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in healthy middle-aged individuals
with machine learning

Raghav Tandon,"2 Liping Zhao,3’4 Caroline M. Watson,"’5 Neel Sar‘kar',I Morgan Elmor,"'5

Craig Heilman,*® Katherine Sanders,*> Chadwick M. Hales,**® Huiying Yang,3’4
®David W. Lor‘ing,"’5 Felicia C. Goldstein,"’5 John ]. Hanfelt,‘?"4 Duc M. Duong,"’s’7

Erik C. B. johnson,"’s’6 Aliza P. Wingo,8'9 ®»Thomas S. Wingo,""';’6 @®Blaine R. Roberts,"7
Nicholas T. Seyfried,*®’ Allan I. Levey,**® James . Lah,**® (®Cassie S. Mitchell'"?

and Alzheimer’s Disease Neuroimaging Initiative’

1t Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be
found at: http:/adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

Alzheimer’s disease has a prolonged asymptomatic phase during which pathological changes accumulate before clinical symptoms emerge.
This study aimed to stratify the risk of clinical disease to inform future disease-modifying treatments. Cerebrospinal fluid analysis from
participants in the Emory Healthy Brain Study was used to classify individuals based on amyloid beta 42 (AB42), total tau (tTau) and phos-
phorylated tau (pTau) levels. Cognitively normal (CN), biomarker-positive (CN)/BM+individuals were identified using a tTau: AB42 ratio

> (.24, determined by Gaussian mixture models. CN/BM+ individuals (7 = 134) were classified as having asymptomatic Alzheimer’s dis-
ease (AsymAD), while CN, biomarker-negative (CN/BM—) individuals served as controls (= = 134). Cognitively symptomatic, biomarker-
positive individuals with an Alzheimer’s disease diagnosis confirmed by the Emory Cognitive Neurology Clinic were labelled as Alzheimer’s
disease (7 = 134). Study groups were matched for age, sex, race and education. Cerebrospinal fluid samples from these matched Emory
Healthy Brain Study groups were analysed using targeted proteomics via selected reaction monitoring mass spectrometry. The targeted cere-
brospinal fluid panel included 75 peptides from 58 unique proteins. Machine learning approaches identified a subset of eight peptides
(ADQDTIR, AQALEQAK, ELQAAQAR, EPVAGDAVPGPK, IASNTQSR, LGADMEDVCGR, VVSSIEQK, YDNSLK) that distin-
guished between CN/BM— and symptomatic Alzheimer’s disease samples with a binary classifier area under the curve performance of
0.98. Using these eight peptides, Emory Healthy Brain Study AsymAD cases were further stratified into ‘Control-like” and ‘Alzheimer’s dis-
ease-like’ subgroups, representing varying levels of risk for developing clinical disease. The eight peptides were evaluated in an independent
dataset from the Alzheimer’s Disease Neuroimaging Initiative, effectively distinguishing CN/BM— from symptomatic Alzheimer’s disease
cases (area under the curve = 0.89) and stratifying AsymAD individuals into control-like and Alzheimer’s disease-like subgroups (area un-
der the curve = 0.89). In the absence of matched longitudinal data, an established cross-sectional event-based disease progression model was
employed to assess the generalizability of these peptides for risk stratification. In summary, results from two independent modelling meth-
ods and datasets demonstrate that the identified eight peptides effectively stratify the risk of progression from asymptomatic to symptomatic
Alzheimer’s disease.
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Introduction

Pathophysiological changes of Alzheimer’s disease begin
many years before the functional or cognitive decline asso-
ciated with disease. The presence of pathology can be ascer-
tained through cerebrospinal fluid (CSF) tests and
positron-emission tomography (PET) scans. In individuals
with dominantly inherited Alzheimer’s disease, CSF Tau be-
gins to increase 15 years before symptom onset, while Ap42
begins to decline over 20 years prior to symptom onset. ">
Until a recent report of lecanemab,? clinical trials of anti-
amyloid monoclonal antibodies,*® secretase inhibitors,”®
and anti-tau monoclonal antibodies”'® have had limited suc-
cess for disease modification in patients with symptomatic
Alzheimer’s disease. Given the long evolution of these path-
ologies before clinical symptoms, identifying and treating at-
risk individuals during asymptomatic stages may be a more
effective strategy to delay or prevent dementia onset.'!
Thus, a key to successful implementation of secondary pre-
vention trials may lie in the ability to identify those at the
greatest risk for Alzheimer’s disease prior to symptom onset.
It is also important to recognize that many cognitively nor-
mal (CN) individuals may have evidence of Alzheimer’s dis-
ease neuropathology at death.'>'® This consideration is

reinforced by examination of autopsy results available
from the National Alzheimer’s Coordinating Center (data re-
ceived May 2022). Among 787 individuals who donated
their brains and were classified as normal controls at their
last evaluation, 227 (28.8%) had moderate or frequent
amyloid plaques (CERAD >2), 386 (49.0%) had neocortical
neurofibrillary tangles (Braak >3) and 164 (20.8%) had both
CERAD >2 and Braak >3 (]. Lah, unpublished). Therefore,
simply identifying the presence of Alzheimer’s disease path-
ology does not imply a need for intervention.

For effective deployment of preventative therapies, it is
imperative to both identify the presence of silent pathology
and determine those at the greatest risk of developing symp-
tomatic disease. Alzheimer’s disease is a multifactorial neu-
rodegenerative disorder with numerous aetiopathogenic
mechanisms. Thus, several factors may influence early dis-
ease evolution, including genetics, lifetime exposures and
medical comorbidities. Additionally, Alzheimer’s disease
typically manifests as mixed pathologies, which evolve and
change over time.'*'® While biomarkers of amyloid plaques
and neurofibrillary tangles provide high diagnostic accuracy
for presence of disease pathology, multiple biomarkers are
likely to be required to predict other underlying pathologies,
disease stage and risk of clinical progression.
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The complexity of Alzheimer’s disease pathophysiology
necessitates comprehensive molecular profiling approaches.
Recent proteomic studies have demonstrated the power of
this strategy.'”! Application of these systems biology ap-
proaches has led to development of proteomics-based CSF
biomarker panels that link to distinct Alzheimer’s disease
pathophysiological processes and differential expression in
the CSF and brain, offering potential for proteomics-based
Alzheimer’s disease biomarkers.!” Mass spectrometry-based
analysis of >2000 brains and 400 CSF samples identified key
protein modules linked to sugar metabolism, Alzheimer’s
disease genetic risk factors and glial markers that correlate
strongly with disease pathology and cognitive decline.”’
Furthermore, targeted proteomic approaches have success-
fully identified CSF proteins that can distinguish both AT
status and cognitive impairment, complementing traditional
AP and Tau biomarkers.*' This work indicates that addition-
al proteomics based biomarkers may have the ability to strat-
ify risk of clinically asymptomatic Alzheimer’s disease.

To better understand the evolution of Alzheimer’s disease
in its earliest stages, CSF characteristics were explored in a
subset of CN middle-aged individuals (50-75 years) in the
Emory Healthy Brain Study (EHBS??), including a subset
of 134 individuals with CSF levels of AB42, total Tau
(tTau) and phospho181-Tau (pTau) indicative of underlying
Alzheimer’s disease pathology. This group of asymptomatic
Alzheimer’s disease (AsymAD) individuals was demograph-
ically matched with groups of CN biomarker-negative (CN/
BM-) controls and patients with biomarker-confirmed
Alzheimer’s disease. In the EHBS cohort, CSF samples
were examined by selected reaction monitoring mass spec-
trometry for levels of 75 putative Alzheimer’s disease bio-
markers.!”” Machine learning algorithms were used to
identify a set of CSF peptides that effectively discriminate
CN/BM- controls from symptomatic Alzheimer’s disease
cases and sub-categorized AsymAD individuals into
‘Control-like’ and ‘Alzheimer’s disease-like” groups. The dis-
criminative peptide set was independently examined in a se-
cond data set from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI), which labelled subjects using AV45 and
Fluorodeoxyglucose Positron Emission Tomography (FDG
PET). Our results identify a set of CSF biomarkers that strat-
ify risk of conversion from asymptomatic to symptomatic
stages of Alzheimer’s disease.

Materials and methods

The EHBS?? is a longitudinal cohort study of CN adults (50—
75 years) established in 2016. All participants provided con-
sent according to the Declaration of Helsinki, and the study
protocol was approved by the Internal Review Board of
Emory University.

EHBS is a research study specifically focused on disco-
vering biomarkers that predict Alzheimer’s disease and
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other dementias. EHBS participants are self-reported cogni-
tively and functionally intact and free of pre-existing diag-
nosis of mild cognitive impairment (MCI) or any dementia.
All participants complete biennial study visits which in-
clude neuropsychological testing, cardiovascular measures,
brain imaging and biospecimen collection (blood, CSF).
From this cohort, 134 CN, biomarker-positive (CN/BM+)
individuals were identified with AsymAD based on mea-
surements of AB42, tTau and pTau using a locally defined
cut-off value for tTau:AB42 ratio (>0.24) identified by
Gaussian mixture models.”®> These individuals were
matched for age, sex and race with 134 biomarker-negative
CN/BM- controls and 134 patients with biomarker-
confirmed symptomatic Alzheimer’s disease seen in the
Emory Cognitive Neurology Clinic. AsymAD and CN/BM—
controls were additionally matched for education. All
individuals included in our analyses provided informed
consent to participate in research protocols approved by
the Emory University Institutional Review Board. Table 1
shows the descriptive statistics for the full EHBS cohort
(N=1149) and matched groups of clinical Alzheimer’s
disease, AsymAD and CN/BM- groups (N =134 each).
Statistical differences between the AsymAD and CN/BM—
groups were evaluated using the McNemar-Bowker’s test
for categorical variables and by paired t-test or Wilcoxon
signed rank test for continuous variables depending on
the distribution.

CSF samples from all participants were collected in a stan-
dardized fashion applying common preanalytical methods.
EHBS participants were asked to fast for at least 6 h prior
to study visits. Patients donating CSF samples during clinical
evaluations were asked to fast prior to their lumbar puncture
procedure, but failure to do so did not preclude lumbar punc-
ture and CSF collection. Most, but not all procedures, were
conducted before noon. All clinicians performing lumbar
punctures in the Cognitive Neurology Clinic are also active
investigators in the EHBS and apply shared standard work
in both settings. Lumbar punctures are performed using a
24 g atraumatic Sprotte spinal needle (Pajunk Medical
Systems, Norcross, GA, USA) with aspiration and, after
clearing any blood contamination, CSF is transferred from
syringe to 15 mL polypropylene tubes (Corning, Glendale,
AZ, USA), which are inverted several times. The CSF is ali-
quoted without further handling into 0.5 mL volume in
0.9 mL FluidX tubes (Azenta, Chemsford, MA, USA) and
placed into dry ice/methanol bath prior to transfer to
—80°C freezers. Time from initial collection to storage at
—80°C is <60 min. AB42, tTau and pTau assays were per-
formed on CSF samples following a single freeze-thaw cycle
on a Roche Cobas €601 analyzer using the Elecsys assay plat-
form.** All assays were performed in a single laboratory in
the Emory Goizueta Alzheimer’s Clinical Research Unit fol-
lowing manufacturer’s recommended protocols, including
daily QC samples for AB42, tTau and pTau to ensure reads
within specified parameters. Locally generated bridging sam-
ples were included with new reagent lots to monitor for any
drift.
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Table | Patients characteristics
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Clinical Alzheimer’s disease

Characteristics All EHBS (N =1149) (N=134) AsymAD (N=134) CN/BM- (N=134) P-value
Age, mean +SD 62.7+6.7 66.0+58 66.0+5.8 65.9+6.0 0.11
Female, n (%) 797 (69.4) 100 (74.6) 100 (74.6) 100 (74.6) 0.99
Race, n (%) 0.99
Caucasian 1003 (87.3) 124 (92.5) 124 (92.5) 124 (92.5)
African-American 125 (10.9) 9 (6.7) 9 (6.7) 9 (6.7)
Asian 14 (1.2) I (0.7) 1 (0.7) I (0.7)
Education, mean + SD 16.7 +2.1 154 +2.6 16.7+2.0 16.8 +2.3 0.69
MoCA, mean + SD 266 +23 174+5.5 263+2.6 26.8+2.0 0.07
APOE ¢4 allele frequency 0.17 0.50 0.40 0.08 <0.0001

CSF analytes, median (IQR)

AP, pg/mL 1212.0 (894.9-1586.0)
tTau pg/mL 174.2 (139.8-220.1)
pTau pg/mL 15.2 (12.0-19.7)
tTau:AP42 ratio 0.14 (0.12-0.18)

pTau:AB42 ratio 0.012 (0.011-0.016)

540.7 (445.6-660.2)
343.2 (265.7-458.5)
33.9 (26.7-47.3)
0.64 (0.49-0.86)
0.065 (0.047-0.088)

740.1 (609.8-862.5)
242.0 (194.9-299.4)
22.8 (18.6-28.2)
0.31 (0.27-0.42)
0.029 (0.025-0.042)

1412.0 (1192-1700)  <0.0001
167.6 (139.9-192.7)  <0.0001
148 (122-172)  <0.0001
0.12 (0.11-0.13)  <0.0001
0.011 (0.002-0.011)  <0.0001

The table shows demographic features, cerebrospinal fluid (CSF) analytes levels for all Emory Healthy Brain Study (EHBS) subjects, including symptomatic Alzheimer’s Disease,
asymptomatic Alzheimer’s Disease (AsymAD) that were cognitively normal biomarker positive (CN/BM+), and control subjects that were cognitively normal biomarker negative
(CN/BM—). AsymAD cases and CN/BM— controls are matched for age, sex, race and education. P-values are for comparisons of AsymAD and CN/BM— groups. Continuous variables
were compared by paired t-test or Wilcoxon signed rank test depending on the distribution. Categorical variables were compared with McNemar—Bowker’s test. Bolded P-values

indicate statistical significance.

The ADNI was launched in 2003 as a public-private partner-
ship, led by Principal Investigator Michael W. Weiner, MD.
All ADNI participants provided consent according to the
Declaration of Helsinki. ADNI study protocols were ap-
proved by the Institutional Review Boards of all participat-
ing institutions. Informed consent was obtained from all
participants or their authorized representatives at each site.

The primary goal of ADNI has been to test whether serial
magnetic resonance imaging, PET, other biological markers
and clinical and neuropsychological assessment can be com-
bined to measure the progression of MCI and early
Alzheimer’s disease. Recent previously performed targeted
proteomics on 706 baseline CSF samples quantified the
same set of target proteins evaluated in the EHBS cohort.
Baseline amyloid PET was used to ascertain presence or ab-
sence of underlying Alzheimer’s disease pathology in CN in-
dividuals with positive amyloid PET identified as AsymAD
and hypometabolism on baseline FDG PET was used to iden-
tify AsymAD individuals who may be closer to symptomatic
disease. Standardized uptake value ratios (SUVR) for florbe-
tapir (AV45) and FDG PET were determined by ADNI
investigators as described (https://adni.loni.usc.edu/data-
samples/adni-data/neuroimaging/pet/). Cut-off SUVR values
were determined based on Youden index in ROC analyses
for AV45 (>1.226) and FDG (<1.191) using results from in-
dividuals classified as CN and Dementia at baseline ADNI
visit. Individuals classified as EMCI (early MCI), LMCI
(late MCI), or SMC (subjective memory complaint) were
not included in the ROC plot to avoid inclusion of potential-
ly ambiguous classifications. Three groups were identified

in the ADNI cohort—CN/BM— (AV45<1.226; n=203),
AsymAD (CN; AV45 > 1.226; n=52) and Alzheimer’s dis-
ease (Dementia or MCI; AV45 > 1.226; 7 =250). From these
labelled groups, a subset of individuals matched for age, sex,
race and education were identified. This finally resulted in 52
subjects for each of the three groups (CN/BM—, AsymAD
and Alzheimer’s disease). Individuals without AV45 or
FDG data and individuals with Dementia or MCI with
AV45 SUVR <£1.226 (n=201) were not included in the ana-
lysis. Peptide panel identified in the EHBS cohort was tested
to discriminate between CSF from CN/BM- controls and
Alzheimer’s disease. The peptide panel was also assessed
for ability to discriminate between AsymAD individuals
with positive (SUVR <1.191; n=10) or negative (SUVR
>1.191; n=42) baseline FDG PET scans in the ADNI
cohort.

Figure 1 illustrates the overall workflow of the study. CSF
protein changes associated with Alzheimer’s disease from in-
tegrated discovery proteomics of brain and CSF were recent-
ly reported.'” In the current analyses, levels of 75 targeted
peptides were examined and mapped to 58 unique proteins
quantified by selected reaction monitoring mass spectrom-
etry methods as detailed elsewhere.*! To identify peptides
differentiating CN/BM~— controls from patients with
Alzheimer’s disease, a machine learning strategy of back-
ward selection was employed using 80% of all CN/BM—
and Alzheimer’s disease individuals from the EHBS cohort.
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Figure | Overview of data pipeline and analysis used to identify cerebrospinal fluid (CSF) peptides that best stratify
asymptomatic Alzheimer’s Disease (AsymAD) conversion to symptomatic Alzheimer’s Disease. (A) This work stratifies risk of
developing clinical dementia in AsymAD subjects. AsymAD is seen as an intermediary stage between Control and Alzheimer’s disease, where the
subjects are cognitively normal but biomarker positive (CN/BM+). Biomarker status is determined using the tTau:AB4;, ratio in the EHBS data. The
ASymAD class of CN/BM + subjects show variability in the development and onset of symptomatic clinical dementia defined as Alzheimer’s disease. The
present work attempts to stratify this risk. (B) CSF peptide selection to discriminate between control and Alzheimer’s disease subjects. The selection is
done using a supervised machine learning approach using a subset of the Emory Healthy Brain Study (EHBS) data. The identified peptide panel is then
validated on a held-out subset of EHBS participants and in an external Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. (C) The same

(continued)
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A linear classifier, Support Vector Machine, first used all
available peptides to distinguish Alzheimer’s disease cases
from CN/BM- controls. Recursive feature elimination
(RFE)*® eliminated the least informative peptides in a step-
wise fashion to arrive at a smaller subset most important
for the classification task. RFE-based biomarker selection
outperforms other biomarker selection methods from prote-
omic datasets in supervised settings.?® The size of the subset
at which to stop the recursive process is a user-defined par-
ameter and was set to 14. The set of peptides resulting
from RFE is not invariant to the choice of the classifier
model. To address this, RFE was combined with two
different classifiers (logistic regression and Support Vector
Machine), which resulted in two different peptide subsets
for classifying CN/BM— controls and Alzheimer’s disease
cases. The final set of selected peptides was the intersection
of the two subsets. Using the intersection provided a more
stable and compact set of peptides for classification. Eighty
per cent of data (CN/BM— and Alzheimer’s disease cases
chosen randomly) were used to identify peptides, and 8 pep-
tides were chosen and validated in the held-out set (remain-
ing 20% data). The held-out data set played no role in
peptide identification or classifier training. These peptides
were also tested in a permutation test setting where the per-
formance of the chosen peptides was compared to the per-
formance of 100 000 randomly chosen peptide sets of the
same size (n = 8). Correlation analyses between all measured
peptides and MoCA score was performed using Kendall-Tau
correlation to assess the strength of monotonic association
between the peptide and MoCA. Finally, the RFE identified
subset of proteins using the EHBS cohort was subsequently
validated in separate dataset, the ADNI cohort. Labels for
ADNI cases were determined using AV45 and FDG PET
(as described in the subsection ‘Alzheimer’s disease neuroi-
maging initiative’ in Methods). Due to the smaller sample
size of the ADNI cohort, a 6-fold cross-validation technique
was utilized to evaluate the classification performance.

The 8 peptides chosen to discriminate between CN/BM—
controls and Alzheimer’s disease were used to subcategorize

Figure | Continued
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AsymAD with more resolution. The initial stratification was
performed using the EHBS cohort data and repeated with the
ADNI cohort to validate the predictive accuracy and gener-
alizability of the peptide subset. Specifically, a low-
dimensional representation was used to stratify AsymAD
cases. The representation involved two successive steps of di-
mensionality reduction. First, 8 peptides were selected from
75 peptides (as described in the subsection ‘Peptide selection
to discriminate healthy controls and Alzheimer’s disease
cases’ in Methods). Second, the t-distributed Stochastic
Neighbor Embedding algorithm reduced the 8 peptides
into 2 features. The analysis enabled a 2-dimensional visual-
ization of how high-dimensional peptide data varies across
subjects. Lastly, the AsymAD cases were categorized as
‘Control-like’ or ‘Alzheimer’s disease-like’, depending on
which class (CN/BM— or Alzheimer’s disease) shares greater
proximity with a given AsymAD case. This proximity is
calculated using the k-Nearest Neighbor (k-NN) algorithm
(k=35). An AsymAD case is called ‘Control-like’ if the major-
ity of its 5 nearest neighbors are CN/BM— and ‘Alzheimer’s
disease-like’ otherwise. The APOE genotypes of the resulting
AsymAD sub-categories were analysed for differences using
the Fisher’s exact test.

In the absence of available longitudinal data, cross-sectional
disease progression data can be used to examine the consist-
ency of the selected 8 peptide panel to predict risk of
Alzheimer’s disease progression. The event-based model
(EBM) is a probabilistic model which stages subjects for their
varying disease severity using cross-sectional data.”?” % The
underlying premise of EBM is that earlier changing biomar-
kers will show abnormal levels in a greater fraction of the
population. Previously, EBM was successfully applied to
model disease progression from cross-sectional observations
in diverse neurodegenerative disorders, including Alzheimer’s
disease,””®! Parkinson’s Disease,>? Huntington Disease,>’
and Multiple Sclerosis.>*

Here, EBM was employed to examine the risk of ‘control-
like’ and ‘Alzheimer’s disease-like’ AsymAD subjects transi-
tioning to clinical dementia. EBM was applied to peptide

peptide panel is useful in stratifying the AsymAD subjects for risk of cognitive decline and progression to symptomatic Alzheimer’s disease. The
stratification of AsymAD subjects is based on their proximity to other subject classes —namely, Control or Alzheimer’s disease. This results in two
sub-categories of AsymAD subjects—Control-like AsymAD and Alzheimer’s disease-like AsymAD. The peptide panel was found useful to stratify
risk in AsymAD subjects from the ADNI cohort. (D) The progression risk from the peptide panel is also assessed using an independent approach
that uses a probabilistic model for risk staging. The probabilistic model stages subjects for disease severity using cross-sectional data. Higher stages
imply greater disease severity and risk. The model is trained using EHBS data from Control subjects that are cognitively normal biomarker negative
(CN/BM-) and confirmed Alzheimer’s disease subjects that are cognitively symptomatic. The trained model is then used to infer stages for
AsymAD in EHBS and all subjects in the external ADNI cohort. The inferred stages for the AsymAD sub-populations agree with their
stratification. The overall results show that the peptide panel can stratify the disease risk in AsymAD subjects in two different datasets (EHBS and
ADNI). This is also validated using two different methods (subfigure C and D).
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expression data from CN/BM— and Alzheimer’s disease cases
in the EHBS cohort. To ensure an unbiased validation, the
EBM is not exposed to any data from EHBS AsymAD sub-
jects or any participants in the ADNI study during training.
The trained EBM infers the disease severity from peptide ex-
pression in AsymAD cases in the EHBS cohort, and for all
subjects in the ADNI cohort. The EBM methodology assumes
changes of biomarkers with disease progress are predomin-
antly monotonic. Analysis of our 8 selected peptides showed
that 5 (AQALEQAK, IASNTQSR, LGADMEDVCGR,
VVSSIEQK, YDNSLK) demonstrate clear monotonic behav-
iour across diagnostic groups.

The scaled instantiation of the EBM was used in this
analysis due to its computational benefits.”” The model
was only trained on data from controls (CN/BM-) and
Alzheimer’s disease subjects in the EHBS cohort. Only the
peptides shown to discriminate controls and Alzheimer’s
disease subjects in EHBS were used for model training.
Hyperparameter selection was as follows: implicit feature
exclusion parameter =0; clustering hyperparameter =4;
cluster size=2. The model used Markov Chain Monte
Carlo with metropolis algorithm to generate samples of
the biomarker abnormality event ordering. Of the 5 x 10°
iterations from Markov Chain Monte Carlo, the first 3 x
10° were discarded as burn-in, and the last 2 x 10° itera-
tions were retained. The model was initialized using greedy
search from 30 random starting points, each run for 800
iterations. The trained model inferred disease severity in
AsymAD subjects in the EHBS cohort, and in all subjects
in ADNI (Control/AsymAD/Alzheimer’s disease). In the
ADNI cohort, each peptide’s distribution (modelled as a
mixture of Gaussians by scaled instantiation of the EBM)
was recalibrated to account for distribution shifts across
cohorts. Subjects in both datasets were matched for age,
gender and race. Statistical analysis was performed at an al-
pha of 0.05 to examine that the 8 predicted peptides could
be used to successfully stratify patients using external cross-
sectional cohort data.

Statistical differences between the AsymAD and CN/BM—
groups were evaluated using the McNemar-Bowker’s test
for categorical variables and by paired t-test or Wilcoxon
signed rank test for continuous variables depending on
the distribution (Table 1). Correlation analyses between
peptides and MoCA scores were performed using Kendall-
Tau correlation to assess the strength of monotonic associa-
tions (Fig. 2H). For comparisons across disease groups
(Supplementary Fig. 1), P-values were computed using
Kruskal-Wallis test with post hoc comparisons made using
FDR correction. Differences in APOE profiles between
AsymAD subgroups were analysed using Fisher’s exact
test. For the EBM analysis, statistical significance of differ-
ences in assigned disease stages was assessed using
Chi-square test. All statistical tests were performed with sig-
nificance level o =0.05.
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Results

Table 1 shows characteristics of the full EHBS cohort
(N=1149) as well as three groups of individuals with
symptomatic Alzheimer’s disease, AsymAD and CN/BM—
controls (N = 134 each) matched for age, sex and race. The
CN/BM- controls and AsymAD cases were also matched
for education. As expected, the Alzheimer’s disease group
was substantially different from both AsymAD and CN/BM—
control groups in education, MoCA score, APOE ¢4 allele
frequency and levels of AB42, tTau and pTau (comparison
across groups shown in Supplementary Fig. 1). P-values
listed in Table 1 are for comparisons between AsymAD
and CN/BM- control groups only. There are significantly
higher APOE ¢4 allele frequency, lower levels of AB42 and
higher levels of tTau and pTau in AsymAD compared to
CN/BM- controls (P < 0.0001 for all).

Predictive CSF peptides were initially identified using the
EHBS cohort data. Prior work identified changes in net-
works of brain-derived proteins in the CSF that discriminate
between CN controls and patients with Alzheimer’s dis-
ease.'”?* Multidimensional scaling analysis of a small set
of CSF samples revealed differences that segregated CSF
samples into Alzheimer’s disease-like and Control-like
groups.'” These results suggest that changes in specific pro-
teins may allow stratification of AsymAD individuals into
groups that are at higher or lower risk of transitioning to
symptomatic Alzheimer’s disease. Using a targeted panel of
75 peptides that discriminate Alzheimer’s disease and
Control CSF,*! machine learning-based feature selection al-
gorithms identified a set of peptides that distinguished CN/
BM- controls from symptomatic Alzheimer’s disease cases.
Levels of these peptides in AsymAD CSF were evaluated by
a series of unsupervised and supervised learning algorithms
to determine their proximity to CN/BM- controls or
Alzheimer’s disease cases. Finally, AsymAD individuals
were stratified into those who more resemble CN/BM~— con-
trols or symptomatic Alzheimer’s disease.

Figure 2A shows a schematic for peptide biomarker selec-
tion using the machine learning strategy of RFE.>* The pep-
tide biomarkers were identified by using RFE with two
different linear classifiers (Support Vector Machine and lo-
gistic regression). Only those peptides which appeared in
both selections (e.g. the union) were kept. The training set
for peptide selection used 80% of the CN/BM— control
and Alzheimer’s disease cases from the EHBS cohort. The se-
lected peptides were validated on the held-out 20% of the
EHBS cohort. The selected peptides are shown in Fig. 2B.
A volcano plot shows log,FC (fold-change) versus —logqo
P-value (Fig. 2C) in the control and Alzheimer’s disease cases
forming the held-out set. These peptides also performed well
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Figure 2 Selection and evaluation of peptides for classifying biomarker-negative controls (CN/BM—) and symptomatic Alzheimer’s
disease cases. All analysis presented uses control and Alzheimer’s disease cases in the EHBS cohort. (A) Schematic describing the process of peptide
selection. The peptide selection procedure uses only the training dataset (80% of the controls and Alzheimer’s disease cases) and starts by mean centreing
and scaling the data to unit variance. Following this, recursive feature elimination (RFE) is run for peptide selection with two classifiers, support vector
machine (SVM) and logistic regression, in an independent fashion, which results in two sets of selected peptides. In each case, the RFE stopping criterion is
set to 14 peptides. The peptides intersecting between these two sets are chosen in the final set. (B) The 8 peptides (and their associated proteins), which
are chosen via the RFE approach applied to the control and Alzheimer’s disease cases forming the training set, (C) A volcano plot showing log,FC
(fold-change) versus —log,o P-value (Mann—Whitney U test) in the control and Alzheimer’s disease cases forming the held out set (n = 58). (D—G) Results
from the random permutation test. 100 000 random sets of 8 peptides are generated and their performance on classifying the held out set of control and
Alzheimer’s disease cases (n = 58) is evaluated using a logistic regression model. This is compared to the performance of the 8 peptides chosen via the RFE
method (shown by the vertical dotted line). The metrices compared are accuracy, precision, recall, and receiver operating characteristic area under the
curve (ROC-AUC). P-values are computed as the fraction of random peptide sets, which perform as good or better than the 8 peptides chosen via the RFE
method. For all scores except precision, the scores from the RFE derived peptides show P < 0.01. (H) The Kendall’s—Tau correlation coefficient of the
measured peptides with the Montreal Cognitive Assessment (MoCA) score (n = 392, including all control, AsymAD and Alzheimer’s disease cases).
When the peptides are sorted for the correlation coefficient, the 8 peptides in B are found to lie near the extremes, indicating their stronger association
with cognitive function. (I) Results from a logistic regression classifier on held-out control and Alzheimer’s disease cases (n = 58) that played no role in
peptide selection or model training. The classifier trained on the 8 peptide panel only misclassified one CN/BM— as Alzheimer’s disease.
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on random permutation tests that analysed their classifica-
tion receiver operating characteristic area under the curve
(ROC-AUC) compared with randomly chosen sets of pep-
tides (Fig. 2D-G).

Figure 2H shows Kendall-Tau correlation between all pep-
tides measured across all subjects (CN/BM—, AsymAD,
Alzheimer’s disease) and the MoCA score. The Kendall-
Tau correlation shows the strength of monotonic association
between the peptides and the MoCA score; the coefficients are
sorted in a decreasing order. The peptides that differentiate
CN/BM- and Alzheimer’s disease cases (bolded in Fig. 2H)
tend to appear on the extremes of the sorted correlation coeffi-
cients. These peptides also perform well in discriminating the
held out control and Alzheimer’s disease cases using a logistic
regression model (Fig. 21, sensitivity = 1.00, specificity =0.965
and ROC-AUC =0.98). These results suggest that the pep-
tides chosen using the RFE approach classify CN/BM— and
Alzheimer’s disease cases with very high accuracy and are
also strongly associated with cognitive ability.

AsymAD cases were initially stratified using the EHBS co-
hort data. Figure 3 shows the low dimensional t-distributed
Stochastic Neighbor Embedding analysis of the peptide data
using the 8 RFE-selected peptides. Figure 3A shows the sche-
matic of how AsymAD cases are sub-categorized into
‘Control-like’ and ‘Alzheimer’s disease-like’, based on their
proximity to CN/BM~- controls and Alzheimer’s disease
cases, respectively.

Figure 3B-D shows the 2-dimensional representation of
the peptide data derived using t-distributed Stochastic
Neighbor Embedding algorithm in the EHBS cohort. The
CN/BM- and Alzheimer’s disease cases occur in separable
clusters (Fig. 3B, 7 =262), and the AsymAD cases extend be-
tween them (Fig. 3C, n=392). This spectral result is ex-
pected given that AsymAD individuals are hypothesized to
be in a transitional stage between CN/BM- controls and
symptomatic Alzheimer’s disease. Figure 3D and E shows
stratification of AsymAD into Control-like and Alzheimer’s
disease-like groups by using a k-NN (k =35) algorithm in
the EHBS cohort. Alzheimer’s disease-like AsymAD cases
are those with >3 of 5 nearest neighbors among
Alzheimer’s disease cases. Control-like AsymAD cases are
those with the majority of nearest neighbors among CN/
BM-— controls. The low dimensional t-distributed Stochastic
Neighbor Embedding representations were computed using
only the 8 peptides selected by RFE for distinguishing
CN/BM- from Alzheimer’s disease cases. The AsymAD
sub-categories were compared for age, sex, race, education,
cognitive performance and levels of CSF ABy4;, tTau and
pTau (Supplemental Fig. 1). No significant difference was
seen between the two AsymAD sub-categories for any of
these features. In contrast, APOE profiles are significantly
different (P =0.0011 by Fisher’s exact test).

There is a significantly higher €4 allele frequency in the
Alzheimer’s disease-like AsymAD cases (Fig. 3G), which
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indicates a higher genetic risk for Alzheimer’s disease in
these individuals. This result supports an associative link
between AsymAD sub-categories and APOE genotype. It
contrasts with the lack of difference between Alzheimer’s
disease-like and Control-like subgroups in demographic
features, cognitive performance or levels of CSF APy,
tTau or pTau (Supplemental Fig. 1). Together, the selected
8 peptides (ADQDTIR, AQALEQAK, ELQAAQAR,
EPVAGDAVPGPK, IASNTQSR, LGADMEDVCGR,
VVSSIEQK, YDNSLK) show a strong ability in classifying
the AsymAD sub-categories (Fig. 3H) in the EHBS cohort
(21 held out AsymAD samples). Figure 31 depicts the confu-
sion matrix showing classification performance of the
peptide panel for the AsymAD samples in the ADNI cohort
(n=352).

The RFE identified subset of 8 peptides was subsequently uti-
lized to stratify cases from the ADNI cohort. Amyloid
(AV45) PET results were used to determine the presence or
absence of Alzheimer’s disease pathology. AV45 SUVR cut-
off (>1.226) was determined based on ROC analysis of re-
sults from individuals classified as CN or Dementia at their
baseline ADNI visit. ADNI subjects included for analysis
were matched for age, sex, race and education (7 =52 sub-
jects for each group of subjects).

Figure 4 shows the performance of the 8 peptides with the
ADNI cohort. In the ADNI dataset, these peptides were used
to classify CN/BM - controls (AV45 SUVR <1.226) and in-
dividuals with symptomatic Alzheimer’s disease (MCI or
Dementia with AV45 SUVR >1.226). A 6-fold cross-
validation approach using a linear logistic regression model
showed a mean ROC-AUC of 0.89 (Fig. 4A). Next, CN sub-
jects were classified, including the two categories of matched
CN/BM- controls and AsymAD cases (CN with AV435
SUVR > 1.226). The 8 peptides classified these two groups
with a mean AUC of 0.70 (Fig. 4B). Lastly, baseline FDG
PET results were exploited to identify individuals with hypo-
metabolism as a means of stratifying ADNI AsymAD indivi-
duals who might be closer to developing clinical symptoms.
As was done with AV45 results, FDG PET SUVR cut-off
(<1.191) was determined based on ROC analysis of results
from individuals classified as CN or Dementia at their base-
line ADNI visit. This cut-off identified 10 AsymAD cases
with evidence of hypometabolism and 42 with normal
FDG PET scans. Figure 4C shows the performance of the
subset of peptides (nz = 8) previously identified in the EHBS
cohort, to discriminate between Control-like (FDG PET
SUVR > 1.191) versus Alzheimer’s disease-like AsymAD
(FDG PET SUVR <1.191) cases in the ADNI cohort.
Despite small sample sizes, the mean ROC-AUC for the
ADNI dataset was 0.89. As in our sub-categorization of
AsymAD cases in the EHBS cohort, demographic features
(except gender), CSF Alzheimer’s disease biomarkers and
MoCA score were not different in the FDG PET-positive
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Figure 3 Sub-categorization of asymptomatic Alzheimer’s disease (AsymAD) cases and evaluation of recursive feature
elimination (RFE) selected peptides to classify subgroups. (A) Schematic showing the overview to split asymptomatic Alzheimer’s disease
subjects into ‘Control-like’ and ‘Alzheimer’s disease-like’ sub-categories. These sub-categories are not present in the original data and are derived
using an unsupervised methodology by computing proximity of AsymAD subjects to well-defined biomarker-negative controls (CN/BM—) and
Alzheimer’s Disease populations using the k-nearest neighbors (KNN) algorithm (k =5). (B) Two-dimensional representations of CN/BM—
control and Alzheimer’s disease subjects (n = 262) in the Emory Healthy Brain Study (EHBS) dataset using the t-distributed stochastic neighbor
embedding (t-SNE) algorithm. These representations are computed using only the 8 peptides shown in Fig. 2B, which were predictive of the CN/
BM— and Alzheimer’s disease groups. Hence, these low-dimensional representations are from two-levels of dimensionality reduction (peptide
selection followed by t-SNE). A clear separation between the CN/BM— control and Alzheimer’s disease populations is noticeable. (C) AsymAD
subjects overlaid with CN/BM— and Alzheimer’s disease subjects (n = 392, EHBS cohort). AsymAD subjects extend between the CN/BM—
control and Alzheimer’s disease subjects and do not fall on a distinct, separable region. This observation is used to sub-categorize AsymAD cases.
(D) AsymAD subjects with greater proximity (computed using the k-NN algorithm; k = 5) to Alzheimer’s disease or CN/BM— control subjects are
defined as Alzheimer’s disease-like or Control-like, respectively (n = 392, EHBS). (E) The stratified AsymAD cases (Control-like and Alzheimer’s
disease-like) shown for clearer visualization (n = 130, EHBS). (F) The AsymAD stratification shown in B-E depends on t-SNE initialization. To
study this sensitivity to t-SNE initialization, the steps (B=E) in the analysis are repeated 100 times, and the KNN (k = 5) algorithm is used to stratify
AsymAD individuals into Control-like or Alzheimer’s disease-like AsymAD as shown in D and E. The color bar shows the probability of a subject
being assigned Control-like (dark green) or Alzheimer’s disease-like (maroon) subgroups (n = 130, EHBS). (G) Genotype profiles of all subjects
(n=392) in the EHBS cohort. The Alzheimer’s disease-like AsymAD cases (maroon) have a higher frequency of APOE €4 allele, as compared to the
Control-like AsymAD (dark green). This difference in €4 allele frequencies is significant at the P < 0.001 threshold using Fisher’s exact test.
(H) Confusion matrix showing classification performance of the peptide panel in Fig. 2B, on the held-out EHBS AsymAD subjects. A logistic
classifier trained on AsymAD samples (n = 109) and tested on the held-out (n =21) samples is shown here. (I) Confusion matrix showing
classification performance of the peptide panel on the AsymAD samples (n = 52) in the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
cohort. A logistic regression is fitted in a six-fold cross-validation scheme and results from the held-out sets are pooled together (due to the
smaller size of the AsymAD group in the ADNI dataset).

and -negative AsymAD subgroups (Supplemental Fig. 2). cases, respectively, in an independent dataset. Further, the
These results support the predictive ability of RFE selected predictive ability of the peptide panel was examined without
peptide panels to discriminate CN/BM- controls from its ApoE associated peptides. Of the 8 peptides, 2 were re-
Alzheimer’s disease cases and to sub-categorize AsymAD lated to ApoE (LGADMEDVCGR and ELQAAQAR).
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Figure 4 Evaluation of selected peptide panel in Alzheimer’s Disease Neuroimaging Initiative (ADNI) data. (A) Demographically
matched biomarker-negative controls (CN/BM—, n = 52) and Alzheimer’s Disease (n = 52) individuals in the ADNI dataset were classified using
peptides identified from the EHBS data. A mean receiver operating characteristic area under the curve (ROC-AUC) of 0.89 is observed.

(B) Demographically matched CN/BM— (n = 52) and asymptomatic Alzheimer’s Disease (AsymAD, n = 52) individuals in the ADNI data, classified
using the same peptide panel (mean ROC-AUC of 0.70). The classification performance remains stable when ApoE specific peptides are not used
for classification (not shown). (C) AsymAD with positive and negative Fluorodeoxyglucose Positron Emission Tomography (FDG PET) was
classified using the same peptide panel (mean ROC-AUC of 0.89). (D) Of the 8 peptides, the two ApoE specific peptides were not used. Using the
remaining 6 peptides, the classification performance did not see a drop and remained stable with a ROC-AUC of 0.90. In all cases, a 6-fold
cross-validation approach is used with a linear logistic regression model. The shaded region shows the standard error for the mean receiver

operating characteristic (ROC).

Excluding these two from the panel, the smaller set of 6 pep-
tides showed stable performance in classifying the AsymAD
sub-categories with a mean ROC-AUC=0.90 (Fig. 4D).
This shows that the peptide panel does not hinge upon
ApoE specific peptides to sub-categorize AsymAD cases.

The stratification of Alzheimer’s disease-like and control-like
AsymAD was examined in 2 cohorts (EHBS and ADNI)
using discriminative classification methods (Figs 3 and 4).
However, due to a lack of sufficient longitudinal data, pro-
gression trajectories of these subgroups cannot be studied
in greater detail. To overcome this limitation, a type of

disease progression modelling that leverages cross-sectional
data was employed. The event-based model, or EBM,*”°
is a probabilistic model, which used cross-sectional data to
construct a trajectory of disease progression and stage sub-
jects for their disease risk (Fig. 5). Specifically, EBM*"3°
was used to examine the risk of AsymAD subjects developing
clinical Alzheimer’s disease. EBM has been previously used
to successfully deduce progression patterns in diverse neuro-
degenerative conditions, including Alzheimer’s disease,
Parkinson’s Disease and multiple sclerosis.””*

The RFE identified panel of 8 peptides (Fig. 2B) was used
to define an Alzheimer’s Disease staging system that has 5
stages. Higher stages represent patient states that are further
along the disease progression trajectory. Subjects are as-
signed to these stages by the model in a probabilistic manner.
Subjects with clinical dementia or those who have high risk
to develop it are assigned higher stages. In our experiments,
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Figure 5 Results from disease progression modelling across two different patient cohorts, Emory Healthy Brain Study (EHBS)
and Alzheimer’s Disease Neuroimaging Initiative (ADNI). Event-based modelling (EBM) is applied to stratify subjects in the Emory
Healthy Brain Study (EHBS) shown on the left and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) shown on the right. x-axis shows
disease stage, which represents increasing disease severity. y-axis shows fraction of subjects in each disease group that were assigned the stage.
The scaled Event Based Model (sSEBM)? is trained on EHBS peptide data to learn a disease progression trajectory, which is used to stage disease
severity in subjects. Only cognitively normal biomarker negative (CN/BM—) control cases (n = 133) and cognitively symptomatic confirmed
Alzheimer’s disease cases (n = 129) from EHBS are used to train the model using the peptide panel in Fig. 2B. The model inferred disease stages for
asymptomatic Alzheimer’s Disease (AsymAD) in the EHBS cohort, and all subjects in the ADNI cohort. Thus, the model was never shown any
AsymAD subject during training and was assessed on an external dataset (ADNI). (A) Results on the EHBS cohort. Assigned stages differentiate
for disease labels (n = 392, P-value < | x 107'%). The control-like AsymAD (n = 64) are in lower stages compared to the Alzheimer’s disease-like
AsymAD (n = 66) cases (P < | x 107°). (B) Results on the ADNI cohort. Assigned stages differentiate for disease labels (n= 156, P < | x 107%.
The control-like AsymAD (n = 42) are assigned lower stages compared to the Alzheimer’s disease-like AsymAD (n = 10) cases (P < 0.05). No data

from the ADNI cohort was used during model training. All P-values were derived using a chi-square test.

only CN/BM— and Alzheimer’s disease subjects from EHBS
are used to build the progression model. All AsymAD cases
in the EHBS cohort and all subjects in the ADNI cohort
are only used during inference; thus, the model does not
use the data from these subjects during training. If the 8
peptides are truly predictive of disease progression risk, it
would be expected that the AsymAD sub-categories (i.e.
Control-like and Alzheimer’s disease-like) would show a dif-
ference in their assigned EBM stages. Figure SA shows that
the AsymAD subgroups (i.e. Control-like and Alzheimer’s
disease-like) are indeed assigned different disease stages in
the EHBS cohort (P < 1x 107°). A similar pattern is seen in
the ADNI cohort (Fig. 5B) where the Control-like and
Alzheimer’s disease-like AsymAD cases show differences in
their stages (P <0.05) using a Chi-square test. The CN/
BM- and Alzheimer’s disease cases in ADNI also show a
strong separation (P <1x107%), even though their data
were not used during model training. Supplementary Fig. 3
shows the positional variance diagram for the 8 peptides.
Supplementary Fig. 4 shows the distribution of these pep-
tides across the EBM inferred stages in the EHBS cohort,
which tends to agree with the relative positions of these pep-
tides in the positional variance diagram. Distribution of dis-
ease pathology markers (AB4,, tTau, pTau and their ratios)
across EBM inferred disease stages in the EHBS cohort are
also shown in Supplementary Fig. 5. These markers were
not used by the event-based model in disease staging. The
analysis shows ABy4; to be the earliest changing (shows sig-
nificant differences between stages 0 and 1, P < 107%). tTau
and pTau levels show significant changes between stages

1 and 2. The model can correctly infer the early roles of
these hallmark pathologies without being directly exposed
to them.

Further, it is noteworthy that the labels in the ADNI cohort
were assigned using AV45 and FDG-PET SUVR, which is dif-
ferent from how the labels were assigned in the EHBS cohort.
In summary, the EBM results illustrate that the Alzheimer’s
disease-like AsymAD subjects have a higher risk of progres-
sing to clinical Alzheimer’s disease compared to control-like
AsymAD. As such, there is evidence to indicate the 8-peptide
panel can predict longitudinal disease risk of converting from
a control or asymptomatic stage to clinical dementia. The
predictive efficacy of the 8 peptides was independently ob-
served in both datasets—EHBS and ADNI.

Discussion

To our knowledge, this study includes one of the largest sets
of CSF data from cognitive normal individuals and one of the
largest cohorts of asymptomatic Alzheimer’s disease cases.
The large sample size enabled machine learning approaches
to identify novel putative biomarkers. Our findings demon-
strate that CN individuals with CSF biomarkers indicating si-
lent Alzheimer’s disease pathology (AsymAD) have distinct
patterns of CSF peptide levels compared with Alzheimer’s
disease biomarker-negative controls. Machine learning ap-
proaches successfully stratified AsymAD cases to identify
sub-categories whose CSF peptide profiles are more
‘Alzheimer’s disease-like’ or more ‘Control-like’. Results
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showed consistent patterns across two independent cohorts
and two independent machine learning approaches, includ-
ing dynamic disease progression modelling with cross-
sectional data. These results identify key features that may
stratify individuals at differing risk of progression to symp-
tomatic Alzheimer’s disease. Future longitudinal studies
may allow prioritization of individuals for secondary preven-
tion trials or treatment with emerging disease-modifying
therapies.

The present study showed that a small set of 8 differentially
expressed peptides can effectively distinguish Alzheimer’s
disease cases from cognitively healthy controls: ADQDTIR,
AQALEQAK, ELQAAQAR, EPVAGDAVPGPK, IASNTQSR,
LGADMEDVCGR, VVSSIEQK and YDNSLK. Importantly,
the set of predictive peptides have been shown in recent
studies to be valuable in tracking disease status and progres-
sion. Neuronal pentraxin receptor (NPTXR) isoform 1
(protein for the ADQDTIR peptide) has been shown to be
a CSF biomarker of Alzheimer’s disease progression®’
with levels differing between MCI and more advanced
Alzheimer’s disease stages. YWHAZ (protein for the
VVSSIEQK peptide) has recently emerged as an important
biomarker to discriminate Alzheimer’s disease from non-
Alzheimer’s disease cases with cognitive impairment and
also predicts individuals with high Tau and low AB42 le-
vels.*® CHI3L1 (protein for the IASNTQSR peptide; also
known as YKL-40) has been reported in other studies as a
potential prognostic fluid biomarker, and its ratio to AB42
is predictive for developing cognitive impairment.>” CHI3L1
is also a glial/inflammation related biomarker.'”***% VGF
(protein for the EPVAGDAVPGPK peptide) has been strong-
ly associated with cognitive trajectory and suggested to act
through mechanisms independent of amyloid plaques and
neurofibrillary tangles in contributing to cognitive decline.*”
Further, VGF has also been identified as a key regulator play-
ing a causal role in protecting against Alzheimer’s disease
pathogenesis and progression.’® SMOC1 (protein for
AQALEQAK peptide), which is related to the extracellular
matrix and strongly correlated with global Alzheimer’s dis-
ease pathology in brain,*! has shown the ability to discrimin-
ate between Alzheimer’s disease and non-Alzheimer’s disease
cognitive impairment (specificity for Alzheimer’s disease) and
to predict levels of CSF Ap42, tTau and pTau.’® GAPDH
(protein for the YDNSLK peptide) is known to form stable
aggregates with extracellular AB, and these aggregates have
been found to be proportional to the progressive stage of
Alzheimer’s disease.***?

These 8 peptides, each with plausible biological connec-
tion to Alzheimer’s disease pathophysiology, were found to
be among the most strongly associated with cognition and
were able to discriminate CSF samples from patients with
Alzheimer’s disease and Controls with 98% accuracy
(Fig. 2H and I). This ability of the peptide panel to classify
patients with Alzheimer’s disease and Controls is also seen
in the ADNI cohort, with a mean ROC-AUC of 0.89 for sub-
jects, which were demographically matched for age, sex, race
and education (Fig. 4A).
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The 15-20 year period during which Alzheimer’s disease
neuropathology evolves silently prior to cognitive decline offers
a window of opportunity to slow or prevent clinical disease.
However, as many individuals with Alzheimer’s disease neuro-
pathology never develop symptoms during life,"*'? it is critical
to develop tools that identify individuals at greatest risk of cog-
nitive decline. The Alzheimer’s disease-like AsymAD cases
show a higher frequency of the APOE €4 allele but are other-
wise indistinguishable from the Control-like AsymAD cases
based on demographics, cognitive performance, or level of
CSF ABy4y, tTau, or pTau (Supplemental Fig. 1). The ApoE-
associated peptides selected by RFE can discriminate presence
or absence of the €4 isoform. APOE genotype is firmly estab-
lished as the strongest genetic risk factor for Alzheimer’s dis-
ease.** The selection of ApoE-related peptides and higher
frequency of the €4 allele in the Alzheimer’s disease-like sub-
group (Fig. 3G) supports the possibility that these individuals
may be at greater risk of progression.

To further test the peptides identified in the EHBS cohort,
targeted proteomics analysis was performed on 706 baseline
ADNI CSF samples. Since amyloid PET scans were available
for the ADNI cohort, AV45 PET positivity was used as a
means of defining individuals with underlying Alzheimer’s
disease pathology. The 8 RFE-selected peptides were effective
in discriminating between CN/BM— (AV45 PET negative)
controls and amyloid PET-confirmed Alzheimer’s disease
with mean AUC of 0.89 (Fig. 4A). Among all CN individuals
in ADNI, there were 52 with asymptomatic Alzheimer’s dis-
ease based on positive amyloid PET. The 8 RFE-selected pep-
tides were able to discriminate these AsymAD cases from a
demographically-match cohort of 52 CN individuals with
negative AV45 PET scans with a mean area under the curve
(AUC) of 0.70 (Fig. 4B). Only a very small number of indivi-
duals in ADNI have transitioned from CN to MCI or
Dementia during longitudinal follow up. In addition to being
a rare event, clinical progression is complicated by frequent
reversions from MCI to CN.**"*8 T¢ avoid these limitations,
FDG PET was used to identify AsymAD individuals with evi-
dence of hypometabolism who may be at greater risk of symp-
tomatic progression. Despite small sample size (7 = 10), the 8
RFE-selected peptides classified FDG-positive AsymAD cases
with a mean AUC of 0.89 (Fig. 4C). This predictive ability
does not hinge upon ApoE-associated peptides, as is seen
from the ability of non-ApoE peptides to sub-categorize the
AsymAD subjects in the ADNI cohort (Fig. 4D).

Further analysis using event-based modelling for disease
progression confirms that the AsymAD subgroups have vary-
ing risks of developing clinical dementia (Fig. 5). The disease
progression model was constructed only using CN/BM— and
Alzheimer’s disease cases in EHBS. Yet, it staged the
AsymAD participants in EHBS and ADNI in accordance
with their stratified levels (Control-like and Alzheimer’s
disease-like). Disease progression modelling with cross-
sectional data provided an independent methodological val-
idation of the constructed 8 peptide panel to effectively stage
AsymAD cases. In the absence of currently available longitu-
dinal data, the innovative use of cross-sectional data with a
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state-of-the-art dynamic disease progression model (e.g.
EBM) lends further credence to the ability of the identified
8 peptides to proactively predict patient risk.

Unlike our previous studies with deep proteomics and net-
work analyses,'”*? the purpose of the current work was to
evaluate CSF peptides that might serve as biomarkers to pre-
dict cognitive decline in CN individuals harbouring
Alzheimer’s disease pathology. Deep proteomics comparing
Alzheimer’s disease-like and Control-like AsymAD cases
should produce better understanding of changes occurring
during the transition from asymptomatic to symptomatic
stages of Alzheimer’s disease.

There are some limitations to the underlying methodology
and data. Specifically, the cross-sectional secondary valid-
ation method utilized the scaled instantiation of the EBM
model,*” which like all current EBM methodologies, assumes
biomarkers exhibit a monotonic trajectory. The majority,
but not all, of the 8 predictive peptides illustrate clear mono-
tonic behaviour. However, the key limitation to the present
work is the lack of longitudinal data. Longitudinal follow-up
of individuals with asymptomatic Alzheimer’s disease will be
required for ultimate validation of predictive biomarkers.
Fortunately, the design of the EHBS will be able to directly
test putative predictive biomarkers over the course of time.

Future work includes the development of improved cross-
sectional data methods that do not rely on a monotonic as-
sumption, and of course, the collection and evaluation of
longitudinal clinical data. Once longitudinally validated,
the identified 8 peptides can prioritize individuals for preven-
tion trials and treatment with emerging disease-modifying
therapies for Alzheimer’s disease.

Supplementary material

Supplementary material is available at Brain Communications
online.
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