as level 0 
(no flooding). This particular example may be challenging due to the orientation of the SUV. It also appears that the water 
depth at the front of the SUV may be greater than the rear which is closest to the camera. This misclassification highlights 
the challenges and limitations of the current approach in handling certain complex scenarios. Despite this misclassification, 
the overall qualitative results demonstrate the capability of the proposed deep learning pipeline in handling diverse scenes 
and object scales. By incorporating object scaling techniques, the model can effectively normalize the size of reference 
objects (cars) across different scenes, improving its ability to learn meaningful patterns and estimate flood depths 
accurately. 
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Figure 2. Representative examples of real flood data and water level predictions. 

 

5. CONCLUSION 
In this study, we propose a deep learning pipeline for automated flood depth estimation on roadways. Our method addresses 
the challenges of limited annotated data and variations in object perspectives/scales by introducing a data generation 
approach that mimics flood images of various perspectives and scales by manipulating car image datasets. When the 
dimensions of cars are a consistent size, the model achieves improved performance. Furthermore, we propose object scale 
normalization. Our ablation study reveals the synergistic effect of object scale normalization and augmenting real flood 
images with generated flood images for training, resulting in the best overall performance. The experimental results 
demonstrate the effectiveness of the proposed pipeline in classifying water levels into four categories, obtaining an overall 
F1 score of 74.32%. Future research could focus on addressing these challenges by incorporating additional contextual 
information, exploring advanced data augmentation techniques, and investigating the integration of 3D information to 
enhance the model’s ability to handle complex flood scenes. Our study contributes to the field of automated flood 
monitoring and depth estimation. We hope this work may facilitate further research on timely and reliable flood 
management and disaster response efforts. 
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