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Abstract

The ability to predict the strength of halogen bonds and properties of halogen bond
(XB) donors has significant utility for medicinal chemistry and materials science. XBs
are typically calculated through expensive ab initio methods. Thus, the development of
tools and techniques for fast, accurate, and efficient property predictions has become
increasingly more important. Herein, we employ three machine learning models to
classify the XB donors and complexes by their principal halogen atom as well as predict
the values of the maximum point on the electrostatic potential surface (Vg mq,) and
interaction strength of the XB complexes through a molecular fingerprint and data-
based analysis. The fingerprint analysis produces a root mean square error of ca. 7.5
and ca. 5.5 keal mol~! while predicting the Vs maz for the halo-benzene and halo-ethynyl
benzene systems, respectively. However, the prediction of the binding energy between
the XB donors and ammonia acceptor is shown to be within 1 kcal mol™! of the DFT
calculated energy. More accurate predictions can be made from the pre-calculated

DFT data when compared to the fingerprint analysis.



Introduction

Halogen bonding, “the net attractive interaction between an electrophilic region on a halo-
gen atom and a nucleophilic region on another atom,”! has become increasingly important
in catalysis, materials science, and biology. This is due to the high tunability of the halo-
gen bond (XB) interactions, which is affected by the polarization of the halogen atom,?™
hybridization of the atom covalently bonded to the halogen atom,®'! and electron donat-
ing/withdrawing groups contained in the XB donor molecule.'?>'* Each of these properties
affect the redistribution of the electron density around the halogen atom, generating a smaller
or larger area of electron depletion on the extension of the covalent bond between the halogen
atom and an R-group, denoted as the o-hole.1>17

The o-hole on the “cap” of the halogen atom and the corresponding XB interactions
are highly affected by the surrounding electronic environment. The magnitude of the o-
hole (Vs maz) being influenced by substituent groups has been shown throughout the litera-

18723 and the interaction strength of the XB complexes has also been shown to correlate

ture,
very well with electrostatic potential (ESP) of the XB donor and the XB acceptor.?*?°
Armed with these facts and studies conducted on halogen bonding using energy decompo-
sition analysis and symmetry-adapted perturbation theory techniques stating that the XB
interactions contain significant electrostatic character,?2® the prediction of Vs 4, becomes
highly important. While the estimation of XB interactions and the ESP of the XB donor
have typically been carried out through ab initio methods, these methods are not practical
for large molecules and high-throughput studies associated with drug development or crystal
structure prediction.

Multiple approaches to determining the ESP of the halogen atom in a molecule for quanti-
tative structure-activity(property) relationship (QSAR/QSPR) predictions have been taken.
Titov et al. observed how mono- and disubstituted halo-benzene XB donors affected the

extra point charges placed on the extension of the C—X covalent bond and multipole expan-

sion parameters, and fit those parameters to the ESP maps of the halo-benzene molecules



through the Free-Wilson type QSPR model.?° This investigation demonstrated the use of
empirical molecular mechanics models for quick, accurate, and efficient predictions of the
electronic environment for larger, drug-like molecules.?® Heidrich et al. employed a support
vector regression (SVR) machine learning (ML) technique on more than 16000 heterocycles
to predict the MP2 calculated Vg0, values.®® Their results show that a reasonable predic-
tion of the Vg mq, can be made for halogenated molecules with a significant speed up when
compared to calculating the electrostatic surface of the molecule with ab initio methods, and
that these initial predictions can be used as good estimates to be implemented into high-
throughput docking calculations. The ability to predict the Vg 4, and interaction strengths
of XB complexes before ab initio methods are implemented is highly beneficial for applying

halogen bonds to multiple areas of study.
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Figure 1: Schematic representation of the halo-benzene (top) and halo-ethynyl benzene

(bottom) XB donors.



Herein, we present a proof-of-concept demonstrating the use of ML models for property
determination of 1210 symmetric XB donor molecules (Figure 1) and their corresponding XB
donor-acceptor complexes with ammonia. This study utilizes three ML, models (Random For-
est, boosted Decision Trees, and Support Vector Machines) to predict the Vg 4, of the halo-
(ethynyl)benzene XB donors as well as the binding energy (Ep;,g) and X- - -N bond local force
constant (k%.. ) of the donor-ammonia complexes through data- and molecular fingerprint
(MFP)-driven approaches. The XB donors used in this study incorporate electron-donating
groups (EDGs) and electron-withdrawing groups (EWGs) examined previously by Devore
et al.'>3! These molecules were chosen to investigate the effects of hybridization, halogen
identity, and different substituents on the Vg0, of XB donors and the interaction strength
of the corresponding complexes with ammonia. In addition, XB donors made with a mix-
ture of EWGs and EDGs in the same donor, referred to as electron-donating-withdrawing
group (EDWG) XB donors, were added to the dataset. The data-driven approach shows
good agreement between the density functional theory (DFT) calculations, collected from

1231 and this current study, and the ML model predictions for both the clas-

previous studies
sification and regression cases. The MFP-driven approach revealed sizeable mean absolute
error (MAE) and root mean-square error (RMSE) values for the prediction of the Vg 0, when
the halo-(ethynyl)benzene donors were separated by the principal halogen atom, suggesting
weakly accurate predictions. When the halo-(ethynyl)benzene donors were considered as
a whole, the error values for predicting the Vg, were reduced. The binding energy and
X---N bond local force constant were predicted to a more acceptable degree of accuracy.

This result suggests that reliable predictions for the Vs ez, Eping, and k% properties can

be obtained with decent accuracy from the molecular fingerprints.



Computational Methods

Calculations

All halogen bond donors and their corresponding complexes with ammonia were geome-
try optimized using the M06-2X global hybrid density functional®? in conjunction with the
correlation-consistent polarized valence double-( basis set augmented with diffuse functions
on all atoms (aug-cc-pVDZ denoted as aVDZ)3*3® using the Gaussian quantum chemical
software.?® Relativistic pseudopotentials were applied on all bromine, iodine, and astatine
centers (i.e., aVDZ-PP for Br, I, and At).3"38 In addition, harmonic vibrational frequency
computations were implemented to ensure the stability of each structure and confirm that
they represented a minima (i.e., n; = 0) on the M06-2X/aVDZ-PP potential energy sur-
face. Natural Bond Orbital (NBO) analyses were conducted for the determination of charge
transfer between the Lewis acid-base pairs.?®#® The binding energy of the XB complexes
was determined by taking the difference between the energy of the complex and the energy of
the fully relaxed monomers (i.e., EcomPlez— (Edenory Faccepior))  Tn addition, Boys-Bernardi
counterpoise corrections were executed to account for basis set superposition error.*% The lo-
cal mode force constants and dipoles for the X---N, C—X, and C=C bonds in the XB donors
and corresponding complexes were extracted through the Local Mode Analysis code.4™° The
topology of the electron density on the XB donors, acceptors, and complexes was analyzed

by Bader’s QTAIM algorithm,? 3 employed through the Multiwfn software program.>*

Models

The selection method chosen to identify the five most appropriate features for the classifica-
tion and regression ML algorithms was the recursive feature elimination (RFE) technique in
the sci-kit learn®® library Python package. The decision tree classification and decision tree
regression estimators were applied in the RFE process to eliminate the features that have

the least importance to the identity of the principal halogen atom, magnitude of the o-hole



(Vsmaz), binding energy of the XB complex (Eping), and X---N bond local force constant
(k%...y)- By reducing the number of features, the model is thus optimized due to reduction
of possible sources of “noise.” A complete list of the features collected and considered in the
RFE algorithm for each XB donor and complex can be found in the SI (Table S1).

Three ML models, Random Forest (RF), XGBoost (XGB), and Support Vector Ma-
chines (SVM), from the scikit-learn®® and XGBoost®®*" library packages in Python were
implemented throughout this article for the prediction of the electronic, energetic, and spec-
troscopic properties of aromatic XB donors and their corresponding complexes with ammo-
nia. A brief explanation about the different ML models used can be found in the SI. The
data employed in this article, introduced by Devore et al.'>*! together with the additional
XB structures calculated at the level of theory presented in this study, is publicly available on
GitHub (https://github.com/daniel-devore/XB-ML). This study is split in two sections,
classification and regression. The classification algorithms were utilized to predict the prin-
cipal halogen atom based on the selected features from the RFE algorithm. The regression
methods were further split into two sections, a data-based and molecular fingerprint-based
approach.

The data-based predictions of Vg 4z, Ebing, and k%.. y were found by using the five most
important features identified using the RFE algorithm from the data gathered through DFT
calculations. The molecular fingerprint (MFP)-based predictions utilized the structure of the
XB donors themselves. The Simplified Molecular-Input Line-Entry System (SMILES)?>%¢°
code was used in conjunction with the RDkit® library package in Python to convert the
structures to Morgan (circular) fingerprints of radius 2.2 The MFPs are then used to train
the ML algorithms. All data is split into a 80-20 ratio training and testing data set to train
and test each model.

Separate metric systems were used to determine the accuracy of the classification and
regression models. A confusion matrix, displayed as a heat map from the seaborn and

63,64

matplotlib Python libraries, is utilized to evaluate the quality of the output for the



classification models. The diagonal elements show that the algorithm correctly predicted
the true label, whereas the off-diagonal elements indicate when the ML model incorrectly
predicted the true label. The metrics used to measure the accuracy of the regression models
were the coefficient of determination (R?), mean absolute error (MAE), and the root mean
square error (RMSE). For further confirmation of the accuracy of the methods, 5-fold cross-
validation was performed for each model. k-fold cross-validation is a resampling technique
used to reduce selection bias and to gain insight of how a ML algorithm will generalize to
an unseen dataset. The dataset is split into k folds (equal sized subsamples), where one of
the folds is held as a validation set and the rest of the k£ — 1 folds are utilized as the training
set. The proccess is then repeated k times, with each of the subsamples being used as a

validation set exactly once. The k results are then averaged.

Results and Discussions

Classification

The RFE technique was employed to find the five most important properties associated
with the identity of the interacting halogen atom. The properties most associated with the
identity of the halogen atom for the halo-benzene (BX) and halo-ethynyl benzene (BAX)
systems are found in Table 1. The most important features for the BX donors are primarily
associated with the energetic properties of the XB complex, namely the binding energy
(Ebina) as well as formation energies of the donor (E$2}*") and ammonia acceptor (EdNe‘}Is)
The structure of the XB donor in the corresponding complex also reflects the identity of the
halogen atom, as indicated by the C—X bond length in the complex (Rgmj‘)‘;‘ ““) being one of
the five most important features in determining the principal halogen atom. The magnitude
of the charge transfer from the ammonia acceptor to the XB donor (Ap) is the fifth property

most associated with the identity of the halogen atom in the BX systems.

The BAX systems, on the other hand, have more association with the electronic properties



Table 1: Five Most Important Features for Identifying the Principal Halogen Atom in the
Halo-Benzene (BX) and Halo-Ethynyl Benzene (BAX) XB Donors.

Feature BX BAX
Feature 1 Ry ples V2pBeP
Feature 2 Ebind H(r)BCP
Feature 3 Eﬁ}g}w sign(Ag)*p
Feature 4 Ede‘}{‘" Epind
Feature 5 Ap Egg’;%or

in the complex than energetic or structural features. This can be seen from three of the
selected features being the Laplacian of the electron density (V2pZ°?), sign of the second
eigenvalue of the electron density matrix multiplied by the electron density (sign(\g)%p),
and the total energy density (H(r)®¢") at the X- - -N bond critical point. The remaining two
features are the binding energy of the complex and donor deformation energy.

The RF, XGB, and SVM ML models were then employed to predict the identity of the
principal (interacting) halogen atom for the BX and BAX systems based on these five most
important features. Figure 2 shows the heat map of the confusion matrices applied to check
the accuracy of the models. Each block in the heat map conveys the number of times a
halogen atom was predicted to be the principal halogen atom (Predicted Halogen; z-axis)
against the expected (or true) halogen atom (Expected Halogen; y-axis). The percentage
displayed in each block is found by taking the number in that block (number of times the
specific halogen atom was predicted) and dividing by the total number of predictions made

(sum of total values in each block).

Table 2: Accuracy Score of 5-fold Cross-Validation for the Prediction of the Principal Halo-
gen Atom for the BX and BAX Systems.

System RF XGB SVM
BX 100% 100% 100%
BAX 100% 100% 90%

The RF algorithm had over 99% accuracy when predicting the principal halogen atom for

the halo-benzene XB donors (Figure 2a). The model predicted one structure to have chlorine
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Figure 2: Heat map of the confusion matrix for the halo-benzene (top row) and halo-ethynyl
benzene (bottom row) XB donors using the Random Forest (a and d), XGBoost (b and e),
and Support Vector Machines (¢ and f) classification ML models.



as the principal halogen atom when bromine was the correct atom. The results showed
excellent agreement with the 5-fold cross-validation that gave a 100% accuracy score for the
RF model (Table 2). The XGB algorithm (Figure 2b) algorithm resulted in an accuracy score
of 100%, agreeing with the cross-validation accuracy score. The SVM method (Figure 2c),
however, showed a 96.69% accuracy for predicting the correct principal halogen atom. One
structure was predicted to contain astatine when the correct halogen was iodine, and three
structures were predicted to have an iodine atom present when the principal halogen atom
was astatine. The SVM cross-validation predicted the halogen atoms with 100% accuracy
for the BX systems.

Similar results can be seen for the BAX systems using the RF (Figure 2d) and XGB
(Figure 2e) models, where both algorithms predicted the halogen atom with 100% accuracy.
The SVM model (Figure 2f) predicted the principal halogen atom correctly 87.7% of the time.
One structure was predicted to have an iodine atom when the principal halogen atom was
astatine. Five halogen atoms were predicted as iodine while bromine was the appropriate
halogen atom. One structure that contained a bromine halogen was predicted to have a
chlorine atom. The model associated three structures with a bromine halogen when the
structures contained an iodine halogen atom instead, and two structures were associated
with a bromine atom when the principal halogen was chlorine. Finally, three structures were
predicted to have astatine as the principal halogen when the appropriate principal halogen
was iodine. The SVM algorithm with cross-validation gave a 90% prediction accuracy. This
indicates that the RF and XGB models have a much better prediction accuracy for classifying
the principal halogen atom in the XB donors/complex based on the data garnered from DFT
calculations when compared to the SVM model. The ability of the three ML algorithms
to separate the XB donors by their principal halogen atom highlights the significance of

considering the identity (polarizability) of the interacting halogen atom in XB studies.
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Regression
Mbolecular Fingerprint Prediction

In addition to predicting the principal halogen atom, the RF, XGB, and SVM models were
utilized to predict the magnitude of the o-hole (Vgmaez), binding energy (Eping), and the
X- - -N bond local force constant (k%.. ) of the XB donor and its’ corresponding complex with
ammonia based on the XB donors’ molecular fingerprint (MFP) and again with the properties
calculated with DFT methods. We begin with applying the ML algorithms to the Morgan
fingerprints of the XB donor molecules to demonstrate the important role that substitutions
(i.e., electron-donating and electron-withdrawing groups) play in the determination of Vg maz,
Eping, and k% . The Morgan fingerprint is a type of hash fingerprint called the extended-
connectivity fingerprint (ECFP). This fingerprint encodes fragments of a molecule as a binary
vector through a hash function.® This gives a useful representation for identifying if an atom
group (fragment) exists, thus distinguishing the different substituents in the XB donors and
how they will affect the molecular properties.

In order to gain some understanding of the accuracy of the methods and observe how
limiting the dataset will affect the accuracy of the ML models, the XB donors were split
into separate groups by their principal halogen atom. Figures 3 and 4 display the DFT
calculated vs ML predicted Vsmaz, Eping, and k% properties based on the MFP for the
chlorine (top row), bromine (second row), iodine (third row), and astatine (bottom row)
halogen atoms in the BX and BAX systems, respectively. The coefficient of determination
(R?), mean absolute error (MAE), and root mean square error (RMSE) are used to represent
the accuracy of the models when predicting the selected properties. R? close to 1.00 and
small RMSE/MAE values are evidence the ML algorithms are making predictions with a
high degree of accuracy.

The BAX systems (Figure 4) are shown to have a smaller MAE and RMSE when predict-

ing the Vg 4. (first column) based on the Morgan fingerprints compared to the BX systems
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Figure 3: Regression plots of molecular fingerprint-based prediction of Vs maz (left column),
Eping (middle column), and k% (right column) using the RF ML algorithm for the chlorine-
(top row), bromine- (second row), iodine- (third row), and astatine-containing (bottom row)
halo-benzene XB donors with their corresponding complexes.
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(Figure 3). This is in part due to the BAX systems having a smaller range of Vg 4, values
when compared to the BX systems because of the ethynyl linker serving as a steric factor,
as reported in previous studies.'? An interesting point to be made is that while the MAE
and RMSE of Vg 4, for the BX XB donors is larger than for the BAX systems, R? for the
BX systems is larger than for the BAX donors. This shows that the ML predicted vs DFT
calculated Vg o, 1s slightly more linear in the BX donors than the BAX systems. However,
the MAE and RMSE for the Vg ma. is still quite large for both BX (> 5.6, >6.9) and BAX
(> 4.2, > 5.4) XB donors. Similar results can be seen when using the XGB (Figures S3 and
S4) and SVM (Figures S10 and S11) algorithms. These large errors for the Vg4, predic-
tion result from the difficulty of distinguishing conformers of the same molecule from the
SMILES code and the small size of the dataset. The Vg 4, highly depends on the electronic
environment, which can be altered in different conformers of the same molecule.?*° Con-
sider a halo-benzene molecule with a hydroxyl group ortho to the halogen atom for example.
One structure has the hydrogen atom in the hydroxyl group pointing toward the halogen,
while another could have the hydrogen atom of the hydroxyl substituent pointing away from
the halogen atom. Both molecules are conformers of one another (are local minima on the
potential energy surface) and are represented by the same SMILES code. However, the elec-
tronic environment (especially around the halogen atom) is very different from one another.
Therefore, the properties of the conformers (i.e., Vgmq.) and even the properties of the XB
complexes that are generated (i.e., Eping and k% 5) will be vastly different.

The binding energy of the BX and BAX complexes with ammonia have an MAE and
RMSE that range between 0.5 to 1.0 kcal mol™! (second column of Figures 3 and 4). This
remains true for all three algorithms used. The X- - -N bond local force constant has a range
of 0.005 to 0.022 mDyn A~! for MAE and RMSE (third column of Figures 3 and 4). Similar
to what was seen before with the Vi mq., the R? for Eyng and k% y is much larger in the
BX systems than in the BAX complexes. The MAE and RMSE being within 1.0 kcal mol™*

for Eping and 0.022 mDyn A~ for k% .. shows that the interaction strength between the
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Figure 4: Regression plots of molecular fingerprint-based prediction of Vs maz (left column),
Eping (middle column), and k% (right column) using the RF ML algorithm for the chlorine-
(top row), bromine- (second row), iodine- (third row), and astatine-containing (bottom row)
halo-ethynyl benzene XB donors with their corresponding complexes.

14



001 | fsE S0 . > MAE = 0.57 :i 0.301 mAE < 0.00 ;
RMSE = 6.41 o, RMSE = 0.73 RMSE = 0.013 '?'
i ¥ 3? 025) s
40 ..‘o :{ ¢ ”;
— "l —6 Fa 0.20] ¢
i (A - > < -
| 30 ° ‘e o L i —
S oo nfes o I -8 | 0.15
€ LI E R ) Lo S s ]
= 20 o.".. . E -10 r §,0 10
© w ’ — /
U 10{ /& © 15l /e a
S v, : E o.0s ?
L ] S [ ]
x : : : :
g 5% 40 T -10 -5 < 01 02
n R?2=108 o ; uﬁ —2 R? = 0.94 o '32" R? = 0.97 o
> MAE = 4.0 . / MAE = 0.56 .4 0.30] MAE=0.01 ;
y®) 60 RMSE =5.22 C..”,’. 8 —4 RMSE = 0.74 . * 8 RMSE = 0.01
Q e | 2 ® od = /%
4+ L] .r" fU e b fU f”
'.r — /
r_ju 50 -’?f P 5 _6 ° s 3 0.25' &!,"
i O |©] o
L SO — ;*J — ¥
© 40 & ‘,’.. ° (v -8 ™ ® (C ” .
O ¢ 1.., O ¢ f’;‘ O 0.20] Q o
° e / L ]
o, & S ¥
&g o0 o
..ﬁc. o e 0.151 ./
20 #°% -12°, P ?.
/. i
° ¢ 14 {’. 010
20 4q 60 -10 ) -5 0.1 0.2_ 0.3
Predicted Predicted Predicted
VS, Max Ebind k?(. N
(kcal mol~1) (kcal mol~1) (mDyn A-1)

Figure 5: Regression plots of molecular fingerprint-based prediction of Vg a, (left column),
Eping (middle column), and k% (right column) using the RF ML algorithm for the all
halo-benzene (top row) and halo-ethynyl benzene (bottom row) XB donors with their cor-
responding complexes.
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symmetric XB donors and ammonia acceptor can be predicted from the MFP with good
accuracy, even if the ML algorithms had a more difficult time predicting the Vs maq.

The small R? and large MAE and RMSE values when predicting the Vs,maz for the BX
and BAX systems when separated by their principal halogen atom show that while the ML
models can make decent predictions based on the MFPs in these smaller datasets, more
data is required to make more accurate predictions. This fact can be seen by the smaller
MAE/RMSE and larger R? values for the Vs when all BX (top row) and BAX (bottom
row) systems are taken into consideration (Figures 5, S5, and S12). The MAE and RMSE
when predicting Eg;p,q for the total BX and BAX systems with the RF algorithm are slightly
below the average MAE and RMSE produced when the XB complexes are separated by the
principal halogen atom of the XB donor. The XGB (Figures S3 and S5) and SVM (Figures
S10 and S12) algorithms show a vast improvement in lowering the prediction error for the
Epina when grouping all the BX systems together into one dataset. The SVM (Figures S11
and S12) algorithm also shows the RMSE and MAE for the prediction of Ey;,g to be much
lower when grouping the BAX systems together compared to separating them by principal
halogen atom, while the XGB (Figures S4 and S5) method has an RMSE and MAE of just
below the average RMSE and MAE for Eg;,q when separating the data by principal halogen
atom. Tables 3 and 4, which display the metric values for each algorithm after performing
5-fold cross-validation, are in agreement with these findings. This result shows that the
prediction accuracy of the ML algorithms can be improved with additional data. These
findings also start to show a distinction in the prediction accuracy between algorithms when
more data is added to the dataset.

In an effort to expand the dataset a little more, and observe how it would affect the
accuracy of the ML models, the BX and BAX datasets were conjoined into a single dataset
(Figure 6). The MAE and RMSE for the prediction of the Vg, from the complete XB
donor dataset (top left plot of Figure 6) is slightly larger than the average of the MAE and
RMSE of the BX and BAX datasets. The Ep;,q and k% ..y (top middle and right of Figure 6),
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Table 3: R?, MAE, and RMSE Accuracy Metrics for the MFP-based 5-fold Cross-Validation
on the RF, XGB, and SVM models for the Chloro-Benzene (BCl), Bromo-Benzene (BBr),
Iodo-Benzene (BI), Astato-Benzene (BAt), and All Halo-Benzene (BX) XB Donors.

Metric Property BCl BBr BI BAt BX
RF

R2 Vs maz 0.48 0.51 0.56 0.63 0.72
Ebing 0.61 0.72 0.77 0.81 0.92

%N 0.72 0.82 0.76 0.83 0.95

MAE Vs maz 5.02 4.89 4.70 4.76 5.01
Ebind 0.45 0.52 0.55 0.59 0.55
%N 0.008 0.007 0.006 0.009 0.008

RMSE Vs maz 6.42 6.36 6.02 5.90 6.34
Ebing 0.59 0.66 0.71 0.79 0.70

%N 0.012 0.010 0.010 0.014 0.011

XGB

R2 Vs maz 0.31 0.37 0.44 0.55 0.72
Ebing 0.49 0.66 0.79 0.83 0.94

k%..n 0.74 0.81 0.85 0.87 0.98

MAE Vs maz 5.47 5.40 5.05 4.94 4.49
Ebind 0.49 0.57 0.53 0.56 0.46
%N 0.008 0.007 0.005 0.008 0.006

RMSE Vs maz 7.39 7.23 6.79 6.52 6.33
Ebing 0.67 0.73 0.68 0.74 0.61
%N 0.012 0.010 0.007 0.012 0.008
SVM

R2 Vs maz 0.58 0.58 0.62 0.70 0.83
Ebing 0.59 0.72 0.79 0.85 0.94

k%..n 0.83 0.87 0.82 0.89 0.97

MAE Vs maz 4.29 4.33 4.17 4.10 3.48
Ebind 0.42 0.47 0.50 0.51 0.42
%N 0.007 0.006 0.005 0.008 0.006

RMSE Vs maz 5.70 5.84 5.53 5.28 4.95
Ebing 0.60 0.65 0.68 0.68 0.61
%N 0.009 0.008 0.008 0.012 0.008

*units for Vs mee and Eping are in keal mol™ and £% .y in mDyn A1
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Table 4: R?, MAE, and RMSE Accuracy Metrics for the MFP-based 5-fold Cross-Validation
on the RF, XGB, and SVM models for the Chloro-Ethynl Benzene (BACIl), Bromo-Ethynl
Benzene (BABr), lodo-Ethynl Benzene (BAI), Astato-Ethynl Benzene (BAAt), and All Halo-
Ethynl Benzene (BAX) XB Donors.

Metric Property BACI BABr BAI BAAt BAX
RF

R2 Vs maz 0.39 0.38 0.39 0.40 0.81
Ebind 0.50 0.42 0.48 0.49 0.95

%N 0.57 0.67 0.54 0.49 0.98

MAE Vs maz 3.62 3.67 3.65 3.78 3.83
Ebind 0.36 0.46 0.52 0.60 0.51

%N 0.007 0.004 0.009 0.005 0.006

RMSE Vs maz 4.75 4.79 4.76 4.96 4.99
Ebind 0.46 0.61 0.67 0.78 0.67

%N 0.008 0.005 0.011 0.007 0.009

XGB

R2 Vs maz 0.21 0.21 0.22 0.24 0.81
Ebind 0.39 0.30 0.35 0.36 0.95

%N 0.50 0.63 0.42 0.43 0.98

MAE Vs maz 3.99 4.05 3.97 4.09 3.48
Ebind 0.38 0.49 0.55 0.64 0.46

%N 0.007 0.004 0.009 0.006 0.006

RMSE Vs maz 5.38 5.44 5.39 5.58 5.06
Ebind 0.51 0.67 0.74 0.87 0.68

%N 0.009 0.006 0.012 0.008 0.009

SVM

R2 Vs maz 0.41 0.41 0.41 0.42 0.88
Ebind 0.37 0.30 0.35 0.36 0.97

k% _n 0.47 0.58 0.42 0.40 0.99

MAE Vs maz 3.33 3.36 3.32 343 2.20
Ebind 0.37 0.47 0.53 0.61 0.34

%N 0.007 0.004 0.009 0.005 0.005

RMSE Vs maz 4.63 4.66 4.64 4.82 3.99
Ebind 0.52 0.67 0.75 0.87 0.53

%N 0.009 0.006 0.012 0.008 0.007

*units for Vs mee and Eping are in keal mol™ and £% .y in mDyn A1
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on the other hand, show a slight improvement in prediction accuracy when compared to the
separate BX and BAX systems. Similar results can be seen from the XGB (Figures S5 and
middle row of Figure 6) and SVM (Figures S12 and bottom row of Figure 6) models. A
comparison between the three ML models employed throughout this study can also be done
based on these results. XGB has better prediction accuracy for the Vg maz, Eping, and k% .y
properties of the XB donors and corresponding complexes compared to the RF model (top
row of Figure 6). The SVM and XGB models give comparable results for prediction accuracy
of the Eping and k% . of the XB complexes, while SVM performs better than both the XGB
and RF techniques for predicting the Vg4, based on the MFP of the XB donors.

Figure 6 shows that the RMSE for predicting the Vg4, of the combined BX/BAX
dataset is 5.36 — 5.92 kcal mol™! for any of the three algorithms. In comparison to the ML
study on o-holes conducted by Heidrich et al., where they found the RMSE for predicting
the Vs maz on an 0.001 au electron isodensity to be 0.0140 au (8.79 kcal mol™!),3? we seem to
have a slightly better prediction accuracy. This could be due to our XB donors all having the
same carbon backbone, whereas Heidrich et al. used a vast assortment of XB donors with
differing carbon backbones and a significantly larger number of molecules (16,000 molecules
compared to our 1,210 XB donors). When performing cross-validation, however, Heidrich
et al. find the RMSE for predicting the Vgmaez to be 0.0061 au (3.83 kcal mol™!). This
is notably lower than RMSE we find for the BX and BAX systems after running 5-fold
cross-validation (Tables 3 and 4).

Data-Based Prediction

In conjunction with the molecular fingerprint-based predictions, we also implemented DFT
data-based predictions. The features selected through the RFE procedure for the halo-
benzene and halo-ethynyl benzene systems are displayed in Tables S2 and S3, respectively.
The majority of the most important features for predicting the Vsmaz, Ebing, and k%

properties are primarily properties found in the XB donor-acceptor complex. Very few of
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Figure 6: Regression plots for the molecular fingerprint-based prediction of all halo-benzene
and halo-ethynyl benzene XB donors with the RF (top row), XGB (middle row), and SVM

(bottom row) algorithms.
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the features are found to be properties of the XB donor alone. Ep;,g and k%.. 5 represent
how strong the interaction in the XB complex is. Therefore, a more accurate prediction of
the strength of the complex would be made with additional details from the complex itself,
whereas the features from the XB donor alone would not properly portray how significant
the interaction between the XB donor and acceptor might be. The Vg4, is a measure of
how attractive the XB donor is to a Lewis base. While details solely about the XB donor
might lead to a relatively accurate estimation of the Vgq, for the donor, features about
the complex will provide a better prediction for how attractive the Lewis acid is to the
nucleophile.

When predicting the Vg g, systems, the energetic features (e.g., Epina, Egzior, and Ef};z)
are found to have the highest prevalence (Tables S2 and S3). This is in part due to the RFE
algorithm finding that the V., is very highly correlated to these energetic properties, as
shown in our previous studies.'??! The spectroscopic, electronic, and structural properties
have a varied importance, depending on the principal halogen atom of the XB donor. The
electronic terms, especially the electron or energy density at the X---N bond critical point,
have a comparable (and potentially related) importance to the energetic terms when predict-
ing the Vg e, in the complete BX or BAX dataset, regardless of the identity of the principal
halogen atom. Similar trends can be seen when predicting the Eping or k% of the XB
complex.

Figures 7 and 8 display regression plots for data-based prediction using the RF algorithm.
These figures have a much lower MAE and RMSE, in addition to a much larger R2, for the
prediction of all properties (Vsmaz, Eping, and k%..n) compared to Figures 3 and 4. This
shows that when certain properties of the complex are known, the remaining properties can
be predicted accurately. Figures S6, S7, S13, and S14 also present lower MAE and RMSE
and larger R? values compared to Figures S3, S4, S10, and S11, respectively. Thus, the
XGB and SVM models also predict the Vg ez, Eping, and k% ...y more accurately when other

properties of the complex are known. These results are agreed upon when the 5-fold cross-
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Figure 8: Regression plots of data-based prediction of Vg, (left column), Ep;pg (mid-
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Figure 9: Regression plots of data-based prediction of Vgq, (left column), Epng (middle
column), and k% .y (right column) using the RF ML algorithm for the all halo-benzene (top
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Table 5: R2, MAE, and RMSE Accuracy Metrics for the data-based 5-fold Cross-Validation
on the RF, XGB, and SVM models for the Chloro-Benzene (BCl), Bromo-Benzene (BBr),
Iodo-Benzene (BI), Astato-Benzene (BAt), and All Halo-Benzene (BX) XB Donors.

Metric Property BCl BBr BI BAt BX
RF

R2 Vs maz 0.96 0.97 0.97 0.98 0.98
Ebing 0.98 0.99 0.99 0.98 1.00

%N 0.97 0.99 0.99 0.99 0.99

MAE Vs maz 1.30 1.16 1.05 0.96 1.13
Ebind 0.10 0.07 0.10 0.15 0.11
%N 0.002 0.001 0.001 0.002 0.002

RMSE Vs maz 1.71 1.63 1.46 1.40 1.69
Ebing 0.14 0.11 0.15 0.22 0.16
%N 0.004 0.002 0.002 0.003 0.004
XGB

R2 Vs maz 0.96 0.98 0.96 0.97 0.98
Ebing 0.97 0.99 0.99 0.99 1.00

k%..n 0.95 0.99 0.99 0.99 1.00

MAE Vs maz 1.25 1.02 1.19 1.02 1.15
Ebind 0.11 0.08 0.11 0.14 0.12

%N 0.002 0.002 0.001 0.003 0.002

RMSE Vs maz 1.72 1.40 1.89 1.52 1.65
Ebing 0.16 0.11 0.16 0.19 0.17

%N 0.005 0.003 0.002 0.004 0.004

SVM

R2 Vs maz 0.91 0.90 0.90 0.91 0.86
Ebing 0.93 0.91 0.96 0.89 0.91

k%..n 0.95 0.92 0.87 0.93 0.84

MAE Vs maz 2.10 2.17 2.29 2.36 3.66
Ebind 0.17 0.27 0.22 0.46 0.60

%N 0.004 0.005 0.005 0.007 0.013

RMSE Vs maz 2.60 2.90 2.98 3.02 451
Ebing 0.24 0.38 0.31 0.59 0.74

%N 0.005 0.006 0.007 0.009 0.020

units for Vg mar and Eping are in keal mol™ and k%. y in mDyn A1
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Table 6: R2, MAE, and RMSE Accuracy Metrics for the data-based 5-fold Cross-Validation
on the RF, XGB, and SVM models for the Chloro-Ethynyl Benzene (BACl), Bromo-Ethynyl
Benzene (BABr), lodo-Ethynyl Benzene (BAI), Astato-Ethynyl Benzene (BAAt), and All
Halo-Ethynyl Benzene (BAX) XB Donors.

Metric Property BACI BABr BAI BAAt BAX
RF

R2 Vs maz 0.97 0.99 0.99 0.99 0.99
Ebind 0.98 0.94 0.99 1.00 1.00

%N 0.99 0.99 0.99 0.95 1.00

MAE Vs maz 0.64 0.48 0.45 0.42 0.56
Ebind 0.04 0.05 0.04 0.04 0.05

%N 0.001 0.001 0.001 0.001 0.001

RMSE Vs maz 0.93 0.72 0.59 0.58 0.88
Ebind 0.08 0.16 0.06 0.06 0.10

%N 0.001 0.001 0.002 0.002 0.001

XGB

R2 Vs maz 0.97 0.99 0.99 0.99 0.99
Ebind 0.98 0.94 0.99 0.99 1.00

%N 0.99 0.98 0.99 0.94 1.00

MAE Vs maz 0.76 0.49 0.46 0.51 0.63
Ebind 0.05 0.07 0.05 0.06 0.05

%N 0.001 0.001 0.001 0.001 0.001

RMSE Vs maz 1.09 0.67 0.60 0.69 0.91
Ebind 0.08 0.17 0.08 0.12 0.10

%N 0.001 0.001 0.002 0.003 0.001

SVM

R2 Vs maz 0.95 0.95 0.98 0.98 0.92
Ebind 0.17 0.94 0.01 0.98 0.97

k% _n 0.97 0.54 0.98 0.91 0.88

MAE Vs maz 0.80 0.76 0.65 0.64 2.60
Ebind 0.50 0.10 0.77 0.11 0.41

%N 0.001 0.004 0.002 0.002 0.017

RMSE Vs maz 1.26 1.28 0.94 0.92 3.28
Ebind 0.62 0.18 0.95 0.16 0.50

%N 0.002 0.006 0.002 0.003 0.021

units for Vg mar and Eping are in keal mol™ and k%. y in mDyn A1

26



validation is performed on the data (Tables 5 and 6). Data of the electron density, crystal
structure, and dissociation energy determined through experimental methods®%® could also
potentially be used to improve predictions of XB properties like the Vs ez, Epindg, or k% -

When the complete BX or BAX dataset are taken into consideration upon running the
ML models, the MAE and RMSE are observed to be comparable if not slightly lower than
when the dataset is split into smaller batches by the structures’ principal halogen atom for
the RF (Figure 9) and XGB (Figure S8) models. However, the SVM method (Figure S15)
shows the opposite. The SVM is able to predict the Vsmaz, Ebing, and k% 5 properties of
the XB donor and its’ corresponding complex with a higher degree of accuracy when the
dataset is split by the principal halogen atom. This may be because the SVM algorithm
struggles to separate densely packed data points and operates more effectively in sparse
datasets, whereas the RF and XGB algorithms are able to more easily distinguish groups or
trends in tightly compacted datasets. By adding the datasets of each individual principal
halogen atom together, the data points become less sparse, decreasing the overall accuracy
of the SVM model. The DFT-based predictions are more accurate than the MFP-based
approach for all three ML algorithms implemented. However, the MFP predictions provide
reasonable initial values for the electronic environment of the XB donor and the interaction
strength of the corresponding complex with ammonia while avoiding the time-consuming

and complicated DFT quantum chemical calculations.

Conclusion

In this proof-of-concept study, we have employed three ML modelling techniques for the clas-
sification of the identity of the principal halogen atom in XB donors and complexes based on
DFT collected data. We have shown that the RF, XGB, and SVM models have comparable
results when identifying the principal halogen atom in the halo-(ethynyl)benzene systems,

however the SVM model suffers in accuracy when predicting the halo-ethynyl benzene sys-
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tems. The ML algorithms having > 90% prediction accuracy for separating the XB donors
by the principal halogen atom emphasizes the importance of considering the identity of the
interacting halogen atom when performing XB studies.

In addition, we have demonstrated that the RF, XGB, and SVM regression algorithms
can predict the Vgmer, Eping, and k% of the symmetric XB donor and corresponding
complex with ammonia based on the XB donor’s molecular fingerprints and DF'T calculated
properties. The prediction of the Vg4, of the XB donor suffers due to limited data and
difficulty in distinguishing molecular conformers based on the SMILES code; however, the
Vsmaz can still be predicted within 5 keal mol™, or within 36%, 17%, 21%, and 11% error
(from MAE) of the mean for chloro-benzene, chloro-ethynyl benzene, iodo-benzene, and
iodo-ethynyl benzene donors, respectively. The interaction strength of the XB complex (i.e.,
Ebping and k% ) is predicted to a much higher degree of accuracy (within 1.0 kcal mol™" and
0.022 mDyn A‘l) from the molecular fingerprint alone. In terms of relative comparison, this
falls within 22%, 12%, 11%, and 7% error (from MAE) of the mean for the binding energy
in the chloro-benzene, chloro-ethynyl benzene, iodo-benzene, and iodo-ethynyl benzene XB
complexes, respectively. The accuracy of the ML models estimating Vg 4, of the XB donors
and the interaction strength of the complexes can be further improved upon when using
pre-calculated DFT data. Future work will involve 3D and 4D descriptors to account for

conformational differences in the electronic environment of the XB donor.
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